
Assortment Optimization and Pricing under the Multinomial Logit Model
with Impatient Customers: Sequential Recommendation and Selection

Pin Gao∗†1, Yuhang Ma∗‡2, Ningyuan Chen†3, Guillermo Gallego†1, Anran Li†4, Paat Rusmevichientong‡5, Huseyin Topaloglu‡2

1Department of Industrial Engineering and Decision Analytics, HKUST, Clear Water Bay, Hong Kong
2School of Operations Research and Information Engineering, Cornell Tech, New York, NY 10044, USA

3Department of Management, University of Toronto Mississauga, Mississauga, ON, Canada
4Department of Management, London School of Economics, London, WC2A 2AE, UK

5Marshall School of Business, University of Southern California, Los Angeles, CA 90089, USA

pgao@connect.ust.hk, ym367@cornell.edu, ningyuan.chen@utoronto.ca, ggallego@ust.hk, a.li26@lse.ac.uk,
rusmevic@marshall.usc.edu, topaloglu@orie.cornell.edu

We develop a variant of the multinomial logit model with impatient customers and study assortment

optimization and pricing problems under this choice model. In our choice model, a customer incrementally

views the assortment of available products in multiple stages. The patience level of a customer determines

the maximum number of stages in which she is willing to view the assortments of products. In each stage, if

the product with the largest utility provides larger utility than a minimum acceptable utility, which we refer

to as the utility of the outside option, then the customer purchases that product right away. Otherwise, the

customer views the assortment of products in the next stage, as long as her patience level allows her to do

so. Under the assumption that the utilities have the Gumbel distribution and are independent, we give a

closed-form expression for the choice probabilities. For the assortment optimization problem, we develop a

polynomial-time algorithm to find the revenue-maximizing sequence of assortments to offer. For the pricing

problem, we show that if the sequence of offered assortments is fixed, then we can solve a convex program

to find the revenue-maximizing prices, where the decision variables are the probabilities that a customer

will reach different stages. We build on this result to give a 0.878-approximation algorithm, when both

the sequence of assortments and the prices are decision variables. We consider the assortment optimization

problem when each product occupies some space and there is a constraint on the total space consumption of

the offered products. We give a fully polynomial-time approximation scheme for this constrained problem. We

use a dataset from Expedia to demonstrate that incorporating patience levels, as in our model, can improve

purchase predictions. We also check the practical performance of our approximation schemes, in terms of

both the quality of solutions and the computation times. Dated October 12, 2020.

1. Introduction

A common assumption in traditional revenue management models is that each customer enters the

system with the intention to purchase a particular product. If this product is available for purchase,

then the customer purchases it. Otherwise, the customer leaves the system without a purchase. In

many settings, however, the customers observe the assortment of available products and choose

and substitute within this assortment, based on the features and prices of the offered products.

In this case, the demand for a product depends on the availability of other products, along with

their features and prices. In revenue management research, there has been a recent surge in using

∗P. Gao and Y. Ma were graduate students at the time of this work. They are listed alphabetically, so are the remaining
authors. The work in this paper is independent discovery by two different sets of authors, each indicated with † and ‡.

1

2 Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers

discrete choice models to capture the fact that the customers choose and substitute among the

available products. A large portion of these models work under the assumption that the customers

view the entire assortment of products offered to them simultaneously, but it is clear that in many

cases, the customers incrementally view the assortment of offered products and make a purchase

decision before viewing all the offered products. When purchasing products in online retail, for

example, a customer may view the assortment of offered products on multiple webpages. When

booking a healthcare appointment on the phone, the patient may be offered appointment slots

gradually until she makes a choice. In both of these examples, the customer may make a purchase

or leave without a purchase before viewing all the offered products or appointment slots. When

the customers view the assortment of offered products incrementally, the question is not only what

assortment of products to offer but also in which sequence to offer them.

We propose a variant of the multinomial logit model where the customers incrementally view

the assortment of offered products in multiple stages. We study assortment and pricing problems

under this choice model. In our choice model, each customer has a different patience level sampled

from a known distribution, which determines the maximum number of stages in which she is willing

to view the assortment of products. In each stage, if the utility of a product in the current stage is

larger than the utility of the outside option, then the customer purchases this product and leaves

the system. Otherwise, the customer views the assortment of products in the next stage, as long

as her patience level allows her. Thus, in our model, customers impatiently leave for two reasons.

First, a customer purchases a product in the current stage as soon as its utility exceeds a minimum

acceptable utility, even though there may be a product with a larger utility in a later stage. Second,

a customer runs out of patience and leaves without viewing the entire assortment.

1.1 Main Contributions

Our main contributions are the formulation of the multinomial logit model with impatient

customers, as well as developing exact and approximate solution methods for assortment

optimization and pricing problems under this choice model.

Multinomial Logit Model with Impatient Customers. We propose a new variant of the

multinomial logit model with impatient customers. The choice model is based on random utilities.

A customer arriving into the system associates random utilities with the products. Furthermore,

she has a minimum acceptable utility and a patience level, which are also both random. We

refer to the minimum acceptable utility as the utility of the outside option. The utilities of the

products and the outside option are independent and have the Gumbel distribution with the same

scale parameter. The patience level of the customer has a general distribution over the support

Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers 3

{1, . . . ,m} for a fixed integer m and is independent of the utilities. The customer incrementally

views the assortment of offered products in multiple stages. In each stage, if the product with

the largest utility provides larger utility than the outside option, then the customer purchases

this product and the choice process terminates. If the utilities of all products that the customer

views before she runs out of patience are smaller than the utility of the outside option, then the

customer leaves without a purchase. Since the patience level of a customer is at most m, we choose

pairwise disjoint assortments that we offer over m stages. We give a closed-form expression for the

choice probability of each product under any assortment (Theorem 2.1).

Assortment Optimization. In the assortment optimization problem, each product has a fixed

revenue and the goal is to find a revenue-maximizing sequence of assortments to offer. For this

problem, we give a polynomial-time algorithm using the following steps. First, we show that there

exists a revenue-ordered optimal solution. That is, letting n be the number of products and ri be

the revenue of product i, indexing the products so that r1 ≥ r2 ≥ . . .≥ rn, the optimal assortment to

offer in stage k is of the form {j∗k+1, . . . , j∗k+1} for some 0 = j∗1 ≤ j∗2 ≤ . . .≤ j∗m ≤ j∗m+1 (Theorem 3.1).

Second, exploiting the revenue-ordered property, we give a dynamic program that finds the best

sequence of revenue-ordered assortments using O(mn2) operations (Theorem 3.3).

Joint Pricing and Assortment Optimization. In the pricing setting, the mean utility of a product

depends on its price. Following the standard assumption in the pricing literature, we assume that

the products have the same price sensitivity; see Song and Xue (2007), Li and Huh (2011). We

start with the case where the sequence of offered assortments is fixed and the goal is to find

the revenue-maximizing prices. The expected revenue is not concave in the prices, but we give a

reformulation where the decision variables are the probabilities that a customer will reach different

stages. We show that the expected revenue is concave in these decision variables and we can recover

the optimal prices after solving our reformulation (Theorem 4.2).

Next, we consider the case where both the sequence of offered assortments and the prices are

decision variables. We give an approximation algorithm that obtains at least 87.8% of the optimal

expected revenue (Theorem 4.4). This approximation algorithm is based on showing that if we offer

all products in the first stage and compute the corresponding optimal prices, then the solution that

we obtain has an 87.8% performance guarantee. In our computational experiments, starting from

such a solution that is obtained by offering all products in the first stage, we use a neighborhood

search algorithm to further improve the quality of this solution.

Space Constraints. We consider the assortment optimization problem where each product

occupies a certain amount of space and there is a constraint on the total space consumption of the

4 Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers

offered products. We give a fully polynomial-time approximation scheme (FPTAS) (Theorem 5.2).

In the special case where there is a constraint on the total number of offered products, we can

improve the running time of our FPTAS. We also give an exact algorithm whose running time

depends exponentially on the number of stages m, but polynomially on the number of products n.

A constraint on the total space consumption or the total number of offered products may arise, for

example, when we want to avoid overwhelming a patient with too many appointment slot options

or when we have a limited budget and offering a product requires a capital investment.

Numerical Results. Using a dataset from Expedia, we check the performance of our choice

model to predict the customer purchases, when compared against the standard multinomial logit

benchmark. We use two metrics. The first metric is out-of-sample log-likelihood. The second metric

is the fraction of customers whose bookings are predicted correctly. In the first and second metrics,

our choice model improves upon the benchmark by, respectively, 1.95% and 4.49%, on average. Also,

we test the practical performance of our approximation schemes for joint pricing and assortment

optimization, as well as for assortment optimization under space constraints.

In many online retail settings, the products are offered on multiple webpages, but the number of

products on a webpage is at the discretion of the retailer, since the products are simply presented

as a list, as on Amazon, for example. Our unconstrained and constrained assortment optimization

problems, as well as our joint pricing and assortment optimization problem, find applications in

such settings. Our choice model is motivated by the satisficing behavior of customers, especially

when purchasing leisure products, such as hotel rooms, where the customer directly proceeds to

purchasing a product once the utility of the product exceeds a minimum acceptable utility.

1.2 Literature Review

There is recent assortment optimization work where customers view only a portion of the offered

assortment due to either search behavior or consideration sets. In Gallego et al. (2016), the

customers decide on the number of webpages to view based on an exogenous distribution and

choose within the entire assortment on these webpages according to a general choice model. Wang

and Sahin (2018) consider a model where the customers focus on a portion of the products by

trading off the expected utility from the purchase with the search effort, but they do not view the

assortment incrementally. Derakhshan et al. (2018) examine a product ranking problem where the

customers build a consideration set as a function of the search cost. In Aouad and Segev (2018), each

customer views a random number of webpages and makes a choice within these webpages according

to the multinomial logit model. The customers do not view the products sequentially. Aouad et al.

(2019) focus on a setting where each product is included in the consideration set of a customer

Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers 5

with a fixed probability. In Feldman et al. (2019), the choice model is based on short preference

lists, corresponding to the case with small consideration sets. In all these papers, the assortment

optimization problems are NP-hard and the authors give approximation methods.

Liu et al. (2019) and Feldman and Segev (2019) study assortment optimization problems under

another variant of the multinomial logit model with multiple stages. The two papers use the same

choice model, where the utility of the outside option is re-sampled when the customer considers the

products at each stage during the course of her choice process and the utilities of the outside option

at different stages are independent. Thus, a customer may associate a high utility with the outside

option in one stage, but a low utility in another stage. Under this choice model, it is NP-hard to find

the revenue-maximizing sequence of assortments to offer. Both papers give approximation schemes,

the main difference being the running time of the approximation scheme depends exponentially on

the number of stages m in Liu et al. (2019), but polynomially in Feldman and Segev (2019). In

our choice model, the utility of the outside option is sampled once at the beginning of the choice

process of the customer. We give a polynomial-time exact algorithm.

Gallego et al. (2004) and Talluri and van Ryzin (2004) study the assortment optimization problem

under the standard multinomial logit model and show that it is optimal to offer a revenue-ordered

assortment. Rusmevichientong et al. (2010), Wang (2012), Jagabathula (2016) and Sumida et al.

(2019) impose various constraints on the offered assortment. Bront et al. (2009), Mendez-Diaz et al.

(2014) and Rusmevichientong et al. (2014) consider the problem under a mixture of multinomial

logit models. Flores et al. (2019) use a two-stage multinomial logit model where the products that

can be offered in each of the two stages are fixed a priori. For the pricing problem, Song and Xue

(2007), Hopp and Xu (2005) and Li and Huh (2011) show that the expected revenue is concave

in the product market shares and the optimal prices of the products exceed their marginal costs

by the same mark-up, as long as the products have the same price sensitivity. Zhang et al. (2018)

show that these two results hold under all generalized extreme value models.

We limit our literature review to the multinomial logit model, but we refer to Farias et al. (2013),

Davis et al. (2014), Gallego and Wang (2014), Aouad et al. (2016), Blanchet et al. (2016), Desir

et al. (2016a) and Li and Webster (2017) for work under other choice models.

1.3 Organization

In Section 2, we define our choice model and derive an expression for the choice probabilities. In

Section 3, we consider the unconstrained assortment optimization problem. In Section 4, we

examine the joint pricing and assortment problem. In Section 5, we study constraints on the space

consumption of the offered products. In Section 6, we give computational experiments.

6 Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers

2. Multinomial Logit Model with Impatient Customers

We describe our choice model and give an expression for the choice probabilities of the products.

The set of products is N = {1, . . . , n}. The set of stages is M= {1, . . . ,m}. We use (S1, . . . , Sm) to

denote the sequence of assortments that we offer over all m stages, where Sk ⊆N is the assortment

that we offer in stage k. The assortments that we offer in different stages are disjoint, so Sk∩S` =∅

for all k 6= `. The utility of product i is given by the random variable Ui, which has the Gumbel

distribution with location-scale parameters (µi,1). Letting vi = eµi , we refer to vi as the preference

weight of product i. The utility of the outside option is given by the random variable U0, which has

the Gumbel distribution with location-scale parameters (0,1). The patience level of a customer is

given by the random variable Y taking values in M. A customer with patience level k is willing

to view the assortments in the first k stages. We let λk = P{Y ≥ k}, so 1 = λ1 ≥ λ2 ≥ . . .≥ λm > 0.

The random variables {Ui : i ∈ N}, U0 and Y are independent. In our choice model, an arriving

customer is characterized by the utilities she associates with the different products and the outside

option, along with her patience level, all sampled from their distributions.

As stated in the introduction, the utility of the outside option corresponds to the minimum

acceptable utility for the customer. A customer chooses among the products by sequentially viewing

the assortments in each stage. Given that the customer is currently in stage k, if the product with

the largest utility in stage k provides larger utility than the outside option, then the customer

purchases this product. Otherwise, the customer moves on to stage k+ 1. If stage k+ 1 is beyond

the patience level of the customer, then the customer leaves without a purchase. Otherwise, the

customer views the products in stage k+ 1. The customer leaves the system for two reasons. First,

if the product with the largest utility in stage k provides larger utility than the outside option,

then the customer purchases this product right away, even though there may be a product in a

subsequent stage with larger utility. Second, due to her patience level, a customer may not view all

assortments in all stages. As a function of the assortments (S1, . . . , Sm), let φki (S1, . . . , Sm) be the

probability that a customer will choose product i∈ Sk. In the next theorem, we give an expression

for this choice probability. Throughout the paper, we let V (S) =
∑

i∈S vi.

Theorem 2.1 (Choice Probabilities) If we offer assortments (S1, . . . , Sm) over m stages, then

a customer purchases product i∈ Sk with probability

φki (S1, . . . , Sm) =
λk vi

(1 +
∑k−1

`=1 V (S`)) (1 +
∑k

`=1 V (S`))
.

Proof: Letting X1 and X2 be independent Gumbel random variables with location-scale parameters

(µ1,1) and (µ2,1), we use three properties of Gumbel random variables. First, max{X1,X2}

Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers 7

is a Gumbel random variable with location-scale parameters (log(eµ1 + eµ2),1). Second, we

have P{X1 ≥X2}= eµ1

eµ1+eµ2
. Third, letting 1(·) be the indicator function, the random variables

max{X1,X2} and 1(X1 ≥X2) are independent. The first and second properties are discussed in

Sections 7.2.2.2-3 and Appendix B in Talluri and van Ryzin (2005). We show the third property

in Appendix A. For a customer to purchase product i ∈ Sk, her patience level must be at least k,

the utility of the outside option must exceed the utilities of all products in stages 1, . . . , k− 1, and

the utility of product i must exceed both the utility of the outside option and the utilities of all

other products in stage k. Letting Ûk−1 = maxj∈S1∪...∪Sk−1
Uj and Ũk = maxj∈Sk\{i}Uj, we have

φki (S1, . . . , Sk) = P
{
Y ≥ k

}
·P
{
U0 ≥ max

j∈S1∪...∪Sk−1

Uj, Ui ≥max
{
U0, max

j∈Sk\{i}
Uj

}}
= λk ·P

{
U0 ≥ Ûk−1

}
·P
{
Ui ≥max

{
U0, Ũk

} ∣∣∣ U0 ≥ Ûk−1

}
. (1)

By the first property, Ûk−1 and Ũk are Gumbel random variables with location-scale parameters

(log
∑

j∈S1∪...∪Sk−1
eµj ,1) and (log

∑
j∈Sk\{i}

eµj ,1). Moreover, the random variables Ui, U0, Ûk−1,

and Ũk are independent. Considering the second probability on the right side of (1), we have

P
{
Ui ≥max{U0, Ũk}

∣∣ U0 ≥ Ûk−1

}
= P

{
Ui ≥max{U0, Ũk, Ûk−1}

∣∣ U0 ≥ Ûk−1

}
= P

{
Ui ≥max{U0, Ûk−1}, Ui ≥ Ũk

∣∣ U0 ≥ Ûk−1

}
= P

{
Ui ≥max{U0, Ûk−1}

∣∣ U0 ≥ Ûk−1

}
· P
{
Ui ≥ Ũk

∣∣ Ui ≥max{U0, Ûk−1}, U0 ≥ Ûk−1

}
(a)
= P

{
Ui ≥max{U0, Ûk−1}

}
· P
{
Ui ≥ Ũk

∣∣ Ui ≥max{U0, Ûk−1}, U0 ≥ Ûk−1

}
(b)
= P

{
Ui ≥max{U0, Ûk−1}

}
· P
{
Ui ≥ Ũk

∣∣ Ui ≥max{U0, Ûk−1}
}

= P
{
Ui ≥max{U0, Ûk−1}, Ui ≥ Ũk

}
= P

{
Ui ≥max{U0, Ũk, Ûk−1}

}
(c)
=

eµi

1 +
∑

j∈S1∪...∪Sk
eµj

=
vi

1 +
∑k

`=1 V (S`)
. (2)

Both (a) and (b) use the fact that max{U0, Ûk−1} and 1(U0 ≥ Ûk−1) are independent by the third

property, so knowing that U0 ≥ Ûk−1 does not change the distribution of max{U0, Ûk−1}, along with

Ui and Ũk are independent of U0 and Ûk−1. Lastly, (c) uses the first and second properties.

Considering the first probability on the right side of (1), using the second property and the fact

that vi = eµi , we get P{U0 ≥ Ûk−1}= 1/(1 +
∑

j∈S1∪...∪Sk−1
eµj) = 1/(1 +

∑k−1

`=1 V (S`)). Plugging this

equality and (2) into (1) gives the desired result.

As an extension to our model, we can consider the case where a customer, after not making a

purchase in stage k, decides to continue to the next stage with probability βk. If the decision to

continue to the next stage is independent of {Ui : i ∈N}, U0 and Y , then all we need to do is to

multiply the choice probability in the theorem with β1 β2 . . . βk−1. Thus, this extension is equivalent

to using a patience level distribution with P{Y ≥ k}= β1 β2 . . . βk−1 λk.

8 Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers

3. Unconstrained Assortment Optimization

We focus on the assortment optimization problem with no constraints on the offered assortment and

give a polynomial-time algorithm. We use ri > 0 to denote the revenue of product i. Throughout

the paper, we let W (S) =
∑

i∈S ri vi. Noting the choice probability in Theorem 2.1, if we offer

assortments (S1, . . . , Sm) over m stages, then the expected revenue from a customer is

Π(S1, . . . , Sm) =
∑
k∈M

∑
i∈Sk

ri φ
k
i (S1, . . . , Sm) =

∑
k∈M

∑
i∈Sk

λk ri vi

(1 +
∑k−1

`=1 V (S`)) (1 +
∑k

`=1 V (S`))

=
∑
k∈M

λkW (Sk)

(1 +
∑k−1

`=1 V (S`)) (1 +
∑k

`=1 V (S`))
. (3)

The assortments offered over m stages are disjoint, so the set of feasible solutions is

F = {(S1, . . . , Sm) : Sk ⊆N ∀k ∈M, Sk ∩S` =∅ ∀k 6= `}. We want to solve the problem

max
(S1,...,Sm)∈F

Π(S1, . . . , Sm). (Assortment)

We use two steps to give a polynomial-time algorithm for the Assortment problem. First, we

show that there exists an optimal solution to the Assortment problem that is revenue-ordered.

Specifically, we index the products in the order of decreasing revenues so that r1 ≥ r2 ≥ . . .≥ rn.

Then, there exists an optimal solution (S∗1 , . . . , S
∗
m) such that S∗k = {j∗k + 1, . . . , j∗k+1} for j∗1 , . . . , j

∗
m+1

that satisfy 0 = j∗1 ≤ j∗2 ≤ . . .≤ j∗m+1. Thus, the assortment offered in each stage follows the order of

the revenues of the products. Noting j∗1 = 0, the choice of the products j∗2 , . . . , j
∗
m+1 determines an

optimal solution to the Assortment problem. Knowing that there exists an optimal solution that

is revenue-ordered reduces the number of possible optimal solutions to O(nm), which is polynomial

in n but still exponential in m. Second, exploiting the revenue-ordered property, we find an optimal

sequence of revenue-ordered assortments by solving a dynamic program in O(mn2) operations.

Optimality of Revenue-Ordered Assortments:

For two solutions (S1, . . . , Sm) and (T1, . . . , Tm), we say that the solution (S1, . . . , Sm) dominates

the solution (T1, . . . , Tm) if |S1|= |T1| . . . |Sk|= |Tk| and |Sk+1|> |Tk+1| for some k ∈M. Intuitively

speaking, a dominating solution offers an assortment with a larger cardinality in an earlier stage. If

there are multiple optimal solutions for the Assortment problem, then we choose an optimal

solution that is non-dominated by any other optimal solution. To establish that an optimal

solution to the Assortment problem satisfies the revenue ordered property, we construct revenue

thresholds for each stage such that if the revenue of a product falls within the thresholds for

stage k, then it is optimal to offer the product in stage k. The next theorem is the main result

of this section, establishing the existence of such revenue thresholds. The proof follows from an

intermediate lemma, which we give after the theorem.

Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers 9

Theorem 3.1 (Optimal Revenue-Ordered Assortments) There exists an optimal solution

(S∗1 , . . . , S
∗
m) to the Assortment problem such that S∗k = {i∈N : t∗k+1 ≤ ri < t∗k} for some revenue

thresholds t∗1, . . . , t
∗
m+1 that satisfy +∞= t∗1 ≥ t∗2 ≥ . . .≥ t∗m+1.

To construct the revenue thresholds, let Rk(S1, . . . , Sm) = λkW (Sk)

(1+
∑k−1
`=1

V (S`)) (1+
∑k
`=1 V (S`))

denote the

expected revenue obtained in stage k, and define

tk(S1, . . . , Sm) =
Rk−1(S1, . . . , Sm) +Rk(S1, . . . , Sm)

λk−1

1+
∑k−2
`=1

V (S`)
− λk

1+
∑k
`=1 V (S`)

∀k ∈M\{1},

tm+1(S1, . . . , Sm) =
Rm(S1, . . . , Sm)

λm
1+

∑m−1
`=1

V (S`)

.

We set t1(S1, . . . , Sm) = +∞. In the next lemma, we quantify the change in the expected revenue

when we move a product from one stage to another. The proof is in Appendix B.

Lemma 3.2 (Product Exchanges) For each sequence of assortments (S1, . . . , Sm) ∈ F offered

over m stages, we have the following three identities.

(a) Π(S1, . . . , Sk−1 ∪{i}, Sk \ {i}, . . . , Sm)−Π(S1, . . . , Sm)

=

λk−1

1+
∑k−2
`=1

V (S`)
− λk

1+
∑k
`=1 V (S`)

1 +
∑k−1

`=1 V (S`) + vi
vi (ri− tk(S1, . . . , Sm)) ∀k=M\{1}, i∈ Sk,

(b) Π(S1, . . . , Sk \ {i}, Sk+1 ∪{i} . . . , Sm)−Π(S1, . . . , Sm)

=

λk
1+

∑k−1
`=1

V (S`)
− λk+1

1+
∑k+1
`=1

V (S`)

1 +
∑k

`=1 V (S`)− vi
vi (tk+1(S1, . . . , Sm)− ri) ∀k ∈M\{m}, i∈ Sk,

(c) Π(S1, . . . , Sm−1, Sm \ {i})−Π(S1, . . . , Sm)

=

λm
1+

∑m−1
`=1

V (S`)

1 +
∑m

`=1 V (S`)− vi
vi (tm+1(S1, . . . , Sm)− ri) ∀ i∈ Sm.

The proof of the lemma is based on directly evaluating the changes in the expected revenue using

(3). Since λk ≥ λk+1 and
∑k

`=1 V (S`)≤
∑k+1

`=1 V (S`), by this lemma, we can compare ri only with

tk(S1, . . . , Sm) or tk+1(S1, . . . , Sm) to check whether moving product i from stage k to stage k− 1

or to stage k+ 1 improves the expected revenue. Below is the proof of Theorem 3.1.

Proof of Theorem 3.1: Let (S∗1 , . . . , S
∗
m) be a non-dominated optimal solution to the

Assortment problem. Without loss of generality, S∗1 6= ∅, . . . , S∗` 6= ∅, S∗`+1 = ∅, . . . , S∗m = ∅ for

some `∈M. In particular, if S∗` =∅ and S∗`+1 6=∅, then the solution (S∗1 , . . . , S
∗
`−1, S

∗
`+1, S

∗
` , . . . , S

∗
m)

dominates the solution (S∗1 , . . . , S
∗
m), but since λ1 ≥ λ2 ≥ . . .≥ λm, noting (3), we can check that

the expected revenue of the solution (S∗1 , . . . , S
∗
`−1, S

∗
`+1, S

∗
` , . . . , S

∗
m) is at least as large as that of

the solution (S∗1 , . . . , S
∗
m). Thus, since S∗`+1 =∅, . . . , S∗m =∅, a customer does not make a purchase

10 Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers

after stage `, so if we consider the Assortment problem with only ` stages, then (S∗1 , . . . , S
∗
`) must

be a non-dominated optimal solution. For all k = 1, . . . , `, we let t∗k = tk(S
∗
1 , . . . , S

∗
`) and focus on

the Assortment problem with ` stages, where the set of stages is L= {1, . . . , `}.

First, we claim that S∗k ⊆ {i ∈ N : t∗k+1 ≤ ri < t∗k} for all k ∈ L. Specifically, for k ∈ L \ {1}, if

i ∈ S∗k and ri ≥ t∗k, then Lemma 3.2(a) implies that moving product i from assortment S∗k to S∗k−1

does not degrade the expected revenue from the solution (S∗1 , . . . , S
∗
`), which contradicts the fact

that (S∗1 , . . . , S
∗
`) is a non-dominated optimal solution. For k = 1, we cannot have ri ≥ t∗1, since

t∗1 = +∞. For k ∈L\{`}, if i∈ S∗k and ri < t
∗
k+1, then Lemma 3.2(b) implies that moving product i

from assortment S∗k to S∗k+1 strictly increases the expected revenue from the solution (S∗1 , . . . , S
∗
`),

which contradicts the fact that (S∗1 , . . . , S
∗
`) is an optimal solution. For k= `, if i∈ S∗` and ri < t

∗
`+1,

then Lemma 3.2(c) implies that removing product i from assortment S∗` strictly improves the

expected revenue from the solution (S∗1 , . . . , S
∗
`). So, the claim holds. Also, for all k ∈ L, S∗k 6= ∅

includes some product i, so t∗k+1 ≤ ri < t∗k for all k ∈L. Thus, t∗k+1 ≤ t∗k for all k ∈L.

Second, we claim that S∗k ⊇ {i∈N : t∗k+1 ≤ ri < t∗k} for all k ∈L. Specifically, if t∗k+1 ≤ ri < t∗k and

i 6∈ S∗k for some k ∈ L, then it must be the case that i 6∈ S∗q for all q ∈L, since by the first claim

above, we have S∗q ⊆ {i∈N : t∗q+1 ≤ ri < t∗q} for all q ∈L and +∞= t∗1 ≥ t∗2 ≥ · · · ≥ t∗`+1. In this case,

using the fact that ri ≥ t∗k+1 ≥ t∗`+1, replacing the preference weight of product i in Lemma 3.2(c)

with −vi, note that adding product i to assortment S∗` does not degrade the expected revenue from

the solution (S∗1 , . . . , S
∗
`), which contradicts the fact that (S∗1 , . . . , S

∗
`) is a non-dominated optimal

solution to the Assortment problem with ` stages. So, the claim holds. By the two claims, we

get S∗k = {i∈N : t∗k+1 ≤ ri < t∗k} for all k ∈L and +∞= t∗1 ≥ t∗2 ≥ . . .≥ t∗`+1. For the problem with

m stages, noting that S∗k =∅ for all k= `+ 1, . . . ,m, we set t∗k = t∗`+1 for all k= `+ 2, . . . ,m+ 1, so

we have S∗k = {i∈N : t∗k+1 ≤ ri < t∗k} for all k ∈M and +∞= t∗1 ≥ t∗2 ≥ . . .≥ t∗m+1.

Finding an Optimal Sequence of Revenue-Ordered Assortments:

We show how to find an optimal sequence of revenue-ordered assortments. By Theorem 3.1, we

can consider solutions (S1, . . . , Sm) of the form Sk = {jk + 1, . . . , jk+1} for j1, . . . , jm+1 that satisfy

0 = j1 ≤ j2 ≤ . . .≤ jm+1. If we offer assortments of this form, then S1 ∪ . . .∪Sk−1 = {1, . . . , jk} and∑k−1

`=1 V (S`) = V ({1, . . . , jk}). Thus, we can solve a dynamic program to pick assortments of this

form to offer in each stage so that we maximize the expected revenue. The decision epochs are the

stages. The state variable at decision epoch k is the value of j such that the assortments S1, . . . , Sk−1

offered in the previous stages satisfy S1∪ . . .∪Sk−1 = {1, . . . , j}. The action at decision epoch k is the

value of p such that the assortment offered in stage k is {j+1, . . . , p}. Let Jk(j) denote the maximum

expected revenue obtained from stages k, k+ 1, . . . ,m, given that S1 ∪ . . .∪Sk−1 = {1, . . . , j}. The

next theorem gives a dynamic programming formulation to compute {Jk(j) : j ∈N , k ∈M}.

Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers 11

Theorem 3.3 (Dynamic Program for an Optimal Sequence of Assortments) Letting

Jm+1(·) = 0, for all k ∈M and j ∈N , we have

Jk(j) = max
p∈{j,...,n}

{
λkW ({j+ 1, . . . , p})

(1 +V ({1, . . . , j})) (1 +V ({1, . . . , p}))
+ Jk+1(p)

}
,

and we can solve the dynamic program in O(mn2) operations.

Proof: The dynamic program follows from the discussion above. Precomputing W ({j + 1, . . . , p})
and V ({1, . . . , j}) for all j, p∈N with p > j in O(n2) operations, since there are m decision epochs,

n states and n actions, we can solve the dynamic program in O(mn2) operations.

4. Joint Pricing and Assortment Optimization

We consider the joint pricing and assortment optimization problem, where we choose the assortment

of products to offer in each stage as well as the prices of the products.

4.1 Optimal Prices under Fixed Assortments

In this section, we assume that the assortments (S1, . . . , Sm) offered over m stages are fixed. We give

a convex program to choose the prices to maximize the expected revenue. In Section 4.2, we build

on this result give an approximation algorithm for joint pricing and assortment optimization. We

use pi to denote the price for product i. For fixed parameters αi and β, if we charge the price pi for

product i, then the utility of product i has the Gumbel distribution with location-scale parameters

(αi−β pi,1), with the corresponding mean αi−β pi+γ, where γ is the Euler-Mascheroni constant.

Thus, the mean utility of a product depends linearly on its price. Such linear dependence of the

mean utility on the price is often used in the literature; see Song and Xue (2007), Gallego and Wang

(2014), Li and Webster (2017). The parameter αi captures the intrinsic mean utility of product i,

whereas β captures the sensitivity of the mean utility to price. If we charge the price pi for product

i, then the preference weight of the product is eαi−β pi . As a function of the prices p= (p1, . . . , pn),

let Vk(p) =
∑

i∈Sk
eαi−β pi capture the total preference weight of the products in stage k. Since the

assortment of products offered in each stage is fixed, we do not make the dependence of Vk(p) on the

assortment Sk explicit. By Theorem 2.1, if the prices of the products are given by p, then a customer

chooses product i∈ Sk with probability φki (p) = λk e
αi−β pi/((1 +

∑k−1

`=1 V`(p)) (1 +
∑k

`=1 V`(p))). As

a function of the prices p, the expected revenue obtained from a customer is

Π(p) =
∑
k∈M

∑
i∈Sk

pi φ
k
i (p) =

∑
k∈M

λk
∑

i∈Sk
pi e

αi−β pi

(1 +
∑k−1

`=1 V`(p)) (1 +
∑k

`=1 V`(p))
.

In the pricing literature, it is customary to include a marginal cost ci for product i so that the

objective function presented above reads
∑

k∈M
∑

i∈Sk
(pi− ci)φki (p). Including a marginal cost for

12 Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers

product i is equivalent to simply shifting the price of product i by ci and the constant αi by β ci.

We want to find the product prices to maximize the expected revenue, yielding the problem

max
p∈Rn

Π(p). (Pricing)

The prices are not constrained to be nonnegative above, allowing us to use first-order conditions to

characterize an optimal solution. In Appendix C, we show that the optimal prices are nonnegative.

Stage-Specific Optimal Prices:

The following theorem shows that the prices in a particular stage are the same in an optimal

solution. We use this result to give a convex program to solve the Pricing problem.

Theorem 4.1 (Stage-Specific Optimal Prices) There exists an optimal solution p∗ to the

Pricing problem such that if i, j ∈ S` for some `∈M, then p∗i = p∗j .

Proof: Letting p∗ be an optimal solution to the Pricing problem, assume that p∗i 6= p∗j for some

` ∈M and i, j ∈ S`. We construct another solution p̂ with p̂i = p̂j and p̂t = p∗t for all t∈N \{i, j}

such that the solution p̂ provides an expected revenue that is at least as large as the one

provided by the solution p∗. Specifically, set p̂t = p∗t for all t ∈ N \ {i, j}. Thus, letting Wk(p) =∑
t∈Sk

pt e
αt−β pt , we have Vk(p̂) = Vk(p

∗) and Wk(p̂) = Wk(p
∗) for all k ∈ M \ {`}. Letting

K∗ = eαi−β p
∗
i + eαj−β p

∗
j , set (p̂i, p̂j) as an optimal solution to the problem

max
(pi,pj)∈R2

{
pi e

αi−β pi + pj e
αj−β pj : eαi−β pi + eαj−β pj =K∗

}
. (4)

Since (p∗i , p
∗
j) is a feasible solution to problem (4) and p̂t = p∗t for all t ∈ S` \ {i, j}, we have

W`(p̂)≥W`(p
∗). Also, noting the constraint, we have eαi−β p̂i + eαj−β p̂j =K∗ = eαi−β p

∗
i + eαj−β p

∗
j ,

so V`(p
∗) = V`(p̂). In this case, since Vk(p̂) = Vk(p

∗) and Wk(p̂) = Wk(p
∗) for all k ∈M\{`},

noting the definition of Π(p), we get Π(p̂) ≥ Π(p∗), as desired. It remains to show that the

optimal solution (p̂i, p̂j) to problem (4) satisfies p̂i = p̂j. Using the change of variables di = eαi−β pi

and solving for pi, we have pi = 1
β
(αi − logdi). Thus, problem (4) is equivalent to the problem

1
β

max(di,dj)∈R2
+

{
(αi− logdi)di + (αj − logdj)dj : di + dj =K∗

}
. Since −x logx is concave in x, we

can solve the last problem using Lagrangian relaxation. Associating the Lagrange multiplier θ with

the constraint, the Lagrangian is (αi− logdi)di + (αj − logdj)dj + θ(K∗− di− dj). Differentiating

the Lagrangian, the optimal solution (d̂i, d̂j) to the last problem satisfies αi− log d̂i−1− θ= 0 and

αj − log d̂j − 1− θ = 0, so αi − log d̂i = 1 + θ = αj − log d̂j. Recalling that pi = 1
β
(αi − logdi), the

optimal solution (p̂i, p̂j) to (4) satisfies p̂i = 1
β
(αi− log d̂i) = 1

β
(1 + θ) = 1

β
(αj − log d̂j) = p̂j.

By the theorem above, we can focus on the solutions where all products in each stage have the

same price. Next, we give a convex reformulation of the Pricing problem.

Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers 13

Convex Reformulation of the Pricing Problem:

By Theorem 4.1, letting ρk be the price that we charge for all products in stage k, we can

use stage-specific prices ρ= (ρ1, . . . , ρm), instead of product-specific prices p= (p1, . . . , pn), as the

decision variables. It is simple to give examples to demonstrate that the expected revenue is

not a concave function of either of p or ρ. We give an equivalent formulation for the Pricing

problem, which has a concave objective function and linear constraints. Using stage-specific prices

ρ= (ρ1, . . . , ρm), the total preference weight of the products in stage k is V̂k(ρ) =
∑

i∈Sk
eαi−βρk =

e−βρk
∑

i∈Sk
eαi . Noting the definition of the purchase probability for product i in Theorem 2.1, if

we charge the stage-specific prices ρ, then the probability that a customer purchases some product

in stage k is
λk

∑
i∈Sk

eαi−β ρk

(1+
∑k−1
`=1

V̂`(p)) (1+
∑k
`=1 V̂`(p))

= λk V̂k(ρ)

(1+
∑k−1
`=1

V̂`(p)) (1+
∑k
`=1 V̂`(p))

, in which case, the price of the

purchased product is ρk. Throughout the rest of this section, we let qk(ρ) = 1/(1 +
∑k

`=1 V̂`(ρ))

with the convention that q0(ρ) = 1. For each k ∈M, qk(ρ) is the probability that the utility of the

outside option exceeds the utility of all products offered in the first k stages.

We refer to qk(ρ) as the no-purchase probability over the first k stages, but we understand that

this probability is actually the no-purchase probability for a customer with patience level exceeding

k. The idea behind our convex reformulation is to express the probability that a customer makes

a purchase in each stage and the stage-specific price for each stage as functions of the no-purchase

probabilities over different numbers of stages. By doing so, we will express the expected revenue

as a function of the no-purchase probabilities over different numbers of stages as well. Specifically,

noting that qk(ρ) = 1

1+
∑k
`=1 V̂`(ρ)

, we have qk−1(ρ)− qk(ρ) = V̂k(ρ)

(1+
∑k−1
`=1

V̂`(ρ)) (1+
∑k
`=1 V̂`(ρ))

. Therefore,

given the no-purchase probabilities q= (q1, . . . , qm) over different numbers of stages, the probability

that a customer purchases a product in stage k is λk (qk−1 − qk). Moreover, using the fact that

qk(ρ) = 1

1+
∑k
`=1 V̂`(ρ)

, we get 1
qk(ρ)

− 1
qk−1(ρ)

= V̂k(ρ) = e−βρk
∑

i∈Sk
eαi . In this case, solving for ρk in

the equality 1
qk(ρ)

− 1
qk−1(ρ)

= e−βρk
∑

i∈Sk
eαi , given the no-purchase probabilities q= (q1, . . . , qm)

over different numbers of stages, the stage-specific price for stage k is

ρk(q) =
1

β

{
log

(∑
i∈Sk

eαi
)
− log

(
1

qk
− 1

qk−1

)}
.

Thus, for given no-purchase probabilities q= (q1, . . . , qm), the customer makes a purchase in stage

k with probability λk (qk−1− qk). If she does so, then the price of the purchased product is ρk(q).

By the discussion in the above paragraph, we can express the expected revenue as a function of

the no-purchase probabilities. That is, we have

Π̂(q) =
∑
k∈M

λk (qk−1− qk)ρk(q) =
∑
k∈M

λk
β

(qk−1− qk)
{

log

(∑
i∈Sk

eαi
)
− log

(
1

qk
− 1

qk−1

)}
. (5)

In the next theorem, we show that the expected revenue function above is concave in the

no-purchase probabilities and we can recover the optimal prices using its maximizer.

14 Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers

Theorem 4.2 (Convex Reformulation for Pricing) The expected revenue Π̂(q) in (5) is a

concave function of q. Furthermore, letting q∗ be an optimal solution to the problem

max
q∈Rm

{
Π̂(q) : qk−1 ≥ qk ∀k ∈M

}
(6)

with the convention that q0 = 1, if we set ρ∗k = ρk(q
∗) for all k ∈M, then ρ∗ are optimal stage-specific

prices to charge in the Pricing problem.

Proof: To show that Π̂(q) is a concave function of q, noting that
∑

k∈M λk (qk−1− qk) log
∑

i∈Sk
eαi

is linear in q, it suffices to prove that
∑

k∈M λk (qk−1− qk) log(1
qk
− 1

qk−1
) is convex in q. We have∑

k∈M λk (qk−1− qk) log(1
qk
− 1

qk−1
) =

∑
k∈M λk (qk−1 − qk) log

qk−1−qk
qk−1

−
∑

k∈M λk (qk−1 − qk) log qk.

First, we show that
∑

k∈M λk (qk−1 − qk) log
qk−1−qk
qk−1

is convex in q. The relative entropy function

x log(x/y) is convex in (x, y)∈R2
+; see Example 3.19 in Boyd and Vandenberghe (2004). Moreover,

composing a convex function with an affine function preserves its convexity; see Section 3.2.2

in Boyd and Vandenberghe (2004). Thus, (qk−1 − qk) log
qk−1−qk
qk−1

is convex in q, in which case,∑
k∈M λk (qk−1− qk) log

qk−1−qk
qk−1

is convex in q. Second, we show that −
∑

k∈M λk (qk−1− qk) log qk

is convex in q. Noting that q0 = 1 and rearranging the terms in the sum, we have

−
∑
k∈M

λk (qk−1− qk) log qk =−λ1 log q1 +
m−1∑
k=1

qk (λk log qk−λk+1 log qk+1) +λm qm log qm

=−λ1 log q1 +
m−1∑
k=1

λk+1 qk(log qk− log qk+1) +
m−1∑
k=1

(λk−λk+1) qk log qk +λm qm log qm.

Because x log(x/y) and x logx are convex in (x, y)∈R2
+ and λk ≥ λk+1, −

∑
k∈M λk (qk−1− qk) log qk

is convex in q. The second part of the theorem holds by the discussion before the theorem.

Problem (6) has a concave objective function and linear constraints, so we can solve it efficiently

using convex optimization tools. Also, by (5), once we fix the values of (q1, . . . , qk−1), the optimal

values of (qk, . . . , qm) only depend on qk−1. In Appendix D, using this observation, we give a

dynamic program to find a solution with an additive performance guarantee of θ with a running

time polynomial in 1/θ. Numerically, solving problem (6) through convex optimization tools turns

out to be faster, but the dynamic program does not require convex optimization software.

Monotonicity of Optimal Prices:

In the next theorem, we compare the optimal prices in different stages. If λk = 1 for all k ∈M,

then the patience level of the customers ism with probability one, which is to say that the customers

leave the system only when they have found a product with utility exceeding the utility of the

outside option, or they have exhausted all stages and still have not found a product with utility

exceeding the utility of the outside option. By the next theorem, if λk = 1 for all k ∈M, then the

optimal prices in stage k are at least as large as those in stage k+ 1 for each k ∈M\{m}.

Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers 15

Theorem 4.3 (Monotonicity of Scaled Prices) There exist optimal stage-specific prices ρ∗ =

(ρ∗1, . . . , ρ
∗
m) in the Pricing problem such that λk ρ

∗
k ≥ λk+1 ρ

∗
k+1 for all k= 1, . . . ,m− 1.

Proof: Letting q∗k = qk(ρ
∗) for all k ∈M with q∗0 = 1, in Appendix E, we use the first-order condition

for the Pricing problem to show that the optimal stage-specific prices satisfy

1

β
− q∗`
q∗`−1

ρ∗` +
1

λ` q∗` q
∗
`−1

m∑
k=`+1

ρ∗k λk

{
(q∗k−1)2− (q∗k)

2
}

= 0. (7)

Letting Q∗`+1 =
∑m

k=`+1 ρ
∗
k λk ((q∗k−1)2− (q∗k)

2), (7) reads as
q∗`
q∗
`−1

ρ∗` = 1
β

+ 1
λ` q
∗
`
q∗
`−1

Q∗`+1. Similarly,

using (7) for stage `+ 1, we have
q∗`+1

q∗
`
ρ∗`+1 = 1

β
+ 1

λ`+1 q
∗
`+1

q∗
`
Q∗`+2, which is equivalent to

1

λ` q∗` q
∗
`−1

Q∗`+2 =
λ`+1 (q∗`+1)2

λ` q∗` q
∗
`−1

ρ∗`+1−
λ`+1 q

∗
`+1

β λ` q∗`−1

. (8)

Noting the definition of Q∗`+1, we have Q∗`+1 = ρ∗`+1 λ`+1 ((q∗`)
2− (q∗`+1)2) +Q∗`+2. Therefore, using

the fact that
q∗`
q∗
`−1

ρ∗` = 1
β

+ 1
λ` q
∗
`
q∗
`−1

Q∗`+1, we obtain the chain of equalities

q∗`
q∗`−1

ρ∗` =
1

β
+

1

λ` q∗` q
∗
`−1

{
ρ∗`+1 λ`+1 ((q∗`)

2− (q∗`+1)2) +Q∗`+2

}
(a)
=

1

β
+

1

λ` q∗` q
∗
`−1

ρ∗`+1 λ`+1 ((q∗`)
2− (q∗`+1)2) +

λ`+1 (q∗`+1)2

λ` q∗` q
∗
`−1

ρ∗`+1−
λ`+1 q

∗
`+1

β λ` q∗`−1

=

(
1−

λ`+1 q
∗
`+1

λ` q∗`−1

)
1

β
+
λ`+1 q

∗
`

λ` q∗`−1

ρ∗`+1,

where (a) uses (8). By the chain of equalities above,
q∗`

λ` q
∗
`−1

(λ` ρ
∗
`−λ`+1 ρ

∗
`+1)=(1− λ`+1 q

∗
`+1

λ` q
∗
`−1

) 1
β
, so

since q∗`+1 ≤ q∗`−1 and λ`+1 ≤ λ`, we get λ` ρ
∗
` ≥ λ`+1 ρ

∗
`+1.

Our results in this section use the assumption that the products have the same price sensitivity,

which is reasonable for the products in the same product category. When studying pricing problems

even under the standard multinomial logit model with a single stage, it is common to use the

assumption that the products have the same price sensitivity. For example, Hopp and Xu (2005),

Song and Xue (2007), Li and Huh (2011) and Zhang and Lu (2013) use this assumption when

working with the standard multinomial logit model. These papers use market shares of the

products as the decision variables to give convex reformulations, whereas we use the no-purchase

probabilities. When different products have different price sensitivities, we are not aware of convex

reformulations of the pricing problem even under the standard multinomial logit model, but it is

not known whether such convex reformulations provably do not exist.

16 Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers

4.2 Optimal Assortments and Prices

In this section, we consider the case where both the assortments (S1, . . . , Sm) offered over m stages

and the prices charged for the products are decision variables. By the discussion in the previous

section, for any fixed sequence of assortments, it is optimal to charge stage-specific prices. Therefore,

it suffices to focus on stage-specific prices when both the sequence of assortments to offer and

the prices to charge are decision variables, but to simplify the proofs of our results, we revert

to using product-specific prices. As a function of the product-specific prices p = (p1, . . . , pn), we

let V (p, S) =
∑

i∈S e
αi−β pi to capture the total preference weight of the products in S. Noting

Theorem 2.1, if we charge the prices p and offer the assortments (S1, . . . , Sm), then a customer

purchases product i ∈ Sk with probability λk e
αi−β pi/((1 +

∑k−1

`=1 V (p, S`)) (1 +
∑k

`=1 V (p, S`))).

Thus, as a function of the product-specific prices p and the assortments (S1, . . . , Sm) over m stages,

the expected revenue is

Π(p, S1, . . . , Sm) =
∑
k∈M

λk
∑

i∈Sk
pi e

αi−β pi

(1 +
∑k−1

`=1 V (p, S`)) (1 +
∑k

`=1 V (p, S`))
.

We continue to use F to denote the set of feasible assortments that we can offer over m stages,

ensuring that the assortments offered over different stages are disjoint.

Our goal is to find the assortment to offer in each stage and the prices to charge for the products

to maximize the expected revenue, yielding the problem

max
(p,S1,...,Sm)∈Rn×F

Π(p, S1, . . . , Sm). (Pricing-Assortment)

This problem involves both continuous and discrete decision variables. In the rest of this section,

we focus on obtaining solutions with performance guarantees for this problem.

Approximation Algorithm for Joint Pricing and Assortment Optimization:

In the next theorem, we show that if we offer all products simply in the first stage and compute the

corresponding optimal prices, then we obtain a 0.878-approximate solution. By Theorem 4.2, we

can solve a convex program to compute the optimal prices for a fixed sequence of assortments.

Theorem 4.4 (87.8% Approximation for Joint Pricing and Assortment Optimization)

Letting π∗ be the optimal objective value of the Pricing-Assortment problem, we have

maxp∈Rn Π(p,N ,∅, . . . ,∅)≥ 0.878π∗.

In Appendix F, we give a proof for Theorem 4.4 and show that the performance guarantee of

87.8% is tight. The proof is based on a sequence of upper bounds. First, we consider a variant

of the Pricing-Assortment problem, where the patience levels of the customers are, intuitively

Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers 17

speaking, infinite. We argue that the optimal expected revenue of the variant with infinite patience

levels provides an upper bound on that of the Pricing-Assortment problem. Second, by treating

(
∑

i∈S1 e
αi , . . . ,

∑
i∈Sm e

αi) in (5) as continuous quantities, we formulate a smooth variant of the

Pricing-Assortment problem. We argue that the optimal expected revenue of the smooth variant

is an upper bound on that of the variant with infinite patience levels. Third, we give a closed-form

upper bound on the optimal expected revenue of the smooth variant. Chaining all upper bounds,

the closed-form upper bound is also an upper bound on the optimal expected revenue of the

Pricing-Assortment problem. Lastly, the closed-form upper bound is simple enough to allow us

to show that the expected revenue obtained by offering all products in the first stage and computing

the corresponding optimal prices is at least 87.8% of the closed-form upper bound.

Theorem 4.4 also allows us to make an interesting contrast between the Assortment and

Pricing-Assortment problems. For the Assortment problem, we can show that if we offer the

empty assortment in all stages except for the first stage and find the revenue-maximizing assortment

to offer in the first stage, then we obtain a solution that provides at least 50% of the optimal

expected revenue in the Assortment problem. In Appendix G, we give a proof for the performance

guarantee of 50% and show that it is tight. Thus, for the Pricing-Assortment problem, finding

the revenue-maximizing prices to charge in the first stage while offering the empty assortment

in all other stages yields a tight performance guarantee of 87.8%, whereas for the Assortment

problem, finding the revenue-maximizing assortment to offer in the first stage while offering the

empty assortment in all other stages yields a tight performance guarantee of 50%.

In our computational experiments, we use a neighborhood search algorithm to further improve

the performance of the solution obtained by offering all products in the first stage and computing

the corresponding optimal prices. In particular, we start with a sequence of assortments that

offers all products in the first stage. Given the current sequence of assortments, we check all

neighbors of the current sequence of assortments for an appropriately defined neighborhood. For

each sequence of assortments in the neighborhood, we compute the corresponding optimal prices to

charge. Among all sequences of assortments in the neighborhood and their corresponding optimal

prices, we pick the best one. We repeat the process starting from the best sequence of assortments

in the neighborhood, until we cannot improve the expected revenue. This algorithm is guaranteed

to provide a solution that is at least as good as the solution that we start with.

In this section, we gave an approximation algorithm for the Pricing-Assortment problem. In

this problem, the prices take values over a continuum and the preference weight of product i is

given by eαi−β pi as a function of its price pi. A natural question is the computational complexity

of this problem. In Appendix H, we show that if the prices take values over a discrete set, then

18 Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers

the Pricing-Assortment problem is NP-hard, but the computational complexity of the problem

with the prices taking values over a continuum remains an open question.

5. Assortment Optimization under a Space Constraint

We consider the assortment problem when each product occupies a certain amount of space and

there is a limit on the total space consumption of the products offered in all stages. As in Section 3,

the revenue of product i is ri and we index the products such that r1 ≥ r2 ≥ . . .≥ rn. The space

consumption of product i is ci. We let C(S) =
∑

i∈S ci. The total amount of space available is b.

Noting the expected revenue function in the Assortment problem, we want to solve

max
(S1,...,Sm)∈F

{∑
k∈M

λkW (Sk)

(1 +
∑k−1

q=1 V (Sq)) (1 +
∑k

q=1 V (Sq))
:
∑
k∈M

C(Sk)≤ b

}
. (Capacitated)

Overview of Our Approach:

The Capacitated problem is NP-hard; see Rusmevichientong et al. (2009). So, we focus on

developing an FPTAS. In the next lemma, shown in Appendix I, we give a structural property of

an optimal solution to the Capacitated problem that will be useful to develop an FPTAS.

Lemma 5.1 (Solutions for the Capacitated Problem) In a non-dominated optimal solution

(S∗1 , . . . , S
∗
m) to the Capacitated problem, for all k ∈ M, we have S∗k ⊆ {j∗k + 1, . . . , j∗k+1} for

j∗1 , . . . , j
∗
m+1 with 0 = j∗1 ≤ j∗2 ≤ . . .≤ j∗m ≤ j∗m+1 = n.

This lemma does not immediately yield an efficient algorithm, since the optimal assortment S∗k in

stage k may omit products in {j∗k +1, . . . , j∗k+1}. In the Assortment problem, by Theorem 3.1, the

optimal assortment S∗k in stage k satisfies S∗k = {j∗k + 1, . . . , j∗k+1} for j∗k , j
∗
k+1 with 0≤ j∗k ≤ j∗k+1 ≤ n.

To give an FPTAS for the Capacitated problem, we fix a value of ε ∈ (0,1) and proceed as

described in the following two parts.

Part 1. Constructing Candidates: For each j, ` ∈ {0, . . . , n} with j ≤ `, we will construct a

collection of candidate assortments Cand(j, `) that satisfies the following two properties.

• (Correct Product Interval) For each Ŝ ∈Cand(j, `), we have Ŝ ⊆ {j + 1, . . . , `}. Thus, a

candidate assortment in Cand(j, `) can include only the products in {j+ 1, . . . , `}.

• (Limited Degradation) For each S ⊆ {j + 1, . . . , `}, there exists Ŝ ∈Cand(j, `) such that

W (Ŝ)≥ (1− ε/4)W (S), V (Ŝ)≤ (1 + ε/4)V (S), and C(Ŝ)≤C(S).

Intuitively speaking, noting the objective function of the Capacitated problem, we prefer

S ⊆ N with larger W (S), smaller V (S), and smaller C(S). By the second property, for any

Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers 19

assortment S ⊆ {j + 1, . . . , `}, there exists a candidate assortment Ŝ ∈ Cand(j, `) that is almost

as preferable. Throughout this section, let vmin = min{vi : i ∈ N}, vmax = max{vi : i ∈ N}, wmin =

min{vi ri : i∈N}, and wmax = max{vi ri : i ∈ N}. We will construct all collections of candidate

assortments {Cand(j, `) : j, `∈ {0, . . . , n}, j ≤ `} in O(n
4

ε2
log(nwmax

wmin
) log(nvmax

vmin
)) operations. Each

collection Cand(j, `) will include O(n
2

ε2
log(nwmax

wmin
) log(nvmax

vmin
)) candidate assortments.

Part 2. Combining Candidates: Having obtained the collection of candidate assortments

from Part 1, we solve an approximate version of the Capacitated problem given by

max
(S1,...,Sm,j1,...,jm)

{∑
k∈M

λkW (Sk)

(1 +
∑k−1

q=1 V (Sq)) (1 +
∑k

q=1 V (Sq))
:

Sk ∈Cand(jk, jk+1) ∀k ∈M, jk ≤ jk+1 ∀k ∈M,
∑
k∈M

C(Sk)≤ b

}
, (9)

where we follow the convention that jm+1 = n. Comparing this problem with the Capacitated

problem, we have Sk ∈Cand(jk, jk+1) above. Also, we do not explicitly impose the constraint that

Sk ∩ Sq = ∅ for k 6= q above, but the constraint Sk ∈ Cand(jk, jk+1) for all k ∈M, along with

jk ≤ jk+1 for all k ∈M, ensures that Sk ∩Sq =∅ for k 6= q. Problem (9) is an approximate version

of the Capacitated problem, where we can offer only candidate assortments.

Letting a ∨ b = max{a, b}, we will obtain a (1 − ε
4
)-approximate solution to problem (9) in

O(n
4m3

ε4
log(nwmax

wmin
) log(nwmax (1∨nvmax)

λmwmin
) log2(nvmax

vmin
)) operations.

In this case, executing the two parts, we get an FPTAS given by the following result.

Theorem 5.2 (FPTAS under a Space Constraint) For each ε ∈ (0,1), we can obtain a

(1− ε)-approximate solution to the Capacitated problem in the number of operations

O

(
n4m3

ε4
log

(
nwmax

wmin

)
log

(
nwmax (1∨nvmax)

λmwmin

)
log2

(
nvmax

vmin

))
.

Proof: We execute the two parts discussed above. By the discussion just before the theorem, the

number of operations to execute the two parts is given by the expression in the theorem. Let

(S∗1 , . . . , S
∗
m) be an optimal solution to the Capacitated problem. By Lemma 5.1, we know that

there exist 0 = j∗1 ≤ j∗2 ≤ . . .≤ j∗m ≤ j∗m+1 = n such that S∗k ⊆ {j∗k + 1, . . . , j∗k+1} for all k ∈M. After

executing Part 1, by the second property in Part 1, for each k ∈M, there exists Ŝk ∈Cand(j∗k , j
∗
k+1)

such that W (Ŝk)≥ (1−ε/4)W (S∗k), V (Ŝk)≤ (1+ε/4)V (S∗k) and C(Ŝk)≤C(S∗k). Since (S∗1 , . . . , S
∗
m)

is an optimal solution to the Capacitated problem, we have
∑

k∈MC(S∗k)≤ b, so noting that

C(Ŝk)≤C(S∗k) for all k ∈M, the solution (Ŝ1, . . . , Ŝm, j
∗
1 , . . . , j

∗
m) is feasible for problem (9). After

20 Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers

executing Part 2, we have a (1− ε
4
)-approximate solution to problem (9) as well, which we denote

by (S̃1, . . . , S̃m, j̃1, . . . , j̃m). Therefore, we get

∑
k∈M

λkW (S̃k)

(1 +
∑k−1

q=1 V (S̃q)) (1 +
∑k

q=1 V (S̃q))

(a)

≥
(

1− ε

4

)∑
k∈M

λkW (Ŝk)

(1 +
∑k−1

q=1 V (Ŝq)) (1 +
∑k

q=1 V (Ŝq))

(b)

≥
(

1− ε

4

)∑
k∈M

(1− ε
4
)λkW (S∗k)

(1 +
∑k−1

q=1(1 + ε
4
)V (S∗q)) (1 +

∑k

q=1(1 + ε
4
)V (S∗q))

≥
(1− ε

4
)2

(1 + ε
4
)2

∑
k∈M

λkW (S∗k)

(1 +
∑k−1

q=1 V (S∗q)) (1 +
∑k

q=1 V (S∗q))
.

In this chain of inequalities, (a) holds because (S̃1, . . . , S̃m, j̃1, . . . , j̃m) is a (1− ε
4
)-approximate

solution to problem (9), whereas (Ŝ1, . . . , Ŝm, j
∗
1 , . . . , j

∗
m) is only a feasible solution to problem (9),

whereas (b) holds because W (Ŝk) ≥ (1 − ε/4)W (S∗k) and V (Ŝk)≤ (1 + ε/4)V (S∗k). For ε∈ (0,1),

we have (1−ε/4)2

(1+ε/4)2
≥ (1− ε

4
)4 ≥ 1− ε. In this case, letting z∗ be the optimal objective value of the

Capacitated problem and noting that (S∗1 , . . . , S
∗
m) is the optimal solution to the Capacitated

problem, the chain of inequalities presented above implies that the solution (S̃1, . . . , S̃m) provides

an objective value of at least (1− ε)z∗ to the Capacitated problem.

The number of operations in Theorem 5.2 is polynomial in the input size and 1/ε, giving an

FPTAS. In the next two sections, we discuss how to execute the two parts.

5.1 Part 1: Constructing Collections of Candidate Assortments

We focus on executing Part 1. For each j, ` ∈ {0, . . . , n} with j ≤ `, we separately construct the

collection of candidate assortments Cand(j, `). Therefore, we fix j, ` throughout this section.

Intuitively speaking, to construct the collection of candidate assortments Cand(j, `), we use a

geometric grid to guess the values of W (S) and V (S) for each possible assortment S ⊆ {j+ 1, . . . , `}.

For each guess for the values of W (S) and V (S), we use a dynamic program to find an assortment Ŝ

such that W (Ŝ) and V (Ŝ) are not too far from the guess and the capacity consumption of Ŝ is

as small as possible. The dynamic program that we use is, in spirit, similar to the one that is

used for solving the knapsack problem; see, for example, Chapter 3 in Williamson and Shmoys

(2011) and Desir et al. (2016b). In particular, for fixed ρ > 0, we define the geometric grid

Dom= {(1 + ρ)r : r ∈Z}∪ {0}. We define the round down operator b·c that rounds its argument

down to the closest point in Dom when the argument is positive. That is, if a≥ 0, then we have

bac = max{b ∈Dom : b ≤ a}. If a < 0, then we follow the convention that bac = 0. Similarly, we

define the round up operator d·e that rounds its argument up to the closest point in Dom when the

argument is positive. That is, if a≥ 0, then we have dae= min{b∈Dom : b≥ a}. If a < 0, then we

follow the convention that dae=−∞. For given (x, y) ∈Dom2 and (j, `), we consider finding the

Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers 21

smallest possible capacity consumption of any assortment S ⊆ {j+1, . . . , `} that satisfies W (S)≥ x

and V (S)≤ y. For this purpose, we use the dynamic program

Θ`
i(x, y) = min

ui∈{0,1}

{
ci ui + Θ`

i+1(bx− vi ri uic , dy− vi uie)
}
, (10)

where we use the boundary condition that Θ`
`+1(x, y) = 0 if x≤ 0 and y≥ 0. If, on the other hand,

x> 0 or y < 0, then we have Θ`
`+1(x, y) = +∞.

In (10), the decision epochs are the products. The action at decision epoch i is whether we offer

product i. If we drop the round down and up operators on the right side of (10), then Θ`
j+1(x, y)

gives the smallest possible capacity consumption of any assortment S ⊆ {j+ 1, . . . , `} that satisfies

W (S) ≥ x and V (S) ≤ y. If there is no assortment S ⊆ {j + 1, . . . , `} such that W (S) ≥ x and

V (S) ≤ y, then Θ`
j+1(x, y) = +∞. With the round down and up operators on the right side of

(10), this dynamic program is only an approximation. Shortly, we will put bounds on the two

components of the state variable (x, y), in which case, noting that (x, y) ∈Dom2, the number of

operations required to solve the dynamic program in (10) will be a polynomial in the input size.

To construct the collection of candidate assortments Cand(j, `), we compute the value functions

{Θ`
i(x, y) : (x, y)∈Dom2, i= j+1, . . . , `+1} using the dynamic program in (10). Once we compute

the value functions, for each (x, y)∈Dom2, starting with state (x, y) and decision epoch j + 1,

we follow the sequence of optimal state-action pairs in the dynamic program in (10). In this

way, we obtain an assortment Ŝx,y for each (x, y) ∈Dom2, which we use as one of the candidate

assortments in the collection Cand(j, `). Specifically, for each (x, y)∈Dom2, if Θ`
j+1(x, y)<+∞,

then we construct the assortment Ŝx,y using the following algorithm. Throughout this section, we

refer to this algorithm as the candidate construction algorithm.

Candidate Construction:

Initialization: Compute the value functions {Θ`
i(·, ·) : i= j+1, . . . , `+1} using (10). Set i= j+1,

x̂i = x, and ŷi = y.

Step 1. Set ûi = arg min
ui∈{0,1}

{
ci ui + Θ`

i+1(bx̂i− vi ri uic , dŷi− vi uie)
}
.

Step 2. Set x̂i+1 = bx̂i − vi ri ûic and ŷi+1 = dŷi − vi ûie. Increase i by one. If i < `+ 1, then

go to Step 1; otherwise, stop.

Output: Return Ŝx,y = {i∈ {j+ 1, . . . , `} : ûi = 1}.

In the next lemma, we show useful properties of the assortment Ŝx,y obtained by the algorithm

above. Specifically, by the next lemma, if there exists an assortment S ⊆ {j+ 1, . . . , `} with

W (S)≥ x and V (S) ≤ y, then we have Θ`
j+1(x, y)<+∞, so we execute the algorithm above.

22 Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers

In this case, considering the assortment S ⊆ {j+ 1, . . . , `} with W (S)≥ x and V (S) ≤ y, once

again, by the next lemma, the output of the candidate construction algorithm Ŝx,y satisfies

W (Ŝx,y)≥ 1
(1+ρ)n

x, V (Ŝx,y)≤ (1 + ρ)n y, and C(Ŝx,y)≤C(S). Recall that we prefer an assortment S

with largerW (S), smaller V (S) and smaller C(S). Thus, if ρ is small, then the candidate assortment

Ŝx,y is almost as preferable as the assortment S.

Lemma 5.3 (Candidate Assortments) If there exists an assortment S ⊆ {j+ 1, . . . , `} such

that W (S) ≥ x and V (S) ≤ y, then we have Θ`
j+1(x, y) < +∞, W (Ŝx,y) ≥ 1

(1+ρ)n
x,

V (Ŝx,y)≤ (1 + ρ)n y, and C(Ŝx,y)≤C(S).

The proof of the lemma is in Appendix J. Intuitively speaking, the proof is based on accumulating

the errors due to the round down and up operators in (10). Next, we discuss how to use the lemma

and the candidate construction algorithm to execute Part 1. Given ε ∈ (0,1), we set the accuracy

parameter of the geometric grid as ρ= 1
8 (n+1)

ε. For all S 6=∅, we have W (S)∈ [wmin, nwmax] and

V (S)∈ [vmin, n vmax], so we construct the collection Cand(j, `) as

Cand(j, `) =
{
Ŝx,y : (x, y)∈Dom2, x∈ [bwminc, dnwmaxe]∪{0}, y ∈ [bvminc, dnvmaxe]∪{0}

}
. (11)

Noting that Ŝx,y ⊆ {j + 1, . . . , `}, we have Ŝ ⊆ {j + 1, . . . , `} for all Ŝ ∈ Cand(j, `). Thus, the

collection of candidate assortments Cand(j, `) given above satisfies the correct product interval

property in Part 1. It remains to argue that the collection of candidate assortments Cand(j, `) in

(11) satisfies the limited degradation property in Part 1 as well. In the next lemma, we show that

our collection of candidate assortments indeed satisfies this property.

Lemma 5.4 (Limited Degradation) Considering the collection of candidate assortments

Cand(j, `) in (11), for each S ⊆ {j + 1, . . . , `}, there exists Ŝ ∈ Cand(j, `) such that

W (Ŝ)≥ (1− ε/4)W (S), V (Ŝ)≤ (1 + ε/4)V (S), and C(Ŝ)≤C(S).

Proof: Fix S ⊆ {j+ 1, . . . , `} and let (x, y) ∈ Dom2 be such that x∈ [bwminc, dnwmaxe]∪{0},

y ∈ [bvminc, dnvmaxe]∪{0}, x≤W (S)≤ (1 + ρ)x and y/(1 + ρ)≤ V (S)≤ y. Noting that we have

W (S)∈ [wmin, nwmax]∪{0} and V (S)∈ [vmin, n vmax]∪{0}, there always exists such (x, y)∈Dom2.

In this case, since we have W (S)≥ x and V (S)≤ y, by Lemma 5.3, the candidate assortment

Ŝx,y ∈Cand(j, `) satisfies the inequalities

W (Ŝx,y)≥
1

(1 + ρ)n
x, V (Ŝx,y)≤ (1 + ρ)n y, C(Ŝx,y)≤C(S).

Moreover, noting the fact that W (S)≤ (1 + ρ)x and V (S)≥ y/(1 + ρ), the first two inequalities

above yield W (Ŝx,y)≥ 1
(1+ρ)n+1 W (S) and V (Ŝx,y)≤ (1 + ρ)n+1 V (S). For all δ ∈ [0,1/2] and n∈Z+,

Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers 23

we have the standard inequalities (1 + δ/n)n ≤ exp(δ)≤ 1 + 2δ. Thus, since ε/8≤ 1/2, we get the

two chains of inequalities

W (Ŝx,y) ≥
1

(1 + ρ)n+1
W (S) =

1(
1 + ε

8 (n+1)

)n+1 W (S) ≥ 1

1 + ε/4
W (S) ≥ (1− ε/4)W (S),

V (Ŝx,y)≤ (1 + ρ)n+1 V (S) =

(
1 +

ε

8 (n+ 1)

)n+1

V (S)≤ (1 + ε/4)V (S).

Thus, given an assortment S ⊆ {j+ 1, . . . , `}, there exists Ŝx,y ∈ Cand(j, `) such that W (Ŝx,y) ≥

(1− ε/4)W (S), V (Ŝx,y)≤ (1 + ε/4)V (S), and C(Ŝx,y)≤C(S).

Closing this section, we briefly explain that we can construct all collections of candidate

assortments in O(n
4

ε2
log(nwmax

wmin
) log(nvmax

vmin
)) operations. In particular, to solve the dynamic program

in (10), in Appendix K, we argue that the smallest nonzero values of x and y in the state variable

(x, y)∈Dom2 are, respectively, bwminc and bvminc, whereas the largest values of x and y in the state

variable (x, y)∈Dom2 are, respectively, dnwmaxe and dnvmaxe. In this case, noting that ρ= 1
8 (n+1)

ε,

the number of state variables that we need to consider is

O

(
log(nwmax

wmin
)

log(1 + ρ)
·
log(nvmax

vmin
)

log(1 + ρ)

)
= O

(
n2

ε2
log

(
nwmax

wmin

)
log

(
nvmax

vmin

))
. (12)

Thus, we can compute Θ`
i(x, y) for all values of the state variable (x, y), i∈N and `∈ {0, . . . , n} with

i≤ `+ 1 in O(n
4

ε2
log(nwmax

wmin
) log(nvmax

vmin
)) operations. The number of other operations to construct

the collections of candidate assortments is negligible, resulting in the desired number of operations

to construct all collections. Also, by (11), the collection Cand(j, `) includes one assortment for

each (x, y)∈Dom2 such that x∈ [bwminc, dnwmaxe]∪{0} and y ∈ [bvminc, dnvmaxe]∪{0}, so by (12),

the collection Cand(j, `) includes O(n
2

ε2
log(nwmax

wmin
) log(nvmax

vmin
)) assortments.

5.2 Part 2: Combining Candidate Assortments

We focus on executing Part 2, which obtains an approximate solution to problem (9). We can solve

problem (9) using dynamic programming. The decision epochs are the stages. At decision epoch k,

the action is the candidate assortment Sk offered, whereas the state variable keeps track of jk such

that Sk−1 ⊆ {jk−1 +1, . . . , jk}, the accumulated value of
∑k−1

q=1 V (Sq), and a target expected revenue

to generate from the future stages. Thus, we consider the dynamic program

Ψk(j, u, z) = min
(`,S) : `∈ {j, . . . , n},

S ∈Cand(j, `)

{
C(S) + Ψk+1

(
` , du+V (S)e ,

⌈
z− λkW (S)

(1 +u) (1 +u+V (S))

⌉)}
(13)

with the boundary condition that Ψm+1(j, u, z) = 0 if z ≤ 0. Otherwise, we have Ψm+1(j, u, z) = +∞.

If we drop the round up operators on the right side of (13), then Ψk(j, u, z) gives the smallest total

24 Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers

capacity consumption of assortments (Sk, . . . , Sm) such that S` ∈Cand(j`, j`+1) for some j = jk ≤

jk+1 ≤ . . .≤ jm and these assortments provide an expected revenue of at least z in stages k, . . . ,m,

when the assortments (S1, . . . , Sk−1) offered in the previous stages satisfy
∑k−1

q=1 V (Sq) = u. In this

case, the optimal objective value of problem (9) is given by max{z ∈R : Ψ1(0,0, z)≤ b}. With the

round up operator, the dynamic program in (13) is only an approximation.

To obtain an approximate solution to problem (9), we use the dynamic program in (13) to

compute the value functions {Ψk(j, u, z) : j = 0, . . . , n, (u, z)∈Dom2, k ∈M}. Approximating the

optimal objective value of problem (9) as ẑApp = max{z ∈Dom : Ψ1(0,0, z)≤ b}, we start with

the state (0,0, ẑApp) and follow the optimal state-action pairs in the dynamic program in (13).

Specifically, we use the following algorithm to follow the optimal state-action pairs.

Candidate Stitching:

Initialization: Compute the value functions {Ψk(j, u, z) : j = 0, . . . , n, (u, z)∈Dom2, k ∈M}

using (13). Set ẑApp = max{z ∈Dom : Ψ1(0,0, z)≤ b}. Initialize k= 1, ĵk = 0, ûk = 0, and ẑk = ẑApp.

Step 1. Set

(ĵk+1, Ŝk) = arg min
(`,S) : `∈ {ĵk, . . . , n},

S ∈Cand(ĵk, `)

{
C(S) + Ψk+1

(
` , dûk +V (S)e ,

⌈
ẑk−

λkW (S)

(1 + ûk) (1 + ûk +V (S))

⌉)}
.

Step 2. Set ûk+1 = dûk + V (Ŝk)e and ẑk+1 =

⌈
ẑk −

λkW (Ŝk)

(1 + ûk) (1 + ûk +V (Ŝk))

⌉
.

Increase k by one. If k <m+ 1, then go to Step 1; otherwise, stop.

Output: Return (Ŝ1, . . . , Ŝm).

Throughout this section, we refer to this algorithm as the candidate stitching algorithm,

since this algorithm stitches together a solution to problem (9) using the candidate assortments

for different stages. In the next lemma, we show useful properties of the output (Ŝ1, . . . , Ŝm)

of the candidate stitching algorithm. In particular, by the next lemma, the output of the

candidate stitching algorithm is feasible for problem (9), satisfying
∑

k∈MC(Ŝk)≤ b. Furthermore,

once again, by the next lemma, using Rev(S1, . . . , Sm) to denote the expected revenue

from the solution (S1, . . . , Sm), z̃ to denote the optimal objective value of problem (9), and

ẑApp = max{z ∈Dom : Ψ1(0,0, z)≤ b} to denote our approximation of the optimal objective value

of problem (9), we have Rev(Ŝ1, . . . , Ŝm)≥ ẑApp ≥ z̃/(1 + ρ)3(m+1). Thus, the expected revenue

provided by the output of the candidate stitching algorithm is at least as large as our approximation

of the optimal objective value of problem (9). Also, if ρ is small, then our approximation of the

optimal objective value of problem (9) is not too far from the optimal objective value of this

problem. The proof of the lemma uses induction over the stages. It is in Appendix L.

Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers 25

Lemma 5.5 (Stitching Candidates) Let (Ŝ1, . . . , Ŝm) be the output of the candidate stitching

algorithm, z̃ be the optimal objective of problem (9), and ẑApp = max{z ∈Dom : Ψ1(0,0, z)≤ b}. We

have
∑

k∈MC(Ŝk)≤ b and Rev(Ŝ1, . . . , Ŝm)≥ ẑApp ≥ z̃/(1 + ρ)3m+1.

Next, we discuss how to use the lemma and the candidate stitching algorithm to execute Part 2.

Given ε∈ (0,1), we set the accuracy parameter of the geometric grid as ρ= 1
8(3m+1)

ε. Since ε/8≤ 1/2

and (1 + δ/n)n ≤ exp(δ)≤ 1 + 2δ for all δ ∈ [0,1/2] and n∈Z+, by Lemma 5.5, we get

Rev(Ŝ1, . . . , Ŝm)≥ 1

(1 + ρ)3m+1
z̃ =

1(
1 + ε

8(3m+1)

)3m+1 z̃ ≥
1

1 + ε
4

z̃ ≥
(

1− ε

4

)
z̃,

so the output of the candidate stitching algorithm is a (1− ε
4
)-approximate solution to problem (9),

as desired. Closing this section, we explain that we can execute the candidate stitching algorithm

with ρ= 1
8(3m+1)

ε in O(n
4m3

ε4
log(nwmax

wmin
) log(nwmax (1∨nvmax)

λmwmin
) log2(nvmax

vmin
)) operations.

To solve the dynamic program in (13), in Appendix M, we argue that the largest values of u

and z in the state variable (j, u, z)∈N ×Dom2 are, respectively, d2nvmaxe and dnwmaxe, whereas

the smallest nonzero values of u and z in the state variable (j, u, z)∈N ×Dom2 are, respectively,

bvminc and bλm wmin
(1+2nvmax)2

c. Since j in the state variable (j, u, z) takes O(n) possible values and we

set ρ= 1
8(3m+1)

ε, the number of state variables we need to consider is

O

(
n

log(nvmax
vmin

)

log(1 + ρ)
·
log(nwmax

λmwmin/(1+2nvmax)2
)

log(1 + ρ)

)
= O

(
nm2

ε2
log

(
nvmax

vmin

)
log

(
nwmax (1∨nvmax)

λmwmin

))
.

In decision epoch k, there are
∑n

p=ĵk Cand(ĵk, p) = O(n
3

ε2
log(nwmax

wmin
) log(nvmax

vmin
)) possible actions.

Moreover, there are m decision epochs, one for each stage. Therefore, we can solve the dynamic

program in (13) in O(n
4m3

ε4
log(nwmax

wmin
) log(nwmax (1∨nvmax)

λmwmin
) log2(nvmax

vmin
)) operations. The number of

other operations to execute the candidate stitching algorithm is negligible, resulting in the desired

number of operations to execute the candidate stitching algorithm.

In Appendix N, we tailor our FPTAS to the case where there is a constraint on the total number

of offered products and slightly improve its running time. For this case, we also give an exact

algorithm with running time polynomial in n, but exponential in m.

6. Computational Experiments

We provide three sets of computational experiments. First, we use a dataset from Expedia to check

the ability of our choice model to predict customer purchases. Second, we test the performance

of our approximation algorithm for the joint pricing and assortment optimization problem. Third,

we test the performance of our FPTAS under space constraints. In the second and third sets, we

develop upper bounds on the optimal expected revenue and use them to check optimality gaps.

26 Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers

6.1 Prediction Ability on the Dataset from Expedia

We use a dataset provided by Expedia as a part of a Kaggle competition; see Kaggle (2013). Our

goal is to test the ability of our choice model to predict the purchases of customers.

Experimental Setup: The dataset gives the results of search queries for hotels on Expedia. In

the dataset, the rows correspond to different hotels that are displayed in different search

queries. The columns give information on the attributes of the displayed hotel, the results of the

search query, and the booking decision of the customer. We preprocess the dataset to remove the

values that are either missing or uninterpretable as a result of which, we end up with 595,965 rows

and 15 columns. The first three columns in the dataset include the following information. The first

column is the unique code for each search query. Using this column, we can have access to all

of the hotels that are displayed in a particular search query, which is the set of products among

which a particular customer makes a choice. The second column is an indicator of whether the

customer booked the hotel in the search query. We use this column to identify the purchase of the

customer. A customer books at most one hotel in a search query, but it is possible that she does not

book any hotels. The third column is the display position of the hotel in the search query, which

becomes useful when fitting our multinomial logit model with multiple stages. The remaining 12

columns give information on the characteristics of the hotel, such as the star rating, average review

score, and displayed price. In Appendix O, we explain our approach for preprocessing the dataset

and give a detailed discussion of the 15 columns that we use.

After processing the dataset, the 595,965 rows that we end up with represent 34,561 search

queries. The average number of hotels displayed in a search query is 17.24, with the maximum

number of hotels being 37. In 83% of the search queries, the customer did not make a booking.

To enrich our experimental setup, we use bootstrapping on the data to generate multiple datasets.

In each dataset, we vary the fraction of the search queries that did not result in a booking. There

are a total of 10,000 search queries in each dataset that we bootstrap. Using P0 to denote the

fraction of the search queries that did not result in a booking, we sample 10,000P0 search queries

among the original Expedia search queries that did not result in a booking. Similarly, among

the original Expedia search queries that resulted in a booking, we sample 10,000 (1− P0) search

queries. Putting these two samples together, we get a dataset with 10,000 search queries in which

P0 fraction of them did not result in a booking. For each value of P0, we repeat the bootstrapping

process 50 times to get 50 different datasets. We vary P0 over {0.5,0.7,0.9}. In this way, we obtain

150 datasets in our computational experiments. The value of P0 dictates the balance between the

customers making and not making a booking in the dataset. In our choice model, we capture the

preference weight of hotel i in a search query by vi = exp
(
β0 +

∑12

`=1 β
` x`i
)
, where (x1

i , . . . , x
12
i)

Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers 27

are the values in the last 12 columns giving the characteristics of hotel i and (β0, β1, . . . , β12) are

coefficients that we estimate from the dataset. Therefore, the parameters of our choice model are

the coefficients (β0, β1, . . . , β12) and the patience level distribution.

We randomly split each dataset into training, validation, and testing data, each of which,

respectively, includes 64%, 16%, and 20% of the search queries. The data provides the display

position of each hotel in the search query, but fitting our choice model requires having access

to the stage in which each hotel is displayed. We proceed under the assumption that each stage

corresponds to b hotels in consecutive display positions and choose the best value of b using

cross-validation. Specifically, we use the values of b ∈ {1,3,5,10,20}. For each value of b, we use

maximum likelihood to fit our choice model to the training data and check the log-likelihood

of our fitted choice model on the validation data. We choose the value of b that provides the

largest log-likelihood on the validation data. See, for example, the approach used by Vulcano et al.

(2012) to fit choice models using maximum likelihood. As a benchmark, we also fit a standard

multinomial logit model to the training data. The preference weight of hotel i under this choice

model is vi = exp
(
β0 +

∑12

`=1 β` x`
)
. In Appendix P, we compare the runtimes for fitting the two

choice models. Throughout this section, we refer to our multinomial logit model with impatient

customers as IML and the standard multinomial logit model as SML.

Computational Results: We use two performance measures to compare IML and SML. The

first measure is the out-of-sample log-likelihood on the testing data. The second is the k-hit score

on the testing data. To compute the k-hit score of the fitted IML model, we use T to denote the set

of search queries in the testing data in which the customer made a booking. For each t∈ T , we let

St be the assortment of hotels offered in this search query and it be the hotel booked. Using φi(S)

to denote the purchase probability of hotel i within assortment S under the fitted IML model, for

each t, we let Akt be the set of k alternatives with the largest purchase probabilities, which are

given by the k largest elements of {φi(St) : i∈ St}. If it ∈Akt , then the hotel booked in search query

t has one of the k largest choice probabilities under the fitted IML model. So, the k-hit score of the

fitted IML model is 1
|T |

∑
t∈T 1(it ∈Akt). The k-hit score of the fitted SML model is similar. We use

k ∈ {1,2,3}. For the k-hit score, we focus only on the search queries resulting in a booking, because

a large fraction of the customers do not book. If we included the search queries not resulting in a

booking in the k-hit score, then the k-hit scores would be driven mainly by the customers who do

not book, but we want to test our ability to predict the specific hotel booked.

We give our computational results in Table 1. Each row in the table corresponds to a different

value of P0. Recall that we generate 50 datasets for each value of P0. In the top portion, we compare

the out-of-sample log-likelihoods of IML and SML. The first column shows the number of datasets

28 Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers

Out-of-Sample Log-Likelihood
IML� IML SML Avg. S. Er.

P0 SML Like. Like. %Gap %Gap

0.5 50 −3899.65 −3963.64 1.64% 0.07%
0.7 50 −2701.65 −2766.36 2.40% 0.09%
0.9 47 −1145.78 −1169.93 2.12% 0.18%

1-Hit Score 2-Hit Score 3-Hit Score
IML� IML Avg. Std. IML� IML Avg. Std. IML� IML Avg. Std.

P0 SML 1-hit %Gap. Err. SML 2-hit %Gap %Gap SML 3-hit %Gap. %Gap |T |
0.5 36 0.25 3.81% 0.88% 37 0.39 3.48% 0.61% 36 0.50 2.04% 0.57% 1003.04
0.7 42 0.24 6.61% 0.91% 42 0.37 4.24% 0.71% 32 0.48 3.11% 0.68% 599.06
0.9 34 0.22 3.04% 2.08% 35 0.36 5.80% 1.57% 40 0.47 7.74% 1.16% 199.84

Table 1 Comparison of the fitted IML and SML models on the dataset from Expedia.

out of 50 where the out-of-sample log-likelihood of the fitted IML model is larger than that of

SML. The second and third columns, respectively, show the average out-of-sample log-likelihood

of the fitted IML and SML models, where the average is over the 50 datasets. The fourth and fifth

columns, respectively, show the average and standard error of the percent gaps between the out-

of-sample log-likelihoods of the two fitted choice models, where the standard error is the standard

deviation of the percent gaps over the 50 datasets divided by
√

50. In the bottom portion, we

compare the k-hit scores. The first column shows the number of datasets out of 50 where the 1-hit

score of the fitted IML model is larger than that of SML. The second column shows the average

1-hit score of the fitted IML model over the 50 datasets. The fourth and fifth columns, respectively,

show the average and standard error of the percent gaps between the 1-hit scores of the two fitted

choice models. Positive values favor IML. We compare the 2-hit and 3-hit scores similarly. Lastly,

to put the k-hit scores in perspective, we give the average of |T | over the 50 datasets.

The fitted IML model improves the out-of-sample log-likelihoods of the fitted SML model in 147

out of 150 datasets. To quantify the improvements in the prediction accuracies more clearly, we

turn to k-hit scores. The fitted IML model improves the 1-hit score of the fitted SML model in

112 out of 150 datasets, providing an average improvement of 4.49%. Noting the 3-hit scores, one

of the three alternatives with the largest purchase probabilities ends up being the hotel booked

by the customer about 50% of the time. The gaps between the k-hit scores are maintained for

k ∈ {2,3}, but for large values of k, the k-hit scores for both choice models will naturally be one,

since as k gets large, the hotel booked by the customer will be one of a large number of hotels with

a large probability. Our bootstrapped datasets are independent samples. All average gaps in the

out-of-sample log-likelihoods and k-hit scores, except for one, are statistically significant in paired

t-test at the 99% level; see Chapter 4.6 in Goulden (1939). For P0 = 0.9, the average gap in the

1-hit scores is statistically significant at the 90% level.

To get a feel for how the different characteristics of the hotels affect their mean utilities, in Table 2,

we provide the estimated values for the coefficients (β1, . . . , β12) in the fitted IML model. Recall

Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers 29

Attribute Coeff.

Star rating 0.287
Average review score 0.110

Part of a chain indicator 0.116
Location score −0.192

Attribute Coeff.

Accessibility score 0.386
Average historical price −0.038

Displayed price −1.202
Promotion indicator 0.127

Attribute Coeff.

Number of days until stay −0.111
Number of adults staying −0.128

Number of children staying 0.065
Saturday stay indicator −0.051

Table 2 Estimated values for the 12 coefficients in the fitted IML model averaged over the bootstrapped datasets.

that the preference weight of hotel i is given by vi = exp
(
β0 +

∑12

`=1 β
` x`i
)
, where (x1

i , . . . , x
12
i) are

the values in the last 12 columns giving the characteristics of hotel i, such as the star rating, average

review score, and displayed price. Before fitting choice models, we shift and scale the entries in each

of the 12 columns of the dataset so that the entries in each column have mean zero and variance one,

in which case, the entries corresponding to different characteristics of the hotels have roughly the

same order of magnitude. The estimated values for the coefficients (β1, . . . , β12) are relatively stable

from one bootstrapped dataset to another, so we provide the average of the estimated parameters

over the bootstrapped datasets. Going over some of the values for the coefficients, not surprisingly,

larger star rating and larger average review score positively impact the mean utility, whereas larger

displayed price negatively impacts the mean utility. Being part of a hotel chain, providing brand

familiarity to the customer, positively impacts the mean utility. More interestingly, larger number of

days until the actual day of stay and duration of stay including a Saturday night negatively impact

the mean utility. It is reasonable that the customers booking earlier and staying over Saturday

night are leisure travelers, so they are more likely to leave without making a booking, resulting in

a smaller mean utility. The effects of some characteristics, such as the location and accessibility

scores, and the numbers of adults and children on the booking, are harder to interpret, but all of

the estimated coefficients are statistically significant with p-values less than 10−5 when we use the

t-test to test the null hypothesis that a coefficient is zero; see Chapter 3.1.2 in James et al. (2014).

6.2 Joint Pricing and Assortment Optimization

For joint pricing and assortment optimization, based on Theorem 4.4, we give a simple

neighborhood search algorithm with 87.8% performance guarantee and test its performance.

Experimental Setup: In our neighborhood search algorithm, we start with a solution to

the Pricing-Assortment problem that offers all products in the first stage and charges the

corresponding optimal prices for the products. By Theorem 4.4, this solution provides at least 87.8%

of the optimal expected revenue. Given the current sequence of assortments that we offer, we check

all neighbors of the current sequence of assortments, using an appropriately defined neighborhood.

For each sequence of assortments in the neighborhood, we compute the corresponding optimal prices

to charge. Among all sequences of assortments in the neighborhood and their corresponding prices,

30 Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers

we pick the one that provides the largest expected revenue. Recall that we can use the approach in

Section 4.1 to compute the optimal prices to charge for a given sequence of assortments. We update

the current sequence of assortments to be this best sequence in the neighborhood and repeat the

process starting from the updated current sequence of assortments. If no sequence of assortments

in the neighborhood, along with the corresponding optimal prices, improves the expected revenue

from the current sequence of assortments, then we stop. In our neighborhood search algorithm, we

define the neighborhood of a sequence of assortments as all sequences of assortments obtained by

moving one product from one stage to another, so the neighborhood of the sequence of assortments

(S1, . . . , Sm) is
{

(S1, . . . , Sk \ {i}, . . . , S` ∪{i}, . . . , Sm) : ∀ i∈ Sk, k, `∈M, k 6= `
}

. To complement

the neighborhood search algorithm, in Appendix Q, we also give an efficiently computable

upper bound on the optimal expected revenue in the Pricing-Assortment problem. In our

computational experiments, we randomly generate a large number of test problems and compare

the expected revenue from the solution obtained by our neighborhood search algorithm with the

upper bound on the optimal expected revenue.

In all of our test problems, the number of products is n = 20 and the price sensitivity is

β = 1. Working with other values for the price sensitivity is equivalent to scaling the prices of the

products with the same constant. We use the following approach to come up with the parameters

{αi : i∈N}. We have C product clusters. We randomly assign each product to a cluster. If products

i and j are in the same cluster, then the values of αi and αj are close. Specifically, cluster c has the

centroid γc. We set the centroid of cluster c as γc = c−0.5 for all c= 1, . . . ,C. If product i belongs to

cluster c, then we generate κi from the normal distribution with mean γc and standard deviation σ,

where σ is a parameter that we vary. We set αi = κi−∆, where we have ∆ = log
∑

i∈N e
κi − log 9. In

this case, if we offer all products in the first stage and charge a price of zero for them, then a

customer leaves without a purchase with probability 0.1. Using the random variable Y to capture

the patience level of a customer, the probability mass function of Y is given by P{Y = k} =

ea·k/
∑

`∈M ea·`, where a is another parameter that we vary. Negative and positive values for a yield,

respectively, left-skewed and right-skewed distributions. If a= +∞, then Y =m with probability

one, so the customers are willing to wait until the last stage.

Recalling that m is the number of stages, varying m ∈ {6,8,10}, C ∈ {3,5}, σ ∈ {0.5,1.0}, and

a ∈ {+∞,0.5,0.0,−0.1}, we obtain 48 parameter configurations. In each parameter configuration,

we generate 25 problem instances using the approach in the previous paragraph.

Computational Results: We show our computational results in Table 3. In this table, the

first column shows the parameter configuration using the tuple (C,σ,a), where C, σ and a are as

discussed in our experimental setup. In the rest of the table, there are three blocks, each with four

Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers 31

m= 6 m= 8 m= 10
Param. Conf. Avg. Max. Std. Avg. Avg. Max. Sd. Avg. Avg. Max. Std. Avg.

(C,σ,a) Gap Gap Gap Imp. Gap Gap Gap Imp. Gap Gap Gap Imp.

(3,0.5, +∞) 1.38% 1.59% 0.09% 4.98% 1.95% 2.17% 0.09% 4.99% 2.52% 2.74% 0.09% 4.99%
(3,0.5, 0.5) 1.15% 1.17% 0.01% 2.73% 1.63% 1.66% 0.01% 3.70% 2.12% 2.22% 0.03% 4.28%
(3,0.5, 0.0) 0.78% 0.79% 0.00% 0.55% 1.04% 1.10% 0.01% 1.01% 1.29% 1.38% 0.02% 1.36%
(3,0.5,−0.1) 0.70% 0.70% 0.00% 0.24% 0.89% 0.90% 0.01% 0.50% 1.06% 1.07% 0.00% 0.71%

(3,1.0, +∞) 1.53% 2.61% 0.30% 4.82% 2.10% 3.18% 0.31% 4.83% 2.67% 3.75% 0.31% 4.83%
(3,1.0, 0.5) 1.18% 1.57% 0.08% 2.70% 1.66% 2.12% 0.12% 3.66% 2.20% 2.86% 0.17% 4.21%
(3,1.0, 0.0) 0.78% 0.90% 0.02% 0.55% 1.03% 1.04% 0.00% 1.01% 1.29% 1.38% 0.02% 1.36%
(3,1.0,−0.1) 0.70% 0.70% 0.00% 0.24% 0.89% 0.92% 0.01% 0.50% 1.06% 1.14% 0.02% 0.70%

(5,0.5, +∞) 1.49% 1.77% 0.16% 4.87% 2.06% 2.34% 0.17% 4.88% 2.63% 2.92% 0.17% 4.88%
(5,0.5, 0.5) 1.16% 1.18% 0.01% 2.73% 1.64% 1.72% 0.03% 3.69% 2.15% 2.27% 0.05% 4.25%
(5,0.5, 0.0) 0.78% 0.79% 0.00% 0.55% 1.04% 1.09% 0.02% 1.00% 1.29% 1.33% 0.01% 1.36%
(5,0.5,−0.1) 0.70% 0.71% 0.00% 0.24% 0.89% 0.91% 0.01% 0.50% 1.06% 1.11% 0.02% 0.70%

(5,1.0, +∞) 1.84% 2.95% 0.46% 4.49% 2.41% 3.52% 0.46% 4.50% 2.98% 4.09% 0.46% 4.50%
(5,1.0, 0.5) 1.21% 2.28% 0.22% 2.67% 1.78% 2.59% 0.24% 3.54% 2.36% 3.25% 0.31% 4.04%
(5,1.0, 0.0) 0.78% 0.86% 0.02% 0.55% 1.07% 1.21% 0.06% 0.97% 1.31% 1.46% 0.05% 1.34%
(5,1.0,−0.1) 0.70% 0.75% 0.01% 0.23% 0.88% 0.89% 0.00% 0.50% 1.07% 1.40% 0.07% 0.69%

Table 3 Performance of the neighborhood search algorithm for joint pricing and assortment optimization.

columns. Each block corresponds to a particular value for the parameter m. In each block, the first

column shows the average percent gap between the upper bound on the optimal expected revenue

and the expected revenue from the solution obtained by our neighborhood search algorithm, where

the average is computed over the 25 problem instances in a parameter configuration. Specifically,

using Revk and UBk to denote, respectively, the expected revenue from the solution obtained by the

neighborhood search algorithm and the upper bound on the optimal expected revenue for problem

instance k, the first column shows the average of the data {100 · UBk−Revk
UBk

: k= 1, . . . ,25}. The second

and third columns, respectively, show the maximum and standard deviation of the same data. The

fourth column shows the average percent gap between the expected revenues from the initial and

final solutions in the neighborhood search algorithm, capturing the improvement provided by this

algorithm over using the solution that offers all products in the first stage.

Our results indicate that our neighborhood search algorithm performs quite well. Over all of

our test problems, the average gap between the upper bound on the optimal expected revenue

and the expected revenue from the neighborhood search algorithm is 1.43%. The gaps tend to

increase as the number of stages gets larger. Without knowing the optimal expected revenue, it

is difficult to tell whether the increase in the gaps is due to a degradation in the upper bounds

or a degradation in the expected revenues from the neighborhood search algorithm. However,

the upper bound that we give in Appendix Q is based on treating (
∑

i∈S1 e
αi , . . . ,

∑
i∈Sm e

αi)

in the expected revenue expression in (5) as continuous quantities whose sum does not exceed∑
i∈N e

αi . Intuitively speaking, this assumption becomes harder to justify when the number of

stages gets larger. Overall, the performance of the neighborhood search algorithm is better than its

87.8% theoretical performance guarantee. The improvement provided by the neighborhood search

32 Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers

algorithm over the initial solution that offers all products in the first stage can get as large as

4.99%. The improvements are most visible for problem instances with a ∈ {+∞,0.5}. For these

problem instances, the patience level distribution has a significant mass for larger patience levels,

so the customers tend to have larger patience levels, in which case, it becomes more important

to explore solutions that offer assortments in the later stages. On the other hand, for problem

instances with a∈ {0.0,−0,1}, the patience level distribution has a significant mass for smaller

patience levels. In this case, the customers tend to have smaller patience levels, so focusing on

solutions that offer assortments only in a few earlier stages appears to be adequate to get good

solutions. For problem instances with a= +∞, a= 0.5, a= 0.0, and a=−0.1, the average number

of neighbors that the neighborhood search algorithm visits before termination are, respectively,

38.31, 9.02, 1.89, and 1.74, which also indicates that as the value of a gets larger, so that the

customers tend stay in the system for larger number of stages before they run of patience, it

becomes more important to explore solutions that offer assortments in later stages. The runtime

for the neighborhood search algorithm ranges from 0.11 and 5.14 seconds, with larger runtimes

corresponding to problem instances with larger values for m and larger values for a.

6.3 Assortment Optimization under a Space Constraint

We test the practical performance of the FPTAS that we give in Section 5 for the assortment

optimization problem under a space constraint.

Experimental Setup: To assess the optimality gaps for the solutions obtained by our FPTAS,

in Appendix R, we give an efficiently computable upper bound on the optimal objective value

of the Capacitated problem. In our computational experiments, we randomly generate a large

number of test problems and compare the expected revenue from the solution obtained by our

FPTAS with the upper bound on the optimal expected revenue. We use the following approach

to generate our test problems. In all of our test problems, the number of products is n = 20.

To come up with the revenue ri of product i, we generate ri from the uniform distribution over

[1,10]. We reindex (r1, . . . , rn) so that r1 ≥ r2 ≥ . . .≥ rn. To come up with the preference weight

vi of product i, we generate γi from the uniform distribution [1,10] and set vi = γi/∆, where we

have ∆ = P0

∑
i∈N γi/(1−P0) and P0 is a parameter that we vary. In this case, if we offer all

products in the first stage, then a customer will leave without a purchase with probability P0.

After generating the preference weights, we process them to come up with two problem classes

for the preference weights. In the first problem class, we leave the preference weights untouched.

In the second problem class, we reindex (v1, . . . , vn) so that v1 ≤ v2 ≤ . . .≤ vn. Thus, recalling that

r1 ≥ r2 ≥ . . . ≥ rn, in the second problem class, the products with larger revenues have smaller

Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers 33

preference weights, so the more expensive products are less attractive. We refer to the first and

second problem classes, respectively, as “U” and “O,” where “U” stands for unordered and “O”

stands for ordered. We use the same approach that we use in Section 6.2 for the joint pricing and

assortment optimization problem to come up with the distribution for the patience levels. Recall

that the parameter a controls the skewness of the distribution of the patience levels. In all of our

test problems, to come up with the space consumptions {ci : i ∈ N} and the space availability b,

we generate ci from the uniform distribution over [0,1] and set b= 5.

Using T denote the problem class for the preference weights, varying m ∈ {6,8,10},

P0 ∈ {0.1,0,3}, T ∈ {U,O}, and a ∈ {+∞,0.5,0.0,−0.1}, we obtain 48 parameter configurations.

We generate 25 problem instances in each parameter configuration.

Computational Results: We executed our FPTAS with ε = 1/2 to obtain a 1
2
-approximate

solution to the Capacitated problem. Even with this setting, our FPTAS obtains solutions

with expected revenues within 5% of the upper bound on the optimal expected revenue. The

large number of test problems in our experimental setup prevented us from reporting results for

theoretical performance guarantees better than 50%, but a limited number of runs indicated that

if we use ε= 1
4
, then we decrease the percent gap between the upper bound and the performance of

our FPTAS by about 1%. We show our computational results in Table 4. The layout of this table

is similar to that of Table 3. In the first column, we use the tuple (P0, T, a) to show the parameter

configuration. The rest of the table has three blocks of three columns. Each block corresponds to

a particular value for the parameter m. In each block, the three columns, respectively, show the

average, maximum, and standard deviation for the percent gap between the upper bound on the

optimal expected revenue and the expected revenue from the solution obtained by our FPTAS,

where the average, maximum, and standard deviation are computed over the 25 problem instances

in a parameter configuration. Over all of our test problems, the average gap between the upper

bound and the expected revenue from our FPTAS is 2.25% and the maximum gap is 4.47%. The

gaps increase only slightly as the number of stages gets larger. Overall, the performance of our

FPTAS is substantially stronger than its theoretical performance guarantee of 50%.

The runtime for our FPTAS ranges from 26.23 to 36.12 minutes. Note that the size of our

test problems makes full enumeration impossible, because the number of possible sequences of

assortments is O(mn). Considering the candidate construction and candidate stitching algorithms

in Sections 5.1 and 5.2, a major portion of the runtime is spent for candidate construction,

particularly due to the fact that many of the candidate assortments that we construct end up being

duplicates of each other, resulting in substantial savings in the runtime for candidate stitching. The

34 Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers

m= 6 m= 8 m= 10
Param. Conf. Avg. Max. Std. Avg. Max. Sd. Avg. Max. Std.

(P0, T, a) Gap Gap Gap Gap Gap Gap Gap Gap Gap

(0.1,U, +∞) 2.92% 3.88% 0.56% 3.18% 4.20% 0.56% 3.27% 4.31% 0.58%
(0.1,U, 0.5) 2.40% 3.22% 0.42% 2.53% 3.44% 0.56% 2.79% 3.71% 0.47%
(0.1,U, 0.0) 2.17% 3.09% 0.49% 2.28% 3.71% 0.51% 2.19% 3.73% 0.65%
(0.1,U,−0.1) 2.12% 3.09% 0.55% 2.09% 3.07% 0.50% 2.11% 3.21% 0.56%

(0.1,O, +∞) 2.77% 4.00% 0.60% 3.11% 4.27% 0.60% 3.30% 4.47% 0.59%
(0.1,O, 0.5) 2.14% 2.77% 0.40% 2.38% 3.72% 0.60% 2.72% 4.00% 0.57%
(0.1,O, 0.0) 1.96% 3.32% 0.62% 2.15% 3.34% 0.61% 1.99% 3.81% 0.53%
(0.1,O,−0.1) 2.25% 3.54% 0.53% 2.01% 2.93% 0.54% 2.03% 3.04% 0.54%

(0.3,U, +∞) 2.52% 3.58% 0.45% 2.80% 3.84% 0.43% 2.93% 4.08% 0.46%
(0.3,U, 0.5) 2.15% 3.22% 0.52% 2.25% 3.01% 0.45% 2.16% 3.03% 0.47%
(0.3,U, 0.0) 1.87% 2.71% 0.40% 1.78% 2.59% 0.45% 1.87% 2.86% 0.49%
(0.3,U,−0.1) 1.80% 2.65% 0.43% 1.79% 2.71% 0.42% 2.02% 2.94% 0.45%

(0.3,O, +∞) 2.37% 3.20% 0.47% 2.69% 3.58% 0.46% 2.85% 3.85% 0.46%
(0.3,O, 0.5) 1.74% 2.67% 0.50% 1.96% 3.19% 0.52% 2.07% 2.99% 0.43%
(0.3,O, 0.0) 1.59% 2.73% 0.55% 1.52% 2.48% 0.46% 1.73% 2.63% 0.53%
(0.3,O,−0.1) 1.50% 2.52% 0.53% 1.54% 2.47% 0.48% 1.55% 2.75% 0.52%

Table 4 Performance of the FPTAS for assortment optimization under a space constraint.

runtime for the candidate stitching algorithm ranges from 2.08 to 18.09 seconds, where the larger

runtimes correspond to the test problems with larger number of stages. The remaining portion

of the runtime is for the candidate construction algorithm. In Table 5, we give the runtime in

minutes for our FPTAS for the values of ε∈ {3/4,1/2,1/4,1/8}, averaged over four representative

problem instances with m= 10 stages. We use four problem instances, as the runtime with ε= 1/8

is a few hours. In our computational experiments, the runtime of our FPTAS increases roughly

quadratically with 1
ε
, due to the fact that many of the candidate assortments that we construct,

as mentioned earlier in this paragraph, end up being duplicates of each other.

7. Conclusions

Our work in this paper opens up several research directions to pursue. We can explore efficient

solution methods for the assortment optimization problem when there is a constraint on the space

consumption or the number of products offered in each stage. An analogue of Lemma 5.1 does not

hold under a constraint on the space consumption or the number of products offered in each stage.

That is, we can have a pair of products such that it is optimal to offer the one with the smaller

revenue in an earlier stage and the one with the larger revenue in a later stage. For example,

consider a problem instance with three products and two stages. The revenues and preference

weights of the products are r1 = 10, r2 = 7, r3 = 6, v1 = 0.4, v2 = 0.9 and v3 = 0.3. The distribution

of the patience levels is given by λ1 = λ2 = 1. If we can offer at most two products in the first stage

and at most one product in the second stage, then the unique optimal assortments in the first and

second stages are, respectively, {1,3} and {2}, offering product 3 with revenue 6 in the first stage

and product 2 with revenue 7 in the second stage. Similarly, we have not been able to characterize

Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers 35

ε 3/4 1/2 1/4 1/8

Runtime (Min.) 14.37 31.05 118.43 464.27

Table 5 Runtime for the FPTAS for different values of ε.

structural properties of a near-optimal sequence of assortments to offer in the joint pricing and

assortment optimization problem when there is a constraint on the number of products offered

in each stage. Thus, the joint pricing and assortment optimization problem under a constraint on

the number of products offered in each stage is an open problem. Considering another research

direction, in Appendix D, we give a dynamic program to find a solution for the Pricing problem

with an additive performance guarantee. It would be useful to extend this work to find a solution

with a multiplicative performance guarantee without using convex optimization tools.

Also, the running time of our FPTAS is O(n
4m3

ε4
log(nwmax

wmin
) log(nwmax (1∨nvmax)

λmwmin
) log2(nvmax

vmin
)),

depending on the parameters wmax, wmin, vmax, vmin, and λm. We can work on removing the

dependence on these parameters to obtain a strongly polynomial running time. We can remove

these dependencies partially. In particular, when solving the dynamic program in (10), we can guess

the largest value of vi ri for an offered product i and the largest value of vj for an offered product j.

Letting ŵ and v̂ be these two guesses, we can argue that the largest values of x and y in the state

variable (x, y)∈Dom2 would, respectively, be dnŵe and dnv̂e, whereas the smallest nonzero values

of x and y in the state variable (x, y) ∈Dom2 would, respectively, be bŵc and bv̂c. Thus, noting

that there are n2 possible guesses for (ŵ, v̂), the number of candidate assortments in the collection

Cand(j, `) would be O(n
4

ε2
(logn)2), which is strongly polynomial, but it is not necessarily smaller

than the number of candidate assortments O(n
2

ε2
log(nwmax

wmin
) log(nvmax

vmin
)) discussed at the end of

Section 5.1. In this case, following the same line of analysis in Section 5.2, the running time of our

FPTAS would be O(n
6m3

ε4
(logn)2 log(nvmax

vmin
) log(nwmax (1∨nvmax)

λmwmin
)). We can use a similar idea for the

dynamic program in (13) to deal with u in the state variable (j, u, z) ∈ N ×Dom2, yielding the

running time O(n
7m3

ε4
(logn)3 log(nwmax (1∨nvmax)

λmwmin
)) for our FPTAS, but dealing with z in the state

variable (j, u, z)∈N ×Dom2 appears to be difficult due to the term λk in (13).

Lastly, in Appendix H, we show that the joint pricing and assortment optimization problem

is NP-hard when the prices take values over a discrete set. We do not know the computational

complexity of the problem when the prices take values over a continuum. Similarly, in Appendix N,

considering the case where there is a constraint on the total number of offered products, we give

an algorithm to find the optimal sequence of assortments to offer, but the running time of this

algorithm increases exponentially with the number of stages. We do not know the complexity of

the problem when the number of stages is also an input.

Acknowledgements: The authors thank the associate editor and two anonymous referees. This

work was supported by NSF grant CMMI 1825406. The current proof of Theorem 4.1 was suggested

by one of the referees, simplifying our earlier proof.

36 Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers

References

Aouad, A., V. Farias, R. Levi. 2016. Assortment optimization under consider-then-choose choice models. Tech. rep.,

MIT, Massachusetts, MA.

Aouad, A., J. Feldman, D. Segev, D. J. Zhang. 2019. Click-based MNL: Algorithmic frameworks for modeling click

data in assortment optimization. Tech. rep., Washington University, St. Louis, MO.

Aouad, A., D. Segev. 2018. Display optimization for vertically differentiated locations under multinomial logit

preferences. Tech. rep., MIT, Massachusetts, MA.

Blanchet, J., G. Gallego, V. Goyal. 2016. A Markov chain approximation to choice modeling. Operations Research

64(4) 886–905.

Boyd, S., L. Vandenberghe. 2004. Convex optimization. Cambridge University Press.

Bront, J. J. M., I. Mendez Diaz, G. Vulcano. 2009. A column generation algorithm for choice-based network revenue

management. Operations Research 57(3) 769–784.

Davis, J. M., G. Gallego, H. Topaloglu. 2014. Assortment optimization under variants of the nested logit model.

Operations Research 62(2) 250–273.

Derakhshan, M., N. Golrezaei, V. Manhshadi, V. Mirrokni. 2018. Product ranking on online platforms. Tech. rep.,

MIT, Massachusetts, MA.

Desir, A., V. Goyal, S. Jagabathula, D. Segev. 2016a. Assortment optimization under the Mallows model. D. D. Lee,

M. Sugiyama, U. V. Luxburg, I. Guyon, R. Garnett, eds., Advances in Neural Information Processing Systems

29 . Curran Associates, Inc., 4700–4708.

Desir, A., V. Goyal, J. Zhang. 2016b. Near-optimal algorithms for capacity constrained assortment optimization.

Tech. rep., Columbia University, New York, NY.

Farias, Vivek F., Srikanth Jagabathula, Devavrat Shah. 2013. A non-parametric approach to modeling choice with

limited data. Management Science 59(2) 305–322.

Feldman, J., A. Paul, H. Topaloglu. 2019. Assortment optimization with small consideration sets. Operations Research

(to appear).

Feldman, J., D. Segev. 2019. Improved approximation schemes for MNL-driven sequential assortment optimization.

Tech. rep., Washington University, St. Louis, MO.

Flores, A., G. Berbeglia, P. van Hentenryck. 2019. Assortment optimization under the sequential multinomial logit

model. European Journal of Operational Research 273(3) 1052–1064.

Gallego, G., G. Iyengar, R. Phillips, A. Dubey. 2004. Managing flexible products on a network. CORC Technical

Report TR-2004-01.

Gallego, G., A. Li, V. A. Truong, X. Wang. 2016. Approximation algorithms for product framing and pricing.

Operations Research (to appear).

Gallego, G., R. Wang. 2014. Multi-product price optimization and competition under the nested attraction model.

Operations Research 62(2) 450–461.

Garey, M. R., D. S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.

H. Freeman and Company, New York, NY.

Goulden, C. H. 1939. Methods of Statistical Analysis. John Wiley & Sons, New York, NY.

Hoorfar, A., M. Hassani. 2008. Inequalities on the Lambert-W function and hyperpower function. Journal of

Inequalities in Pure & Applied Mathematics 9(2) 51.1–51.11.

Hopp, W. J., X. Xu. 2005. Product line selection and pricing with modularity in design. Manufacturing & Service

Operations Management 7(3) 172–187.

Jagabathula, S. 2016. Assortment optimization under general choice. Tech. rep., NYU, New York, NY.

James, G., D. Witten, T. Hastie, R. Tibshirani. 2014. An Introduction to Statistical Learning . Springer, New York,

NY.

Gao, Ma, Chen, Gallego, Li, Rusmevichientong, Topaloglu; Multinomial Logit Model with Impatient Customers 37

Kaggle. 2013. Personalize Expedia hotel searches. Last checked: August 5, 2019. URL https://www.kaggle.com/c/

expedia-personalized-sort.

Li, H., W. T. Huh. 2011. Pricing multiple products with the multinomial logit and nested models: Concavity and

implications. Manufacturing & Service Operations Management 13(4) 549–563.

Li, H., S. Webster. 2017. Optimal pricing of correlated product options under the paired combinatorial logit model.

Operations Research 65(5) 1215–1230.

Liu, N., Y. Ma, H. Topaloglu. 2019. Assortment optimization under the multinomial logit model with sequential

offerings. INFORMS Journal on Computing (to appear).

Mendez-Diaz, I., J. J. M. Bront, G. Vulcano, P. Zabala. 2014. A branch-and-cut algorithm for the latent-class logit

assortment problem. Discrete Applied Mathematics 164(1) 246–263.

Rusmevichientong, P., Z.-J. M. Shen, D. B. Shmoys. 2009. A PTAS for capacitated sum-of-ratios optimization.

Operations Research Letters 37(4) 230–238.

Rusmevichientong, P., D. Shmoys, C. Tong, H. Topaloglu. 2014. Assortment optimization under the multinomial

logit model with random choice parameters. Production and Operations Management 23(11) 2023–2039.

Rusmevichientong, Paat, Zuo-Jun Max Shen, David B. Shmoys. 2010. Dynamic assortment optimization with a

multinomial logit choice model and capacity constraint. Operations Research 58(6) 1666–1680.

Song, J.-S., Z. Xue. 2007. Demand management and inventory control for substitutable products. Tech. rep., Duke

University, Durham, NC.

Sumida, M., G. Gallego, P. Rusmevichientong, H. Topaloglu, J. M. Davis. 2019. Revenue-utility tradeoff in assortment

optimization under the multinomial logit model with totally unimodular constraints. Tech. rep., Cornell

University, Ithaca, NY.

Talluri, K., G. J. van Ryzin. 2004. Revenue management under a general discrete choice model of consumer behavior.

Management Science 50(1) 15–33.

Talluri, K. T., G. J. van Ryzin. 2005. The theory and practice of revenue management . Kluwer Academic Publishers,

Boston, MA.

Vulcano, G., G. J. van Ryzin, R. Ratliff. 2012. Estimating primary demand for substitutable products from sales

transaction data. Operations Research 60(2) 313–334.

Wang, R. 2012. Capacitated assortment and price optimization under the multinomial logit model. Operations

Research Letters 40(6) 492–497.

Wang, R., O. Sahin. 2018. The impact of consumer search cost on assortment planning and pricing. Management

Science 64(8) 3649–3666.

Williamson, D. P., D. B. Shmoys. 2011. The design of approximation algorithms. Cambridge University Press.

Zhang, D., Z. Lu. 2013. Assessing the value of dynamic pricing in network revenue management. INFORMS Journal

on Computing 25(1) 102–115.

Zhang, H., P. Rusmevichientong, H. Topaloglu. 2018. Technical note: Multiproduct pricing under the generalized

extreme value models with homogeneous price sensitivity parameters. Operations Research 66(6) 1559–1570.

e-companion to Multinomial Logit Model with Impatient Customers ec1

Appendix: Assortment Optimization and Pricing under the
Multinomial Logit Model with Impatient Customers:

Sequential Recommendation and Selection

Appendix A: Maximum of Independent Gumbel Random Variables

Let X and Y be independent Gumbel random variables with location-scale parameters (µ,1) and

(η,1), respectively. So, the probability density function of X is f(x) = exp(−(x−µ+ e−(x−µ))) and

the cumulative distribution function of Y is G(x) = exp(−e−(x−η)). Thus, we have

P
{
1(X ≥ Y) = 1, max{X,Y } ≥ u

}
= P

{
X ≥ Y, max{X,Y } ≥ u

}
= P

{
X ≥ Y, X ≥ u

}
=

∫ ∞
u

P
{
Y ≤ x

}
·P
{
X ∈ dx

}
=

∫ ∞
u

exp(−e−(x−η)) exp(−(x−µ+ e−(x−µ))) dx

= eµ
∫ ∞
u

exp(−(x+ e−x (eµ + eη)))dx = eµ
∫ ∞
u

exp(−(x+ e−(x−log(eµ+eη))))dx

=
eµ

eµ + eη

∫ ∞
u

exp(−(x− log(eµ + eη) + e−(x−log(eµ+eη))))dx
(a)
= P{X ≥ Y } ·P{max{X,Y } ≥ u},

where (a) holds because P{X ≥ Y } = eµ

eµ+eη
, and max{X,Y } has the Gumbel distribution with

location-scale parameters (log(eµ+eη),1) by the first and second properties in the proof of Theorem

2.1. Thus, P{1(X ≥ Y) = 1, max{X,Y } ≥ u}= P{1(X ≥ Y) = 1} ·P{max{X,Y } ≥ u}, as desired.

Appendix B: Proof of Lemma 3.2

In (3), we have one term for each stage. Considering Π(S1, . . . , Sk−1 ∪ {i}, Sk \ {i}, . . . , Sm) and

Π(S1, . . . , Sm), the terms for stages other than k− 1 and k are identical. Thus, fixing (S1, . . . , Sm)

and letting Ŵk =W (Sk), θ̂k =
∑k

`=1 V (S`) and R̂k =Rk(S1, . . . , Sm), we have

Π(S1, . . . , Sk−1 ∪{i}, Sk \ {i}, . . . , Sm)−Π(S1, . . . , Sm)

(a)
=

λk−1 (Ŵk−1 + vi ri)

(1 + θ̂k−2) (1 + θ̂k−1 + vi)
+

λk (Ŵk− vi ri)
(1 + θ̂k−1 + vi) (1 + θ̂k)

− λk−1 Ŵk−1

(1 + θ̂k−2) (1 + θ̂k−1)
− λk Ŵk

(1 + θ̂k−1) (1 + θ̂k)

=
vi ri

1 + θ̂k−1 + vi

(
λk−1

1 + θ̂k−2

− λk

1 + θ̂k

)
+
λk−1 Ŵk−1

1 + θ̂k−2

(
1

1 + θ̂k−1 + vi
− 1

1 + θ̂k−1

)

+
λk Ŵk

1 + θ̂k

(
1

1 + θ̂k−1 + vi
− 1

1 + θ̂k−1

)
,

where we follow the convention that θ̂0 = 0. In the chain of equalities above, (a) uses the fact

that W (Sk−1 ∪ {i}) =W (Sk−1) + vi ri and W (Sk \ {i}) =W (Sk)− vi ri, along with
∑k−2

`=1 V (S`) +

V (Sk−1 ∪{i}) =
∑k−1

`=1 V (S`) + vi and
∑k−2

`=1 V (S`) + V (Sk−1 ∪ {i}) + V (Sk \ {i}) =
∑k

`=1 V (S`).

ec2 e-companion to Multinomial Logit Model with Impatient Customers

Arranging the terms on the right side of the chain of equalities above, the right side of the chain

of equalities above is equivalent to

vi ri

1 + θ̂k−1 + vi

(
λk−1

1 + θ̂k−2

− λk

1 + θ̂k

)
−

(
λk−1 Ŵk−1

1 + θ̂k−2

+
λk Ŵk

1 + θ̂k

)(
vi

(1 + θ̂k−1 + vi) (1 + θ̂k−1)

)
(b)
=

vi ri

1 + θ̂k−1 + vi

(
λk−1

1 + θ̂k−2

− λk

1 + θ̂k

)
− vi

1 + θ̂k−1 + vi
(R̂k−1 + R̂k)

=

λk−1

1+θ̂k−2
− λk

1+θ̂k

1 + θ̂k−1 + vi
vi

(
ri−

R̂k−1 + R̂k
λk−1

1+θ̂k−2
− λk

1+θ̂k

)
=

λk−1

1+θ̂k−2
− λk

1+θ̂k

1 + θ̂k−1 + vi
vi (ri− tk(S1, . . . , Sm)),

where (b) uses the definition of Rk(S1, . . . , Sm). The two chains of equalities above show that the

first identity in the lemma holds. The proofs for the second and third identities are similar.

Appendix C: Nonnegative Optimal Prices

In the next lemma, we show that the prices are nonnegative in any optimal solution to the Pricing

problem, which allows us to use first-order conditions to characterize the optimal prices.

Lemma C.1 Letting p∗ be an optimal solution to the Pricing problem, the prices in the optimal

solution satisfies p∗i ≥ 0 for all i∈N .

Proof: Using p∗ to denote an optimal solution to the Pricing problem, let N+ and N− be such

that p∗i ≥ 0 for all i ∈N+ and p∗i < 0 for all i ∈N−. To get a contradiction, assume that N− 6= ∅.

Let p̂ be defined as

p̂i = p∗i ∀ i∈N+ and p̂i = 0 ∀ i∈N−.

We claim that the choice probabilities corresponding to the prices p̂ satisfy φki (p̂)≥ φki (p∗) for all

i∈ Sk ∩N+, k ∈M. In particular, by the definition of p̂, we have p̂i ≥ p∗i for all i∈N , so eαi−β p̂i ≤
eαi−β p

∗
i for all i ∈N . Thus, we get Vk(p̂)≤ Vk(p∗) for all k ∈M. In this case, since p̂i = p∗i for all

i ∈ N+, we have φki (p̂) = λk
eαi−β p̂i

((1+
∑k−1
`=1

V`(p̂)) (1+
∑k
`=1 V`(p̂)))

≥ λk eαi−β p
∗
i

((1+
∑k−1
`=1

V`(p
∗)) (1+

∑k
`=1 V`(p

∗)))
= φki (p

∗)

for all i ∈ Sk ∩N+, k ∈M. Thus, the claim holds. Letting S+
k = Sk ∩N+ and S−k = Sk ∩N− for

notational brevity, we have p̂i = p∗i for all i∈ S+
k , as well as p̂i = 0> p∗i for all i∈ S−k . Furthermore,

since N− 6=∅, we have S−k 6=∅ for some k ∈M. In this case, we obtain

Π(p∗) =
∑
k∈M

∑
i∈S+

k

p∗i φ
k
i (p
∗) +

∑
k∈M

∑
i∈S−

k

p∗i φ
k
i (p
∗)

(a)

<
∑
k∈M

∑
i∈S+

k

p∗i φ
k
i (p
∗)

(b)

≤
∑
k∈M

∑
i∈S+

k

p̂i φ
k
i (p̂)

=
∑
k∈M

∑
i∈S+

k

p̂i φ
k
i (p̂) +

∑
k∈M

∑
i∈S−

k

p̂i φ
k
i (p̂) = Π(p̂),

where (a) holds since p∗i < 0 for all i ∈ S−k and S−k 6= ∅ for some k ∈M, whereas (b) holds since

p∗i = p̂i and φki (p
∗)≤ φki (p̂) for all i∈ Sk ∩N+, k ∈M. The chain of inequalities above contradicts

the fact that p∗ is an optimal solution to the Pricing problem.

e-companion to Multinomial Logit Model with Impatient Customers ec3

Appendix D: Additive Performance Guarantee for Optimal Prices under Fixed Assortments

In this section, we give a dynamic programming approach to obtain a solution to the Pricing

problem with an additive performance guarantee. Letting π∗ be the optimal objective value of the

Pricing problem, for any θ > 0, our approach comes up with a solution that provides an expected

revenue of at least π∗−θ and the number of operations required to obtain this solution is polynomial

in 1/θ. At the end of this section, we explain that we can easily use a lower bound on the optimal

expected revenue to numerically evaluate the multiplicative performance guarantee of the solution

that has an additive performance guarantee. To construct a solution with an additive performance

guarantee, fixing an integer K > 0, we construct the grid points Grid= {`/K : `= 1, . . . ,K} over the

interval [0,1]. Noting the expected revenue expression in (5), we use the no-purchase probabilities

over different numbers of stages as the decision variables in the Pricing problem. We focus on

only the values of the no-purchase probabilities that take values in Grid. Let Θk(qk−1) denote

the maximum expected revenue that can be obtained from stages k, k + 1, . . . ,m, given that the

no-purchase probability over the first k − 1 stages is qk−1. In this case, letting Θm+1(·) = 0 and

recalling that q0 = 1, by (5), for all k ∈M and qk−1 ∈Grid, we have the recursion

Θk(qk−1) = max
qk ∈ Grid :
qk−1 ≥ qk

{
λk
β

(qk−1− qk)
{

log

(∑
i∈Sk

eαi
)
− log

(
1

qk
− 1

qk−1

)}
+ Θk+1(qk)

}
. (14)

Thus, Θ1(q0) = Θ1(1) corresponds to the largest expected revenue provided by no-purchase

probabilities of the form q= (q1, . . . , qm) with qk ∈Grid and qk−1 ≥ qk for all k ∈M.

In the next theorem, we show that we can use the dynamic program above to come up with a

solution to the Pricing problem with an additive performance guarantee.

Theorem D.1 Letting π∗ be the optimal objective value of the Pricing problem and

{Θk(·) : k ∈M} be obtained through (14) with Grid= {`/K : `= 1, . . . ,K} and K ≥ 3, we have

Θ1(1) ≥ π∗− 1

βK

(∑
k∈M

∣∣∣∣ log
∑
i∈Sk

eαi
∣∣∣∣+m+ 3m logK

)
.

Proof: Let q∗ be an optimal solution to problem (6). By Theorem 4.2, we have π∗ = Π̂(q∗), where

Π̂(q) is as in (5). As discussed immediately before the theorem, Θ1(1) corresponds to the largest

expected revenue provided by no-purchase probabilities of the form q= (q1, . . . , qm) with qk ∈Grid

and qk−1 ≥ qk for all k ∈M. Thus, we have Θ1(1) ≥ Π̂(q̂) for any q̂ that satisfies q̂k ∈ Grid and

q̂k−1 ≥ q̂k for all k ∈M. We show that there exists some q̂ = (q̂1, . . . , q̂m) that satisfies q̂k ∈ Grid

and q̂k−1 ≥ q̂k for all k ∈M such that Π̂(q̂)≥ Π̂(q∗)− 1
βK

(∑
k∈M | log

∑
i∈Sk

eαi |+m+ 3m logK
)
,

in which case, the desired result follows by noting that Θ1(1) ≥ Π̂(q̂) and π∗ = Π̂(q∗). Define q̂

ec4 e-companion to Multinomial Logit Model with Impatient Customers

as q̂k = min{qk ∈Grid : qk ≥ q∗k} for all k ∈M, so q̂k is obtained by rounding q∗k up to the nearest

point in Grid. In this case, since 1≥ q∗1 ≥ . . .≥ q∗m ≥ 0, we have 1≥ q̂1 ≥ . . .≥ q̂m ≥ 0. Furthermore,

since q̂k is obtained by rounding q∗k up to the nearest point in Grid, we have 1 ≥ q̂k ≥ q∗k and

q̂k ≥ 1/K for all k ∈M. Lastly, since the two successive points in Grid are separated by 1/K, we

have 0≤ q̂k− q∗k ≤ 1/K and −1/K ≤ q∗k−1− q̂k−1 ≤ 0, in which case, adding the two yields −1/K ≤

(q∗k−1−q∗k)− (q̂k−1− q̂k)≤ 1/K. For notational brevity, let ∆∗k = q∗k−1−q∗k and ∆̂k = q̂k−1− q̂k, so we

write the last chain of inequalities as −1/K ≤∆∗k−∆̂k ≤ 1/K. Noting that q∗k−1 ≥ q∗k and q̂k−1 ≥ q̂k,

we have ∆∗k ≥ 0 and ∆̂k ≥ 0. By the definition of Π̂(q) in (5), we have

Π̂(q∗)− Π̂(q̂) =
∑
k∈M

λk
β

(∆∗k− ∆̂k) log

(∑
i∈Sk

eαi
)

+
∑
k∈M

λk
β

{
∆∗k log q∗k−1− ∆̂k log q̂k−1

}
+
∑
k∈M

λk
β

{
∆∗k log q∗k − ∆̂k log q̂k

}
−
∑
k∈M

λk
β

{
∆∗k log ∆∗k− ∆̂k log ∆̂k

}
. (15)

We bound each one of the four sums above separately. To bound the first sum, noting that

|∆∗k− ∆̂k| ≤ 1/K by the discussion at the beginning of the proof, we obtain

(∆∗k− ∆̂k) log

(∑
i∈Sk

eαi
)
≤ |∆∗k− ∆̂k|

∣∣∣ log
∑
i∈Sk

eαi
∣∣∣ ≤ 1

K

∣∣∣ log
∑
i∈Sk

eαi
∣∣∣. (16)

To bound the second sum, note that ∆∗k ≥ 0 and q∗k−1 ≤ q̂k−1, so ∆∗k log q∗k−1 ≤∆∗k log q̂k−1. Also,

∆∗k− ∆̂k ≥−1/K and log q̂k−1 ≤ 0. Lastly, since q̂k ≥ 1/K, − log q̂k ≤ logK. Thus, we get

∆∗k log q∗k−1− ∆̂k log q̂k−1 ≤ (∆∗k− ∆̂k) log q̂k−1 ≤ −
1

K
log q̂k−1 ≤

1

K
logK. (17)

Similarly, we have ∆∗k log q∗k− ∆̂k log q̂k ≤ 1
K

logK, bounding the third sum. To bound the fourth

sum, consider the case ∆̂k ≥ 1/K. Since x logx convex in x, the subgradient inequality yields

∆∗k log ∆∗k− ∆̂k log ∆̂k

(a)

≥ (1 + log ∆̂k) (∆∗k− ∆̂k)

= ∆∗k− ∆̂k + log ∆̂k (∆∗k− ∆̂k)
(b)

≥ − 1

K
+

1

K
log ∆̂k

(c)

≥ − 1

K
− 1

K
logK, (18)

where (a) holds since the derivative of x logx is 1 + logx, (b) holds since ∆̂k ≤ 1, so log ∆k ≤ 0 and

−1/K ≤∆∗k− ∆̂k ≤ 1/K, and (c) holds since ∆̂k ≥ 1/K, so log ∆̂k ≥− logK.

Consider the case ∆̂k < 1/K. Since q̂k−1 and q̂k are, respectively, obtained by rounding q∗k−1 and

q∗k up to the nearest point in Grid, if ∆̂k = q̂k−1− q̂k < 1/K, then we must have ∆̂k = q̂k−1− q̂k = 0, in

which case, we must have q∗k−1−q∗k ≤ 1/K. Furthermore, x logx is decreasing in x for x∈ (0, e−1), so

since K ≥ 3, we have e−1 > 1/K ≥ q∗k−1− q∗k = ∆∗k, which implies that − 1
K

logK ≤∆∗k log ∆∗k. Thus,

noting that limx→0 x logx = 0, we get ∆∗k log ∆∗k − ∆̂k log ∆̂k = ∆∗k log ∆∗k ≥ − 1
K

logK, indicating

e-companion to Multinomial Logit Model with Impatient Customers ec5

that the inequality in (18) holds under the case ∆̂k < 1/K as well. Adding up the inequalities in

(16), (17) and (18), recalling that we also have ∆∗k log q∗k − ∆̂k log q̂k ≤ 1
K

logK for the third sum

and noting that λk ≤ 1, by (15), we get Π̂(q∗)− Π̂(q̂)≤ 1
βK

∑
k∈M | log

∑
i∈Sk

eαi |+ 2m
βK

logK+ m
βK

+

m
βK

logK = 1
βK

(∑
k∈M | log

∑
i∈Sk

eαi |+m+ 3m logK
)
.

We can follow the optimal state-action trajectory in the dynamic program in (14) to obtain

the no-purchases probabilities q̂= (q̂1, . . . , q̂m) that provide the additive performance guarantee of

1
βK

(∑
k∈M | log

∑
i∈Sk

eαi |+m+3m logK
)
. In particular, after computing {Θk(·) : k ∈M} through

the dynamic program (14), we set q̂0 = 1. For each k ∈M, we compute q̂k as an optimal solution

to the problem on the right side of (14) when we solve this problem with qk−1 = q̂k−1. Once we

have these no-purchase probabilities, noting the expression right before (5), we can compute the

corresponding stage-specific prices ρ̂= (ρ̂1, . . . , ρ̂m) as ρ̂k = 1
β

{
log
(∑

i∈Sk
eαi
)
− log

(
1
q̂k
− 1

q̂k−1

)}
for

all k ∈M. These stage-specific prices yield the same additive performance guarantee.

The number of operations to obtain an additive performance guarantee of θ > 0 is polynomial in

1/θ. By the theorem above, to get an additive performance guarantee θ > 0, we need to choose K

such that 1
βK

(∑
k∈M | log

∑
i∈Sk

eαi |+m+ 3m logK
)
≤ θ, but since 1/K ≤ 1/

√
K and logK/K ≤

1/
√
K for K ≥ 3, it is enough to choose K such that 1

β
√
K

(∑
k∈M | log

∑
i∈Sk

eαi |+m+ 3m
)
≤ θ,

so we can set K = 1
(θβ)2

(∑
k∈M | log

∑
i∈Sk

eαi | + m + 3m
)2

. The dynamic program in (14) has

K possible states, K possible actions, and m decision epochs. Thus, we can solve this dynamic

program in mK2 operations, so noting the choice of K, we can obtain a solution that provides

an additive performance guarantee of θ in m
(θβ)4

(∑
k∈M | log

∑
i∈Sk

eαi |+m+ 3m
)4

operations. Our

analysis for the number of operations is rather loose. For any ε > 0, we have 1/K ≤ 1/K1−ε and

logK/K ≤ 1/K1−ε for large enough K. In this case, following the same line of reasoning in this

paragraph, we can obtain a solution that provides an additive performance guarantee of θ in

m

(θβ)2/(1−ε)

(∑
k∈M | log

∑
i∈Sk

eαi |+m+ 3m
)2/(1−ε)

operations, so the number of operations scale a

bit faster than quadratically in 1/θ as long as the number of points K in Grid is large, which is

more aligned with our experience with the dynamic program in (14), as we report shortly.

If we have a lower bound on the optimal objective value of the Pricing problem, then we

can always use the theorem above to numerically obtain a multiplicative performance guarantee.

In particular, for any δ ∈ (0,1), letting π̂ be a lower bound on the optimal objective value of

the Pricing problem, we can use Theorem D.1 to obtain a solution that provides an additive

performance guarantee of δ π̂. In other words, using π∗ to denote the optimal objective value of

the Pricing problem, this solution provides an expected revenue of at least π∗− δ π̂. Noting that

π∗ − δ π̂ ≥ (1 − δ)π∗, the solution that provides an additive performance guarantee of δ π̂ also

provides an expected revenue of at least (1−δ)π∗, corresponding to a solution with a multiplicative

ec6 e-companion to Multinomial Logit Model with Impatient Customers

(m,C) = (6,3)
Avg. CPU

a Gap Secs.
+∞ 7.2 · 10−5% 34
0.5 9.6 · 10−5% 30
0.0 1.2 · 10−4% 31
−0.1 1.4 · 10−4% 33

(m,C) = (6,5)
Avg. CPU

a Gap Secs.
+∞ 1.5 · 10−4% 43
0.5 1.6 · 10−4% 31
0.0 1.8 · 10−4% 30
−0.1 1.7 · 10−4% 32

(m,C) = (10,3)
Avg. CPU

a Gap Secs.
+∞ 3.9 · 10−5% 423
0.5 5.3 · 10−5% 358
0.0 5.0 · 10−5% 278
−0.1 8.0 · 10−5% 260

(m,C) = (10,5)
Avg. CPU

a Gap Secs.
+∞ 7.5 · 10−5% 520
0.5 6.4 · 10−5% 426
0.0 1.0 · 10−4% 340
−0.1 9.2 · 10−5% 336

Table EC.1 Optimality gaps of the prices obtained by using the dynamic program in (14).

performance guarantee of 1− δ. To obtain a lower bound on the optimal objective value of the

Pricing problem, we can, for example, charge the same price for all products in all stages, in which

case, we have a single decision variable in the Pricing problem. We can carry out a numerical

search to find the best single price to charge in all stages.

Computational Experiments: We give a small set of computational experiments to

understand the quality of the additive performance guarantee given in Theorem D.1. We randomly

generate a number of test problems. For each problem instance, we use the approach in Section 4.1

to compute the optimal prices, as well as the dynamic program in (14) to compute prices with an

additive performance guarantee. To choose the number of points K in Grid, we compute a lower

bound on the optimal objective value of the Pricing problem by charging the same price for all

products in all stages and finding the best single price to charge through numerical search. Letting

π̂ be this lower bound, we choose the value of K such that we obtain an additive performance

guarantee of 1
2
π̂. By the discussion in the previous paragraph, this approach yields a multiplicative

performance guarantee of 50%. The approach to generate our test problems closely follows the one

in Section 6.2. We briefly describe our approach and refer to Section 6.2 for details.

The number of products is n = 20 and the price sensitivity is β = 1. We come up with the

parameters {αi : i∈N} as follows. We have C product clusters. We randomly assign each product

to a cluster. If products i and j are in the same cluster, then the values of αi and αj are close.

Specifically, cluster c has the centroid γc. We set the centroid of cluster c as γc = c− 0.5 for all

c= 1, . . . ,C. If product i belongs to cluster c, then we generate κi from the normal distribution with

mean γc and standard deviation one. We set αi = κi −∆, where ∆ = log
∑

i∈N e
κi − log 9. Thus,

if all products were offered in the first stage at zero price, then a customer would leave without

a purchase with probability 0.1. We randomly assign each product to one of the assortments

(S1, . . . , Sm). Letting the random variable Y be the patience level of a customer, the probability

mass function of Y is P{Y = k}= ea·k∑
`∈M ea·` , where a is a parameter that we vary.

Varying m∈ {6,10}, C ∈ {3,5}, and a∈ {+∞,0.5,0.0,−0.1}, we get 16 parameter configurations.

In each parameter configuration, we generate 25 problem instances. For each problem instance, we

compute the optimal expected revenue by solving the convex program in (6) through the fmincon

routine in Matlab. In Table EC.1, we show the average percent gap between the optimal expected

e-companion to Multinomial Logit Model with Impatient Customers ec7

revenue and the expected revenue from the prices obtained through the dynamic program in (14),

averaged over the 25 instances in a parameter configuration. The second column in the table shows

the runtime to solve the dynamic program in (14). Note that we choose the value of K for a

performance guarantee of 50%, but the optimality gap of the prices that we obtain is less than

1.8 · 10−4%. Although we report average optimality gaps, each optimality gap deviates from the

average by no more than 0.2 ·10−4%. For our problem instances, the runtime to solve the dynamic

program in (14) ranges between half a minute to nine minutes. For comparison, although we do

not report in Table EC.1, the runtime to solve problem (6) through the fmincon routine in Matlab

takes a few seconds. Thus, solving (14) does not require convex optimization tools, but solving

problem (6) through convex optimization software is faster.

Appendix E: First-Order Conditions for Optimal Prices

The proof of Theorem 4.3 uses the following lemma, which gives a characterization of the optimal

stage-specific prices for the Pricing problem by using first order conditions.

Lemma E.1 Letting ρ∗ = (ρ∗1, . . . , ρ
∗
m) be the optimal stage-specific prices in the Pricing problem

and q∗k = qk(ρ
∗) for all k ∈M with q∗0 = 1, we have

1

β
− q∗`
q∗`−1

ρ∗` +
1

λ` q∗` q
∗
`−1

m∑
k=`+1

ρ∗k λk

{
(q∗k−1)2− (q∗k)

2
}

= 0.

Proof: Since V̂k(ρ) = e−β ρk
∑

i∈Sk
eαi , we have ∂V̂k(ρ)

∂ρk
=−β V̂k(ρ) and ∂V̂k(ρ)

∂ρ`
= 0 for all ` 6= k. In this

case, noting that qk(ρ) = 1

1+
∑k
`=1 V̂`(ρ)

, for k≥ `, we get ∂qk(ρ)

∂ρ`
= β V̂`(ρ) qk(ρ)2. Also, we have

qk−1(ρ)− qk(ρ) =
1

1 +
∑k−1

`=1 V̂`(ρ)
− 1

1 +
∑k

`=1 V̂`(ρ)
=

V̂k(ρ)

(1 +
∑k−1

`=1 V̂`(ρ)) (1 +
∑k

`=1 V̂`(ρ))
,

so q∗k−1− q∗k = V̂k(ρ
∗) q∗k−1 q

∗
k. Lastly, the optimal prices are finite, since decreasing all infinite prices

to the largest finite price charged in any stage improves the expected revenue.

By (5), Π(ρ) =
∑

k∈M λk ρk (qk−1(ρ)−qk(ρ)) is the expected revenue as a function of stage-specific

prices. Note that qk(ρ) depends on ρ` only if k≥ `. Thus, differentiating Π(ρ), we get

∂Π(ρ)

∂ρ`
= λ` (q`−1(ρ)− q`(ρ))−λ` ρ` β V̂`(ρ) q`(ρ)2 +

m∑
k=`+1

λk ρk β V̂`(ρ)
{
qk−1(ρ)2− qk(ρ)2

}
,

where we use the fact that ∂qk(ρ)

∂ρ`
= β V̂`(ρ) qk(ρ)2 for k ≥ `, but qk(ρ) does not depend on ρ` for

k < `, so we have ∂qk(ρ)

∂ρ`
= 0 for k < `. The optimal stage-specific prices ρ∗ satisfies the first order

ec8 e-companion to Multinomial Logit Model with Impatient Customers

condition ∂Π(ρ)

∂ρ`

∣∣
ρ=ρ∗

= 0. Therefore, using the equality above, along with the fact that q∗`−1− q∗` =

V̂`(ρ
∗) q∗`−1 q

∗
` , we get

∂Π(ρ)

∂ρ`

∣∣∣∣
ρ=ρ∗

= λ` β V̂`(ρ
∗) q∗`−1 q

∗
`

{
1

β
− q∗`
q∗`−1

ρ∗` +
1

λ` q∗` q
∗
`−1

m∑
k=`+1

ρ∗k λk

{
(q∗k−1)2− (q∗k)

2
}}

= 0.

Since the optimal prices are finite, V̂`(ρ
∗) 6= 0, along with q∗`−1 = q`−1(ρ∗) 6= 0 and q∗` = q`(ρ

∗) 6= 0,

in which case ρ∗ satisfies the equality in the lemma.

Appendix F: Proof of Theorem 4.4 and Tightness of the Performance Guarantee of 87.8%

The proof uses a chain of upper bounds. Setting λk = 1 for all k ∈M enlarges the objective function

of the Pricing-Assortment problem. By (5), we can express the expected revenue as a function

of the no-purchase probabilities. So, setting λk = 1 for all k ∈M in (5), as a function of no-purchase

probabilities q and assortments (S1, . . . , Sm), we can upper bound the expected revenue by

Π̂(q, S1, . . . , Sm) =
1

β

∑
k∈M

(qk−1− qk)
{

log

(∑
i∈Sk

eαi
)
− log

(
1

qk
− 1

qk−1

)}
. (19)

So, we can upper bound the optimal objective value of the Pricing-Assortment problem by

maximizing Π̂(q, S1, . . . , Sm) over all (q, S1, . . . , Sm)∈Rm+ ×F such that qk−1 ≥ qk for all k ∈M.

Throughout this section, we set β = 1 for notational brevity, which simply scales the expected

revenue by β. Also, recall that q0 = 1. Letting T =
∑

i∈N e
αi , we define R(`)(q1, . . . , q`) as

R(`)(q1, . . . , q`) =
∑̀
k=1

(qk−1− qk) log(qk−1 qk) + (1− q`) log

(
T

1− q`

)
. (20)

We have the superscript (`) in R(`)(q1, . . . , q`) since we will work with different numbers of stages. In

the next lemma, we show that R(m)(q1, . . . , qm) is an upper bound on Π̂(q, S1, . . . , Sm).

Lemma F.1 If (q, S1, . . . , Sm) ∈ Rm+ × F satisfies qk−1 ≥ qk for all k ∈ M, then we have

R(m)(q1, . . . , qm)≥ Π̂(q, S1, . . . , Sm).

Proof: If (S1, . . . , Sm) ∈ F , then we have
∑

k∈M
∑

i∈Sk
eαi ≤ T . Thus, noting the definition of

Π̂(q, S1, . . . , Sm) and using the decision variables x= (x1, . . . , xm), we get

Π̂(q, S1, . . . , Sm) ≤ max
x∈Rm+

{∑
k∈M

(qk−1 − qk)
{

logxk − log

(
1

qk
− 1

qk−1

)}
:
∑
k∈M

xk ≤ T

}
. (21)

Since qk−1 ≥ qk for all k ∈M with q0 = 1, if qm = 1, then we have qk = 1 for all k ∈M, so using the

fact that limx→0 x logx= 0, we get Π̂(q, S1, . . . , Sm) = 0 =R(m)(q1, . . . , qm).

In the rest of the proof, we consider the case qm < 1. We can solve the problem on the right

side of (21) by using Lagrangian relaxation. For (a1, . . . , am) ∈ Rm+ , the optimal solution x∗ to

e-companion to Multinomial Logit Model with Impatient Customers ec9

the problem maxx∈Rm+
{∑

k∈M ak logxk :
∑

k∈M xk ≤ T
}

is obtained by setting x∗k = T∑
`∈M a`

ak for

all k ∈M. To show this result, we can relax the constraint
∑

k∈M xk ≤ T by using a Lagrange

multiplier and compute the optimal value of the Lagrange multiplier by noting that this constraint

must be tight at optimality. Using this result with ak = qk−1−qk, since
∑

k∈M(qk−1−qk) = q0−qm =

1− qm, the optimal solution x∗ to the problem on the right side of (21) is obtained by setting

x∗k = T
1−qm (qk−1− qk) for all k ∈M. Plugging this optimal solution into (21), we get

Π̂(q, S1, . . . , Sm) ≤
∑
k∈M

(qk−1− qk)
{

log

(
T

1− qm

)
+ log(qk−1− qk)− log

(
1

qk
− 1

qk−1

)}
= (1− qm) log

(
T

1− qm

)
+
∑
k∈M

(qk−1− qk)
{

log(qk−1− qk)− log

(
qk−1− qk
qk−1 qk

)}
= (1− qm) log

(
T

1− qm

)
+
∑
k∈M

(qk−1− qk) log(qk−1 qk).

The desired result follows by noting that the expression on the right side of the chain of inequalities

above corresponds to R(m)(q1, . . . , qm).

To get an upper bound on the optimal objective value of the Pricing-Assortment problem,

we can maximize the upper bound on the objective function, yielding the problem

ẑ(`) = max
(q1,...,q`)∈R`+

{
R(`)(q1, . . . , q`) : 1≥ q1 ≥ . . .≥ q` ≥ 0

}
. (22)

In the next lemma, we show that an optimal solution to the problem above occurs in the strict

interior of the feasible set and the optimal objective value in (22) is strictly increasing in `.

Lemma F.2 Letting (q∗1 , . . . , q
∗
`) be an optimal solution to problem (22), for all ` = 1,2, . . ., we

have 1> q∗1 > . . . > q
∗
` > 0 and ẑ(`) > ẑ(`−1) with the convention that ẑ(0) = 0.

Proof: We show the result by using induction on the number of stages. For `= 1, we have R(1)(q1) =

(1− q1) log q1 + (1− q1) log T
1−q1

, so that R(1)(0) =−∞, R(1)(1) = 0 and ∂R(1)(q1)

∂q1

∣∣
q1=1

=−∞. Thus,

the value of R(1)(q1) at 1− ε is strictly greater than zero for small enough ε > 0, which implies that

ẑ(1) > 0 = ẑ(0) and the maximizer of R(1)(q1) over the interval [0,1] is in the strict interior of the

interval [0,1]. Therefore, the result holds for `= 1. Assuming that the result holds for ` stages, we

show that the result holds for `+ 1 stages. We have

R(`+1)(q, q1, . . . , q`) = (1− q) log q+ (q− q1) log(q q1)

+
∑̀
k=2

(qk−1− qk) log(qk−1 qk) + (1− q`) log

(
T

1− q`

)
,

which follows by using the definition of R(`)(q1, . . . , q`). In this case, subtracting the expression

above from R(`)(q1, . . . , q`), we have R(`+1)(q, q1, . . . , q`) =R(`)(q1, . . . , q`) +f(q, q1), where f(q, q1) is

ec10 e-companion to Multinomial Logit Model with Impatient Customers

given by f(q, q1) = (1− q) log q+ (q− q1) log(q q1)− (1− q1) log q1. By the subgradient inequality,

we have logx < x− 1 for all x ∈ (0,1). Also, using the definition of f(q, q1), we have f(1, q1) = 0

and ∂f(q,q1)

∂q

∣∣
q=1

= 1− q1 + log q1. Let (r∗1, . . . , r
∗
`) be an optimal solution to problem (22) when we

solve this problem with ` stages. By the induction assumption, we have 1> r∗1 > . . . > r
∗
` > 0. Since

r∗1 ∈ (0,1), we get f(1, r∗1) = 0 and
∂f(q,r∗1)

∂q

∣∣
q=1

= 1 − r∗1 + log r∗1 < 0. Therefore, letting q∗ be an

optimal solution to the problem maxq∈[r∗1 ,1] f(q, r∗1), the objective value of this problem at q = 1 is

zero, but since the derivative of the objective function at q = 1 is strictly negative, the objective

value of this problem at q= 1− ε is strictly greater than zero for small enough ε > 0. Therefore, it

follows that f(q∗, r∗1)> 0. In this case, we get

ẑ(`) = R(`)(r∗1, . . . , r
∗
`) < R(`)(r∗1 , . . . , r

∗
`) + f(q∗, r∗1) = R(`+1)(q∗, r∗1 , . . . , r

∗
`)

(a)

≤ ẑ(`+1),

where (a) holds since 1≥ q∗ ≥ r∗1 > . . . > r∗` ≥ 0, so (q∗, r∗1, . . . , r
∗
`) is a feasible, but not necessarily

an optimal, solution to problem (22) with `+ 1 stages. Thus, we have ẑ(`+1) > ẑ(`).

Let (q∗1 , . . . , q
∗
`+1) be an optimal solution to problem (22) with ` + 1 stages. We show that

1> q∗1 > . . . > q
∗
`+1 > 0. To get a contradiction, assume that q∗τ−1 = q∗τ for some τ ≤ `+ 1, so

ẑ(`+1) = R(`+1)(q∗1 , . . . , q
∗
`+1)

=
`+1∑
k=1

(q∗k−1− q∗k) log(q∗k−1 q
∗
k) + (1− q∗`+1) log

(
T

1− q∗`+1

)
(b)
=

τ−1∑
k=1

(q∗k−1− q∗k) log(q∗k−1 q
∗
k) +

`+1∑
k=τ+1

(q∗k−1− q∗k) log(q∗k−1 q
∗
k) + (1− q∗`+1) log

(
T

1− q∗`+1

)
(c)
= R(`)(q∗1 , . . . , q

∗
τ−1, q

∗
τ+1, . . . , q

∗
`+1)

(d)

≤ ẑ(`),

where (b) and (c) hold since q∗τ−1 = q∗τ and (d) holds since (q∗1 , . . . , q
∗
`+1) is a feasible solution to

problem (22) with `+1 stages so 1≥ q∗1 ≥ . . .≥ q∗`+1 ≥ 0, in which case, (q∗1 , . . . , q
∗
τ−1, q

∗
τ+1, . . . , q

∗
`+1) is

a feasible, but not necessarily an optimal, solution to problem (22). The chain of inequalities above

contradict the fact that ẑ(`+1) > ẑ(`). Therefore, we have q∗k−1 > q
∗
k for all k= 1, . . . , `+ 1. Noting the

convention that q0 = 1, we get 1> q∗1 > . . . > q
∗
`+1. Lastly, if we have q∗`+1 = 0, then there must exist

some k = 1, . . . , `+ 1 such that q∗k−1 > q∗k = 0, which implies that (q∗k−1 − q∗k) log(q∗k−1 q
∗
k) = −∞.

Thus, by the definition of R(`)(q1, . . . , q`), we get ẑ(`+1) =R(`+1)(q∗1 , . . . , q
∗
`+1) =−∞, contradicting

the fact that ẑ(`+1) > ẑ(`) > . . . > ẑ(0) = 0. Therefore, we have 1> q∗1 > . . . > q
∗
`+1 > 0. In the previous

paragraph, we also had ẑ(`+1) > ẑ(`), so the result holds for `+ 1 stages.

In the next lemma, we build on the lemma above to give a simple expression for the objective

function of problem (22) when evaluated at its optimal solution.

e-companion to Multinomial Logit Model with Impatient Customers ec11

Lemma F.3 Letting (q∗1 , . . . , q
∗
`) be an optimal solution to problem (22), this solution satisfies the

two identities given by

R(`)(q∗1 , . . . , q
∗
`) = log q∗1 − (1 + q∗1) +

q∗`−1

q∗`
− log(q∗`−1 q

∗
`) + q∗` ,

1− q∗`
q∗`−1 q

∗
`

exp

(
q∗`−1

q∗`

)
= T.

Proof: Using the definition of R(`)(q1, . . . , q`) in (20), directly by differentiating this function, we

have the partial derivatives

∂R(`)(q1, . . . , q`)

∂qk
=


log

(
qk+1

qk−1

)
+
qk−1− qk+1

qk
if k= 1, . . . , `− 1

q`−1

q`
− log(q`−1 q`)− log

(
T

1− q`

)
otherwise.

(23)

By Lemma F.2, (q∗1 , . . . , q
∗
`) is in the strict interior of the feasible set of problem (22), so it

satisfies the first order condition ∂R(`)(q1,...,q`)

∂qk

∣∣
(q1,...,q`)=(q∗1 ,...,q

∗
`

)
= 0 for all k = 1, . . . , `. By (23), we

get log
(q∗k+1

q∗
k−1

)
=− q∗k−1−q

∗
k+1

q∗
k

for all k= 1, . . . , `− 1 and
q∗`−1

q∗
`

= log
(

T
1−q∗

`
q∗`−1 q

∗
`

)
. Solving for T in the

last equality yields the second identity in the lemma. By the definition of R(`)(q1, . . . , q`), we get

R(`)(q∗1 , . . . , q
∗
`) =

∑̀
k=1

q∗k−1 log(q∗k−1 q
∗
k)−

∑̀
k=1

q∗k log(q∗k−1 q
∗
k) + (1− q∗`) log

(
T

1−q∗
`

)
= log q∗1 +

`−1∑
k=1

q∗k log(q∗k q
∗
k+1)−

∑̀
k=1

q∗k log(q∗k−1 q
∗
k) + (1− q∗`) log

(
T

1−q∗
`

)
= log q∗1 +

`−1∑
k=1

q∗k log
(q∗k+1

q∗
k−1

)
− q∗` log(q∗`−1 q

∗
`) + (1− q∗`) log

(
T

1−q∗
`

)
= log q∗1 +

`−1∑
k=1

q∗k log
(q∗k+1

q∗
k−1

)
− q∗`

{
log(q∗`−1 q

∗
`) + log

(
T

1−q∗
`

)}
+ log

(
T

1−q∗
`

)
(a)
= log q∗1 −

`−1∑
k=1

(q∗k−1− q∗k+1)− q∗`−1 +
q∗`−1

q∗`
− log(q∗`−1 q

∗
`)

(b)
= log q∗1 − (1 + q∗1) + q∗` +

q∗`−1

q∗`
− log(q∗`−1 q

∗
`),

where (a) holds since log
(q∗k+1

q∗
k−1

)
=− q∗k−1−q

∗
k+1

q∗
k

for all k = 1, . . . , `− 1 and
q∗`−1

q∗
`

= log
(

T
1−q∗

`
q∗`−1 q

∗
`

)
,

and (b) follows by cancelling the telescoping terms, so the first identity in the lemma holds.

In the next lemma, we give a simple inequality that will allow us to upper bound ẑ(`).

Lemma F.4 If s, t > 1 satisfies log(st) + 1
t
− s= 0, then we have s≥ 2− 1

t
.

Proof: Letting h(s) = 2(1− s) + log s− log(2− s), we have h′(s) = −2 + 1
s

+ 1
2−s = 2 (s−1)2

s(2−s) . Thus,

h(s) is strictly increasing in s for all s∈ (1,2), which implies that h(s)>h(1) = 0 for all s∈ (1,2).

ec12 e-companion to Multinomial Logit Model with Impatient Customers

Also, letting f(x) = x − logx, we have f ′(x) = 1 − 1
x
, so f(x) is strictly decreasing in x for all

x∈ (0,1). To get a contradiction, assume that s, t > 1 satisfies log(st) + 1
t
− s = 0 and we have

s < 2− 1
t
. Since 0< 1

t
< 2− s < 1 and f(x) is is strictly decreasing in x for all x ∈ (0,1), we get

f(1
t
)> f(2− s). Noting the definition of f(x), the last inequality is equivalent to

1

t
+ log(st)− s > (2− s)− log(2− s) + log s− s = h(s).

Since 1< s< 2− 1
t
, we have s ∈ (1,2). Noting that h(s)> 0 for all s ∈ (1,2), the inequality above

yields log(st) + 1
t
− s > 0, which contradicts the fact that log(st) + 1

t
− s= 0.

In the next proposition, we use Lemmas F.3 and F.4 to upper bound ẑ(`) with a closed-form.

Proposition F.5 Defining the function GT (x) = 1
2

(
√

1 + 4T/ex + 1) and noting that ẑ(`) is the

optimal objective value of problem (22), we have

ẑ(`) ≤ 2 log(GT (1)) +
1

GT (1 + 1
`
GT (1))

− 1 +
GT (1)

`
.

Proof: Let (q∗1 , . . . , q
∗
`) be an optimal solution to problem (22). First, we give an upper bound on

1/q∗` . Letting f(x) = 1
x

exp(x/q∗`), we have f ′(x) = f(x) (1
q∗
`
− 1

x
). Therefore, f(x) is increasing in x

for all x≥ q∗` . Since q∗`−1 > q∗` , we obtain 1
q∗
`−1

exp(q∗`−1/q
∗
`) = f(q∗`−1)≥ f(q∗`) = e/q∗` . In this case,

since (q∗1 , . . . , q
∗
`) satisfies the second identity in Lemma F.3, we have

T =
1− q∗`
q∗`

{
1

q∗`−1

exp

(
q∗`−1

q∗`

)}
≥ e

1− q∗`
(q∗`)

2
= e

{
1

(q∗`)
2
− 1

q∗`

}
.

For fixed x ∈ R, the only positive root of the quadratic equation z2 − z − T
ex

= 0 is GT (x). Since

1
(q∗
`

)2
− 1

q∗
`
− T

e
≤ 0 by the chain of inequalities above, we get 1

q∗
`
≤GT (1).

Second, we give a lower bound on 1/q∗` . Letting t∗k = q∗k−1/q
∗
k for all k = 1, . . . , `, by Lemma

F.2, t∗k > 1 for all k = 1, . . . , `. Also, we can write the first order condition in the first case in

(23) as − log(t∗k t
∗
k+1) + t∗k − 1

t∗
k+1

= 0 for all k = 1, . . . , `− 1. In this case, by Lemma F.4, we get

t∗k ≥ 2− 1
t∗
k+1

for all k= 1, . . . , `− 1. Thus, letting V ∗k = T
1−q∗

`
(q∗k−1− q∗k), we obtain

V ∗k
V ∗k+1

=
q∗k−1− q∗k
q∗k − q∗k+1

=
t∗k− 1

1− 1
t∗
k+1

≥ 1,

where the last inequality holds since t∗k ≥ 2− 1
t∗
k+1

. Thus, we get V ∗k ≥ V ∗k+1. By the definition of

V ∗k , we have
∑`

k=1 V
∗
k = T . Since V ∗1 ≥ . . .≥ V ∗` and

∑`

k=1 V
∗
k = T , it follows that V ∗` ≤ T/`.

We have V ∗` = T
1−q∗

`
(q∗`−1− q∗`)≤ T

`
, which implies that q∗`−1− q∗` ≤ 1

1−q∗
`

(q∗`−1− q∗`)≤ 1
`
, in which

case, dividing both sides of the last inequality by q∗` , we get
q∗`−1

q∗
`
≤ 1 + 1

` q∗
`
≤ 1 + GT (1)

`
, where the

e-companion to Multinomial Logit Model with Impatient Customers ec13

last inequality holds due to the fact that 1
q∗
`
≤GT (1). Since (q∗1 , . . . , q

∗
`) satisfies the second identity

in Lemma F.3, noting that q∗`−1 ≥ q∗` and
q∗`−1

q∗
`
≤ 1 + GT (1)

`
, we have

T =
1− q∗`
q∗`−1 q

∗
`

exp

(
q∗`−1

q∗`

)
≤ 1− q∗`

(q∗`)
2

exp

(
1 +

GT (1)

`

)
= exp

(
1 +

GT (1)

`

){
1

(q∗`)
2
− 1

q∗`

}
.

Since the only positive root of the quadratic equation z2 − z − T
ex

= 0 is GT (x), noting that

1
(q∗
`

)2
− 1

q∗
`
− T

e1+GT (1)/` ≥ 0 by the chain of inequalities above, we get 1
q∗
`
≥GT (1 + 1

`
GT (1)).

By the subgradient inequality, we have logx≤ x−1 for all x> 0. Noting that (q∗1 , . . . , q
∗
`) satisfies

the first identity in Lemma F.3, we get

ẑ(`) = R(`)(q∗1 , . . . , q
∗
`) = log q∗1 − (1 + q∗1) +

q∗`−1

q∗`
− log(q∗`−1 q

∗
`) + q∗`

(a)

≤ log q∗1 − (1 + q∗1) + 1 +
GT (1)

`
− 2 log(q∗`) +

1

GT (1 + 1
`
GT (1))

(b)

≤ − 1 +
GT (1)

`
+ 2 log(GT (1)) +

1

GT (1 + 1
`
GT (1))

,

where (a) holds since we have
q∗`−1

q∗
`
≤ 1 + GT (1)

`
, q∗`−1 ≥ q∗` and 1

q∗
`
≥GT (1 + 1

`
GT (1)), whereas (b)

holds since log q∗1 ≤ q∗1 − 1 and 1
q∗
`
≤GT (1).

If we offer all products in the first stage, then the Pricing-Assortment problem reduces to

the standard pricing problem under the multinomial logit model with the same price sensitivity

for all products. In this case, using W (·) to denote the Lambert-W function, it is a standard result

that the optimal price to charge for all products is 1
β

(1 +W (T/e)), yielding the optimal expected

revenue 1
β
W (T/e); see Proposition 3.2 in Zhang et al. (2018). Recalling that we set β = 1, if we

offer all products in the first stage, then the optimal expected revenue is W (T/e). In the next

theorem, we compare the optimal expected revenue that we obtain when we offer all products in

the first stage with the optimal expected revenue in the Pricing-Assortment problem.

Theorem F.6 Noting that Π(p, S1, . . . , Sm) is the objective function of the Pricing-Assortment

problem as a function of the prices p and the assortments (S1, . . . , Sm), we have

maxp∈Rn Π(p,N ,∅, . . . ,∅)

max(p,S1,...,Sm)∈Rn×F Π(p, S1, . . . , Sm)
≥ min

x≥0

{
(1 +x)W (x(1 +x))

2 (1 +x) log(1 +x)−x

}
.

Proof: Let π∗ be the optimal objective value of the Pricing-Assortment problem, corresponding

to the denominator of the first fraction in the theorem. Note that Π̂(q, S1, . . . , Sm) in (19) is an

upper bound on the expected revenue from the no-purchase probabilities q and the assortments

(S1, . . . , Sm). Thus, we have π∗ ≤max(q,S1,...,Sm)∈Rm+×F{Π̂(q, S1, . . . , Sm) : qk−1 ≥ qk ∀k ∈M}, so by

Lemma F.1, we obtain π∗ ≤ max(q1,...,qm)∈Rm+ {R
(m)(q1, . . . , qm) : qk−1 ≥ qk ∀k ∈M} = ẑ(m), where

ec14 e-companion to Multinomial Logit Model with Impatient Customers

the equality uses the fact that ẑ(m) is the optimal objective value of problem (22) with `=m. By

the last chain of inequalities, for all `≥m, we get

π∗ ≤ ẑ(m)
(a)

≤ ẑ(`)
(b)

≤ 2 log(GT (1)) +
1

GT (1 + 1
`
GT (1))

− 1 +
GT (1)

`
,

where (a) holds since ẑ(`) ≥ ẑ(m) for all `≥m by Lemma F.2 and (b) uses Proposition F.5. Thus,

for any `≥m, we have π∗ ≤ 2 log(GT (1)) + 1
GT (1+GT (1)/`)

− 1 + GT (1)

`
.

The last inequality holds for all ` ≥m. Taking the limit as `→∞ and noting that GT (x) is

continuous in x, we can upper bound π∗ as

π∗ ≤ lim
`→∞

{
2 log(GT (1)) +

1

GT (1 + 1
`
GT (1))

− 1 +
GT (1)

`

}

≤ 2 log(GT (1)) +
1

GT (1)
− 1 = 2 log

(√
1 + 4T/e+ 1

2

)
+

2√
1 + 4T/e+ 1

− 1, (24)

where the last equality uses the definition of GT (x) in Proposition F.5. Also, we know that if we

offer all products in the first stage, then the optimal expected revenue is W (T/e).

The function f(x) = ex (1+x) is strictly increasing in x for x≥ 0. Making the change of variables

T = ex (x+ 1), we have 1
2
(
√

1 + 4T/e+ 1) = 1 +x. Therefore, we obtain

maxp∈Rn Π(p,N ,∅, . . . ,∅)

max(p,S1,...,Sm)∈Rn×F Π(p, S1, . . . , Sm)
=

W (T/e)

π∗

(c)

≥ W (T/e)

2 log

(√
1+4T/e+1

2

)
+ 2√

1+4T/e+1
− 1

(d)

≥ min
x≥0

{
W (x (1 +x))

2 log(1 +x) + 1
1+x
− 1

}
= min

x≥0

{
(1 +x)W (x(1 +x))

2 (1 +x) log(1 +x)−x

}
,

where (c) follows from (24), and (d) follows by making the change of variables T = ex (1 +x) and

minimizing the lower bound over all x≥ 0.

Here is the proof of Theorem 4.4.

Proof of Theorem 4.4: We argue that the optimal objective value of the minimization problem

on the right side of the inequality in Theorem F.6 is at least 0.878. Let H(x) = (1+x)W (x(1+x))

2 (1+x) log(1+x)−x . In

Figure EC.1, we plot H(x) as a function of x over the interval [0,1827], which is at least 0.878. It

remains to demonstrate that minx≥1827H(x) ≥ 0.878. For two functions f(·) and g(·) that take

nonnegative values over the interval [1827,+∞), fixing β = 0.878, we have minx≥1827
f(x)

g(x)
≥ β if and

only if f(x)−β g(x)≥ 0 for all x≥ 1827. So, having minx≥1827H(x) = 0.878 is equivalent to having

(1 +x)W (x(1 +x))−β (2 (1 +x) log(1 +x)−x)≥ 0 for all x≥ 1827.

For x≥ e, we have W (x)≥ log(x)− log log(x); see Hoorfar and Hassani (2008) Therefore, it is

enough to argue that (1 +x) (log(x (1 +x))− log log(x (1 +x)))−β (2 (1 +x) log(1 +x)−x)≥ 0 for

e-companion to Multinomial Logit Model with Impatient Customers ec15

0 261 522 783 1044 1305 1566 1827
x

0.876

0.878

0.884

0.892

0.900

H
(x

)

Figure EC.1 Plot of H(x) as a function of x.

all x≥ 1827. We use F (x) to denote the expression on the left side of the last inequality. By direct

computation with β = 0.878, F (1827)≥ 0.31. Next, we check that F ′(x)≥ 0 for x≥ 1827. We have

F ′(x) = logx+ log(1 +x) +
1 +x

x
+ 1− log log(x (1 +x))

− 1 +x

logx+ log(1 +x)

(
1

x
+

1

1 +x

)
−β− 2β log(1 +x)

≥ 2 logx+ 2− log 2− log log(1 +x)− 3655/3654

logx
−β− 2β log(1 +x)

= (2− 2β) logx+ 2β log

(
x

x+ 1

)
+ 2− log 2− log log(1 +x)− 3655/3654

logx
−β, (25)

where the first inequality holds since log log(x (1 +x))≤ log(2 log(1 +x)) and 1+x
x

+ 1≤ 3655
1827

for all

x≥ 1827. We split the expression on the right side above into two expressions.

First, consider the function P (x) = 2β log(x
x+1

) + 2− log 2− 3651/3650

logx
− β, which is increasing

in x. Thus, for all x ≥ 1827, we have P (x) ≥ P (1827) ≥ 0.29, where the second inequality is by

direct computation. Second, consider the function Q(x) = (2− 2β) logx− log log(1 + x). By direct

computation, we have Q(1827)≥−0.19. Also, noting that 2− 2β− 1
log 1828

≥ 0.11, for all x≥ 1827,

we have Q′(x) = (2−2β) 1
x
− 1

(1+x) log(1+x)
≥ 1

1+x
(2− 2β− 1

log(1+x)
)≥ 1

1+x
(2−2β− 1

log 1828
)≥ 0. Thus,

Q(x) is increasing in x for all x≥ 1827, so Q(x)≥Q(1827)≥−0.19. The expression on the right

side of (25) is P (x) +Q(x), so F ′(x) = P (x) +Q(x)≥ 0.29− 0.19≥ 0 for all x≥ 1827.

Tightness of the Performance Guarantee of 87.8%:

Intuitively speaking, we can reverse-engineer the sequence of steps in our proof of the performance

guarantee of 87.8% to come up with a problem instance to demonstrate that this performance

guarantee is tight. In particular, we use the following steps. First, we find the value of x∗ that

ec16 e-companion to Multinomial Logit Model with Impatient Customers

minimizes the function H(x) in the proof of Theorem 4.4. This value is approximately 58.83. Noting

the change of variables T = ex (1+x) in the proof of Theorem F.6, we set T ∗ = ex∗ (1 +x∗), which

is approximately 9567.33. We fix the number of stages m to any positive integer. Second, setting

T = T ∗ in (20), we solve problem (22) with `=m. We let (q∗1 , . . . , q
∗
m) be an optimal solution to this

problem. Third, noting that the optimal value of x∗k in problem (21) in the proof of Lemma F.1

is x∗k = T
1−qm (qk−1− qk), we set T ∗k = T∗

1−q∗m
(q∗k−1− q∗k) for all k = 1, . . . ,m, where T ∗ is as obtained

in the first step and (q∗1 , . . . , q
∗
m) is as obtained in the second step. Once we compute the values of

(T ∗1 , . . . , T
∗
m), we construct our problem instance as follows. We have λ1 = . . .= λm = 1. The price

sensitivity is β = 1. There is one product associated with each stage, so we index the products by

{1, . . . ,m}. The parameter αi for product i is such that eαi = T ∗i .

Noting that ẑ(m) is the optimal objective value of problem (22) with `=m, by Lemma F.1, ẑ(m)

is an upper bound on the optimal objective value of the Pricing-Assortment problem. In this

case, for the problem instance that we constructed as in the previous paragraph, we can follow the

proof of Lemma F.1 line by line to show that if we offer product i in stage i and optimize only over

the prices of the products in the Pricing-Assortment problem, then the optimal objective value

that we obtain is equal to ẑ(m), achieving the upper bound of ẑ(m). Thus, for the problem instance

that we constructed, the optimal solution for the Pricing-Assortment problem involves offering

each product i in stage i. In other words, for the problem instance that we constructed, we can

solve the Pricing-Assortment problem efficiently. We offer each product i in stage i and use the

approach in Section 4.1 to find the optimal prices to charge for the products.

In this case, we can follow the proofs of Proposition F.5 and Theorem F.6 line by line to show

that the performance guarantee of 87.8% is tight for the problem instance that we constructed, as

long as the number of stages m gets arbitrarily large. The number of stages needs to get arbitrarily

large due to the limit in (24). In Figure EC.2, we numerically verify the tightness of the performance

guarantee of 87.8%. For each m∈Z+, we construct a problem instance as described in this section.

For each problem instance that we construct, we solve the Pricing-Assortment problem to get

the optimal objective value, which we denote by π(m). Also, we offer all products in the first stage

and compute the optimal prices to charge for the products. We denote the corresponding optimal

objective value by π(m). In the figure, as a function of the number of stages m in the problem

instance that we construct, we plot the ratio π(m)/π(m).

Naturally, by Theorem 4.4, π(m)/π(m) never falls below 87.8%. For smaller values of m, the ratio

π(m)/π(m) can be noticeably far from 87.8%, but m does not need to get too large for the ratio to

be close to 87.8%. Once m reaches about 15, π(m)/π(m) gets remarkably close to 87.8%, verifying

that our analysis in the proof of Theorem 4.4 is tight for the problem instances constructed by

using the approach discussed in this section, as long as m gets large.

e-companion to Multinomial Logit Model with Impatient Customers ec17

1 6 11 16 21 26
m

0.870

0.878

0.896

0.922

0.948

0.974

1.000

P
e
rf

o
rm

a
n
ce

 R
a
ti

o

Figure EC.2 Plot of π(m)/π(m) as a function of m.

Appendix G: Performance Guarantee of 50% and its Tightness

In the following lemma, we give a 50% performance guarantee for the Assortment problem by

offering a nonempty assortment only in the first stage.

Lemma G.1 Letting π∗ be the optimal objective value of the Assortment problem, we have

maxS⊆N Π(S,∅, . . . ,∅)≥ 1
2
π∗.

Proof: Let (S∗1 , . . . , S
∗
m) be an optimal solution to the Assortment problem and T ∗k = S∗1 ∪ . . .∪S∗k

with T ∗0 =∅. Noting the definition of Π(S1, . . . , Sm), we get

π∗ = Π(S∗1 , . . . , S
∗
m) =

∑
k∈M

λkW (T ∗k)−λkW (T ∗k−1)

(1 +V (T ∗k−1)) (1 +V (T ∗k))

(a)
=

m−1∑
k=1

W (T ∗k)

1 +V (T ∗k)

{
λk

1 +V (T ∗k−1)
− λk+1

1 +V (T ∗k+1)

}
+

λmW (T ∗m)

(1 +V (T ∗m−1)) (1 +V (T ∗m))

≤max
S⊆N

{
W (S)

1 +V (S)

}(
m−1∑
k=1

{
λk

1 +V (T ∗k−1)
− λk+1

1 +V (T ∗k+1)

}
+

λm
1 +V (T ∗m−1)

)
(b)
= max

S⊆N

{
Π(S,∅, . . . ,∅)

}(
λ1 +

m∑
k=2

λk

{
1

1 +V (T ∗k−1)
− 1

1 +V (T ∗k)

})

≤max
S⊆N

{
Π(S,∅, . . . ,∅)

}(
1 +

m∑
k=2

{
1

1 +V (T ∗k−1)
− 1

1 +V (T ∗k)

})

= max
S⊆N

{
Π(S,∅, . . . ,∅)

}(
1 +

1

1 +V (T ∗1)
− 1

1 +V (T ∗m)

)
≤ 2 max

S⊆N

{
Π(S,∅, . . . ,∅)

}
,

where (a) follows by by arranging the terms and (b) follows by noting that Π(S,∅, . . . ,∅) =

λ1
W (S)

1+V (S)
and λ1 = 1, as well as arranging the terms in the sum on the left side of the equality.

ec18 e-companion to Multinomial Logit Model with Impatient Customers

(S1, S2) Exp. Rev

({1},∅)
r1 v1

1 + v1
=

(1 + 1/ε)ε

1 + ε
= 1

ε→0−−−→ 1

({2},∅)
r2 v2

1 + v2
=

1/ε

1 + 1/ε
=

1

1 + ε

ε→0−−−→ 1

({1,2},∅)
r1 v1 + r2 v2
1 + v1 + v2

=
(1 + 1/ε)ε+ 1/ε

1 + ε+ 1/ε
= 1

ε→0−−−→ 1

({1},{2}) r1 v1
1 + v1

+
r2 v2

(1 + v1) (1 + v1 + v2)
=

(1 + 1/ε)ε

1 + ε
+

1/ε

(1 + ε) (1 + ε+ 1/ε)
= 1 +

1

(1 + ε) (1 + ε+ ε2)

ε→0−−−→ 2

({2},{1}) r2 v2
1 + v2

+
r1 v1

(1 + v2) (1 + v2 + v1)
=

1/ε

1 + 1/ε
+

(1 + 1/ε) ε

(1 + 1/ε) (1 + 1/ε+ ε)
=

1

1 + ε
+

ε2(1 + ε)

(1 + ε) (1 + ε+ ε2)

ε→0−−−→ 1

Table EC.2 Expected revenue from non-dominated assortments.

Tightness of the Performance Guarantee of 50%:

We give a problem instance to demonstrate that the performance guarantee of 50% that we give

for the Assortment problem in Lemma G.1 is tight. We consider a problem instance with two

products and two stages. The revenues and preference weights of the products are r1 = 1 + 1/ε,

r2 = 1, v1 = ε, and v2 = 1/ε. The distribution of the patience level is given by λ1 = λ2 = 1. In Table

EC.2, we give the expected revenue from each non-dominated solution, along with the limit of

the expected revenue as ε→ 0. If we offer the empty assortment in all stages except for the first

one, then the largest expected revenue that we can obtain is the expected revenue from one of the

solutions ({1},∅), ({2},∅) and ({1,2},∅), all of which get arbitrarily close to one, as we choose ε

arbitrarily small. On the other hand, as we choose ε arbitrarily small, noting the solution ({1},{2}),

the largest expected revenue from any solution is arbitrarily close to two. Thus, the performance

guarantee of 50% that we give for the Assortment problem in Lemma G.1 is tight. To make

the contrast, for the Pricing-Assortment problem, offering the empty assortment in all stages

except for the first one and finding the revenue-maximizing prices in the first stage provides a

tight performance guarantee of 87.8%. On the other hand, for the Assortment problem, offering

the empty assortment in all stages except for the first one and finding the revenue-maximizing

assortment in the first stage provides a tight performance guarantee of 50%.

Appendix H: Complexity of Joint Pricing and Assortment Optimization

We consider the Pricing-Assortment problem when the prices of the products take values only

over a finite set. We show that the problem is NP-hard even when we have only two possible

price levels for the products and the choice process of the customers involves only two stages with

λ1 = λ2 = 1. Consider the following instance. The set of products is N = {1,2, . . . , n}. We have two

stages with λ1 = λ2 = 1. We have two price levels, which we denote by pH and pL with pH > pL.

For each product i, if we offer it at price q ∈ {pH , pL}, then its preference weight is given by viq.

We want to find the sequence of assortments to offer in the two stages and the prices to charge

for the products to maximize the expected revenue. Using the vector p= (p1, . . . , pn) to denote the

e-companion to Multinomial Logit Model with Impatient Customers ec19

prices that we charge for the products and (S1, S2) to denote the assortments that we offer in the

two stages, noting the expected revenue expression in (3), we want to solve the problem

max
(p,S1,S2)∈{pL,pH}n×F

{ ∑
i∈S1 pi vi,pi

1 +
∑

i∈S1 vi,pi
+

∑
i∈S2 pi vi,pi

(1 +
∑

i∈S1 vi,pi) (1 +
∑

i∈S1∪S2 vi,pi)

}
. (26)

In the next lemma, we give a structural property of an optimal solution to the problem above to

express it in a simpler fashion. We defer the proofs of auxiliary lemmas to the end of this section.

Lemma H.1 There exists an optimal solution (p∗, S∗1 , S
∗
2) to problem (26) such that all products

are offered; that is, S∗1 ∪S∗2 =N . All products in the first stage have the high price and all products

in the second stage have the low price; that is, p∗i = pH for all i∈ S∗1 and p∗i = pL for all i∈ S∗2 .

By Lemma H.1, the critical decision is the assortment offered S in the first stage, in which case,

we offer the assortment N \S in the second stage. Thus, problem (26) is equivalent to

max
S⊆N

{
pH
∑

i∈S vi,H

1 +
∑

i∈S vi,H
+

pL
∑

i/∈S vi,L

(1 +
∑

i∈S vi,H) (1 +
∑

i∈S vi,H +
∑

i/∈S vi,L)

}
, (27)

where we let vi,H = vi,pH and vi,L = vi,pL for notational brevity. To establish the computational

complexity, we will consider the following decision-theoretic version of the problem above.

Two Stages and Two Price Levels:

Inputs: A set of products index by N = {1, . . . , n}, two price levels pH and pL with pH > pL > 0,

two preference weights vi,H and vi,L for each product i∈N , and an expected revenue target T .

Question: Does there exist a subset of products S ⊆N that provides an expected revenue of T

or more in problem (27)?

The main result of this section is given in the following theorem, showing that the Two Stages

and Two Price Levels problem is NP-complete.

Theorem H.2 The Two Stages and Two Price Levels problem is NP-complete.

We will use two auxiliary lemmas in the proof of the theorem above. The first lemma focuses on

the complexity of the following variant of the subset sum problem.

Three-Quarters Subset Sum:

Inputs: A collection of weights w1,w2, . . . ,wn such that wi ∈Q++ for all i= 1, . . . , n.

Question: Does there exist a subset S ⊆ {1, . . . , n} such that
∑

i∈S wi = 3
4

∑n

i=1wi.

In the following lemma, we show that the Three-Quarters Subset Sum problem is NP-complete.

We give the proof of this lemma also at the end of this section.

ec20 e-companion to Multinomial Logit Model with Impatient Customers

Lemma H.3 The Three-Quarters Subset Sum problem is NP-complete.

Lastly, in the next lemma, we characterize the maximizer of a function that is crucial in our

NP-completeness proof. The proof of this lemma is at the end of this section as well.

Lemma H.4 For each π > 1 and α> 1 such that 1< α−1
π−1

< (1 +α)2, define fπ,α : [0,1]→R+ as

fπ,α(x) =
πx

1 +x
+

α(1−x)

(1 +x)(1 +α− (α− 1)x)
.

Then, fπ,α achieves its unique maximum at x∗ =
1 +α−

√
(α− 1)/(π− 1)

−1 +α+
√

(α− 1)/(π− 1)
.

Here is the proof of Theorem H.2.

Proof of Theorem H.2: We will use a reduction from the Three-Quarters Subset

Sum problem, which is NP-complete by Lemma H.3. Consider an arbitrary instance of the

Three-Quarters Subset Sum problem with the weights w1,w2, . . . ,wn. Without loss of generality,

we assume that
∑n

i=1wi = 1, because we can normalize all of the weights by dividing them by∑n

i=1wi without changing the answer to the problem. The Three-Quarters Subset Sum problem

asks whether there exists a subset S ⊆ {1, . . . , n} such that
∑

i∈S wi = 3
4
.

We construct an instance of the Two Stages and Two Price Levels problem as follows. The

set of products is {1, . . . , n}. The two price levels are pH = 5
2

and pL = 1 with the corresponding

preference weights vi,H = wi and vi,L = 7wi for each product i. Considering the function fπ,α in

Lemma H.4 with π = 5
2

and α = 7, we set the expected revenue target as T = f 5
2 ,7

(3/4). Let

Rev(S) be the expected revenue in this Two Stages and Two Price Levels problem. Noting that∑
i/∈S wi =

∑n

i=1wi−
∑

i∈S wi = 1−
∑

i∈S wi, by (27), we have

Rev(S) =
5
2

∑
i∈S wi

1 +
∑

i∈S wi
+

7
∑

i/∈S wi

(1 +
∑

i∈S wi) (1 +
∑

i∈S wi + 7
∑

i/∈S wi)

=
5
2

∑
i∈S wi

1 +
∑

i∈S wi
+

7(1−
∑

i∈S wi)

(1 +
∑

i∈S wi) (8− 6
∑

i∈S wi)
.

We will show that there exists a subset A ⊆ {1, . . . , n} such that
∑

i∈Awi = 3
4

in the

Three-Quarters Subset Sum Problem if and only if there exists a subset S ⊆ {1, . . . , n} in the

Two-Stages and Two Price Levels problem such that Rev(S)≥ T .

By the definitions of Rev(S) above and fπ,α in Lemma H.4, Rev(S) = f 5
2 ,7

(
∑

i∈S wi). Also, our

choice of π = 5
2

and α = 7 satisfies π > 1, α > 1 and 1 < α−1
π−1

< (1 + α)2, so by Lemma H.4, the

function f 5
2 ,7

achieves its unique maximum at x∗ =
1+7−
√

(7−1)/(5
2−1)

−1+7+
√

(7−1)/(5
2−1)

= 3
4
. Thus, for any subset

S ⊆ {1, . . . , n}, we have Rev(S) = f 5
2 ,7

(
∑

i∈S wi) ≤ f 5
2 ,7

(3/4) = T and the inequality holds as an

equality if and only if
∑

i∈S wi = 3/4. Therefore, there exists a subset S ⊆ {1, . . . , n} such that

Rev(S)≥ T if and only if there exists a subset S ⊆ {1, . . . , n} such that
∑

i∈S wi = 3
4
.

e-companion to Multinomial Logit Model with Impatient Customers ec21

Proofs of Auxiliary Lemmas:

In the rest of this section, we give the proofs for the auxiliary lemmas that we used to show

Theorem H.2. Here is the proof of Lemma H.1.

Proof of Lemma H.1: Let (p∗, S∗1 , S
∗
2) be an optimal solution to problem (26). If i 6∈ S∗1 ∪S∗2 ,

then offering product i in the second stage at price level pH does not degrade the expected revenue,

so we can assume that S∗1 ∪S∗2 =N . Considering the prices p∗, let H∗ = {i∈N : p∗i = pH} and L∗ =

{i∈N : p∗i = pL} be the sets of products for which we charge the two price levels. Fixing the prices at

p∗ and optimizing over the sequence of assortments (S1, S2)∈F , problem (26) becomes equivalent

to the Assortment problem. Thus, by the revenue-ordered property in Theorem 3.1, one of the

three solutions (H∗ ∪L∗,∅), (H∗,L∗), and (H∗,∅) is optimal to this problem. In particular, we

have two stages, so noting the revenue thresholds +∞= t∗1 ≥ t∗2 ≥ t∗3 in Theorem 3.1, the solutions

(H∗ ∪L∗,∅), (H∗,L∗), and (H∗,∅), respectively, correspond to the cases +∞ = t∗1 > pH > pL ≥

t∗2 ≥ t∗3, +∞ = t∗1 > pH ≥ t∗2 > pL ≥ t∗3, and +∞ = t∗1 > pH ≥ t∗2 ≥ t∗3 > pL. The solution (H∗,L∗)

does not degrade the expected revenue from the solution (H∗,∅), since offering some product at

the second stage provides additional expected revenue without changing the expected revenue from

the first stage. Thus, it is enough to show that the solution (H∗,L∗) does not degrade the expected

revenue from the solution (H∗ ∪L∗,∅). Let VH∗ =
∑

i∈H∗ vi,H and VL∗ =
∑

i∈L∗ vi,L, so

pH VH∗ + pL VL∗

1 +VH∗ +VL∗
=

pH VH∗

1 +VH∗
+

pH VH∗

1 +VH∗ +VL∗
− pH VH∗

1 +VH∗

+
pL VL∗

(1 +VH∗) (1 +VH∗ +VL∗)
+

pL VL∗

1 +VH∗ +VL∗
− pL VL∗

(1 +VH∗) (1 +VH∗ +VL∗)

=
pH VH∗

1 +VH∗
− pH VH∗ VL∗

(1 +VH∗) (1 +VH∗ +VL∗)

+
pL VL∗

(1 +VH∗) (1 +VH∗ +VL∗)
+

pL VL∗ VH∗

(1 +VH∗) (1 +VH∗ +VL∗)

≤ pH VH∗

1 +VH∗
+

pL VL∗

(1 +VH∗) (1 +VH∗ +VL∗)
,

where the inequality uses the fact that p∗H > p∗L. The first and last expressions above are,

respectively, the expected revenues from the solutions (H∗ ∪L∗,∅) and (H∗,L∗).

Next, we give a proof for Lemma H.3.

Proof of Lemma H.3: We use a reduction from the standard Partition problem, which is a

well-known NP-complete problem; see Garey and Johnson (1979). Consider an arbitrary instance

of the Partition problem, where we have a collection of n items with weights {s1, s2, . . . , sn} ∈Q++.

Letting T =
∑n

i=1 si, the question is to determine whether there exists a subset S ⊆ {1, . . . , n}

such that
∑

i∈S si = T/2. Given an instance of the Partition problem, we construct instance

of the Three-Quarters Subset Sum problem with n+ 1 items, where w1 = s1, . . . ,wn = sn and

ec22 e-companion to Multinomial Logit Model with Impatient Customers

wn+1 = T . We will show there exists a subset S ⊆ {1, . . . , n} in the Partition problem such that∑
i∈S wi = T/2 if and only if there exists a subset A ⊆ {1, . . . , n,n+ 1} in the Three-Quarters

Subset Sum problem such that
∑

i∈Awi = 3
4

∑n+1

i=1 wi.

Assume that there exists a subset S ⊆ {1, . . . , n} such that
∑

i∈S si = T/2. In this case, the

subset A= S∪{n+1} ⊆ {1, . . . , n} satisfies
∑

i∈Awi =wn+1 +
∑

i∈S wi = T +(T/2) = 3
2
T = 3

4
(2T) =

3
4

∑n+1

i=1 wi. On the other hand, assume that there exists a subset A ⊆ {1, . . . , n,n+ 1} such that∑
i∈Awi = 3

4

∑n+1

i=1 wi = 3
2
T . In this case, note that we must have n+1∈A, because

∑n

i=1wi = T , but∑
i∈Awi = 3

2
T . Since wn+1 = T and n+1∈A, it follows that the subset S =A\{n+1} ⊆ {1, . . . , n}

satisfies
∑

i∈S wi =
∑

i∈Awi−wn+1 = 3
2
T −T = T/2.

Here is the proof of Lemma H.4.

Proof of Lemma H.4: Letting G(x) = 1 + α − (α − 1)x for notational brevity, we have

G(x)− 2α= (1−α) (1 +x) and G(x)− α (1− x) = 1 + x. Furthermore, we can express fπ,α(x) as

fπ,α(x) = π x
1+x

+α 1−x
1+x
· 1
G(x)

. Noting that G′(x) =−(α− 1), differentiating fπ,α(x), we get

f ′π,α(x) =
π

(1 +x)2
−α 2

(1 +x)2
· 1

G(x)
+α

1−x
1 +x

· α− 1

G(x)2

=
1

G(x)2

{
πG(x)2− 2αG(x) +α(α− 1) (1−x) (1 +x)

(1 +x)2

}

=
1

G(x)2

{
(π− 1)G(x)2 +G(x) (G(x)− 2α) +α(α− 1) (1−x) (1 +x)

(1 +x)2

}
(a)
=

1

G(x)2

{
(π− 1)G(x)2 + (1−α) (1 +x) (G(x)−α (1−x))

(1 +x)2

}
(b)
=

1

G(x)2

{
(π− 1)G(x)2 + (1−α) (1 +x)2

(1 +x)2

}

=
π− 1

G(x)2

{(
G(x)

1 +x

)2

− α− 1

π− 1

}
(c)
=

π− 1

(1 +α− (α− 1)x)2

{(
1 +α

1−x
1 +x

)2

− α− 1

π− 1

}
,

where (a) holds sinceG(x)−2α= (1−α) (1+x), (b) holds sinceG(x)−α (1−x) = 1+x and (c) holds

by the definition of G(x). Therefore, defining the function g : [0,1]→R as g(x) =
(
1+α 1−x

1+x

)2− α−1
π−1

,

the sign of f ′π,α(x) is determined by the sign of g(x).

We have g′(x) =− 4α
(1+x)2

(
1 +α 1−x

1+x

)
< 0 for all x ∈ [0,1], so g(x) is strictly decreasing in x over

the interval [0,1]. Also, since 1< α−1
π−1

< (1 +α)2, we get (1 +α)2− α−1
π−1

= g(0)> 0> g(1) = 1− α−1
π−1

,

which implies that g(x) crosses zero at a unique point over the interval [0,1].

By the discussion in the previous paragraph, fπ,α(x) is strictly increasing, then strictly decreasing

in x over the interval [0,1], so it has a unique maximizer over this interval. To find the maximizer

x∗ of fπ,α(x), we set g(x∗) =
(
1 + α 1−x∗

1+x∗

)2 − α−1
π−1

= 0, yielding α 1−x∗
1+x∗ =

√
α−1
π−1
− 1. For constants

e-companion to Multinomial Logit Model with Impatient Customers ec23

a and b, the value of x that solves a 1−x
1+x

= b is a−b
a+b

. Thus, setting a= α and b=
√

α−1
π−1
−1 in the last

equality, we get x∗ =
1+α−
√

(α−1)/(π−1)

−1+α+
√

(α−1)/(π−1)
, as desired. Lastly, we check that this value of x∗ is in the

interval [0,1]. Noting that
√

α−1
π−1

< 1 +α and α> 1, we get x∗ ≥ 0. Also, 1−
√

α−1
π−1

<−1 +
√

α−1
π−1

,

so adding α to both sides of this inequality and dividing by −1 +α+
√

α−1
π−1

, we get x∗ ≤ 1.

Appendix I: Proof of Lemma 5.1

For i∈ S∗k and j ∈ S∗k+1, we must have ri ≥ tk+1(S∗1 , . . . , S
∗
m)> rj. In particular, by the first part of

Lemma 3.2, if rj ≥ tk+1(S∗1 , . . . , S
∗
m), then we can move product j from stage k+1 to stage k without

degrading the expected revenue provided by the solution (S∗1 , . . . , S
∗
m), which contradicts the fact

that (S∗1 , . . . , S
∗
m) is non-dominated. By the second part of Lemma 3.2, if ri < tk+1(S∗1 , . . . , S

∗
m), then

we can move product i from stage k to stage k + 1 to obtain a solution strictly better than the

solution (S∗1 , . . . , S
∗
m), which contradicts the fact that (S∗1 , . . . , S

∗
m) is an optimal solution. Thus, if

ri ∈ S∗k and j ∈ S∗k+1, then we must have ri > rj.

Appendix J: Proof of Lemma 5.3

In this section, we give a proof for Lemma 5.3. We need the next intermediate lemma, where we

show a monotonicity property for the value functions computed through (10).

Lemma J.1 If the value functions {Θ`
i(x, y) : (x, y)∈Dom2, i= 1, . . . , `+1} are computed through

the dynamic program in (10), then Θ`
i(x, y) is increasing in x and decreasing in y.

Proof: We show the result by using induction over the decision epochs. By the boundary condition,

Θ`
`+1(x, y) is increasing in x and decreasing in y. Assuming that Θ`

i+1(x, y) is increasing in x and

decreasing in y, we proceed to showing that Θ`
i(x, y) is increasing in x and decreasing in y. Since

bac and dae are increasing in a, bx− vi ri uic and dy − vi uie are increasing in x and y, in which

case, by the induction hypothesis, Θ`
i+1(bx− vi ri uic , dy− vi uie) is increasing in x and decreasing

in y. Thus, for a fixed value of ui, the objective function of the minimization problem in (10) is

increasing in x and decreasing in y. So, the optimal objective value of this minimization problem,

which is equal to Θ`
i(x, y), must be increasing in x and decreasing in y as well.

Here is the proof of Lemma 5.3.

Proof of Lemma 5.3: Throughout the proof, let S ⊆ {j+ 1, . . . , `} be such that W (S)≥ x and

V (S)≤ y. Our proof proceeds in three parts.

Part 1: First, assuming that such an assortment S exists, we show that Θ`
j+1(x, y)<+∞. For

notational brevity, we let Si = S ∩ {i, . . . , `}. Also, we define ũi ∈ {0,1} as ũi = 1 if and only if

ec24 e-companion to Multinomial Logit Model with Impatient Customers

i∈ S. Since ũi is a feasible but not necessarily an optimal solution to the minimization problem on

the right side of (10) with x=W (Si) and y= V (Si), we have

Θ`
i(W (Si), V (Si)) ≤ ci ũi + Θ`

i+1(bW (Si)− vi ri ũic, dV (Si)− vi ũie)

= ci ũi + Θ`
i+1(bW (Si+1)c, dV (Si+1)e)

≤ ci ũi + Θ`
i+1(W (Si+1), V (Si+1)),

where the last inequality uses the fact that Θ`
i+1(x, y) is increasing in x and decreasing in y by

Lemma J.1, along with the fact that bW (Si+1)c ≤W (Si+1) and dV (Si+1)e ≥ V (Si+1).

Since S ⊆ {j + 1, . . . , `}, we have Sj+1 = S and S`+1 = ∅ by the definition of Si in the previous

paragraph. Thus, adding the chain of inequalities above over all i= j+ 1, . . . , `, we obtain

Θ`
j+1(W (S), V (S))≤

∑̀
i=j+1

ci ũi + Θ`
`+1(W (∅), V (∅)) =C(S),

where the equality uses the fact that Θ`
`+1(0,0) = 0. Since W (S)≥ x, V (S)≤ y, using Lemma J.1

once again, we get Θ`
j+1(x, y)≤Θ`

j+1(W (S), V (S))≤C(S)<+∞.

Part 2: Second, we show that C(Ŝx,y)≤C(S). Noting the last chain of inequalities at the end

of the previous paragraph, it is enough to show that Θ`
j+1(x, y) =C(Ŝx,y).

Consider executing the candidate construction algorithm with (x, y) ∈Dom2. By Steps 2 and 3

in the candidate construction algorithm, along with the dynamic program in (10), we have

Θ`
i(x̂i, ŷi) = ci ûi + Θ`

i+1(x̂i+1, ŷi+1).

Adding this equality over all i= j + 1, . . . , `, we get Θ`
j+1(x̂j+1, ŷj+1) = C(Ŝx,y) + Θ`

`+1(x̂`+1, ŷ`+1).

Since we start the candidate construction algorithm with x̂j+1 = x and ŷj+1 = y, the last equality

yields Θ`
j+1(x, y) =C(Ŝx,y) + Θ`

`+1(x̂`+1, ŷ`+1). By Part 1, Θ`
j+1(x, y)<+∞. Also, Θ`

`+1(x̂`+1, ŷ`+1)

takes the value +∞ or zero. If Θ`
`+1(x̂`+1, ŷ`+1) = +∞, then we get a contradiction to the fact that

Θ`
j+1(x, y)<+∞ and Θ`

j+1(x, y) = C(Ŝx,y) + Θ`
`+1(x̂`+1, ŷ`+1). Thus, we have Θ`

`+1(x̂`+1, ŷ`+1) = 0,

in which case, having Θ`
j+1(x, y) =C(Ŝx,y) + Θ`

`+1(x̂`+1, ŷ`+1) yields Θ`
j+1(x, y) =C(Ŝx,y).

Part 3: Third, we show that W (Ŝx,y) ≥ x/(1 + ρ)n. Letting Ŝix,y = Ŝx,y ∩ {i, . . . , `}, we use

induction over the decision epochs to show that W (Ŝix,y) ≥ x̂i/(1 + ρ)`+1−i, where x̂i is as in

the candidate construction algorithm. By the discussion in the previous paragraph, we have

Θ`
`+1(x̂`+1, ŷ`+1) = 0, in which case, by the boundary condition of the dynamic program in (10),

we must have x̂`+1 ≤ 0. Also, Ŝ`+1
x,y = ∅. Therefore, we get W (Ŝ`+1

x,y) = 0≥ x̂`+1, so the result holds

for decision epoch `+ 1. Assuming that W (Ŝi+1
x,y) ≥ x̂i+1/(1 + ρ)`−i, we proceed to showing that

e-companion to Multinomial Logit Model with Impatient Customers ec25

W (Ŝix,y)≥ x̂i/(1 +ρ)`+1−i. Since x̂i+1 = bx̂i− vi ri ûic, we have x̂i+1 ≥ 1
1+ρ

(x̂i− vi ri ûi). Noting that

bac= 0 for a < 0, the last inequality holds when x̂i− vi ri ûi < 0 as well. The last inequality yields

(1 + ρ) x̂i+1 + vi ri ûi ≥ x̂i. Since Ŝix,y \ {i}= Ŝi+1
x,y and ûi = 1 if and only if i∈ Ŝix,y, we get

W (Ŝix,y) = W (Ŝi+1
x,y) + vi ri ûi ≥

x̂i+1

(1 + ρ)`−i
+ vi ri ûi

≥ 1

(1 + ρ)`+1−i

{
(1 + ρ) x̂i+1 + vi ri ûi

}
≥ x̂i

(1 + ρ)`+1−i ,

where the first inequality uses the induction hypothesis. Thus, the induction argument is complete.

Since Ŝj+1
x,y = Ŝx,y and x̂j+1 = x, we get W (Ŝx,y) =W (Ŝj+1

x,y)≥ x̂j+1/(1 + ρ)`−j ≥ x/(1 + ρ)n. Lastly,

we can follow a similar argument to also show that V (Ŝx,y)≤ (1 + ρ)n y.

Appendix K: Bounds on the State Variable for Constructing Candidate Assortments

To construct the collection of candidate assortments as in (11), we need the value functions Θ`
i(x, y)

through the dynamic program in (10) for (x, y) ∈ Dom2 such that x∈ [bwminc, dnwmaxe]∪{0},

y ∈ [bvminc, dnvmaxe]∪{0}, and i∈N , `∈ {0, . . . , n} with i≤ `+ 1. Therefore, the largest values of

x and y in the state variable (x, y) are, respectively, dnwmaxe and dnvmaxe. Since ba− bc ≤ a and

da− be ≤ a for a ∈Dom and a, b ∈ R+, from one decision epoch to another, the values of x and

y in the state variable (x, y) in (10) go down. Moreover, the boundary condition in (10) depends

only on the sign of x and y. Thus, if the value of the state variable x goes below bwminc but it is

still strictly positive, then without loss of generality, we can bump the value of the state variable x

up to bwminc, because offering any of the products would immediately turn the value of the state

variable x to negative. Similarly, if the value of the state variable y goes below bvminc but is still

strictly positive, then we can bump the value of the state variable y up to bvminc. Lastly, once the

value of x and y in the state variable (x, y) turns negative, we do not need to keep their exact

values, since each component of the state variable can only go down and the boundary condition

at state (x, y) with y < 0 always yields a value function of +∞. Thus, the smallest nonzero values

of x and y in the state variable (x, y)∈Dom2 are, respectively, bwminc and bvminc.

Appendix L: Proof of Lemma 5.5

In this section, we give a proof for Lemma 5.5. We need the next intermedia lemma, where we give

two monotonicity properties of the value functions {Ψk(`, u, z) : `= 0, . . . , n, (u, z)∈Dom2, k ∈M}

computed through the dynamic program in (13). Intuitively speaking, the second one of these

properties states that we can compensate for an increase by a factor of (1+ρ)2 in the state variable

z by an increase by a factor of 1+ρ in the state variable u. This result becomes critical in ultimately

proving the performance guarantee of our FPTAS.

ec26 e-companion to Multinomial Logit Model with Impatient Customers

Lemma L.1 If the value functions {Ψk(j, u, z) : j = 0, . . . , n, (u, z)∈Dom2, k ∈M} are computed

through the dynamic program in (13), then Ψk(j, u, z) is increasing in j, u and z. Furthermore, we

have Ψk(j, (1 + ρ)u, z)≤Ψk(j, u, (1 + ρ)2 z).

Proof: The fact that Ψk(j, u, z) is increasing in j, u and z follows from an induction argument

that is similar to the one in the proof of Lemma J.1. To show that Ψk(j, (1 + ρ)u, z) ≤

Ψk(j, u, (1 + ρ)2 z), we use induction over the decision epochs. Since Ψm+1(j, (1 + ρ)u, z) depends

only on the sign of z and the signs of z and (1 +ρ)2 z are the same, we have Ψm+1(j, (1 + ρ)u, z) =

Ψm+1(j, u, (1 + ρ)2 z). Assuming that Ψk+1(j, (1 + ρ)u, z) ≤ Ψk+1(j, u, (1 + ρ)2 z), we proceed to

showing that Ψk(j, (1 +ρ)u, z)≤Ψk(j, u, (1 +ρ)2 z). We have (1 +ρ)u+V (S)≤ (1 + ρ)du+V (S)e.

Since (1 + ρ)du + V (S)e ∈ Dom, the last inequality implies that d(1 + ρ)u + V (S)e ≤

(1 + ρ)du+V (S)e. In this case, we have

C(S) + Ψk+1

(
` , d(1 + ρ)u+V (S)e ,

⌈
z− λkW (S)

(1 + (1 + ρ)u) (1 + (1 + ρ)u+V (S))

⌉)
≤C(S) + Ψk+1

(
` , (1 + ρ) du+V (S)e ,

⌈
z− λkW (S)

(1 + (1 + ρ)u) (1 + (1 + ρ)u+V (S))

⌉)
≤C(S) + Ψk+1

(
` , du+V (S)e , (1 + ρ)2

⌈
z− λkW (S)

(1 + (1 + ρ)u) (1 + (1 + ρ)u+V (S))

⌉)
, (28)

where the first inequality follows from the fact that Ψk(`, u, z) is increasing in u and the second

inequality follows from the induction argument.

Note that (1 + ρ)2dae ≤ d(1 + ρ)2 ae. If a < 0, then the inequality is trivial. For a ≥ 0, a ≤
1

(1+ρ)2
d(1 + ρ)2ae. Since d(1+ρ)2ae

(1+ρ)2
∈Dom, the last inequality yields dae ≤ 1

(1+ρ)2
d(1 + ρ)2ae. So,

(1 + ρ)2

⌈
z− λkW (S)

(1 + (1 + ρ)u) (1 + (1 + ρ)u+V (S))

⌉
≤
⌈

(1 + ρ)2z− (1 + ρ)2 λkW (S)

(1 + (1 + ρ)u) (1 + (1 + ρ)u+V (S))

⌉
≤
⌈

(1 + ρ)2z− λkW (S)

(1 +u) (1 +u+V (S))

⌉
,

where the second inequality uses the fact that dae is increasing in a. Note that dae is increasing in

a even with the convention that dae=−∞ for a< 0.

Using the chain of inequalities above and the fact that Ψk+1(j, u, z) is increasing in z, we can

bound the expression on the right side of (28) as

C(S) + Ψk+1

(
` , du+V (S)e , (1 + ρ)2

⌈
z− λkW (S)

(1 + (1 + ρ)u) (1 + (1 + ρ)u+V (S))

⌉)
≤C(S) + Ψk+1

(
` , du+V (S)e ,

⌈
(1 + ρ)2z− λkW (S)

(1 +u) (1 +u+V (S))

⌉)
. (29)

By (28) and (29), we have C(S) + Ψk+1

(
` , d(1 + ρ)u+ V (S)e , dz − λkW (S)

(1+(1+ρ)u) (1+(1+ρ)u+V (S))
e
)
≤

C(S) + Ψk+1

(
` , du+V (S)e , d(1 + ρ)2z− λkW (S)

(1+u) (1+u+V (S))
e
)

for all S and `. In this case, minimizing

e-companion to Multinomial Logit Model with Impatient Customers ec27

both sides of the inequality over (`,S) with `≥ j and S ∈Cand(j, `), the inequality is still preserved,

but noting (13), the left side of the inequality gives Ψk(j, (1 + ρ)u, z), whereas the right side gives

Ψk(j, u, (1 + ρ)2 z). Thus, we have Ψk(`, (1 + ρ)u, z)≤Ψk(`, u, (1 + ρ)2 z).

Next, we give a proof for Lemma 5.5.

Proof of Lemma 5.5: Let (Ŝ1, . . . , Ŝm) be the output of the candidate stitching algorithm, z̃ be

the optimal objective value of problem (9), and ẑApp = max{z ∈Dom : Ψ1(0,0, z)≤ b}. Our proof

proceeds in three parts.

Part 1: First, we show that
∑

k∈MC(Ŝk) ≤ b. Noting Steps 1 and 2 in the candidate

stitching algorithm, along with the dynamic program in (13), we have Ψk(ĵk, ûk, ẑk) = C(Ŝk) +

Ψk+1(ĵk+1, ûk+1, ẑk+1). Adding this equality over all k ∈M and noting that we start the candidate

stitching algorithm with ĵ1 = 0, û1 = 0 and ẑ1 = ẑApp, we obtain Ψ1(0,0, ẑApp) =
∑

k∈MC(Ŝk) +

Ψm+1(ĵm+1, ûm+1, ẑm+1). By the initialization of candidate stitching, we have Ψ1(0,0, ẑApp) ≤ b,
in which case, the last equality implies that

∑
k∈MC(Ŝk) + Ψm+1(ĵm+1, ûm+1, ẑm+1) ≤ b. By the

boundary condition of the dynamic program in (13), Ψm+1(ĵm+1, ûm+1, ẑm+1) takes the value +∞
or zero. If we have Ψm+1(ĵm+1, ûm+1, ẑm+1) = +∞, then we get a contradiction to the fact that∑

k∈MC(Ŝk) + Ψm+1(ĵm+1, ûm+1, ẑm+1) ≤ b. Thus, we must have Ψm+1(ĵm+1, ûm+1, ẑm+1) = 0, so

having
∑

k∈MC(Ŝk) + Ψm+1(ĵm+1, ûm+1, ẑm+1)≤ b implies that
∑

k∈MC(Ŝk)≤ b.

Part 2: Second, we show that Rev(Ŝ1, . . . , Ŝm) ≥ ẑApp. By Step 2 of the candidate stitching

algorithm, we have ûk+1 ≥ ûk + V (Ŝk). Adding this inequality over all k = 1, . . . , q− 1 and noting

that û1 = 0 in the initialization of the algorithm, we get ûq ≥
∑q−1

k=1 V (Ŝk). For notational brevity,

we let R̂k =
∑m

q=k

λqW (Ŝq)

(1+
∑q−1
r=1 V (Ŝr)) (1+

∑q
r=1 V (Ŝr))

with the convention that R̂m+1 = 0. We use induction

over the stages to show that R̂k ≥ ẑk for all k = 1, . . . ,m+ 1. By the discussion in the previous

paragraph, Ψm+1(ĵm+1, ûm+1, ẑm+1) = 0, in which case, by the boundary condition in (13), we

must have ẑm+1 ≤ 0. Thus, we have R̂m+1 = 0 ≥ ẑm+1. Assuming that R̂k+1 ≥ ẑk+1, we proceed

to showing that R̂k ≥ ẑk. Noting Step 2 of the candidate stitching algorithm and using the

induction hypothesis, if ẑk+1 ≥ 0, then ẑk− λkW (Ŝk)

(1+ûk) (1+ûk+V (Ŝk))
≤ ẑk+1 ≤ R̂k+1. Also, if ẑk+1 < 0, then

ẑk− λkW (Ŝk)

(1+ûk) (1+ûk+V (Ŝk))
< 0≤ R̂k+1. So, ẑk ≤ R̂k+1 + λkW (Ŝk)

(1+ûk) (1+ûk+V (Ŝk))
in both cases. Thus, we get

R̂k = R̂k+1 +
λkW (Ŝk)

(1 +
∑k−1

q=1 V (Ŝq)) (1 +
∑k

q=1 V (Ŝq))
≥ R̂k+1 +

λkW (Ŝk)

(1 + ûk) (1 + ûk +V (Ŝk))
≥ ẑk,

where we use the fact that ûk ≥
∑k−1

q=1 V (Ŝq). The induction argument is complete, in which case,

we have R̂1 ≥ ẑ1. Noting that R̂1 =Rev(Ŝ1, . . . , Ŝm) and ẑ1 = ẑApp, the result follows.

Part 3: Third, we show that ẑApp ≥ z̃/(1 + ρ)3m+1. Let (S̃1, . . . , S̃m, j̃1, . . . , j̃m) be an optimal

solution to problem (9). For notational brevity, we let C̃k =
∑m

q=kC(S̃q), ũk =
∑k−1

q=1 V (S̃q) and

ec28 e-companion to Multinomial Logit Model with Impatient Customers

z̃k =
∑m

q=k

λqW (S̃q)

(1+ũq)(1+ũq+1)
with the convention that C̃m+1 = 0, ũ1 = 0 and z̃m+1 = 0. We use

induction over the stages to show that Ψk(j̃k, ũk, z̃k/(1 + ρ)3(m+1−k))≤ C̃k. We have z̃m+1 = 0 and

C̃m+1 = 0, in which case, noting the boundary condition in (13), we have Ψm+1(j̃m+1, ũm+1, z̃m+1) =

Ψm+1(j̃m+1, ũm+1,0) = 0 = C̃m+1. Assuming that Ψk+1(j̃k+1, ũk+1, z̃k+1/(1 + ρ)3(m−k)) ≤ C̃k+1, we

proceed to showing that Ψk(j̃k, ũk, z̃k/(1 + ρ)3(m+1−k))≤ C̃k. We have

(1 + ρ)2

⌈
z̃k

(1 + ρ)3(m+1−k)
− λkW (S̃k)

(1 + ũk) (1 + ũk+1)

⌉
≤ (1 + ρ)3

(
z̃k

(1 + ρ)3(m+1−k)
− λkW (S̃k)

(1 + ũk) (1 + ũk+1)

)
(a)
=

z̃k+1

(1 + ρ)3(m−k)
+

λkW (S̃k)

(1 + ρ)3(m−k) (1 + ũk) (1 + ũk+1)
− (1 + ρ)3 λkW (S̃k)

(1 + ũk) (1 + ũk+1)

(b)

≤ z̃k+1

(1 + ρ)3(m−k)
, (30)

where (a) follows from the fact that z̃k = z̃k+1 + λkW (S̃k)

(1+ũk) (1+ũk+1)
by the definition of z̃k and (b) holds

because we have k≤m.

In (13), the action (j̃k+1, S̃k) is feasible when the state of the system at decision epoch k

is (j̃k, ũk, z̃k/(1 + ρ)3(m+1−k)). In particular, since (S̃1, . . . , S̃m, j̃1, . . . , j̃m) is a feasible solution to

problem (9), we have j̃k+1 ≥ j̃k and S̃k ∈Cand(j̃k, j̃k+1). Since, the action (j̃k+1, S̃k) is feasible to

the minimization problem in (13) with (j, u, z) = (j̃k, ũk, z̃k/(1 + ρ)3(m+1−k)), we get

Ψk

(
j̃k, ũk,

z̃k
(1 + ρ)3(m+1−k)

)
≤ C(S̃k) + Ψk+1

(
j̃k+1 , dũk +V (S̃k)e ,

⌈
z̃k

(1 + ρ)3(m+1−k)
− λkW (S̃k)

(1 + ũk) (1 + ũk +V (S̃k))

⌉)
= C(S̃k) + Ψk+1

(
j̃k+1 , dũk+1e ,

⌈
z̃k

(1 + ρ)3(m+1−k)
− λkW (S̃k)

(1 + ũk) (1 + ũk+1)

⌉)
(c)

≤ C(S̃k) + Ψk+1

(
j̃k+1 , (1 + ρ) ũk+1 ,

⌈
z̃k

(1 + ρ)3(m+1−k)
− λkW (S̃k)

(1 + ũk) (1 + ũk+1)

⌉)
(d)

≤ C(S̃k) + Ψk+1

(
j̃k+1 , ũk+1 , (1 + ρ)2

⌈
z̃k

(1 + ρ)3(m+1−k)
− λkW (S̃k)

(1 + ũk) (1 + ũk+1)

⌉)
(e)

≤ C(S̃k) + Ψk+1

(
j̃k+1 , ũk+1 ,

z̃k+1

(1 + ρ)3(m−k)

)
(f)

≤ C(S̃k) + C̃k+1 = C̃k,

where (c) follows from the fact that Ψk(`, u, z) is increasing in u and (1 +ρ)u≥ due, (d) follows by

the second part of Lemma L.1, (e) follows by noting the fact that Ψk(j, u, z) is increasing in z and

using the inequality in (30), and (f) is by the induction hypothesis. Thus, the induction argument

is complete, so it follows that Ψk(j̃k, ũk, z̃k/(1 + ρ)3(m+1−k))≤ C̃k.

By the definition of z̃k and ũk, z̃1 =
∑

k∈M
λkW (S̃k)

(1+ũk)(1+ũk+1)
=
∑

k∈M
λkW (S̃k)

(1+
∑k−1
q=1 V (S̃q))(1+

∑k
q=1 V (S̃q))

=

Rev(S̃1, . . . , S̃m) = z̃, where the last equality uses the fact that (S̃1, . . . , S̃m, j̃1, . . . , j̃m) is an optimal

e-companion to Multinomial Logit Model with Impatient Customers ec29

solution to problem (9), so z̃1 = z̃. Thus, using the inequality Ψk(j̃k, ũk, z̃k/(1 + ρ)3(m+1−k)) ≤ C̃k
with k = 1, we get Ψ1(j̃1,0, z̃/(1 + ρ)3m) ≤ C̃1 ≤ b, where the last inequality uses the fact that

(S̃1, . . . , S̃m, j̃1, . . . , j̃m) is an optimal solution to problem (9) so that C̃1 =
∑

k∈MC(S̃k)≤ b. Since

Ψk(j, u, z) is increasing in j and z by Lemma L.1, we obtain

Ψ1(0,0, bz̃c/(1 + ρ)3m)≤Ψ1(j̃1,0, z̃/(1 + ρ)3m)≤ b,

which implies that bz̃c/(1 + ρ)3m ∈ Dom is a feasible solution to the problem

ẑApp = max{z ∈Dom : Ψ1(0,0, z)≤ b}. Therefore, ẑApp ≥ bz̃c/(1 + ρ)3m ≥ z̃/(1 + ρ)3m+1.

Appendix M: Bound on the State Variable for Combining Candidate Assortments

To solve the dynamic program in (13), we argue that that the largest values of u and z that we

need to consider in the state variable (j, u, z)∈N ×Dom2 are, respectively, d2nvmaxe and dnwmaxe.
Similarly, the smallest nonzero values of u and z that we need to consider in the state variable

(j, u, z) ∈N ×Dom2 are, respectively, bvminc and bλm wmin
(1+2nvmax)2

c. In particular, a simple lemma,

given as Lemma M.1 at the end of this section, shows that if we compute {ûk : k= 1, . . . ,m+ 1} as

ûk+1 = dûk+V (Sk)e with û1 = 0 and Sk∩Sq =∅ for all k 6= q, then ûk ≤ 2nvmax for all k ∈M. Thus,

the value of u in the state variable (j, u, z) in the dynamic program in (13) is at most d2nvmaxe.
A strictly positive value of u in the state variable (j, u, z) is at least bvminc, as the initial value of

this state variable is zero and the preference weight of any product is at least vmin. Therefore, the

desired upper and lower bounds for u in the state variable (j, u, z) follow.

If the initial state variable (j, u, z) satisfies z > nwmax, then since
∑

k∈MW (Sk)≤ nwmax for any

(S1, . . . , Sm) with Sk ∩ Sq = ∅ for all k 6= q, no matter which assortments we offer, the final state

variable (j, u, z) satisfies z > 0, in which case the value function Ψ1(0,0, z) takes the value +∞.

Thus, we do not need to consider the values of z that exceed nwmax in the state variable (j, u, z).

So, we can assume that the value of z in the state variable (j, u, z) is at most dnwmaxe. Finally, if

the value of z in the state variable goes below bλmwmin/(1 + 2nvmax)2c but is still strictly positive,

then without of loss generality, we can bump the value of z up to bλmwmin/(1 + 2nvmax)2c, since

offering any nonempty candidate assortment would immediately turn the value of the state variable

to negative. Therefore, it follows that we can assume that a strictly positive value of z in the state

variable (j, u, z) is at least bλmwmin/(1 + 2nvmax)2c.

We used the next lemma in our discussion earlier in this section. Recall that we choose the

accuracy parameter for the geometric grid as ρ= 1
8(3m+1)

ε for ε∈ (0,1), so ρ≤ 1
2m

.

Lemma M.1 For ρ≤ 1
2m

, if we compute {ûk : k= 1, . . . ,m+ 1} as ûk+1 = dûk+V (Sk)e with û1 = 0

and Sk ∩Sq =∅ for all k 6= q, then ûm+1 ≤ 2nvmax.

ec30 e-companion to Multinomial Logit Model with Impatient Customers

Proof: We use induction to show that ûk ≤ (1 + ρ)k−1 (V (S1) + . . .+ V (Sk−1)). For k = 1, we have

û1 = 0. Therefore, the result holds for k= 1. Assuming that ûk ≤ (1+ρ)k−1 (V (S1)+ . . .+V (Sk−1)),

we proceed to showing that ûk+1 ≤ (1 + ρ)k (V (S1) + . . .+V (Sk)). We have

ûk+1 = dûk +V (Sk)e ≤ (1 + ρ) (ûk +V (Sk))

≤ (1 + ρ)
(

(1 + ρ)k−1 (V (S1) + . . .+V (Sk−1)) +V (Sk)
)

≤ (1 + ρ)k(V (S1) + . . .+V (Sk−1) +V (Sk)),

which completes the induction argument. Thus, we have ûm+1 ≤ (1 + ρ)m(V (S1) + . . .+ V (Sm))≤

(1 + ρ)m nvmax. In this case, the result follows because (1 + ρ)m ≤
(

1 + 1
2m

)m
≤ exp(1/2)≤ 2.

Appendix N: Assortment Optimization under a Cardinality Constraint

In this section, we consider a version of the Capacitated problem, where each product occupies

one unit of space. Therefore, we can express the constraint
∑

k∈MC(Sk)≤ b as
∑

k∈M |Sk| ≤ b, in

which case, we ensure that the total number of products offered over all stages does not exceed

b. Note that b is an integer without loss of generality. Otherwise, we can round it down to the

nearest integer. In this section, we give three results. First, we give an algorithm that finds an

exact solution. The running time of this algorithm is polynomial in the number of products, but

exponential in the number of stages. Second, we give a pseudo polynomial-time algorithm that

finds an exact solution. Assuming that the preference weight of the products take on integer values,

the running time of this algorithm is polynomial in the number of products, number of stages,

and vmax. Third, we give an FPTAS to get a (1− ε)-approximate solution, whose running time is

polynomial in all of the input parameters and 1/ε. Next, we go into the details of each of these

results, compare them with each other and explain their common components.

First, we show that we can obtain an optimal solution by checking the expected revenue from

O(bm n3m−1) possible solutions. The running time of this approach is polynomial in the number

of products for a fixed number of stages. In general, since each one of as many as b products in

an optimal solution can be offered in one of the m stages, the number of all possible solutions

to the Capacitated problem under a cardinality constraint is O(
(
n
b

)
bm) = O(nb bm), which is

exponential in the number of products even for a fixed number of stages. Second, treating the

preference weights as the problem input, if all of the preference weights take on integer values, then

we give a pseudo polynomial-time algorithm that obtains an optimal solution in O(vmaxmn
5b2)

operations. This algorithm is based on a dynamic programming formulation of the problem. If the

preference weights take on rational values, then we can ensure that the preference weights take on

integer values by scaling all of the preference weights by a constant, since the choice probabilities

e-companion to Multinomial Logit Model with Impatient Customers ec31

do not change by doing so. Third, by discretizing the state variable in the dynamic program that

we use in the pseudo polynomial-time algorithm through a geometric grid, we obtain an FPTAS.

Our FPTAS obtains a (1− ε)-approximate solution in O(m2 n4 b2 log(nvmax/vmin)/ε) operations.

All of these three results, the exact algorithm whose running time is exponential in the number

of stages, the pseudo polynomial-time algorithm and the FPTAS, are based on constructing a

collection of candidate assortments for each stage so that an optimal assortment to offer in a

stage lies within this collection. Therefore, we start by focusing on constructing the collections

of candidate assortments for the different stages. Throughout this section, when we refer to the

Capacitated problem, we refer to the version where each product occupies one unit of space, so

we have a constraint on the number of offered products.

Constructing Collections of Candidate Assortments:

Note that Lemma 5.1 continues to hold when each product occupies one unit of space.

Thus, there exists an optimal solution (S∗1 , . . . , S
∗
m) such that S∗k ⊆ {j∗k + 1, . . . , j∗k+1} and

S∗q ∩{j∗k + 1, . . . , j∗k+1}=∅ for all q 6= k, for some j∗1 , . . . , j
∗
m+1 that satisfy 0 = j∗1 ≤ j∗2 ≤ . . .≤ j∗m ≤

j∗m+1 = n. To construct the collection of candidate assortments for stage k, we proceed under the

assumption that we know the values of j∗k , j∗k+1, | ∪q 6=k S∗q | along with V (S∗q) and W (S∗q) for all

q 6= k. In this case, since the assortment that we offer in stage k affects the expected revenue in

stages k, . . . ,m, we can recover an optimal assortment to offer in stage k by solving

max
S ⊆ {j∗k + 1, . . . , j∗k+1},
|S| ≤ b− |∪q 6=k S∗q |

{
λkW (S)

(1 +
∑k−1

q=1 V (S∗q)) (1 +
∑k−1

q=1 V (S∗q) +V (S))

+
m∑

`=k+1

λ`W (S∗`)

(1 +
∑`−1

q=1,q 6=k V (S∗q) +V (S)) (1 +
∑`

q=1,q 6=k V (S∗q) +V (S))

}
,

where we use the fact that if we know the value of |∪q 6=kS∗q |, then we can offer at most b−|∪q 6=kS∗q |

products in stage k.

For notational brevity, we let b∗k = b−|∪q 6=k S∗q |, f∗` = λ`W (S∗`)/V (S∗`) and u∗` =
∑`

q=1,q 6=k V (S∗q).

We write the objective function of the problem above as

λkW (S)

(1 +u∗k−1) (1 +u∗k−1 +V (S))
+

m∑
`=k+1

f∗`

{
1

1 +u∗`−1 +V (S)
− 1

1 +u∗` +V (S)

}

=
λkW (S)

(1 +u∗k−1) (1 +u∗k−1 +V (S))
+

m∑
`=k+1

(f∗` − f∗`+1)

{
1

1 +u∗k−1 +V (S)
− 1

1 +u∗` +V (S)

}
with the convention that f∗m+1 = 0. The equality above follows by noting that the sum on

the left side of the equality is equivalent to f∗k+1
1

1+u∗
k

+V (S)
+
∑m

`=k+1(f∗`+1 − f∗`) 1
1+u∗

`
+V (S)

=

ec32 e-companion to Multinomial Logit Model with Impatient Customers∑m

`=k+1(f∗` − f∗`+1) 1
1+u∗

k
+V (S)

−
∑m

`=k+1(f∗` − f∗`+1) 1
1+u∗

`
+V (S)

, along with the fact that u∗k = u∗k−1. In

this case, to recover an optimal assortment to offer in stage k, we can solve the problem

max
S ⊆ {j∗k + 1, . . . , j∗k+1},

|S| ≤ b∗k

{
λkW (S)

(1 +u∗k−1) (1 +u∗k−1 +V (S))

+
m∑

`=k+1

(f∗` − f∗`+1)

{
1

1 +u∗k−1 +V (S)
− 1

1 +u∗` +V (S)

}}
. (31)

In the next lemma, we show that we can efficiently construct a collection of candidate assortments

that includes an optimal solution to problem (31) for any values of {(f∗` , u∗`) : `∈M, ` 6= k}.

Lemma N.1 Given j∗k , j∗k+1 and b∗k, there exists a collection of candidate assortments

Candk(j
∗
k , j
∗
k+1, b

∗
k) with |Candk(j

∗
k , j
∗
k+1, b

∗
k)| = O(n2) that includes an optimal solution to

problem (31) for any values of {(f∗` , u∗`) : `∈M, ` 6= k}.

Proof: Let g∗` = (f∗` − f∗`+1) (u∗` − u∗k−1). Multiplying the objective function of problem (31) by the

constant 1 +u∗k−1, we can obtain an optimal assortment to offer in stage k by solving

max
S ⊆ {j∗k + 1, . . . , j∗k+1},

|S| ≤ b∗k

{
1

1 +u∗k−1 +V (S)

{
λkW (S) + (1 +u∗k−1)

m∑
`=k+1

g∗`
1 +u∗` +V (S)

}}
.

Letting t∗ be the optimal objective value of the problem above, t∗ is no smaller than the objective

function of the problem above at each S such that S ⊆ {j∗k + 1, . . . , j∗k+1} and |S| ≤ b∗k.

Therefore, letting G = {S ⊆ {j∗k + 1, . . . , j∗k+1} : |S| ≤ b∗k}, we can obtain an optimal solution to

the problem above by using the so-called dual formulation, which is given by

min

{
t : t ≥ 1

1 +u∗k−1 +V (S)

{
λkW (S) + (1 +u∗k−1)

m∑
`=k+1

g∗`
1 +u∗` +V (S)

}
∀S ∈ G

}

= min

{
t : t ≥ λkW (S)

1 +u∗k−1

− tV (S)

1 +u∗k−1

+
m∑

`=k+1

g∗`
1 +u∗` +V (S)

∀S ∈ G

}

= min

{
t : t ≥ max

S∈G

{
λkW (S)

1 +u∗k−1

− tV (S)

1 +u∗k−1

+
m∑

`=k+1

g∗`
1 +u∗` +V (S)

}}

where the first equality follows by multiplying both sides of the constraint in the first minimization

problem above by 1 +u∗k−1 +V (S) and arranging the terms.

By the discussion so far, if t∗ is an optimal solution to the last minimization problem above,

then we can recover an optimal assortment to offer in stage k by replacing t in the maximization

e-companion to Multinomial Logit Model with Impatient Customers ec33

problem on the right side of the constraint with t∗ and solving this maximization problem. Thus,

we can obtain an optimal assortment to offer in stage k by solving the problem

max
S∈G

{
λkW (S)

1 +u∗k−1

− tV (S)

1 +u∗k−1

+
m∑

`=k+1

g∗`
1 +u∗` +V (S)

}
(32)

for some value of t. We will construct a collection of O(n2) candidate assortments that includes an

optimal solution to the problem above for any values of {(g∗` , u∗`) : `∈M, ` 6= k} and t.

Note that λkW (S) = λk
∑

i∈S ri vi and tV (S) = t
∑

i∈S vi. In this case, using the decision variables

x= (x1, . . . , xn) and noting the definition of G, we write problem (32) equivalently as

max
x∈{0,1}n

{
λk

1 +u∗k−1

∑
i∈N

ri vi xi−
t

1 +u∗k−1

∑
i∈N

vi xi +
m∑

`=k+1

g∗`
1 +u∗` +

∑
i∈N vi xi

:
∑
i∈N

xi ≤ b∗, xi = 0 ∀ i 6∈ {j∗k + 1, . . . , j∗k+1}

}
. (33)

If g∗` ≥ 0, then the objective function of the problem above is convex in x, in which case, an optimal

solution occurs at an extreme point, so we can relax x∈ {0,1}n to x∈ [0,1]n.

Indeed, we have g∗` ≥ 0. Note that W (S∗`)/V (S∗`) is the weighted average of the revenues of the

products in S∗` . By Lemma 5.1, the revenues of the products in S∗` are larger than those of the

products in S∗`+1, so we have W (S∗`)/V (S∗`)≥W (S∗`+1)/V (S∗`+1). Furthermore, we have λ` ≥ λ`+1,

in which case, we get f∗` = λ`W (S∗`)/V (S∗`)≥ λ`+1W (S∗`+1)/V (S∗`+1) = f∗`+1. We have u∗` ≥ u∗k−1 for

all `≥ k+ 1 as well, so g∗` = (f∗` − f∗`+1) (u∗` − u∗k−1)≥ 0. We solve problem (33) with x ∈ [0,1]n in

two stages. First, intuitively speaking, we guess the value of
∑

i∈N vi xi. Second, we find solution

x that maximizes the objective function, while satisfying our guess.

Using w to denote our guess of
∑

i∈N vi xi, we can write the last problem in two stages. In

particular, problem (33) is equivalent to the problem

max
w∈R+

max
x∈[0,1]n

{
λk

1 +u∗k−1

∑
i∈N

ri vi xi−
tw

1 +u∗k−1

+
m∑

`=k+1

g∗`
1 +u∗` +w

:
∑
i∈N

xi ≤ b∗,
∑
i∈N

vi xi ≤w, xi = 0 ∀ i 6∈ {j∗k + 1, . . . , j∗k+1}

}

= max
w∈R+

{
− tw

1 +u∗k−1

+
m∑

`=k+1

g∗`
1 +u∗` +w

+
λk

1 +u∗k−1

max
x∈[0,1]n

{∑
i∈N

ri vi xi

:
∑
i∈N

xi ≤ b∗,
∑
i∈N

vi xi ≤w, xi = 0 ∀ i 6∈ {j∗k + 1, . . . , j∗k+1}

}}
. (34)

The first problem above is equivalent to problem (33) since g∗` ≥ 0, in which case, the objective

function of the first problem above is decreasing in w. Therefore, w takes the value
∑

i∈N vi xi

ec34 e-companion to Multinomial Logit Model with Impatient Customers

in an optimal solution to the first problem above. Considering the second problem above, the

inner maximization problem is a linear program with two constraints. We let Q(w) be the optimal

objective value and x∗(w) be an optimal solution of this linear program as a function of w. It is

a standard result in linear programming theory that Q(w) is a piecewise linear function of w with

O(n2) points of nondifferentiability. Furthermore, these points of nondifferentiability for Q(·) do

not depend on the values of {(f∗` , u∗`) : `∈M, ` 6= k} and t.

Letting T =
∑

i∈N vi,
∑

i∈N vi xi ∈ [0, T]. We use {ŵs : s ∈ Q} to denote the points of

nondifferentiability of Q(·) with the convention that 0, T ∈Q. We write problem (34) as

max
w∈R+

{
− tw

1 +u∗k−1

+
m∑

`=k+1

g∗`
1 +u∗` +w

+
λk

1 +u∗k−1

Q(w)

}

= max
s∈Q

{
− t ŵs

1 +u∗k−1

+
m∑

`=k+1

g∗`
1 +u∗` + ŵs

+
λk

1 +u∗k−1

Q(ŵs)

}
,

where the equality holds since the objective function of the first problem above is convex in w, in

which case, an optimal solution must occur at a point of nondifferentiability.

Thus, the collection {x∗(ŵs) : s ∈Q} with |Q|=O(n2) includes an optimal solution to problem

(32) for any value of {(g∗` , u∗`) : `∈M, ` 6= k} and t.

The main computational effort in constructing the collection of candidate assortments

Candk(jk, jk+1, bk) is to solve a parametric linear program with O(n2) points of nondifferentiability.

A Polynomial-Time Algorithm for Fixed Number of Stages:

We can solve the Capacitated problem as follows. We construct the collection of candidate

assortments Candk(jk, jk+1, bk) for all jk, jk+1 ∈ N , bk ≤ b, k ∈M. There are O(nm−1) choices of

(j1, . . . , jm) such that 0 = j1 ≤ j2 ≤ . . . ≤ jm ≤ jm+1 = n, as well as O(bm) choices of (b1, . . . , bm)

such that
∑

k∈M bk = b. For each choice of (j1, . . . , jm) and (b1, . . . , bm), since |Candk(jk, jk+1, bk)|=

O(n2), there are O(n2m) ways of picking an assortment from the collection for each stage to

construct a possible solution to the Capacitated problem. Thus, we get the next result.

Theorem N.2 We can construct a collection of O(bm n3m−1) possible solutions to the

Capacitated problem that is guaranteed to include an optimal solution to this problem. Letting

LP be the number of operations to solve a parametric linear program with O(n2) points of

nondifferentiability, constructing these solutions requires O(bn2LP+ bm n3m−1) operations.

A Pseudo Polynomial-Time Algorithm:

Noting the objective function of the Capacitated problem, knowing the value of j∗k such that

S∗1 ∪ . . . ∪ S∗k−1 ⊆ {1, . . . , j∗k}, the value of b∗k such that |S∗1 ∪ . . . ∪ S∗k−1| = b∗k, and the value of

e-companion to Multinomial Logit Model with Impatient Customers ec35

u∗k−1 such that
∑k−1

q=1 V (S∗q) = u∗k−1 is enough to compute the optimal expected revenue in stages

k + 1, . . . ,m. Thus, we can solve the Capacitated problem by using dynamic programming.

The decision epochs are the stages. The state variable at decision epoch k is (jk, bk, uk−1) such

that the assortments S1, . . . , Sk−1 offered in the previous stages satisfy S1 ∪ . . .∪Sk−1 ⊆ {1, . . . , jk},

|S1 ∪ . . .∪Sk−1|= bk and
∑k−1

q=1 V (Sq) = uk−1. The action at decision epoch k is the value of jk+1 such

that the assortment offered in stage k satisfies Sk ⊆ {jk + 1, . . . , jk+1}, along with the assortment

Sk ∈∪bd=0Candk(jk, jk+1, d) offered in stage k. So, we consider the dynamic program

Jk(j, c, u) = max
(`,S) : `∈ {j, . . . , n}

S ∈∪b
d=0Candk(j, `, d)

{
λkW (S)

(1 +u) (1 +u+V (S))
+Jk+1(` , c+ |S| , u+V (S))

}

with the boundary condition that Jm+1(j, c, u) =−∞ if c > b. If c≤ b, then Jm+1(j, c, u) = 0. Solving

the dynamic program above requires constructing the collections of candidate assortments a priori.

Since |Candk(j, `, d)|=O(n2), at each decision epoch, there are O(vmax bn
2) possible values of

the state variable and O(bn3) possible values of the action. So, we have the next result.

Theorem N.3 Letting LP be as in Theorem N.2, we can obtain an optimal solution to the

Capacitated problem in O(bn2LP+ vmaxmn5 b2) operations.

Fully Polynomial-Time Approximation Scheme:

To obtain an FPTAS, we discretize the state variable in the dynamic program that we use to

construct a pseudo polynomial-time algorithm. We consider the dynamic program

Ψk(j, c, u) = max
(`,S) : `∈ {j, . . . , n}

S ∈∪b
d=0Candk(j, `, d)

{
λkW (S)

(1 +u) (1 +u+V (S))
+ Ψk+1(` , c+ |S| , du+V (S)e)

}

with the boundary condition that Ψm+1(j, c, u) =−∞ if c > b. If c≤ b, then Ψm+1(j, c, u) = 0. In

the dynamic program above, the roundup operator d·e is as in Section 5.1.

Building on the dynamic program above, we can give an FPTAS by using an argument

similar to the one in Section 5. In particular, once we compute the value functions

{Ψk(j, c, u) : j = 0, . . . , n+ 1, c= 0, . . . , b, u∈Dom, k ∈M} through the dynamic program above,

starting from state (0,0,0), we follow the sequence of optimal state-action pairs to obtain the

assortments (Ŝ1, . . . , Ŝm) over m stages. We can show that expected revenue from the assortments

(Ŝ1, . . . , Ŝm) deviate from the optimal expected revenue by at most a factor of (1 + ρ)2m, where ρ

is the size of the geometric grid. For given ε∈ (0,1), setting ρ= ε/(2m), we get the next result.

Theorem N.4 Letting LP be as in Theorem N.2, for each ε ∈ (0,1), we can obtain a (1− ε)-

approximate solution to the Capacitated problem in O(bn2LP+ m2 n4 b2

ε
log(nvmax

vmin
)) operations.

ec36 e-companion to Multinomial Logit Model with Impatient Customers

P0 b= 1 b= 3 b= 5 b= 10 b= 20

0.5 251.65 126.49 108.12 86.39 73.53
0.7 281.75 143.99 119.20 90.04 74.66
0.9 278.77 143.25 117.72 85.93 70.85

Table EC.3 CPU seconds to estimate the parameters of our choice model.

Appendix O: Preprocessing the Dataset from Expedia

We explain our approach for preprocessing the dataset from Expedia and give a full description

of the columns. The raw dataset includes about ten million rows and 54 columns. In some of the

search queries, the price is given as the total amount over the whole length of the stay, whereas

in some others, the price is given as the amount per night. It is not possible to reliably tell which

approach is used in each search query. To avoid ambiguity, we focused our attention on the search

queries for a single night stay and dropped the remaining search queries. Furthermore, we dropped

the columns for which the entries are missing for more than 25% of the rows. Considering the

remaining columns, we dropped the search queries for which the entries were missing in one of

the remaining columns. Lastly, some rows in the dataset included entries that are too large or

too small. We dropped all search queries which had an entry in a column that falls outside the

0.5-th and 99.5-th percentile band of the entries in the corresponding column. After preprocessing

the dataset, we end up with 595,965 rows representing 34,561 search queries and 15 columns. We

describe the first three columns in the main text.

The remaining 12 columns give the star rating and the average review score for the hotel, an

indicator for whether the hotel is part of a chain, two location desirability scores, the average price

of the hotel over the last trading period, the displayed price, an indicator for whether the hotel is

on promotion, the number of days until the day of stay, the number of adults and children in the

search query, and an indicator for whether the stay is over the weekend.

Appendix P: Running Time for Fitting the Choice Models

We used the routine fmincon in Matlab to maximize the log-likelihood functions for both choice

models under consideration. In Table EC.3, we give the average CPU seconds to estimate the

parameters of our multinomial logit model with impatient customers for different values of P0

and b, where the average is computed over the 50 datasets. We observe that the CPU seconds

to estimate the parameters of our choice model increase as b gets smaller so that we have more

stages in the choice model. For a fixed value of b, the CPU seconds showed less than 20% variation

from one dataset to another. For comparison purposes, we note that the average CPU seconds to

estimate the parameters of the standard multinomial logit model is 18.34 seconds.

e-companion to Multinomial Logit Model with Impatient Customers ec37

Appendix Q: Upper Bound for Joint Pricing and Assortment Optimization

We give an upper bound on the optimal objective value of the Pricing-Assortment problem. For

given assortments (S1, . . . , Sm) and no-purchase probabilities q satisfying qk−1 ≥ qk for all k ∈M,

the expected revenue is given by (5). Making its dependence on the assortments explicit, we use

Π̂(q, S1, . . . , Sm) to denote the expected revenue in (5). We construct an upper bound on the

expected revenue by treating
∑

i∈Sk
eαi in (5) as a continuous quantity.

Specifically, letting T =
∑

i∈N e
αi , for each (S1, . . . , Sm) ∈ F , we have

∑
k∈M

∑
i∈Sk

eαi ≤ T . In

this case, using the decision variables x= (x1, . . . , xm), by (5), we have

Π̂(q, S1, . . . , Sm) ≤ 1

β
max
x∈Rm+

{∑
k∈M

λk (qk−1− qk)
{

logxk− log

(
1

qk
− 1

qk−1

)}
:
∑
k∈M

xk ≤ T

}
,

where we use the fact that (
∑

i∈S1 e
αi , . . . ,

∑
i∈Sm e

αi) is a feasible but not necessarily an optimal

solution to the problem on the right side above.

Using the Lagrange multiplier α≥ 0, we relax the constraint
∑

k∈M xk ≤ T . Thus, for each α≥ 0,

we can upper bound the optimal objective value of the problem on the right side above by

1

β
max
x∈Rm+

{∑
k∈M

λk (qk−1− qk)
{

logxk− log

(
1

qk
− 1

qk−1

)}
−
∑
k∈M

αxk +αT

}
.

This problem decomposes by the stages. By the first-order condition for the problem

maxxk∈R+
λk (qk−1− qk) logxk−αxk, the optimal value of xk is λk (qk−1− qk)/α.

Plugging the optimal value of xk into the objective function of the problem presented immediately

above, the optimal objective value of the problem is

1

β

∑
k∈M

λk (qk−1− qk)
{

log
λk (qk−1− qk)

α
− log

(
1

qk
− 1

qk−1

)
− 1

}
+
αT

β
.

By the discussion so far, for any α ≥ 0, the quantity shown above provides an upper bound on

Π̂(q, S1, . . . , Sm), as long as (S1, . . . , Sm)∈F and qk−1 ≥ qk for all k ∈M. We simplify this quantity

by noting that log
λk (qk−1−qk)

α
− log(1

qk
− 1

qk−1
)− 1 = log(qk−1 qk) + log λk

α
− 1. Thus, we can upper

bound the optimal expected revenue in the Pricing-Assortment problem as

max
(q,S1,...,Sm)∈Rm+×F

{
Π̂(q, S1, . . . , Sm) : qk−1 ≥ qk ∀k ∈M

}
≤ 1

β
max
q∈Rm+

{∑
k∈M

λk (qk−1− qk) (log(qk−1 qk) + log λk
α
− 1) : qk−1 ≥ qk ∀k ∈M

}
+
αT

β
. (35)

In the problem shown on the right side above, intuitively speaking, only the no-purchase

probabilities in two successive stages k and k − 1 interact, which indicates that we can solve

ec38 e-companion to Multinomial Logit Model with Impatient Customers

this problem using dynamic programming. To obtain a dynamic program with a finite number of

possible states, we discretize the state variable. It is never optimal to charge negative prices in

the joint pricing and assortment problem, since dropping a product with a negative price always

increases the expected revenue. Thus, we can lower bound the no-purchase probability in any stage

as qk(ρ) = 1/(1 + V̂k(ρ)) = 1/(1 +
∑

i∈Sk
eαi−β ρk)≥ 1/(1 +

∑
i∈N e

αi) = 1
1+T

. We divide the interval

[1
1+T

,1] into L+ 1 subintervals using ν0, . . . , νL+1 that satisfy 1
1+T

= ν0 < ν1 < . . . < νL < νL+1 = 1.

Let Gα
k (p, r) be such that Gα

k (p, r)≥ λk (qk−1− qk) (log(qk−1 qk) + log λk
α
−1) all qk−1 ∈ [νp, νp+1] and

qk ∈ [νr, νr+1]. Coming up with such an upper bound Gα
k (p, r) is not difficult. The first derivatives

of (qk−1 − qk) log(qk−1 qk) with respect to qk−1 and qk are, respectively, negative and positive, so

(qk−1− qk) log(qk−1 qk) is decreasing in qk−1 and increasing in qk Thus, if log λk
α
− 1≥ 0, then we

set Gα
k (p, r) = λk (νp− νr+1) log(νp νr+1) +λk (νp+1− νr) (log λk

α
− 1). If log λk

α
− 1 < 0, then we set

Gα
k (p, r) = λk (νp−νr+1) log(νp νr+1)+λk (νp−νr+1) (log λk

α
−1). In our dynamic program, we focus

on the possible intervals that can include the no-purchase probabilities (q1, . . . , qm). The decision

epochs are the stages. The state at decision epoch k is the interval that includes qk−1. The action at

decision epoch k is the interval that includes qk. Since the no-purchase probabilities in problem (35)

satisfy qk−1 ≥ qk, we impose the constraint that the interval that includes qk should not lie to the

right of the interval that includes qk−1. Thus, we consider the dynamic program

Jαk (p) = max
r∈{0,...,p}

{
Gα
k (p, r) +Jαk+1(r)

}
(36)

with the boundary condition that Jαm+1(p) = αT . Next, we show that 1
β
Jα1 (L) is an upper bound

on the optimal objective value of the Pricing-Assortment problem.

Proposition Q.1 For each α≥ 0, 1
β
Jα1 (L) is an upper bound on the optimal expected revenue of

the Pricing-Assortment problem.

Proof: By the discussion earlier in this section, it is enough to show that Jα1 (L) is an upper bound

on the optimal objective value of the problem

max
q∈Rm+

{∑
k∈M

λk (qk−1− qk) (log(qk−1 qk) + log λk
α
− 1) : qk−1 ≥ qk ∀k ∈M

}
+αT.

Let q∗ be an optimal solution to the problem above and p∗k be such that q∗k ∈ [νp∗
k
, νp∗

k
+1]. Since

q∗k−1 ≥ q∗k, we have p∗k−1 ≥ p∗k. Also, since q∗0 = 1, we have p∗0 =L.

Let Zk =
∑m

`=k λ` (q∗`−1 − q∗`) (log(q∗`−1 q
∗
`) + log λ`

α
− 1) + αT with Zm+1 = αT . We use induction

over the stages to show that Jαk (p∗k−1)≥Zk. Since Jαm+1(p) = αT , the result holds for stage m+ 1.

Assuming that Jαk+1(p∗k)≥Zk+1, we proceed to showing that Jαk (p∗k−1)≥Zk. Since p∗k ≤ p∗k−1, when

e-companion to Multinomial Logit Model with Impatient Customers ec39

computing Jαk (p∗k−1) though the dynamic program in (36), p∗k is a feasible but not necessarily an

optimal decision. Therefore, we get

Jαk (p∗k−1) ≥ Gα
k (p∗k−1, p

∗
k) +Jαk+1(p∗k)

≥ λk (q∗k−1− q∗k) (log(q∗k−1 q
∗
k) + log λk

α
− 1) +Zk+1 = Zk,

where the second inequality uses the fact that Jαk+1(p∗k) ≥ Zk+1 by the induction hypothesis,

along with the fact that Gα
k (p, r)≥ λk (qk−1 − qk) (log(qk−1 qk) + log λk

α
− 1) for all qk−1 ∈ [νp, νp+1]

and qk ∈ [νr, νr+1] by the definition of Gα
k (p, r), as well as noting that q∗k−1 ∈ [νp∗

k−1
, νp∗

k−1
+1] and

q∗k ∈ [νp∗
k
, νp∗

k
+1]. Thus, the induction argument is complete. Therefore, we have Jα1 (L) = Jα1 (p∗0)≥

Z1, in which case, the desired result follows by observing that Z1 is the optimal objective value of

the problem at the beginning of the proof.

By the proposition above, the quantity 1
β
Jα1 (L) is an upper bound on the optimal objective

value of the Pricing-Assortment problem for any α ≥ 0, so computing 1
β
Jα1 (L) for any α≥ 0

provides an upper bound on the optimal expected revenue. To get a reasonably tight upper bound

on the optimal expected revenue, we use a few iterations of the golden ratio search to find an

approximate solution to the problem 1
β

minα≥0 J
α
1 (L). This approach amounts to computing Jα1 (L)

for a few different values of α. To obtain the results reported in our computational experiments

in Section 6.2, we choose the end points ν0, . . . , νL+1 of the intervals {[νp, νp+1] : p= 0, . . . ,L} such

that νp+1− νp is approximately 0.001 for all p= 0, . . . ,L.

Appendix R: Upper Bound under a Space Constraint

To obtain an upper bound on the optimal expected revenue in the assortment problem under a

space constraint, we consider the linear program

Cap(j, `, x, y) = min
w∈[0,1]`−j

{ ∑̀
i=j+1

ciwi :
∑̀
i=j+1

vi riwi ≥ x,
∑̀
i=j+1

viwi ≤ y

}
. (37)

If we impose the constraints w ∈ {0,1}`−j in the problem above and drop the round down and up

operators in (10), then the problem above and (10) solve the same knapsack problem.

If the problem above is infeasible, then we set Cap(j, `, x, y) = +∞. Note that W (S)≤ nwmax

and V (S)≤ nvmax for all S ⊆N . Also, letting rmax = max{ri : i∈N}, we have Π(S1, . . . , Sm)≤ rmax

for all (S1, . . . , Sm) ∈ F . Letting B = max{nwmax, n vmax, rmax}, we divide the interval [0,B] into

L+ 1 subintervals using ν0, . . . , νL+1 that satisfy 0 = ν0 < ν1 < . . . < νL < νL+1 = B. Throughout

this section, we define the round down operator “b·c” that rounds its argument down to the

ec40 e-companion to Multinomial Logit Model with Impatient Customers

closest point in {νp : p= 0, . . . ,L+ 1} when the argument is positive. That is, if a≥ 0, then bac=

max{νr : νr ≤ a, r= 0, . . . ,L+ 1}. If a< 0, then bac=−∞. We consider the dynamic program

Ψk(j, u, z) = min
(`, p, r) : `∈ {j, . . . , n},

p∈ {0, . . . ,L},
r ∈ {1, . . . ,L+ 1}

{
Cap(j, `, νp, νr)

+ Ψk+1

(
` , bu+ νr−1c ,

⌊
z− λk νp+1

(1 +u) (1 +u+ νr−1)

⌋)}
(38)

with the boundary condition that Ψm+1(j, u, z) = 0 if z ≤ 0. Otherwise, we have Ψm+1(j, u, z) = +∞.

Note that the dynamic program above is analogous to the one in (13).

In the next proposition, we show that we obtain an upper bound on the optimal expected revenue

in the Capacitated problem by solving the dynamic program above.

Proposition R.1 Letting zApp = max{z ∈R+ : Ψ1(0,0, z)≤ b}, z is an upper bound on the optimal

expected revenue in the Capacitated problem.

Proof: Using an induction argument that is similar to the one in the proof of Lemma J.1, it

follows that Ψk(j, u, z) is increasing in j, u and z. Let (S∗1 , . . . , S
∗
m) be an optimal solution to the

Capacitated problem. By Lemma 5.1, there exist j∗1 , . . . , j
∗
m+1 satisfying 0 = j∗1 ≤ j∗2 ≤ . . .≤ j∗m ≤

j∗m+1 = n such that S∗k ⊆ {j∗k + 1, . . . , j∗k+1}. Also, let p∗k = 0, . . . ,L and r∗k = 1, . . . ,L+ 1 be such that

W (S∗k) ∈ [νp∗
k
, νp∗

k
+1] and V (S∗k) ∈ [νr∗

k
−1, νr∗

k
]. Consider solving problem (37) with j = j∗k , `= j∗k+1,

x= νp∗
k

and y= νr∗
k
. Setting wi = 1 if i∈ Sk and wi = 0 if i 6∈ Sk provides a feasible solution to this

problem with the objective value C(S∗k). Thus, Cap(j∗k , j
∗
k+1, νp∗k , νr

∗
k
)≤C(S∗k).

For notational brevity, we let C∗k =
∑m

q=kC(S∗q), u∗k =
∑k−1

q=1 V (S∗q) and z∗k =
∑m

q=k

λqW (S∗q)

(1+u∗q) (1+u∗q+1)

with the convention that C∗m+1 = 0, u∗1 = 0 and z∗m+1 = 0. Observe that z∗1 corresponds to the

optimal objective value of the Capacitated problem. We use induction over the stages to show

that Ψk(j
∗
k , u

∗
k, z
∗
k)≤ C∗k . Since z∗m+1 = 0, we have Ψm+1(j∗m+1, u

∗
m+1, z

∗
m+1) = 0 = C∗m+1. Therefore,

the result holds for the base case. Assuming that Ψk+1(j∗k+1, u
∗
k+1, z

∗
k+1) ≤ C∗k+1, we proceed to

showing that Ψk(j
∗
k , u

∗
k, z
∗
k)≤C∗k . Using the fact that Ψ(j, u, z) is increasing in u and z along with

bac ≤ a and noting that W (S∗k)≤ νp∗
k

+1 and V (S∗k)≥ νr∗
k
−1, we have

Ψk+1

(
j∗k+1 , bu∗k + νr∗

k
−1c ,

⌊
z∗k −

λk νp∗
k

+1

(1 +u∗k) (1 +u∗k + νr∗
k
−1)

⌋)
≤ Ψk+1

(
j∗k+1 , u

∗
k +V (S∗k) , z∗k −

λkW (S∗k)

(1 +u∗k) (1 +u∗k +V (S∗k))

)
= Ψk+1(j∗k+1 , u

∗
k+1 , z

∗
k+1),

where the equality above uses the definition of u∗k and z∗k. Consider computing Ψk(j
∗
k , u

∗
k, z
∗
k) through

the dynamic program in (38). Since j∗k+1 ≥ j∗k , the solution (j∗k+1, p
∗
k, r
∗
k) is feasible but not necessarily

e-companion to Multinomial Logit Model with Impatient Customers ec41

optimal to the minimization problem on the right side of (38) when we solve this problem with

(j, u, z) = (j∗k , u
∗
k, z
∗
k). Therefore, we have the chain of inequalities

Ψk(j
∗
k , u

∗
k, z
∗
k) ≤ Cap(j∗k , j

∗
k+1, νp∗k , νr

∗
k
) + Ψk+1

(
j∗k+1 , bu∗k + νr∗

k
−1c ,

⌊
z∗k −

λk νp∗
k

+1

(1 +u∗k) (1 +u∗k + νr∗
k
−1)

⌋)
(a)

≤ C(S∗k) + Ψk+1(j∗k+1 , u
∗
k+1 , z

∗
k+1)

(b)

≤ C(S∗k) +C∗k+1

(c)
= C∗k ,

where (a) follows from the inequality that we give earlier in this paragraph and the fact that

Cap(j∗k , j
∗
k+1, νp∗k , νr

∗
k
)≤C(S∗k), (b) uses the induction hypothesis and (c) is by the definition of C∗k .

Thus, the induction argument is complete, in which case, noting that j∗1 = 0 and u∗1 = 0, we obtain

Ψ1(0,0, z∗1)≤C∗1 =
∑

k∈MCk(S
∗
k)≤ b, where the last inequality uses the fact that (S∗1 , . . . , S

∗
m) is a

feasible solution to the Capacitated problem. Therefore, z∗1 is a feasible solution to the problem

zApp = max{z ∈R+ : Ψ1(0,0, z)≤ b}, which implies that the optimal objective value of this problem

is at least as large as z∗1 . In other words, we have zApp ≥ z∗1 . In this case, the result follows by noting

that z∗1 is the optimal objective value of the Capacitated problem.

Note that the upper bound in the proposition above holds for any choice of ν0, . . . , νL+1 that

satisfy 0 = ν0 < ν1 < . . . < νL < νL+1 =B.

