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Abstract In this paper, we present two software packages, HexGen and Hex2Spline,
that seamlessly integrate geometry design with isogeometric analysis (IGA) in LS-
DYNA. Given a boundary representation of a solid model, HexGen creates a hexa-
hedral mesh by utilizing a semi-automatic polycube-based mesh generation method.
Hex2Spline takes the output hexahedral mesh from HexGen as the input control mesh
and constructs volumetric truncated hierarchical splines. Through Bézier extraction,
Hex2Spline transfers spline information to LS-DYNA and performs IGA therein. We
explain the underlying algorithms in each software package and use a rod model to
explain how to run the software. We also apply our software to several other complex
models to test its robustness. Our goal is to provide a robust volumetric modeling
tool and thus expand the boundary of IGA to volume-based industrial applications.

Y. Yu
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail: yuxuany1@andrew.cmu.edu

X. Wei
Institute of Mathematics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
e-mail: xiaodong.wei@epfl.ch

A. Li
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail: angranl@andrew.cmu.edu

J. G. Liu
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail: jialeil@andrew.cmu.edu

J. He
Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
e-mail: jeffreyhe2022@u.northwestern.edu

Y. J. Zhang (B)
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail: jessicaz@andrew.cmu.edu

1

ar
X

iv
:2

01
1.

14
21

3v
1 

 [
cs

.C
G

] 
 2

8 
N

ov
 2

02
0

yuxuany1@andrew.cmu.edu
xiaodong.wei@epfl.ch
angranl@andrew.cmu.edu
jialeil@andrew.cmu.edu
jeffreyhe2022@u.northwestern.edu
jessicaz@andrew.cmu.edu


2 Y. Yu, X. Wei, A. Li, J. G. Liu, J. He and Y. J. Zhang

1 Introduction

Isogeometric analysis (IGA) [18] is a computational technique that integrates com-
puter aided design (CAD) with simulation methods such as finite element analysis
(FEA). It adopts the idea of design-through-analysis and enables direct analysis of
the designed geometry. IGA has many advantages over traditional FEA such as ex-
act, smooth geometric representation and superior numerical performance. Many
software packages have been developed for IGA and there are mainly two directions.
The first direction is to incorporate IGA with commercial finite element software.
For example, the user subroutine UEL in Abaqus is used to define IGA elements and
perform IGA in Abaqus [20, 21]. The second direction is to develop open software
packages. GeoPDEs [7] and igatools [27] work on NURBS (Non-Uniform Rational
B-Spline) patches and provide a general framework to implement IGA methods.
PetIGA [6] is another framework for IGA based on PETSc [3]. These software pack-
ages help boost the use of IGA in engineering applications. However, these packages
are analysis-oriented. Currently, there is no available toolkit from the geometric
modeling side, especially for volume parameterization. Therefore, the motivation
of our work is to develop a geometric modeling tool to bridge the gap between
geometric design and IGA analysis.

There are two major challenges in volume parameterization, control mesh genera-
tion and volumetric spline construction. A control mesh is generally an unstructured
hexahedral (hex) mesh. Various strategies have been proposed in the literature [42] for
unstructured hex mesh generation, such as grid-based or octree-based [32, 33], me-
dial surface [29, 28], plastering [4, 36], whisker weaving [10] and vector field-based
methods [26]. These methods have created hex meshes for certain geometries, but are
not robust and reliable for arbitrary geometries. The polycube-based method [37, 14]
is another appealing approach for all-hex meshing. A smooth harmonic field [39]
was used to generate polycubes for arbitrary genus geometries. Boolean operations
[23] were introduced to cope with arbitrary genus geometries. In [24], polycube
structure was generated based on the skeleton branches of a geometric model. For
these methods, the hex mesh quality is directly affected by the polycube structure
and mapping distortion. Computing the polycube structure with a low-distortion
mapping remains an open problem for arbitrary geometries. It is essential to improve
the mesh quality for analysis by using methods such as pillowing, smoothing and
optimization [31, 43, 44, 30]. Pillowing is a sheet insertion technique that elimi-
nates the situations where two neighboring hex elements share more than one face.
Smoothing and optimization are used to further improve mesh quality by relocating
vertices. In our software, we implement all the above mentioned methods for quality
improvement.

The second ingredient in volume parameterization is volumetric spline construc-
tion. Several algorithms have been developed. The initial development of IGA was
based on NURBS. Since it adopts a global tensor-product structure, it does not
support local refinement. T-splines were initially developed to support local refine-
ment for surfaces [35, 34]. For solid models, the rational T-spline basis functions
were used to convert unstructured hex meshes to solid T-splines [40]. Boolean opera-
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tions [23] and skeletons [24] are used to create hex meshes, which are later converted
to T-meshes. However, local refinement using T-splines requires extensive mesh ma-
nipulation to satisfy desired properties such as linear independence. Hierarchical
spline is an alternative to T-spline to avoid this issue. Several techniques were then
developed based on hierarchical B-splines (HB-splines) [11, 38], such as truncated
hierarchical B-splines (THB-splines) [12, 13].

In this paper, we integrate our semi-automatic polycube-based mesh generation
with the volumetric truncated hierarchical spline construction (TH-spline3D) [41] to
perform IGA on volumetric models in LS-DYNA. The developed software packages
feature: 1) semi-automatic polycube-based all-hex mesh generation from a CAD
model; 2) TH-spline3D construction on hex meshes; and 3) Bézier extraction for
LS-DYNA. We first overview the entire pipeline and explain the algorithm behind
each module of the pipeline. We then provide various examples to explain how to
run the software package. The main objective of the software package is to make our
pipeline accessible to industrial and academic communities who are interested in
real-world engineering applications. Our software favors versatility over efficiency.
We will use a concrete example to go through all the steps in running the software. In
particular, when user intervention is needed, we will explain details of the involved
manual work.

The paper is outlined as follows. In Section 2, we overview the pipeline. In
Section 3, we present the HexGen software package that conducts semi-automatic
polycube-based all-hex mesh generation from a CAD file. In Section 4, we talk
about Hex2Spline that constructs TH-spline3D on hex meshes and performs Bézier
extraction for IGA in LS-DYNA. Finally, in Section 5, we demonstrate several
complex models using our software package.

2 Pipeline design

Our pipeline incorporates two software packages to bridge the gap between the input
CAD model with IGA in LS-DYNA, as shown in Fig. 1. We first use the HexGen
software package to build an all-hex mesh for the CAD model. With a high quality
all-hex mesh generated, we then use the Hex2Spline software package to construct
TH-spline3D and extract Bézier information for LS-DYNA.

As shown in Fig. 1, we first generate a triangle mesh from the CAD model by
using the free software LS-PrePost, which is a pre and post-processor for LS-DYNA.
Then we use centroidal Voronoi tessellation (CVT) segmentation [17] to create
a polycube structure [37], which is used to generate all-hex meshes via parametric
mapping [9] and octree subdivision [44]. The quality of the all-hex mesh is evaluated
to ensure that the resulting volumetric spline model can be used in IGA. In case that
a poor quality hex mesh is generated, the program has several quality improvement
functions, including pillowing [43], smoothing, and optimization [30]. Each quality
improvement function can be run independently and one can use these functions to
improve the mesh quality.
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Fig. 1: The HexGen software package and the Hex2Spline software package. The
red text on each arrow shows the operation between two steps. The manual work is
involved in further segmentation and introducing interior vertices.

Once a good quality hex mesh is obtained, one can run the Hex2Spline program to
build volumetric splines. In particular, TH-spline3D is built on the unstructured hex
mesh and it also supports local refinement. The Hex2Spline can output the Bézier
extraction information of TH-spline3D in a format that can be imported into LS-
DYNA to perform IGA. Currently, our software only has a command-line interface
(CLI). Users need to specify necessary options via the command line to run the
software. In Sections 3 and 4, we will explain the algorithms implemented in each
software as well as how to run the software in detail.

3 HexGen: Polycube-based hex mesh generation

Surface segmentation, polycube construction, parametric mapping, and octree sub-
division are used together in the HexGen software package to construct an all-hex
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mesh from the boundary representation given by the input CAD model. Given an
triangle mesh generated from the CAD model, we first use surface segmentation to
divide the mesh into several surface patches that satisfy the polycube structure con-
straints, which will be discussed in Section 3.1. Then, the corner vertices, edges and
face information of each surface patch are extracted from the surface segmentation
result to construct a polycube structure. Each component of the polycube structure
is topologically equivalent to a cube. Finally, we generate the all-hex mesh through
parametric mapping and octree subdivision. Quality improvement techniques can be
used to further improve the mesh quality.

In this section, we introduce the main algorithm for each module of the HexGen
software package, namely surface segmentation, polycube construction, parametric
mapping and octree subdivision, and quality improvement. We use a rod model (see
Fig. 1) to explain how to run CLI for each module. We also discuss the user inter-
vention that is involved in the semi-automatic polycube-based hex mesh generation.

3.1 Surface segmentation

The surface segmentation in the pipeline framework is implemented based on CVT
segmentation [17]. CVT segmentation is used to classify vertices into different
groups by minimizing an energy function. Each group is called a Voronoi region
{𝑉 𝑗 } and it has a corresponding center called a generator {𝑔 𝑗 }. The Voronoi region
and its corresponding generator are updated iteratively in the minimization process.
In [17], each element of the surface triangle mesh is assigned to one of the six
Voronoi regions {𝑉 𝑗 }6

𝑗=1 based on the normal vector 𝜘T(𝑖) of the surface, where
T (𝑖) is the 𝑖𝑡ℎ element of the surface triangle mesh T . The initial generators of the
Voronoi regions are the three principal normal vectors and their opposite normals
vectors (±𝑋 , ±𝑌 , ±𝑍). Two energy functions and their corresponding distance func-
tions are used together in [17]. The classical energy function and its corresponding
distance function provide initial Voronoi regions and generators. Then the harmonic
boundary-enhanced (HBE) energy function and its corresponding distance function
are applied to eliminate non-monotone boundaries. The detailed definitions of energy
functions and their corresponding distance functions are described in [17]. Here, we
summarize the surface segmentation process in Surface Segmentation Algorithm.
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Surface Segmentation Algorithm
Input: Manifold triangular surface mesh T, weighting factor 𝜔
Output: Manifold triangular surface mesh including segmentation information
1: Calculate the unit normal 𝜘T(𝑖) of the triangle mesh
2: Use six principal axes (±𝑋 , ±𝑌 , ±𝑍 ) as the initial generators {𝑔 𝑗 }6

𝑗=1
CVT step:
3: while classical energy not converge do
4: Associate 𝜘T(𝑖) with {𝑔 𝑗 }6

𝑗=1 by using classical distance functions
5: for each unit normal 𝜘T(𝑖) in group {𝑉𝑗 } do
6: Update generators 𝑔 𝑗 based on classical energy function
7: end for
8: end while

HBE CVT step:
9: Use CVT results as the input for HBE CVT

10: while HBE energy not converge do
11: Associate 𝜘T(𝑖) with {𝑔 𝑗 }6

𝑗=1 by using the HBE distance functions controlled by weighting
factor 𝜔

12: for each unit normal 𝜘
T(𝑖)

in group {𝑉𝑗 } do
13: Update generators 𝑔 𝑗 based on HBE energy function
14: end for
15: end while

Through the above pseudocode in Surface Segmentation Algorithm, we de-
scribe two energy minimization processes, which are combined together to yield a
monotone segmentation. When we use the HBE distance function to define Voronoi
regions, we use a weighting factor 𝜔 to control the balance between the classical
distance and the boundary-enhanced term (see Eq. 4 in [17]).

Based on Surface Segmentation Algorithm, we implement and organize the
code into a CLI program (Segmentation.exe), which can segment a given triangle
mesh into 6 Voronoi regions. Users can give options through the command line to run
Segmentation.exe. Taking the rod model as an example, we first generate a triangle
mesh from its CAD model by using LS-PrePost. Then we segment the triangle mesh
by running the following command:

1 Segmentation.exe -i rod_tri.k -o rod_initial_write.k -m
rod_manual.txt -l 0.1

There are four options used in the command:

• -i: Surface triangle mesh of the input geometry (rod_tri.k);
• -o: Output segmentation result (rod_initial_write.k);
• -m: Input file with user intervention (rod_manual.txt); and
• -l: Weighting factor 𝜔 used in HBE distance function.

The input and output are .k files, which can be read by LS-PrePost. We refer readers
to [25], which explains the file format. We use -l to control the balance between the
distance and the boundary-enhanced term. The weighting factor 𝜔 can be assigned
any arbitrary positive value; however, to obtain the best segmentation behavior, 𝜔
must take small value. We find that when 𝜔 = 0.1, the segmentation result of the rod
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model has fewer zig-zags and outliers. Users need to do a trial and error to obtain
a good weighting factor. Note that zig-zags and outliers may still exist regardless of
the choice of 𝜔. To fix this issue, user intervention is needed to prepare a file that
stores the correct segmentation result for such elements. Segmentation.exe can read
this file through option -m to improve the segmentation result. The snippets of the
input text file for the rod model are given in Appendix A1.

Once we get the initial segmentation result, we need to further segment each
Voronoi region into several patches to satisfy the topological constraints for polycube
construction (see Fig. 1(d)). The following three conditions should be satisfied during
the further segmentation: 1) two patches with opposite orientations (e.g., +X and
-X) cannot share a boundary; 2) each corner vertex must be shared by more than two
patches; and 3) each patch must have four boundaries. Note that we define the corner
vertex as a vertex locating at the corner of the cubic region in the model.

The further segmentation is done manually by using the patch ID reassigning
function in LS-PrePost. The detailed operation is shown in Appendix A2.

In addition to the issue with zig-zags and outliers, the algorithm has several
limitations. For example, Surface Segmentation Algorithm cannot guarantee a
good quality polycube structure, which will affect the quality of hex mesh. Elements
with small or negative scaled Jacobian in a hex mesh may appear. Some adjustments
on the polycube structure and quality improvement are needed as a follow-up step.

3.2 Polycube construction

In this section, we discuss the detailed algorithm of polycube construction using
the segmented triangle mesh. A polycube consisting of multiple cubes is topologi-
cally equivalent to the original geometry. Several automatic polycube construction
algorithms have been proposed in the literature [16, 22, 17], but it is challenging
to generalize these methods to general CAD models. To achieve versatility for real
industrial applications, we develop a semi-automatic polycube construction software
based on the segmented surface. However, for some complex geometries, it may
slow down the process because of the potentially heavy user intervention.

The key information we need for a polycube is its corners and the connectivity
relationship among them. For the surface of polycube, we can automatically get the
corners and build their connectivity based on the segmentation result by using Poly-
cube Boundary Surface Construction Algorithm. However, it is usually difficult
to obtain inner vertices and their connectivity as we only have a surface input without
any information about the interior volume. Indeed, this is also the place that involves
user intervention, where we use LS-PrePost to manually build the interior connec-
tivity. The detailed operation is shown in Appendix A3. As the auxiliary information
for this user intervention, Polycube Boundary Surface Construction Algorithm
will output corners and connectivity of the segmented surface patches into .k file.
Finally, the generated polycube structure is the cubic regions splitting the volumetric
domain of the geometry.
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Polycube Boundary Surface Construction Algorithm
Input: Manifold triangular surface mesh including segmentation information
Output: The boundary surface of the polycube structure
Computing the corners step:
1: for each vertex 𝑣𝑖 do
2: Get the number of patches 𝑛 which the vertex 𝑣𝑖 surrounding
3: if n ≥ 3 then
4: Mark the vertex as a corner 𝑣𝑐

𝑖

5: end if
6: end for
7: Output file including corner coordinates

Computing the index array step:
8: for each patches {𝑆 𝑗 } do
9: Find its four corners 𝑣𝑐

𝑖
which define a quad Q 𝑗

10: end for
11: Extract edge information from Q 𝑗

12: Output files of connectivity relationship including edges and faces

We implement and organize the code into a CLI program (PolyCube.exe) based
on Polycube Boundary Surface Construction Algorithm. For the rod model, we
run the following command to extract the corners and their connectivity for the
boundary surface of its polycube:

1 PolyCube.exe -i rod_initial_read.k -o rod_polycube_structure.k -c
1

There are four options used in the command:

• -i: Surface triangle mesh with the segmentation information (rod_initial_read.k);
• -o: Polycube surface connectivity (rod_polycube_structure.k) for polycube con-

struction in LS-PrePost; and
• -c: Control indicator if some additional file needs to be output

– -c 0: No output; and
– -c 1: Output corner points, edges, faces of polycube structure.

The output .k file contains the corners and their connectivity for the boundary
surface of the polycube (see Fig. 2(a)). Users need to import it into LS-PrePost
and manually create interior corners and corresponding connectivity (see Fig. 2(b))
to build a polycube structure (see Fig. 1(f)). We also provide option -c to output
the corners, edges, and faces of the polycube structure if users intend to use other
software to build a polycube structure. Users can find their file format in Appendix
A4.

3.3 Parametric mapping and octree subdivision

After the polycube is constructed, we need to build a bĳective mapping between
the input triangle mesh and the boundary surface of the polycube structure. In our
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(a) (b)

Fig. 2: The polycube construction and the parametric mapping process. (a) The
boundary surface of the polycube generated by Polycube Boundary Surface Con-
struction Algorithm; (b) The interior corners and connectivity manually created in
LS-PrePost to generate polycube structure. We split the polycube into multiple cubes
and use each individual cube as the parametric domain. 𝑆0, 𝑃0 and 𝑈0 are used for
parametric mapping. 𝐼1 and 𝑈1 are used for linear interpolation to create interior
vertices of the mesh.

software, we implement the same idea as in [24] to use a unit cube as the parametric
domain for polycube structure. As a result, we can construct a generalized polycube
structure (see Fig. 2(b)) that can align with the given geometry better and generate
a high quality hex mesh.

Through the pseudocode in Parametric Mapping Algorithm, we describe how
the segmented surface mesh, the polycube structure and the unit cube are combined
to create a (volume) parametric mapping and octree subdivision. Let {𝑆𝑖}𝑁𝑖=1 be the
segmented surface patches coming from the segmentation result (see Fig. 2(a)). Each
segmented surface patch corresponds to one boundary surface of the polycube 𝑃𝑖

(1 ≤ 𝑖 ≤ 𝑁) (see Fig. 2(b)), where 𝑁 is the number of the boundary surface. There
are also interior surfaces, denoted by 𝐼 𝑗 (1 ≤ 𝑗 ≤ 𝑀), where 𝑀 is the number of
the interior surface. The union of {𝑃𝑖}𝑁𝑖=1 and {𝐼 𝑗 }𝑀𝑗=1 is the set of surfaces of the
polycube structure. For the parametric domain, let {𝑈𝑘 }6

𝑘=1 denote the six surface
patches of the unit cube (see Fig. 2(b)).

Each cubic region in the polycube structure represents one volumetric region of
the geometry and has a unit cube as its parametric domain. Fig. 2(b) shows the
example of one cubic region and its corresponding volume domain of the geometry
marked in the dashed rectangle. Therefore, for each cube in the polycube structure,
we can find its boundary surface 𝑃𝑖 and map the segmented surface patch 𝑆𝑖 to its
corresponding parametric surface 𝑈𝑘 of the unit cube. To map 𝑆𝑖 to 𝑈𝑘 , we first
map its corresponding boundary edges of 𝑆𝑖 to the boundary edges of 𝑈𝑘 . Then we
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get the parameterization of 𝑆𝑖 by using the cotangent Laplace operator to compute
the harmonic function [44, 8]. Note that for an interior surface 𝐼 𝑗 of the polycube
structure, we skip the parametric mapping step.

An all-hex mesh can be obtained from this surface parameterization combined
with the octree subdivision. We generate the hex element for each cubic region in the
following process. To obtain vertex coordinates on the segmented patch 𝑆𝑖 , we first
subdivide the unit cube (see Fig. 2(b)) recursively to get their parametric coordinates.
The physical coordinates can be obtained by using the parametric mapping, which
has a one-to-one correspondence between the parametric domain𝑈𝑘 and the physical
domain 𝑆𝑖 . To obtain the vertices on the interior surface of the cubic region, we skip
the parametric mapping step and directly use the linear interpolation to calculate
the physical coordinates. Fig. 2 shows the example of the rod model. A composition
of mappings among 𝑆0, 𝑃0 and 𝑈0 is done to build parametric mapping and obtain
vertex coordinates on the surface 𝑆0. 𝐼1 and𝑈1 are combined for linear interpolation
to obtain the vertices on the interior surface of the cubic region. Finally, the vertices
inside the cubic region are calculated by linear interpolation. The entire all-hex mesh
is built by going through all the cubic regions.

Based on Parametric Mapping Algorithm, we implement and organize the
code into a CLI program ( ParametricMapping.exe) that can generate an all-hex
mesh by combining parametric mapping with the octree subdivision. Here, we run
the following command to generate an all-hex mesh for the rod model:

1 ParametricMapping.exe -i rod_indexPatch_read.k -p
2 rod_polycube_structure.k -o rod_hex.vtk -s 2

There are three options used in the command:

• -i: Surface triangle mesh of the input geometry with segmentation information
(rod_indexPatch_read.k);

• -o: Unstructured hex mesh (rod_hex.vtk);
• -p: Polycube structure (rod_polycube_structure.k); and
• -s: Octree level.

We use -i to set the segmentation file generated in Section 3.1 and use -p to set
the polycube structure created in Section 3.2. Option -s is used to set the level of
recursive subdivision to be applied. There is no subdivision if we set -s to be 0. In the
rod model, we set -s to be 2 to create a level-2 all-hex mesh. The output all-hex mesh
is stored in the VTK format (see Fig. 1(g)) and it can be visualized in Paraview [1].
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Parametric Mapping Algorithm
Input: Segmented triangle mesh T = {𝑆𝑖 }𝑁𝑖=1, polycube structure
Output: All-hex mesh
1: Find boundary surfaces {𝑃𝑖 }𝑁𝑖=1 and interior surfaces {𝐼 𝑗 }𝑀𝑗=1 in the polycube structure

Surface parameterization step:
2: for each cube in the polycube structure do
3: Create a unit cube {𝑈𝑘 }6

𝑘=1 as the parametric domain
4: for each surface in the cube do
5: if it is a boundary surface 𝑃𝑖 then
6: Get the surface parameterization 𝑓 : 𝑆𝑖 →𝑈𝑘 ⊂ R2

7: end if
8: end for
9: end for

Parametric mapping and octree subdivision step:
10: for each cube in the polycube structure do
11: Subdivide the unit cube {𝑈𝑘 }6

𝑘=1 recursively to get parametric coordinates 𝑣
𝑝𝑎𝑟𝑎

12: for each surface in the cube do
13: if it is a boundary surface 𝑃𝑖 then
14: Obtain physical coordinates using 𝑓 −1 (𝑣

𝑝𝑎𝑟𝑎
)

15: else if it is an interior surface 𝐼 𝑗 then
16: Obtain physical coordinates using linear interpolation
17: end if
18: end for
19: Obtain interior vertices in the cubic region using linear interpolation
20: end for
21: Combine hex elements from each cubic region

3.4 Quality improvement

If the quality of the hex mesh is not satisfactory, quality improvement needs to be
applied to the hex mesh. We integrate three quality improvement techniques in the
software package, namely pillowing, smoothing and optimization. Users can improve
mesh quality through the command line options before building volumetric splines.

We first use pillowing to insert one layer around the boundary [44]. By using
the pillowing technique, we ensure that each element has at most one face on the
boundary, which can help improve the mesh quality around the boundary. After
pillowing, smoothing and optimization [44] are used to further improve mesh quality.
For smoothing, different relocation methods are applied to three types of vertices:
vertices on sharp edges on the boundary, vertices on the boundary surface, and
interior vertices. For each sharp-edge vertex, we first detect its two neighboring
vertices on the curve, and then calculate their middle point. For each vertex on
the boundary surface, we calculate the area center of its neighboring boundary
quadrilaterals (quads). For each interior vertex, we calculate the weighted volume
center of its neighboring hex elements as the new position. We relocate a vertex
in an iterative way. Each time the vertex moves only a small step towards the new



12 Y. Yu, X. Wei, A. Li, J. G. Liu, J. He and Y. J. Zhang

position and this movement is done only if the new location results in an improved
local Jacobian.

If there are still poor quality elements after smoothing, we run the optimization
whose objective function is the Jacobian. Each vertex is then moved toward an opti-
mal position that maximizes the worst Jacobian. We present Quality Improvement
Algorithm for quality improvement. Here, we show how to improve mesh quality
for the rod model. We first run the following command to perform pillowing on the
rod model:

1 Quality.exe -i rod_hex.vtk -Q -m 1 -n 1 -o rod_hex_pillow.vtk

There are four options used in the command:

• -i: Unstructured hex mesh (rod_hex.vtk);
• -o: The hex mesh after quality improvement (rod_hex_pillow.vtk);
• -m: Improvement method. Pillowing when -m 1; and
• -n: Number of pillowing layer.

Option -n allows users to specify the number of layers to be inserted. With -n 1, we
insert one layer around the boundary, which is enough to ensure each element have
at most one face on the boundary. The result is shown in Fig. 3(a).

After pillowing, we can use the following command to smooth the mesh:
1 Quality.exe -i rod_hex_pillow.vtk -Q -m 2 -p 0.001 -n 50 -s 2 -o

rod_hex_pillow_lap.vtk

There are seven options used in the command:

• -i: The input unstructured hex mesh in the vtk format (rod_hex_pillow.vtk);
• -o: The output hex mesh after quality improvement (rod_hex_pillow_lap.vtk);
• -m: Improvement method. Smoothing when -m 2; and
• -s: Sharp feature preservation

– -s 0: No sharp features are preserved;
– -s 1: Detect sharp features automatically, and set tolerance -t; and
– -s 2: Manually select sharp feature points and store the indices in the "sharp.txt"

file.

• -t: Tolerance for automatically detecting sharp features;
• -p: Step size for smoothing; and
• -n: Number of steps for smoothing.

By using the above command, we relocate a vertex only if the new location will
improve the local scaled Jacobian. Option -s is used to preserve sharp features. Here,
sharp feature detection is only based on the mesh normal information. Therefore,
it is not robust for complex geometries and manual work is needed to adjust sharp
features. When we use automatic detection with option -s 1, we need to set a tolerance
-t. There is no typical number for this option. We need to do a trial and error to get
the optimal value. For the rod model, we set it to be 0.8. However, some sharp
features may not be detected regardless of the tolerance. User intervention is needed
with the option -s 2 if automatic detection is not satisfactory. Through this command
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line option, Quality.exe will read an input file that includes the user-defined sharp
features. The snippets of the related file is shown in Appendix A5.

Then we run the optimization step by using the command:
1 Quality.exe -i rod_hex_pillow_smooth.vtk -Q -m 3 -p 0.001 -n 15 -

o rod_hex_pillow_smooth_opt.vtk

There are five options used in the command:

• -i: Unstructured hex mesh (rod_hex_pillow_smooth.vtk);
• -o: The hex mesh after quality improvement (rod_hex_pillow_smooth_opt.vtk);
• -t: Tolerance related to sharp feature preservation;
• -m: Improvement method. Optimization when -m 3;
• -p: Step size for optimization; and
• -n: Number of steps for optimization.

The quality improvement result for the rod model is shown in Fig. 3 with a boundary
layer created using pillowing, followed up by smoothing and optimization.

(a) (b)

Fig. 3: Mesh quality improvement. (a) The original mesh before quality improvement;
(b) The mesh after pillowing, smoothing and optimization. Part of the mesh is
removed to show the interior. The elements on the original cross section are labeled
in green color while the inserted boundary layer is labeled in red color.
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Quality Improvement Algorithm
Input: Hex mesh, step number 𝑛
Output: Hex mesh with improved quality
Pillowing:

1: Insert an outer layer to the input mesh
Smoothing:

2: while iteration < 𝑛 do
3: for each vertex 𝑣𝑖 do
4: if 𝑣𝑖 is on a sharp edge then
5: if improving the local Jacobian then
6: Relocate 𝑣𝑖 a small step towards the middle of its neighboring

vertices
7: end if
8: else if 𝑣𝑖 is on the boundary surface then
9: if improving the local Jacobian then

10: Relocate 𝑣𝑖 a small step towards the the area center of its neigh-
boring boundary quads

11: end if
12: else if 𝑣𝑖 is an interior vertex then
13: if improving the local Jacobian then
14: Relocate 𝑣𝑖 a small step towards the weighted volume center of

its neighboring elements
15: end if
16: end if
17: end for
18: end while
Optimization:
19: while iteration < 𝑛 do
20: for each negative Jacobian element do
21: if improving the local Jacobian then
22: Relocate 𝑣𝑖 to maximize the Jacobian
23: end if
24: end for
25: Relocate vertices where Jacobian is minimum to maximize the worst Jaco-

bian
26: end while
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4 Hex2Spline: Unstructured spline construction

With the generated hex mesh as the input control mesh, now we present the
Hex2Spline software package to build TH-spline3D. TH-spline3D can define spline
functions on arbitrarily unstructured hex meshes. It further supports local refinement
for adaptive IGA. Hex2Spline can output the Bézier information of constructed vol-
umetric splines, which can be easily used in LS-DYNA or any other existing IGA
frameworks. In the following, we introduce the main algorithm for each component
of the Hex2Spline software package, including blending functions on an unstructured
hex mesh, TH-spline3D with local refinement, and Bézier extraction.

4.1 Blending functions on an unstructured hex mesh

In this section, we describe how to build blending functions on an all-hex mesh.
Hex2Spline supports arbitrarily unstructured all-hex mesh. In the following, we
denote Ω𝑒 as an hex element indexed by 𝑒. There are three types of elements in
the hex mesh: boundary elements, interior regular elements and interior irregular
elements. The element is defined as a boundary element if it contains a boundary
vertex; otherwise, it is an interior element. For an interior element, if it contains
an extraordinary edge1, we call it an irregular element; otherwise, it is a regular
element. In the following, we discuss the main algorithm for building blending
functions on boundary elements and interior irregular elements. A regular interior
element is a special case of an irregular interior element whose blending functions
are merely tricubic B-splines. Note that the following construction only applies to
tricubic splines with uniform knot intervals (i.e., the same knot interval for every
edge).

Blending Functions Algorithm (Interior) shows the pseudocode to obtain the
blending functions defined on an interior irregular element. They are obtained
through the Bézier extraction matrix M. M can be obtained by computing the 64
Bézier control points Q𝑒 from a local spline control mesh N that consists of Ω𝑒

and its one-ring neighborhood. Each of these Bézier points is obtained by a convex
combination of the vertices in the local control mesh, and we have Q𝑒 = MP, where
P is the vector of vertices in the local control mesh. Then the blending functions on
Ω𝑒 are defined by using the transpose of M, that is, B𝑒 = M𝑇 b, where

b =[𝑁0 (𝑢)𝑁0 (𝑣)𝑁0 (𝑤), . . . , 𝑁0 (𝑢)𝑁1 (𝑣)𝑁0 (𝑤), 𝑁1 (𝑢)𝑁1 (𝑣)𝑁0 (𝑤),
. . . , 𝑁0 (𝑢)𝑁0 (𝑣)𝑁1 (𝑤), 𝑁1 (𝑢)𝑁0 (𝑣)𝑁1 (𝑤), . . . , 𝑁3 (𝑢)𝑁3 (𝑣)𝑁3 (𝑤)]𝑇 ,

is the vector of 64 tricubic Bernstein polynomials. Each univariate cubic Bernstein

polynomial is given as 𝑁𝑘 (𝑡) =
(
3
𝑘

)
(1 − 𝑡)3−𝑘 𝑡𝑘 (𝑘 = 0, . . . , 3). Readers can refer

1 An extraordinary edge is an interior edge shared by other than four hexahedral elements.
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to [41] for the coefficients of M. Note that we only need M to define B𝑒, and we do
not actually compute Bézier points.

Blending Functions Algorithm (Interior)
Input: An interior element Ω𝑒 and its local control mesh N
Output: The blending functions B𝑒

Obtain the Bézier transformation matrix M64×𝑁 :
1: for each Bézier point 𝑄𝑒,𝑖 of Ω𝑒, where 𝑖 = 0, . . . , 63 do
2: if 𝑄𝑒,𝑖 is body point then
3: Compute its coordinates based on P
4: else if 𝑄𝑒,𝑖 is face, edge, corner point then
5: Compute its coordinates by averaging the nearest body points
6: end if
7: end for
8: Ensemble matrix M such that Q𝑒 = MP

Obtain the blending functions B𝑒:
9: B𝑒 = M𝑇 b

Blending Functions Algorithm (Boundary) shows the pseudocode to define
blending functions on a boundary element. The body Bézier points and the Bézier
points on the interior corners, edges or faces are obtained the same way as in Blending
Functions Algorithm (Interior), while the Bézier points on the boundary is defined
using only the boundary quadrilateral mesh. The 16 Bézier points on a boundary
face can be obtained by convex combinations of the vertices on the local quad control
mesh. The detailed computation method is explained in [41]. We finally get all the
Bézier points as Q𝑒 = MP. The blending functions are then defined by B𝑒 = M𝑇 b.
Note that Blending Functions Algorithm (Boundary) can also be used to preserve
sharp features in the mesh by adjusting the Bézier extraction matrix M. Reader can
refer to [41] for details.
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Blending Functions Algorithm (Boundary)
Input: A boundary element Ω𝑒 and its local control mesh N; sharp feature information
Output: The blending functions B𝑒

Obtain the Bézier transformation matrix M64×𝑁 :
1: for each Bézier point 𝑄𝑒,𝑖 of Ω𝑒, where 𝑖 = 0, . . . , 63 do
2: if 𝑄𝑒,𝑖 corresponds to a sharp corner 𝑃𝑘 then
3: 𝑄𝑒,𝑖 = 𝑃𝑘

4: else if 𝑄𝑒,𝑖 is on a sharp edge then
5: Compute its coordinates as a convex combination of the two end points of the sharp

edge
6: else if 𝑄𝑒,𝑖 is on the boundary then
7: if 𝑄𝑒,𝑖 is a face point then
8: Compute its coordinates based on 𝑃𝑘

9: else if 𝑄𝑒,𝑖 is an edge or a corner point then
10: Compute its coordinates by averaging the nearest boundary face points
11: end if
12: else if 𝑄𝑒,𝑖 is a body point or on an interior surface then
13: Calculate 𝑄𝑒,𝑖 the same as Blending Functions Algorithm (Interior)
14: end if
15: end for
16: Ensemble matrix M such that Q𝑒 = MP
Obtain the blending functions B𝑒:
17: B𝑒 = M𝑇 b

4.2 TH-spline3D for local refinement

The next step is to introduce local refinement to achieve computational efficiency
and accuracy. TH-spline3D employs a hierarchical structure and uses the truncation
mechanism to perform local refinement. Global refinement is also supported since
it is a special case of local refinement, and it is done by Catmull-Clark subdivision
for solids [2, 5].

TH-spline3D Algorithm shows the pseudocode to construct TH-spline3D based
on the blending functions developed in Section 4.1. Locally refined meshes as
well as spline functions between different levels are related through Catmull-Clark
subdivision for solids.

The program allows users to specify a list of target elements to be locally refined.
This is enabled by reading a series of user-defined files to the program, each of which
contains indices of target elements at a certain level. The input mesh is treated as
the level-0 mesh by default, one needs to provide a file named "lev_rfid.txt" to refine
certain level-0 elements. As a result, a level-1 mesh is generated that can be used to
define multi-level local refinement. One can check the hierarchical control meshes
and add more elements in the "lev_rfid.txt" file to further refine the mesh.

The remaining procedure to construct TH-spline3D is automatic and can be
divided into three steps: i) refine target elements by Catmull-Clark subdivision for
solids, ii) select certain blending functions from hierarchical meshes, and iii) truncate
some blending functions on the coarse mesh. Then with the help of Blending
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Functions Algorithm (Interior) and Blending Functions Algorithm (Boundary),
we can construct TH-spline3D on hierarchical control meshes. Readers can refer
to [41] for details.

TH-spline3D Algorithm
Input: Initial control points P0 and their associated blending functions B0, element Ω𝑒 and its

local control mesh N
Output: The truncated blending functions BTH-spline3D
Refined meshes via local refinement:
1: if local refinement is needed then
2: Generate mesh Mℓ+1 from mesh Mℓ based on Catmull-Clark subdivision [2, 5]
3: end if
4: Ensemble matrix C so that Pℓ+1 = CPℓ

Construct the hierarchical blending functions:
5: Compute the Bézier control points on hierarchical structure Qℓ+1 = MPℓ+1

6: Construct the hierarchical B-splines on the hierarchical control meshes by using Blending
Functions Algorithm (Interior) or Blending Functions Algorithm (Boundary)

TH-spline3D Construction:
7: Select the blending function to be active
8: Truncate chosen blending functions
9: Collect all the blending functions (Bℓ+1

TH-spline3D) up to Level ℓ + 1

4.3 Bézier extraction for LS-DYNA

After blending functions are defined based on Bernstein polynomials, the Bézier
information of the constructed volumetric splines can be written in the BEXT file for
LS-DYNA. The program will also output files for the visualization of Bézier mesh in
Paraview [1]. The BEXT file contains all the control points and the Bézier extraction
matrix M𝑇 for each Bézier element. We reduce the file size by using both sparse
and dense formats to write M𝑇 . The matrix is output row by row. In a sparse format,
only non-zeros of a row are output, where an index is paired with each non-zero
coefficient to indicate its column location in the matrix. On the other hand, an entire
row is output in the dense format without additional column indices. The choice of
the two formats depend on the number of non-zeros in a row. The sparse format is
favored when the row only has a few non-zeros. The snippets of the BEXT format
file is shown in Appendix A6.

4.4 Applying Hex2Spline to the rod model

Based on the above algorithms, we implement and organize the code into a CLI
program (Hex2Spline.exe) that can construct TH-spline3D on an unstructured hex
mesh and extract Bézier information for analysis. During the spline construction,
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users can specify if refinement is needed. In the end, Hex2Spline generates the
BEXT file for LS-DYNA. The program also supports sharp feature preservation. All
the available options for this program are explained as follows:

• -i: Unstructured hex mesh (rod_hex.vtk);
• -o: The BEXT file for LS-DYNA (rod_hex_BEXT.txt);
• -S: Spline construction mode;
• -s: Sharp feature preservation;

– -s 0: No sharp features need to be preserved;
– -s 1: Detect sharp feature automatically, and set tolerance -t; and
– -s 2: Manually select sharp feature points and store them in "sharp.txt".

• -g: Set the level of global refinement;
• -l: Enable local refinement; and
• -t: Tolerance related to sharp feature preservation.

Here, we apply local refinement to create a hierarchical mesh of the rod model (see
Fig. 1(g)) by using the command:

1 Hex2Spline.exe -i rod_hex.vtk -S -s 2 -l -o rod_hex.BEXT

In the command, we use the option -l to switch on the local refinement mode and
construct TH-spline3D with local refinement. Unlike global refinement, users need
to prepare a "lev_rfid.txt" file to specify indices of target elements. Fig. 4(b) shows
the spline construction with one level local refinement. Users can perform further
refinements level by level. For example, users can edit the "lev_rfid.txt" file to include
more elements and use the same command to perform two levels of local refinement
and the result is shown in Fig. 4(c):

1 Hex2Spline.exe -i rod_hex.vtk -S -s 2 -l 2

Users can also use the following command to perform spline construction with
one level global refinement and the result is shown in Fig. 4(a):

1 Hex2Spline.exe -i rod_hex.vtk -o rod_hex -S -s 2 -g 1

Here we use the option -g to switch on global refinement mode and set the argument
to 1 to construct spline with one level global refinement.

5 Applications using HexGen and Hex2Spline

The algorithms discussed in Sections 3 and 4 are implemented in C++. The Eigen
library [15] and Intel MKL [19] are used for matrix and vector operations and
numerical linear algebra. We also take advantage of openMP to support multi-
threading computation. We use a compiler-independent building system (CMake)
and a version-control system (Git) to support software development. We have com-
piled the source code into two software packages,
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(a) (b) (c)

Fig. 4: The visualization of the output Bézier mesh with: (a) global refinement; (b)
one level local refinement; and (c) two levels of local refinement.

• Hex2Gen software package:

– Segmentation module (Segmentation.exe);
– Polycube construction module (Polycube.exe);
– All-hex mesh generation module (ParametricMapping.exe); and
– Quality improvement module (Quality.exe).

• Hex2Spline software package:

– Volumetric spline construction module (Hex2Spline.exe).

The software is open-source and can be found in the following Github link
(https://github.com/yu-yuxuan/HexGen_Hex2Spline).

We have applied the software packages to several models and generated all-hex
meshes with good quality. For each model, we show the HBECVT based segmen-
tation result, further segmentation result, corresponding polycube structure, and the
all-hex mesh. These models include: two types of mount and hepta models (Fig. 5);
engine mount and lower arm from Honda Co. along with rockerarm (Fig. 6); ant,
bust, and fertility models (Fig. 7); and the joint model from Honda Co. (Fig. 8). Ta-
ble 1 shows the statistics of all testing models. We use the scaled Jacobian to evaluate
the quality of all-hex meshes. From Table 1, we can observe that the obtained all-hex
meshes have good quality (minimal Jacobian > 0.1). Figs. 5-8(a) show HBECVT
segmentation results of testing models, we can observe that the initial segmenta-
tion results generated by the HBECVT do not satisfy the topological constraints for
polycube construction. We need to further segment each Voronoi region into several
patches. The generated polycubes (Figs. 5-8(b)) align with the given geometry better,
which in turn induces less mesh distortion and yields a mesh of better quality.
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After generating all-hex meshes (Figs. 5-8(c)), we tested all the models for IGA
by using TH-spline3D. Bézier elements are extracted for the IGA analysis (Figs. 5-
8(d)). For each testing model in Figs. 5-7 , we use LS-DYNA to perform eigenvalue
analysis and show the first mode result. For the testing model in Fig. 8, we show the
result of solving a Poisson problem in LS-DYNA. From the results we can observe
that our algorithm yields valid TH-spline3D for IGA applications in LS-DYNA.

Table 1: Statistics of all the tested models.

Model Input triangle mesh Octree Output hex mesh Jacobian
(vertices, elements) levels (vertices, elements) worst

rod (Fig. 1) (2,238, 4,480) 2 (1,815, 1,280) 0.32
mount1 (Fig. 5) (886, 1,782) 2 (5,849, 4,480) 0.16
mount2 (Fig. 5) (895, 1,802) 2 (7,945, 6,208) 0.14
hepta (Fig. 5) (676, 1,348) 1 (1,259, 944) 0.24

engine mount (Fig. 6) (57,487, 114,982) 2 (7,338, 5,888) 0.11
lower arm (Fig. 6) (165,201, 330,410) 1 (1,996, 1,328) 0.10
rockerarm (Fig. 6) (11,655, 23,310 2 (6,880, 5,696) 0.10

ant (Fig. 7) (7,216, 14,428) 2 (7,711, 6,176) 0.17
bust (Fig. 7) (12,596, 25,188) 4 (103,299, 98,816) 0.11

fertility (Fig. 7) (6,622, 13,256) 2 (4,983, 4,000) 0.20
joint (Fig. 8) (3,806, 7,612) 2 (7,512, 6,144) 0.10

6 Conclusion and future work

In this paper, we present two software packages (HexGen and Hex2Spline) for IGA
applications in LS-DYNA. The main goal of HexGen and Hex2Spline is to make our
pipeline accessible to industrial and academic communities who are interested in
real-world engineering applications. The all-hex mesh generation program (HexGen)
can generate all-hex meshes. It consists of four executable files, namely segmentation
module (Segmentation.exe), polycube construction module (Polycube.exe), all-hex
mesh generation module (ParametricMapping.exe) and quality improvement mod-
ule (Quality.exe). The volumetric spline construction program (Hex2Spline.exe) is
developed based on the spline construction method in [41]. Users can generate a
volumetric spline model given any unstructured hex mesh and output a BEXT file to
perform IGA in LS-DYNA. Both programs are compiled in executable files and can
be easily run in the Command Prompt (cmd) in platform. The rod model is used to
explain how to use these two programs in detail. We also tested our software package
using several other models.

In conclusion, we integrate our hex mesh generation and volumetric spline con-
struction techniques and develop a software platform to create IGA models for
LS-DYNA. Our software also has limitations that we will address in our future work.
First, the hex mesh generation module is semi-automatic and needs user intervention
to create polycube structure. We will improve the underneath algorithm and make
polycube construction more automatic. In addition, our software cannot guarantee
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(a)

(b)

(c)

(d)

Fig. 5: Results of two types of mount and hepta models. (a) Surface triangle meshes
and segmentation results; (b) Polycube structures; (c) All-hex control meshes; (d)
Volumetric splines with IGA results of eigenvalue analysis in LS-DYNA.
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(a)

(b)

(c)

(d)

Fig. 6: Results of engine mount, lower arm, and rockerarm model. (a) Surface triangle
meshes and segmentation results; (b) Polycube structures; (c) All-hex control meshes;
(d) Volumetric splines with IGA results of eigenvalue analysis in LS-DYNA.
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(a)

(b)

(c)

(d)

Fig. 7: Results of ant, bust, and fertility model. (a) Surface triangle meshes and
segmentation results; (b) Polycube structures; (c) All-hex control meshes; (d) Volu-
metric splines with IGA results of eigenvalue analysis in LS-DYNA.
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(a) (b) (c) (d)

Fig. 8: Results of joint model. (a) Surface triangle meshes and segmentation results;
(b) Polycube structures; (c) All-hex control meshes; (d) Volumetric splines with IGA
results of solving Poisson equation in LS-DYNA.

to generate good quality hex mesh for complex geometry. Therefore, in the future we
will expand our software package to use hex-dominant meshing methods to create
hybrid meshes for IGA applications.
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Appendix

A1 Input text file to correct segmentation result from
Segmentation.exe

In this section, we describe the data format of the input text file used in Segmenta-
tion.exe to correct the segmentation result. One can prepare this file to move elements
on the wrong patch to the desired patch. In this text file, each row has two values
to define this modification of one element (see List 1). The first value indicates the
element index in the triangular mesh and the second value is the desired patch index.
Segmentation.exe can read this file through option -m to improve the segmentation
result.

1 355 1
2 356 1
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3 361 1
4 362 1
5 365 1
6 366 1
7 369 1
8 370 1
9 495 6

10 496 6
11 499 6
12 500 6

List 1: Snippets of the input text file

A2 Further segmentation in LS-PrePost

In this section, we introduce how to perform further segmentation in LS-PrePost
and obtain an admissible segmentation for polycube construction. It mainly involves
reassigning elements to different patches and there are four steps to achieve this (see
Fig. A1): 1) click move/copy tab; 2) select elements; 3) reassign the patch ID; and
4) click the Apply button to finish.

Fig. A1: The detailed operations for further segmentation.
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A3 Building the interior connectivity of polycube structure in
LS-PrePost

In this section, we use the rod model to introduce how to build the interior connec-
tivity of polycube structure in LS-PrePost. There are four steps to create one cubic
region ( see Fig. A2): 1) click EleEdt tab; 2) select Elem Type as Hexa; 3) select
eight nodes to define cubic regions, you can also check the selection on the float
box; and 4) click the Accept button to finish. By repeating the same operation, we
generate the polycube structure with multiple cubic regions to split the volumetric
domain of the geometry.

Fig. A2: The detailed operations to build the interior connectivity of polycube
structure.

A4 Output text file from Polycube.exe

In CLI program (PolyCube.exe), we output a .k file which contains the corners and
their connectivity for the boundary surface of the polycube. It can be directly opened
by LS-PrePost. If one intends to use other software to build a polycube structure,
we also provide option to output the corners, edges, and faces of the polycube in
three separate text files (see Lists 2-4). In the corner file, each row depicts the
associated vertex (𝑣𝑖) information. The first value indicates the index of the vertex
in the triangles mesh, the last three values are its x, y, z coordinates (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖). In the
edge file, each row uses the indices of two corners to define the edge between them.
These indices should agree with the corner file. The face file stores the information
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of boundary faces on polycube structure. Each row contains four vertex indices in
counter-clockwise order to define the connectivity of one face.

1 21 4.06622 0.0052 2.31336
2 143 16.4588 0.7317 2.29912
3 153 4.0543 3.3803 2.31406
4 371 16.4604 2.67402 4.12666
5 391 13.5206 0.65268 2.07416

List 2: Snippets of the corner file

1 71,446
2 436,446
3 436,442
4 371,442
5 1464,1639
6 1601,1639

List 3: Snippets of the edge file

1 71,446,436,442
2 1464,1639,1601,1503
3 1439,1664,1639,1464
4 1744,1917,1877,1784
5 1246,1784,1877,153

List 4: Snippets of the face file

A5 Sharp feature file for Quality.exe and Hex2Spline.exe

This section describes how to manually define sharp features for Quality.exe and
Hex2Spline.exe. One can prepare an input file including the sharp feature information
with the help of Paraview. There are four steps (see Fig. A3): 1) select the points
along the sharp feature; 2) use Extract selection function to extract the indices of
these nodes; 3) check the selected points information under "Properties"; and 4) copy
the index to "sharp.txt" file and use it as the input sharp feature file for Quality.exe
and Hex2Spline.exe.

A6 Input BEXT file for LS-DYNA

In this section, we describe the data format of BEXT file for IGA in LS-DYNA.
The BEXT file consists of two parts to store the spline information: 1) control point
(Fig. A4A); and 2) Bézier element including the indices of control points supported
by this Bézier element (Fig. A4B) and the Bézier extraction matrix (Fig. A4C). The
Bézier extraction matrix is output row by row and the format of each row depends
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Fig. A3: The detailed operations to create user-defined sharp features.

on the number of non-zero values in this row. If this row has less than 20 non-zeros,
a sparse format is used to store their column indices and values; otherwise, a dense
format is used to store all values in this row. To distinguish between two formats, a
sparse row begins with s while a dense row begins with d.

Fig. A4: Snippets of the BEXT file.
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