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Abstract 
 
This paper discusses the implementation of Industry 4.0 in an educational setting. Simulation, 
virtual reality, analytics, robotics and automation, and 3D printing are integrated to develop a 
small-scale production line for producing and inspecting 3D printed parts. The system consists of 
a robot and controller, programmable logic controller, 3D printer, machine vision system, 
conveyor belt, 3-phase motor and motor controller, webcam, PC and monitor, Raspberry Pi 
computer, pneumatic system, beam sensor, simulation software, and VR equipment. The system 
components are connected via ethernet cables running to a basic ethernet switch. An ethernet router 
is also connected to the switch to resolve IP connection attempts by the connected components. A 
mini CNC machine is used to drill holes on small metal parts that are assembled with 3D printed 
parts and plastic bricks to make a car toy. A robot is pre-programmed to perform the assembly of 
the car toy and a Cognex® camera is used to inspect the parts. Deep learning models are used to 
predict the remaining useful life of the drilling bits. 
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1. Introduction 
In the past few decades, the fourth industrial revolution (aka Industry 4.0) has emerged as the latest advancement in 
the manufacturing paradigms. The building blocks of Industry 4.0 include autonomous robots, simulation, horizontal 
and vertical integration, industrial internet of things, cyber 
security, additive manufacturing, virtual and augmented reality, 
and big data analytics. These building blocks are shown in Figure 
1.The first industrial revolution, which began in the 1700s, was the 
use of water and steam power and the creation of factories. The 
second revolution, which began in the early 20th century, saw the 
addition of electrical power and mass production that allowed 
factories to be placed anywhere in the world. The third revolution 
added automation and the use of robots to manufacturing in the 
1970s. Figure 2 shows the evolution of manufacturing technology. 
Industry 4.0 is only possible because of a few advances in 
technology including: (1) reduction of computing cost, (2) rise of 
open communication standards which has allowed, and sometimes 
forced, manufacturers to create devices that can communicate with 
each other, (3) miniaturization and integration of computing 
devices onto a single die. This has allowed manufacturers to 
integrate computing, memory, and communication onto a single 

 
 

Figure 1: Building blocks of Industry 4.0 
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chip, and (4) rise of the internet. The internet has created a pipeline that allows information to travel quickly and 
cheaply between buildings, factory locations and even different manufacturers at different levels in the supply chain. 
Industry 4.0 has grown out of several needs. The first and most obvious is the need to reduce the cost of production. 
As China and other emerging economies have increased the percentages of world manufacturing, other countries 
especially in Europe and the US have seen a much larger need to reduce manufacturing costs. Industry 4.0 offers the 
promise of reducing manufacturing costs and increasing the precision and quality of manufactured products. Industry 
4.0 also offers the chance for increased worker safety in environments and materials that could be hazardous. It allows 
for lower initial capital costs and faster, more flexible manufacturing. Assembly lines and mechanical automation 
were built with the expectation that a product lifecycle would be measured in decades. Current product lifecycles are 
measured in months. Manufacturing systems that are flexible and quickly reconfigured through software allow 
manufacturers to limit sunken costs in systems that can only be used for one product.  
 

 
 

Figure 2: Evolution of manufacturing technology 
 

2. Relevant Literature 
Many researchers and practitioners are giving significant attention to Industry 4.0 due to the significant changes it 
causes in industrial sectors and its numerous benefits to manufacturing organizations. According to Pacchini et l. [1], 
Industry 4.0 is “a set of disruptive digital and physical technologies that offer new values and services to customers 
and organizations.” A model was proposed to measure the readiness of manufacturing organizations for the 
implementation of Industry 4.0. The model comprises the eight technology enablers that are the most relevant based 
on existing literatures and it was tested in automotive industry. The challenges for implementing Industry 4.0 in 
manufacturing industries has been discussed [2]. The study found that the most pressing challenge is the lack of 
technological infrastructure. A conceptual model, in the form of causal loop diagram, was presented [3]. The model 
considers the variables that support the implementation of Industry 4.0 to energy industry in developing countries. A 
study proposed a framework to identify the critical success factors and challenges for industrial augmented reality 
implementation projects [4]. It was revealed that organizational issues are more relevant for the implementation of 
augmented reality to support Industry 4.0 in manufacturing industry. A framework for implementing risk management 
in Industry 4.0 was proposed [5]. The analysis showed that the majority of common risk factors in the manufacturing 
area are related to information security and the risks may occur more frequently in Industry 4.0. A study argued that 
in addition to considering the technical aspects of industry 4.0, it is necessary to understand the socio-technical 
requirements to ensure successful implementation. Table 1 summarizes the studies on Industry 4.0 implementation. 

 

Table: Summary of relevant literature on Industry 4.0 implementation 
Study Focus of the Research Application Industry 

[1] Readiness of manufacturing industries for implementing Industry 4.0 Automotive industry 
[2] Challenges facing manufacturing industries to implement Industry 4.0 Leather industry 
[3] Impact of Industry 4.0 implementation to sustainable energy transition Energy industry 
[4] Challenges and success factors for augmented reality in Industry 4.0 General manufacturing  
[5] Aspects of risk management implementation for Industry 4.0 General industry 
[6] Socio-technical considerations in Industry 4.0 implementation General industry 
[7] Challenges of implementing Industry 4.0 in discrete manufacturing Discrete manufacturing 
[8] Challenges for implementing Industry 4.0 construction industry Construction industry 
[9] Learning factory for industry 4.0 education and applied research Educational setting 
[10] Using interdisciplinary demonstration for teaching Industry 4.0 Educational setting 

This study A small-scale implementation of Industry 4.0 for car toy assembly Educational setting 
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In discrete manufacturing, some problems that can occur during the Industry 4.0 implementation [7]. The study 
presented strategies to avoid these problems such as running random simulations followed by result verification. In 
construction industry, a study showed that critical factor affecting the successful implementation is social and technical 
factors [8]. Other studies discussed the utilization of learning factory and interdisciplinary demonstration for teaching 
Industry 4.0 concepts and conducting applied research [9-10].  This paper presents the implementation of Industry 4.0 
in an educational setting to teach the concepts of Industry 4.0 and provide students with practical hands-on experience.  
 
3. Methodology 
The integration of the building blocks of Industry 4.0 in order to develop a small-scale implantation in an academic 
setting is proposed. The implementation is performed in three phases: system design and implementation, industry 4.0 
application, and ANSI/ASI 95 integration [11]. The system is developed in three phases (see Figure 3). In phase 1, 
system requirements were identified and the equipment was acquired, installed, and tested. Phase 2 involves 
developing Industry 4.0 applications to teach students the concepts of simulation, virtual reality, 3D printing, machine 
vision, and analytics. Phase 3 which involves the integration of ANSI/ISA 95 model is in progress. 

 

Figure 3: Industry 4.0 implementation 
 

The system is designed to produce and inspect car toys. Sample pictures are included in Figure 4. The car toys consist 
of plastic bricks assembled with 3D printed parts and machined metal parts made in the lab. A UR 3 robot was pre-
programmed to perform the assembly of the car toy.  
 

   
Drilling machine Assembly and inspection station Car toy assembly 

       
Sample CAD models for a fixture and car toy parts 

 

Figure 4: Sample picture of the Industry 4.0 system implementation   
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An example of the steps in the sequence program to test the 3D printed parts are as follows: 0. PLC waits for printer 
to finish printing, 1. PLC tells the robot to run the part-pickup sequence and then waits for robot to return a “done” 
signal, 2. PLC runs conveyor belt forward until the motion sensor is triggered, 3. PLC triggers the camera and waits 
for it to return a partgood or partbad signal, going to step 4 or 5 depending, respectively, 4. PLC runs belt until motion 
sensor is unobstructed again and returns to 0, 5. PLC reverses belt for a second and then triggers the robot remove 
sequence, waiting for the done signal before returning to step 0.  
Simulation and virtual reality were implemented in RoboDK software [12]. First, a CAD model was developed for 
the system and imported to the software. Second, a program was developed in RoboDK for the car toy assembly. The 
program was tested in RoboDK and then imported to the physical robot. Virtual reality is also available in RoboDK 
and we used HTC Vive headsets to visualize the simulation while doing the offline programming. Figures 5 and 6 
show the system model RoboDK and the automated assembly department of our virtual factory, respectively.  
 

  
 

Figure 5: CAD model of the system in RoboDK 
 

Figure 6: A snapshot of the virtual factory 
 
3.1 Proposed Remaining Useful Life Estimation Scheme 
Figure 7 shows the proposed scheme for the drilling bit Remaining Useful Life (RUL) prediction. The process starts 
by data collection from accelerated failure testing followed by feature extraction from vibrations data and at the end 
training and testing the Deep Neural Network for RUL estimation based on extracted features. 
 

 
 

Figure 7: RUL prediction scheme 
 

For vibration data acquisition, the drilling experiment was conducted using Genmitsu CNC machine to drill holes in 
1/5 in. carbon steel bar (see Figure 8). Two single axis accelerometers were mounted perpendicularly to measure radial 
vibration on x and y axes (see Figure 9). The accelerometer outputs 100mV/g signal which is sent to the signal 
conditioner CMCP590. The signal conditioner outputs 4-20 mA signal and the out is connected National Instruments 
Data Acquisition card DI-1100. It is worth mentioning that NI DI-1100 accepts analogue voltage input, hence a 200 
Ω resistor is installed in parallel to the 4-20 mA signal input. In this case, current analogue input signal is converted 
into voltage analogue signal ranging from 0.8-4 volts. The spindle motor was powered using an external power supply 
and the rotational speed was fixed at 9000 rpm throughout testing. Drilling process was carried out without any 
external coolant in order to expedite the bit wear and the accelerometer data (sampled at 1000 Hz) was used to measure 
vibration throughout testing. 3 bits were used and each bit was able to drill 5 holes before complete wear.  
Deep Learning is becoming more popular for prognosis and health monitoring applications. Traditional artificial 
neural networks suffer from limited capacity to learn nonlinear and more complex patterns due to their shallow 
structure [13]. Deep Neural Networks (DNNs), thanks to their deep structure, perform better for applications that 
involves nonlinear relations and requires extensive mining. In this paper, Long Short-Term Memory (LSTM) DNN is 
used to predict the RUL of a drilling bit based on extracted features from the data. LSTM, a variation from Recursive 
Neural Network, was developed to learn long term dependencies. LSTM networks are not well suited for feature 
extraction applications and Convolutional Neural Networks (CNNs) are combined with LSTM to boost feature 

Vibration signal acquisition Deep learning feature extraction Remaining useful life prediction
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extraction capability [2]. However, given the simplicity of the application and limited components that are subject to 
wear it was decided to utilize only LSTM network. Given the limited feature extraction capability of LSTM network, 
Fast Fourier Transform (FFT) coefficients were fed into the network instead of the time domain data. FFT coefficients 
carry important spectral features which improves feature extraction capability and RUL estimation consequently.  
The finished parts of the car toy are inspected using Cognex® camera and In-Sight vision system. Figure 10 shows a 
snapshot of the machine vision software that is used to inspect the finished parts. 
 
 

 
      

Figure 8: Attaching accelerometers to 
the CNC machine 

Figure 9: Drilling bit deterioration 
after drilling multiple holes 

Figure 10: A snapshot of the 
machine vision software 

 
4. Results and Analysis 
Three drilling bits were considered for the experiment: two of them were used for training the DNN and one for 
testing. Figure 11 shows the prediction results using the training data. It was assumed that wear mechanism is linearly 
dependent on drilling time which is represented by the blue dotted lines while the model prediction is represented by 
the brown curve. The data was preprocessed such that idle time between holes was truncated and the data was 
normalized to have zero means. Degradation trend was successfully captured considering both cases and the root mean 
squared errors were: 38.122 and 20.55. 
The model was tested to predict the RUL of a drilling bit that was not considered during model training. Figure 12 
shows the actual degradation trend compared with the model output. The overall degradation trend was captured 
successfully and the root mean squared error is 18.94. The reduced RMSE for testing case compared with training 
was mainly caused by the relatively short testing data set. It is clearly shown that deep learning analytics provided 
excellent outlook about the drilling bit life expectancy which is a building block for industry 4.0. 
 

  

Figure 11: RUL prediction using training data 
 

Figure 12: RUL prediction using testing data 
 
5. Industry Perspective: IBM Model Factory 
The small-scale Industry 4.0 system presented in this study was also aligned with the IBM Model Factory, see Figure 
14 (www.ibm.com). According to IBM, Industry 4.0 is not only about connecting machines to the cloud; it is also 
about focusing on connecting the “factory activities.” The system proposed in this study will be integrated with IBM 
Cloud and Watson IoTTM in order to collect and process IoT data quickly and easily. Figure 14 shows the proposed 
system integration. 
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Figure 13: A snapshot of IBM Model Factory Figure 14: Integration with IBM Cloud and Watson IoTTM 

 
6. Conclusions and Future Work 
This paper presented a small-scale implementation for Industry 4.0 in an educational setting to teach students the 
concepts of Industry 4.0. The system was used to train undergraduate students and high school and community college 
instructors on Industry 4.0 concepts and applications. This educational system will prepare students for the next 
industrial revolution and provide them with practical hand-on experience. Future work will focus on the development 
of augmented reality and cyber security applications as well as integration of ANSI/ASI 95 framework and Watson 
IoTTM.  
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