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Abstract— Multi-task IRL recognizes that expert(s) could be
switching between multiple ways of solving the same problem,
or interleaving demonstrations of multiple tasks. The learner
aims to learn the reward functions that individually guide these
distinct ways. We present a new method for multi-task IRL
that generalizes the well-known maximum entropy approach
by combining it with a Dirichlet process based minimum
entropy clustering of the observed data. This yields a single
nonlinear optimization problem, called MinMaxEnt Multi-task
IRL (MME-MTIRL), which can be solved using the Lagrangian
relaxation and gradient descent methods. We evaluate MME-
MTIRL on the robotic task of sorting onions on a processing
line where the expert utilizes multiple ways of detecting and
removing blemished onions. The method is able to learn the
underlying reward functions to a high level of accuracy and it
improves on the previous approaches.

I. INTRODUCTION

Inverse reinforcement learning (IRL) [1]-[3] refers to
the problem of ascertaining an agent’s preferences from
observations of its behavior while executing a task. For
instance, observing a human perform a task on the factory
line provides information and facilitates learning the task.
This passive mode of transferring skills to a collaborative
robot (cobot) is appealing because it mitigates costly human
effort in not only manually programming the task in a cobot
but also in actively teaching the cobot through interventions.
The learned preferences can be utilized by a cobot to imitate
the observed task [4], or assist the human on it [5].

Motivated by the goal of bringing robotic automation to
post-harvest processing lines for vegetables, we focus on
the well-defined but challenging task of sorting onions. Our
observations of persons engaged in this job in a processing
shed attached to a farm revealed commonly used sorting
techniques. For example, in addition to the overt technique
of individually picking and inspecting the onions as they
pass by, we noticed that sometimes the sorters would simply
roll the onions (without picking them up) to expose more
of their surface. The latter technique allows more onions to
be quickly assessed but less accurately. Consequently, the
problem of learning the ways to sort onions requires multi-
task IRL. This variant of IRL allows the possibility that the
demonstrator could be switching between multiple reward
functions thereby exhibiting multiple ways (preferences) of
solving the given problem or performing multiple tasks.
In a previous approach to multi-task Bayesian IRL, DPM-
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Fig. 1: States are identified using SA-Net [10] from the human
demonstration of onion sorting, and the trajectories are given as
input to MME-MTIRL method. Learned tasks are demonstrated
using the Sawyer cobot.

BIRL [6], a Dirichlet process model is used to perform non-
parametric clustering of the trajectories, where each cluster
corresponds to an underlying reward function. Different from
Bayesian IRL, Babes-VRoman et al. [7] apply the iterative
EM-based clustering by replacing the mixture of Gaussians
with a mixture of reward functions, and a reward function
of maximum likelihood is learned for each cluster. Unlike
previous approaches, we present a new method for multi-
task IRL that generalizes the well-known maximum entropy
approach to IRL (MaxEntIRL) [8]. We call our method Min-
Max Entropy Multi-Task IRL, or MME-MTIRL. Figure 1
shows the overview of using this method. We formulate the
problem as a single entropy-based nonlinear program that
combines the MaxEntIRL objective with the objective of
finding a cluster assignment distribution having the least
entropy. Ziebart et al. [8] demonstrate the advantage that
MaxEntIRL brings to single-task IRL in comparison to the
Bayesian technique. We expect to leverage this benefit toward
multi-task IRL. Taking a different viewpoint, Gleave and
Habryka [9] propose regularized MaxEnt multi-task IRL that
assumes the target reward functions to lie close to the mean
across all tasks, thus transferring information across tasks.
Unlike [9], MME-MTIRL has been tested on real-life physical
cobot. It does not need task specifications to be close to each
other, and it explicitly uses minimum entropy clustering to
minimize the number of reward functions needed to explain
the observed behavior.

Modeling multi-task IRL as a single optimization problem
enables the direct application of well-studied optimization
algorithms (e.g. fast gradient-descent) to this problem. In



particular, we derive the gradients of the Lagrangian relaxation
of the nonlinear program, which then facilitates the use
of fast gradient-descent based algorithms. We evaluate the
performance of MME-MTIRL in comparison with two
previous multi-task IRL techniques, on the problem sorting
onions. We show that MME-MTIRL improves on both and
learns the reward functions to a high level of accuracy,
which allows the collaborative robot Sawyer to observe and
reproduce both ways of sorting the onions while making few
mistakes. However, we also observed room for improvement
in one of the learned behaviors.

II. BACKGROUND

In IRL, the task of a learner is to find a reward function
under which the observed behavior of an expert, with
dynamics modeled as an incomplete MDP (S, A, T), is
optimal [1], [2]. Abbeel and Ng [11] first suggested modeling
the reward function as a linear combination of K binary
features, ¢y, each of which maps a state from the set of
states S and an action from the set of expert’s actions A
to a value in {0,1}. The reward function is then defined as
R(s,a) = 07¢(s,a) = 1, Ok - 61 (s, a), where 6, are the
Sfeature weights in vector 0. The learner’s task is to find a
vector @ that completes the reward function, and thus, the

MDP such that the observed behavior is optimal.

Many of the early methods for IRL bias their search to
combat the ill-posed nature of IRL and the very large search
space [8], [11]. Ziebart et al. [8], taking a contrasting perspec-
tive, seeks a distribution over all trajectories (sequences of
state-action pairs) that exhibits the maximum entropy while
being constrained to match the observed feature counts.

maxa =535 P(y:) logP(y:) i W
subject to  S"I*l P(y;) =1 and Ex[¢r]) = 1 Vk

Here, A is the space of all distributions over the set Y of all

trajectories, and Ey|[¢r] = Zgl P(yi) 3 (s.a)ey: Pr(s;a).
Let ) denote the set of observed trajectories. Then, the
right-hand side of the second constraint above becomes,
b = | S > (s.a)cy; Pk (s, @). The problem reduces to
finding 0, which parameterizes the exponential distribution
that exhibits the highest likelihood.

A. Multi-Task IRL

The same job on a processing line may be performed in one
of many ways, each guided by a distinct set of preferences.
An expert may switch between these varied behaviors as
it performs the job, or multiple experts may interleave to
perform the job. If the reward functions producing these
behaviors are distinct, then the traditional IRL would yield
a single reward function that cannot explain the observed
trajectories accurately. However, modeling it as a multi-task
problem allows the possibility of learning multiple reward
functions. If the number of involved reward functions is pre-
determined, we may view each unknown reward function as
a generative model producing a cluster of trajectories among
the observed set. As both, the reward weights and the set of
observed trajectories generated by it, are unknown, we may
utilize the iterative EM to learn both [7]. But, if the number
of reward functions is not known a’priori, multi-task IRL

can be viewed as non-parametric mixture model clustering,
which is typically anchored by a Dirichlet process (DP) [12].

A DP is a stochastic process whose sample paths are drawn
from functions that are distributed according to the Dirichlet
distribution. DPs find application in Bayesian mixture model
clustering [12] due to an interesting property exhibited by
distribution G ~ DP(«, H), where « is the concentration
parameter and H is a base distribution. Irrespective of whether
H is smooth, G is a discrete distribution. Observations 64
distributed according to G allow us to update the DP. i.i.d.
draws of observation 6 can be seen as cluster parameters.
A generic DP-based Bayesian mixture model can be seen as:

Gla,H ~ DP(o, H);  6;|G ~ G;  y;]0; ~ F(0;)

where data y; has distribution F'(;). Notice the lack of any
bound on the number of mixture components. To utilize
this mixture model for clustering observed data {y;}, we
must additionally assign each data point to its originating
cluster, and these assignments are drawn from convex mixture
weights (71,72, ...,7p) which are themselves distributed
randomly. The number of components D may grow as large
as needed. We may then obtain a cluster assignment c; for
data point y; by sampling distribution G parameterized by
event probabilities 7. Then, for each data point

031 H ~ H;  ci|lm~G; yilei, {05} ~ F(07) ()

where 67 denotes a unique component parameter value.
Choi and Kim [13] utilize this Bayesian mixture model
application of a DP toward multi-task IRL. The data points
in DPM-BIRL {y;} are the observed trajectories, {67}
parameterizes the D distinct reward functions, and F'(6})

T p*
Z(é* ) e2i=1 QUenanibl,) yhere T is the fixed

length of the trajectory, Z (07) is the partition function,
and H is taken as the Gaussian distribution. Neal [14]
discusses several MCMC algorithms for posterior inference
on DP-based mixture models, and Choi and Kim select the
Metropolis-Hastings.

corresponds to

III. MIN-MAX ENTROPY MULTI-TASK IRL

Ziebart et al. [8] notes a key benefit of the MaxEnt
distribution over trajectories over the distribution F'(6})
mentioned in Section II-A (which is the prior over trajectories
utilized in the Bayesian formulation for IRL [15]), despite
their initial similarities. Specifically, the latter formulation,
which decomposes the trajectory into its constituent state-
action pairs and obtains the probability of each state-action
as proportional to the exponentiated Q-function, is vulnerable
to the label bias. Due to the locality of the action probability
computation, the distribution over trajectories is impacted by
the number of action choice points (branching) encountered by
a trajectory. On the other hand, the MaxEnt distribution does
not suffer from this bias. A major consequence of this bias
is that Bayesian methods may not assign higher likelihoods
to trajectories that have higher rewards, but MaxEnt does.
To illustrate this distinction, we conducted experiments in
a 10 x 10 Object World [16] with two desirable objects at



corners, and randomly placed walls. We noted the correlation
coefficients (p) between the variables X (log-likelihood of a
trajectory as assigned by the method) and Y (total reward of
a trajectory) for 75 expert trajectories. While pxy is 1 for
MaxEnt due to a strictly linear relation between X and Y,
it is 0.1771 (p-value 0.2914) for Bayesian IRL, showing no
significant correlation between X and Y.

This important observation motivates a new method that
combines the non-parametric clustering of trajectories and the
learning of multiple reward functions by finding trajectory
distributions of maximum entropy. This method has the benefit
of avoiding label bias.

A. Unified Optimization

A straightforward approach to the combination would be
to replace the parametric distribution in MaxEntIRL with
F(07,) of DP-based mixture model, and the distribution over
the trajectories with cluster assignment value ¢;. Solving the
nonlinear program will yield parameter 07, that maximizes
the entropy of F(0} ). Though simple, this approach is
inefficient because it requires solving the MaxEnt program
repeatedly — each time the DP-based mixture model is updated.
As an analytical solution of MaxEnt is not available, the
optimization is performed numerically by using either gradient
descent [8] or L-BFGS [17].

Instead, we pursue an approach that adds key elements of
the DP-based mixture modeling to the nonlinear program
of MaxEnt optimization. MaxEnt can learn component
parameters {0} (these are the Lagrangian multipliers), which
maximize the entropy of the distribution F'(64) over those
trajectories whose cluster assignment ¢; = d. Subsequently,
each component distribution F' assumes the form of an
exponential-family distribution parameterized by 6, which is
known to exhibit the maximum entroBy For our DPM model,
the distribution G is the mixture ) | Tadp. To our multi-
task max-entropy objective, we add a second objective of
finding component weights 7r that exhibit a minimal entropy.
The effect of this objective is to learn a minimal number of
distinct clusters. More formally, the obv:ctlve function is

MaXp(y;|c;)EA,TEA — Zd 1 Z P yzlcl = d)
log(P(yile; = d)) + Z

Here P(yi|c; = d) can be written as d4(c;)Prq(y;) where
d4(c;) is the Kronecker delta taking a value of 1 when ¢; = d,
and 0 otherwise, and Pr4(y;) is the distribution over all the
trajectories for cluster d. The unified nonlinear optimization
problem is shown below.

7wq log(mg).

MaXpr,(y;)eAP , meA — Z Z Prd yl) (3)
log(84(c;)Pra(y:)) + Zd Tq log(wd)

subject to
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The first constraint above simply ensures that the joint
probability distribution sums to 1. The second constraint
makes the analogous constraint in MaxEntIRL more specific
to matching expectations of feature functions that belong to
the reward function of cluster d. Here,

Ey(px|ci = d] = Zi | Pyiei=d) Z(SYG)EM bx(s,a)

=Y L Pula=dPe=d Y dusa)
= ndz ba(ci) Pra(y:) Z Pi (s, a),

(s,a)€y;
and D’\
bak = W Z Z<S Dew or(s,a).

Constraint 3 of the pro%{am in (4) ensures that the mix-
ture weights are convex. Recall that the DP-based mixture

model obtains cluster assignment c; from mixture weights
7. We may approximate this simulation of ¢; simply as

Ty = Dl;ﬁ ZLZ ‘1 d4(c;), which is the proportion of observed
trajectories currently assigned to cluster ¢;. For notational

convenience, let us denote 5,1( ;) as indicator vg,;. We may
then rewrite the first constraint as

Y|
S, Pue=a =1
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and the second constraint is rewritten as,

Y
Zz 1vd1 |Y]

Zvdzpm Vi) Z dr(s,a)  (5)
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while
VI
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Furthermore, we may expand the third constraint of the
nonlinear program as follows:

D Iy\
Zd: =1 <:>Zd 1 |y| Z
Zm devdﬂ_ _

@Zdzl vas =1, Vi

The last equivalence follows from the fact that every observed
trajectory must belong to a single cluster, and vg; € {0, 1}.
The final form of the NLP of (4) is as follows.

Y|

max — va.iPrq(y;) log(vg.: Pra(y;

st eSS oy ™ 2 2 i Pri) lo8(vu i Pray)
|Y] [V

D}|ZZvdZ log |y|zvdz

subject to

Y Y|
Z |y‘z dzz va,i Pra(y:) =1
By o] = dax Vd € D,Vk € K

Zdvd,i:LVie{L"':‘Y” (7N



where Ey q[¢k], q@d’k are defined in Egs. 5 and 6.

B. Gradient Descent

The Lagrangian dual for the nonlinear program in (7) is
optimized as maxp,, ,, min, g, x £ with

= <_Z Z‘i‘ va,i Pra(y:) 1og(vd,ip7“d(yz‘)))
(m 52,30 v o (le\ X >>

() T i

+ Zd , ( <‘y| Z‘yl v‘“) Zz‘l va,iPra(y:)
Z(j)ksa y|i”‘“ Z¢k$a)

(s;a)€y; (s,a)€y;

37N, v 1) ®)
where the multipliers 77, {A; },,cv can be substituted by using
relations derived from equating the derivatives of £ w.r.t.
the variables of optimization to 0. The target is to learn the
multipliers 8, (weights for the linear reward function for each
learned cluster d) and the variables vq4; (for each trajectory
y; € Y) that achieve maxp;, +, , ming, , £. We achieve the
target via gradient ascent for vy ; and descent for 04,1 using
the following partial derivatives:

oL -
Wd,k = Ev,a[¢r] — da,k

oc (UL Plyilei = d) + 1+ 2L(1 ~log Z(6a,1))
8Ud,z Z‘Zy|1 Vd,i

K

where P(y|c; = d) = exp(ﬂd Zk:legéeif;’a)eyi m(s,a))
and  Z(0gr) =  Suepmaohexp  (mad,
Odk D (s,a)ey: ¢1(s,a)). The first derivative is the same as
that used for single-task MaxEntIRL. The second derivative
indicates that the chances of change in assignment is less
if a cluster has man trajectories assigned to it (inversely
proportional to Zl 1 Va,i ) and has a higher likelihood of
generating trajectories. Due to lack of space, we show the
derivations of these gradients in an online appendix located at
https://tinyurl.com/y518s2ua. We approximate
FEy 4|¢k] as a running average over feature expectations of
the trajectories generated by the policy computed using 6y,
which are the reward weights learned for cluster d in the
current iteration of gradient descent.

IV. DOMAIN: ROBOTIC SORTING OF ONIONS

Our broader vision is to make it easy to deploy robotic arms
on complex processing lines involving manipulation tasks,
using IRL. With this vision, we seek to deploy the robotic arm
Sawyer for sorting vegetables in processing sheds. Our setup
involves a learner robot observing an expert sort onions in a
post-harvest processing facility. The expert aims to identify
and remove onions with blemishes from the collection of
onions present on a static conveyor belt. Blemished onions
are dropped in a bin while others are left on the table.

In a visit to a real-world onion processing line attached to a
farm, we observed that two distinct sorting techniques were in

common use and would be interleaved by the human sorters.
Subsequently, we model the expert as acting according to the
output of two MDPs both of which share the state and action
sets, the transition function and the reward feature functions.
They differ in the weights assigned to the features, which
yields different behaviors. The specific task is to learn the
reward functions underlying the two MDPs.

The state of a sorter is perfectly observed and composed of
four factors: onion and gripper location, quality prediction,
and multiple predictions. Here, an onion’s location can be on
the sorting table, picked up, under inspection (involves taking
it closer to the head), inside the blemished-onion bin, or the
onion has been returned to the table post inspection. Gripper
location is similar but does not include the return back to
the table. Quality prediction of the onion can be blemished,
unblemished, or unknown. The simultaneous predictions for
multiple onions is either available or not.

The expert’s actions involve focusing attention on a new
onion on the table at random, picking it up, bringing the
grasped onion closer and inspecting it, placing it in the bin,
placing it back on the table, roll its gripper over the onions,
and attend to the next onion among those whose quality has
been predicted. Reward features are following predicates:

e ClaimNewOnion(s,a) action a in state s considers a new
onion on table;

o PickUnknown(s,a) action a picks an onion with unknown
prediction;

o MakeMultiplePredictions(s,a) a makes predictions for
multiple onions simultaneously by rolling onions;

o AvoidNoOp(s,a) the action a changes the state;

o InspectNewOnion(s,a) onion is inspected for the first time
and a prediction is made for it;

e GoodOnTable(s,a) the considered onion is predicted to be
unblemished and is placed on the table;

o BlemishedNotOnTable(s,a) onion is predicted to be blem-
ished and is not placed on the table;

e GoodNotInBin(s,a) onion is predicted to be unblemished
and is not placed in the bin;

o BlemishedInBin(s,a) onion is predicted to be blemished
and is placed in the bin;

o PickBlemished(s,a) onion predicted blemished is picked;

o EmptyList(s,a) empty the list of predictions by removing
blemished onions from table;

Two distinct vectors of real-valued weights on these feature
functions yield two distinct reward functions. The MDP with
one of these solves to obtain a policy that makes the expert
randomly pick an onion from the table, inspect it closely, and
place it in the bin if it appears blemished, otherwise place it
back on the table. The second reward function yields a policy
that has the expert robot roll its gripper over the onions,
quickly identify blemished onions, pick only those and place
them in the bin. In the MDP, we model classification of
blemished and unblemished onions by using a distribution
over prediction values. For careful inspection, our distribution
assigns higher mass to the correct prediction. For rolling, this
mass is lower than that of inspection. This makes the accuracy
of careful inspection higher.



V. EXPERIMENTS

We test the learning performance of different methods by
using simulated trajectory data as input, and we compare their
sorting performances using human demonstration as input.
For the former, we generate the two weight vectors of expert
as follows: we collect expert trajectories by executing the
behaviors from multiple start states, run an IRL algorithm on
the two sets of trajectories to generate the respective weights,
and finally verify that using these weights indeed yields the
desired behaviors. These “true” weights are denoted 6.
Metrics A known metric for evaluating the performance
of multi-taskIRL is the expected value difference averaged
over the trajectories [18], which gives the loss of value if
the learner uses the policy obtained by solving the expert’s
MDP with the learned reward function (parameterized by
0") instead of the expert’s true policy obtained by solving
its MDP with its actual reward function,

! > pos O_ecLi
VD=3 Es Zen 177 @ =V Ol

0;. and 05 are the true and learned reward weights (com-
ponent parameters) for the cluster assigned to the observed
trajectory 1;, and ot} denotes the corresponding policy.

Another pair of metrics is used to measure the performance
of Sawyer on the onion sorting task using the learned reward
functions. Precision is the ratio of the number of onions placed
in the bin that are actually blemished to the total number of
onions placed in the bin. Recall is the ratio of the number of
onions placed in the bin that are actually blemished to the
number of onions that are actually blemished (including both
in bin and on table). As careful inspection tends to be more
accurate than simply rolling over the onions, we expect the
behavior of pick-inspect-place to exhibit a higher precision
compared to the alternative. On the other hand, it is slower
compared to rolling and placing, hence its recall is expected
to be lower.

A. Performance Evaluation

We use the metric of EVD as defined previously to measure
the performance of MME-MTIRL. Figure 2 (top) shows
the average EVDs as the number of input trajectories is
increased for MME-MTIRL as well as existing MTIRL
baselines, DPM-BIRL [6] and EM-MLIRL [7]. Each data
point is the average of 10 runs on the set of trajectories
generated as described previously. MME-MTIRL correctly
learned two clusters (starting with initial D of 4) in most
runs, though a few yielded just one cluster. On the other hand,
DPM-BIRL mostly learned three clusters while EM-MLIRL
learned two predominantly. For a preliminary demonstration
of scalability of MME-MTIRL in the number of learned
tasks, we add a (meaningless) third behavior where the
sorter keeps considering new onions but does not inspect
them, preferring to do nothing. Figure 2 (bottom) shows the
average EVDs for learning three tasks. Notice that the MaxEnt
based MME-MTIRL exhibits EVDs that are consistently and
significantly lower than those of the Bayesian DPM-BIRL.
The former correctly learns three clusters in two-thirds of
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Fig. 2: Average EVDs of MME-MTIRL, DPM-BIRL and EM-
MLIRL as the number of trajectories increases, with two demon-
strated behaviors (or tasks) (top) and three demonstrated behaviors
(bottom). Vertical bars are the standard deviations. Note that DPM-
BIRL did not successfully terminate for the last data point.

the trajectory sets (otherwise four), while DPM-BIRL varies
between three and four. While we do not investigate the reason
for DPM-BIRL’s relatively poor performance, we note that
its EVDs seem to worsen with expanding basis of the MDP’s
initial state distribution. Unlike the two DP methods, EM-
MLIRL performs worse throughout, converging to incorrect
reward functions that are likely local optima. In terms of
speed of learning, DPM-BIRL is faster than MME-MTIRL,
and EM-MLIRL is significantly slower than both. For 96
input trajectories, on average, they take 11.94 seconds, 49.06
seconds, and 265.43 seconds respectively.

B. Evaluating Sort Performance Using Human Demonstration

Next, we evaluate the performance of the three methods
using human demonstration data. We create the domain
described in Section IV in our laboratory, and use as training
data the videos of both sorting behaviors executed by human
sorters (Fig. 3). We utilize SA-Net [10] to process the human
demonstrations by identifying the sequences of states from
the image frames. The network identifies sequences of states
with prediction and listStatus received directly from the object
recognition network YOLO [19]. We derive the actions in a
trajectory from the state sequence. We use the Sawyer robot,
a cobot arm with 7 degrees of freedom and a range of about
1.25m, as the learner executing learned policies. We partially
simulate a moving conveyor belt by repeatedly making a
collection of onions — some of these are blemished — appear
on the table for a fixed amount of time after which the onions
disappear. We task Sawyer with sorting as many onions as
possible from each collection before it disappears. We utilize
the Movelt motion planner to plan Sawyer’s actions.

Does the improvement in learning translate to improved
performance in the sorting task? In Table I, we show the
average precision and recall of the expert engaged in using



Fig. 3: Human demonstration and learned behaviors executed by Sawyer of the two sorting techniques: (a) pick-inspect-place (picks each
onion, inspect it closely), (b) roll-pick-place (roll them, expose hidden surfaces, to classify many onions simultaneously). The process of
identification of states in demonstration involves tracking the locations of claimed onion and hand (referred as EE), prediction of claimed
onion, and list of blemished onions. First two can be at four locations: conveyor, hover, front of eyes, and bin; and last two are derived

directly from YOLO’s output.

(TP,FP,TN,FN) P%, R%

Expert P-1-P (7,0,12,5) 100.00, 58.33

R-P-P (9,4,8,3) 69.23, 75.00
Learned P-I-P (7,1,11,5) 87.50, 58.33
(MME-MTIRL) | R-P-P 9,4,8,3) 69.23, 75.00
Learned P-I-P (7,3,9.,5) 70.00, 58.33
(DPM-BIRL) R-P-P 9,4,8,3) 69.23, 75.00
Learned P-I-P (6,3,9,6) 66.67, 50.00
(EM-MLIRL) R-P-P (6,4,8,6) 60.00, 50.00

TABLE I: P-I-P and R-P-P stand for Pick-inspect-place and Roll-
pick-place resp. Column labels TP denotes true positive (# blemished
onions in bin), FP denotes false positive (# good onions in bin), TN
denotes true negatives (# good onions remaining on table), and FN
denotes false negatives (# blemished onions remaining on table). P
and R denote precision (= TP/(TP+FP)) and recall (= TP/(TP+FN))
in %, respectively.

the two sorting techniques and the analogous metrics for the
learned behaviors using all three IRL approaches. For each of
the three IRL methods, we compute the learned policies for
two behaviors by using the feature weights averaged over 10
runs of learning. Then we execute each policy in the physical
domain for three moving sets of eight onions per set — four
blemished and four good — giving as output the precision
and the recall corresponding to each learned behavior. The
performance of the behaviors learned by MME-MTIRL is
closer to that of the expert’s than those learned by the
two baseline methods. Learned pick-inspect-place behavior
shows high precision but leaves many onions on the table
leading to worse recall. This may happen because of incorrect
weights learned for PickUnKnown(s,a) PickBlemished(s,a)
features. The former feature should have the higher weight
for pick-inspect-place and latter feature should be dominant

for roll-pick-place. Due to inaccurate learning, the cobot
sometimes repeats picking and placing a blemished onion
without inspecting it. On the other hand, the roll-pick-place
behavior is learned satisfactorily and exhibits precision and
recall close to those of the true behavior. Finally, we also
show in Fig. 3 and the associated video Sawyer executing
both of the onion-sorting behaviors autonomously. It uses
Kinect-v2 point-cloud to track the onion locations and YOLO
to classify onions held in the gripper.

VI. CONCLUDING REMARKS

An expert may solve a problem in multiple distinct ways,
each of which optimizes a different reward function while
still sharing the features. For IRL to remain relevant, it
should generalize to not only learn how many distinct
reward functions are present in the demonstration, but also
to learn the parameters of each. We presented a new multi-
task IRL method that combines MaxEnt IRL — a key IRL
technique — with elements of the DP-based Bayesian mixture
model. While minimizing the number of behaviors learned
to explain the observations, it leverages the advantages of
MaxEnt IRL and facilitates solving the generalization as a
single unified optimization problem. On a real-world inspired
domain, we showed that it improves on previous multi-task
IRL methods. The behaviors induced by the learned reward
functions imitated the observed ones for the most part. Having
established the value of combining MaxEnt with multi-task
IRL in this paper, a next step could be to make multi-task
IRL online. On the theoretical front, a future contribution
could be sample complexity bounds for the method.
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