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We examine the revenue-utility assortment optimization problem with the goal of finding an assortment that

maximizes a linear combination of the expected revenue of the firm and the expected utility of the customer.

This criterion captures the tradeoff between the firm-centric objective of maximizing the expected revenue

and the customer-centric objective of maximizing the expected utility. The customers choose according to

the multinomial logit model and there is a constraint on the offered assortments characterized by a totally

unimodular matrix. We show that we can solve the revenue-utility assortment optimization problem by

finding the assortment that maximizes only the expected revenue, after adjusting the revenue of each product

by the same constant. Finding the appropriate revenue adjustment requires solving a nonconvex optimization

problem. We give a parametric linear program to generate a collection of candidate assortments that is

guaranteed to include an optimal solution to the revenue-utility assortment optimization problem. This

collection of candidate assortments also allows us to construct an efficient frontier that shows the optimal

expected revenue-utility pairs as we vary the weights in the objective function. Moreover, we develop an

approximation scheme that limits the number of candidate assortments while ensuring a prespecified solution

quality. Lastly, we discuss practical assortment optimization problems that involve totally unimodular

constraints. In our computational experiments, we demonstrate that we can obtain significant improvements

in the expected utility without incurring a significant loss in the expected revenue.

Key words : choice modeling, multinomial logit, revenue-utility tradeoff, totally unimodular constraints

1. Introduction

In the revenue management literature, discrete choice models continue to receive attention as an

attractive option for modeling demand, because these models capture the substitution possibilities

among products. Using discrete choice models, we can develop demand models that capture the fact

that customers choose and substitute among products and that if a certain product is unavailable,

then some customers may substitute another product, whereas others may decide to leave the

system without making a purchase. A growing body of literature indicates that using discrete

choice models to capture the customer choice process can yield better operational decisions (Talluri
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and van Ryzin 2004, Vulcano et al. 2010, Feldman et al. 2019). Most of this literature focuses on

the firm-centric objective of maximizing the expected revenue, leaving customer-centric objectives

relatively unexplored. In many application settings, it is important to consider customer-centric

objectives. Focusing on customer-centric objectives improves customer satisfaction and loyalty,

which is important even for a revenue-maximizing firm, especially when the firm interacts with the

customers repeatedly and wants to adopt a far-sighted view. When choosing product assortments

in retail (Anupindi et al. 2015), ranking online search results (L’Ecuyer et al. 2017) and making

product recommendations (Derakhshan et al. 2019), a profit-maximizing firm may still consider

customer-centric objectives to ensure that the customers have access to broader product variety,

can find more relevant search results, and derive greater utility from their purchases. Furthermore,

in application settings that involve a social component, it is vital to consider the well-being of

the customers. When offering schooling options (Shi 2019), setting up the medication menu for

an insurer (Truong 2014) and locating healthcare providers (Puig-Junoy et al. 1998), all of which

involve a social component, government agencies may need to focus on customer-centric objectives

to provide easier access, improved welfare and shorter wait times.

We study an assortment optimization problem whose objective is to find an assortment that

maximizes a linear combination of the expected revenue of the firm and the expected utility of

the customer. This criterion captures the tradeoff between the firm-centric objective of expected

revenue and the customer-centric objective of expected utility. Customers choose among the

products according to the multinomial logit model. There are constraints on the offered assortment

characterized by a totally unimodular matrix. Our totally unimodular constraints encompass

numerous assortment and pricing applications with different operational constraints. We refer to our

optimization problem as the revenue-utility assortment optimization problem. We show that we can

solve the revenue-utility assortment optimization problem by finding an assortment that maximizes

only the expected revenue, after adjusting the revenue of each product by the same amount. Using

this result, we formulate a parametric linear program (LP) that generates a collection of candidate

assortments that is guaranteed to include an optimal solution to the revenue-utility problem. We

show how to construct an efficient frontier that includes all optimal revenue-utility pairs as the

weights on the two objectives vary. We develop an approximation scheme that limits the number

of candidate assortments, while maintaining a prespecified solution quality.

Main Contributions: To give an overview of our problem setup, let N = {1,2, . . . , n} denote

the set of available products within which we choose an assortment to offer to the customers. We

represent an assortment by a vector x= (x1, . . . , xn)∈ {0,1}n, where we have xi = 1 if and only if

we offer product i. The set of feasible assortments is given by F = {x∈ {0,1}n : Ax ≤ b}, where
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A is a totally unimodular matrix. Customers choose among the offered products according to the

multinomial logit model. Our goal is to find an assortment that maximizes a linear combination

of the expected revenue and the expected utility, where we put a normalized weight of one on

the expected revenue and a weight of λ on the expected utility. When we need to explicitly refer

to the weight on the expected utility, we refer to our assortment optimization problem as the

(1, λ)-weighted revenue-utility assortment optimization problem.

Novel formulation. Our objective function and constraints incorporate novel features. The

objective function considers both the firm-centric expected revenue and the customer-centric

expected utility. In our problem formulation, we build on the fact that the multinomial logit model

is compatible with the random utility maximization principle, according to which a customer

associates random utilities with the alternatives and chooses the alternative with the largest

utility. Under the multinomial logit model, we have a closed-form expression for the expected

utility of the alternative that the customer chooses (McFadden 1974). Through totally unimodular

constraints, we can impose bounds on the number of offered products, incorporate display location

effects that can boost the attractiveness of a product depending on where it is displayed, formulate

assortment optimization problems to choose the offered products as well as their prices, and ensure

that the price ordering of the products is consistent with their qualities.

Structure of an optimal assortment. We construct a lower bound on the objective function of

the revenue-utility assortment optimization problem that requires computing only the expected

revenue, but after adjusting all product revenues by the same additive constant (Lemma 3.1). We

show that this lower bound is tight at the optimal solution, so that we can solve the revenue-utility

assortment optimization problem by maximizing only the expected revenue, but after adjusting

the revenue associated with each product by the same additive constant (Theorem 3.2). An

immediate consequence of this result is that if there is no constraint, then an optimal solution to the

revenue-utility assortment optimization problem is revenue-ordered, including a certain number of

products with the largest revenues (Corollary 3.3). Computing the appropriate adjustment in the

product revenues requires solving a nonconvex optimization problem, but as discussed in the next

paragraph, we use this connection to develop a solution method for the revenue-utility problem.

Efficient solution methods. We develop an approach for solving the revenue-utility assortment

optimization problem that is based on solving a parametric LP. In this LP, we vary a parameter

over the real line to generate a collection of candidate assortments such that the collection is

guaranteed to include an optimal solution to the revenue-utility assortment optimization problem

(Theorem 4.1). Using ri and vi to denote the revenue and preference weight, respectively, of

product i, letting m be the number of constraints, we show that the number of candidate
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assortments in the collection is at most min
{

1 +n maxi∈N vi, 2 + 2n maxi∈N ri vi, (m+n)1+m
}

(Theorem 4.2). When the revenues and preference weights take rational values, we scale them by

the same constant so that they take integer values. Such a scaling is innocuous because if we scale

all revenues and preference weights, as well as the weight on the expected utility, by the same

constant, then the optimal solution to the revenue-utility assortment optimization problem does

not change. By the first two terms in the minimum, for fixed revenues and preference weights, the

number of candidate assortments grows linearly with the number of products, whereas by the last

term, for a fixed number of constraints, the number of candidate assortments grows polynomially

with the number of products. An important feature of our collection of candidate assortments is

that it is independent of the weight λ on the expected utility. Once we construct the candidate

assortments, we can use the same collection to solve the (1, λ)-weighted revenue-utility assortment

optimization problem for all values of λ. This result allows us to construct an efficient frontier that

shows the optimal expected revenue-utility pairs as the weight λ varies.

We also give an approximation scheme that balances solution quality and computational

effort. For each fixed ρ > 0, our approximation scheme rounds the total preference weight of the

offered products to integer powers of 1+ρ. Letting Vmin and Vmax, respectively, be the smallest and

largest preference weights, it generates a collection of O
(

1
ρ

log
(
nVmax/Vmin

))
candidate assortments

and ensures that this collection includes a solution whose objective value is at least 1/(1+ρ) fraction

of the optimal objective value. Adjusting the value of ρ, we can tradeoff the solution quality with

the number of candidate assortments, the latter quantity being a measure of computational effort.

An LP for expected revenue maximization. When λ = 0, the (1, λ)-weighted revenue-utility

assortment optimization problem maximizes only the expected revenue. Even in this simpler

setting, we make a contribution by showing that if there are constraints on the assortment

characterized by a totally unimodular matrix, then we can maximize the expected revenue by

solving an LP with n+1 variables and n+m+1 constraints (Theorem 6.1). Our result is based on

analyzing basic solutions to an LP and can potentially be applied to other assortment optimization

problems, providing connections between LP and assortment optimization.

Applications. We discuss five practical problem classes that can be captured by using totally

unimodular constraints. First, we consider a variety of cardinality constraints that limit the number

of products in the offered assortment. Second, we consider assortment optimization problems with

display location effects, in which the attractiveness of a product depends on the location where

the product is displayed on a shelf, storefront or web page. Third, we consider pricing problems,

in which there is a finite menu of possible prices and the attractiveness of a product depends on

its price. Fourth, we consider pricing problems with a price ladder constraint, in which there is an
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inherent ordering in the qualities of the products and the prices of the products must follow the

same ordering. Fifth, we consider assortment optimization problems with precedence constraints

such that a particular product cannot be offered unless certain related products are also offered. To

demonstrate the effectiveness of our solution methods, we conduct numerical experiments on

assortment optimization problems with display location effects and pricing problems. Using a

dataset provided by Expedia, we also demonstrate that we can obtain significant improvements in

the expected utility without incurring a significant loss in the expected revenue.

Related Literature: Our paper is related to research on assortment optimization problems

under the multinomial logit model, the goal of which is to find an assortment that maximizes the

expected revenue. Talluri and van Ryzin (2004) and Gallego et al. (2004) examine the problem

without any constraints on the offered assortment. Both papers show that an optimal assortment is

revenue-ordered. Rusmevichientong et al. (2009) present a polynomial-time approximation scheme

when each product has a space requirement and there is a limit on the total space consumption of

the offered products. Rusmevichientong et al. (2010) focus on cardinality constraints on the offered

assortment and develop an efficient algorithm for computing an optimal assortment. Bront et al.

(2009), Mendez-Diaz et al. (2014), Rusmevichientong et al. (2014), and Desir et al. (2016) focus

on the assortment optimization problem under a mixture of multinomial logit models in which

there are multiple customer types and customers of different types choose according to different

multinomial logit models. These papers characterize the computational complexity of the problem

and provide heuristics, integer programming formulations and approximation methods. Gallego

et al. (2015) show that the assortment optimization problem under the multinomial logit model

can be formulated as an LP even when products consume combinations of resources and there are

constraints on the expected consumption of each resource, but their approach does not consider

constraints on what assortments can be offered. A constraint on the expected consumption of

each resource puts a limit on a linear combination of the purchase probabilities of the different

products, whereas a constraint on the offered assortment puts a limit on which specific products

are offered. Neither of these constraints is a special case of the other.

This paper is an outgrowth of our earlier study, which was circulated as an unpublished technical

report (Davis et al. 2013). In that report, we focused on finding an assortment that maximizes

only the expected revenue without considering the expected utility. We believe the work in this

paper is unique and amplifies our unpublished work substantially, because the present paper is

one of very few studies that take a customer-centric view of assortment optimization, allowing us

to manage the tradeoff between firm-specific and customer-specific objectives. Moreover, much of

the assortment optimization work, including that of Davis et al. (2013), exploits the fact that the
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expected revenue under the multinomial logit model can be written as a fraction of two linear

functions. See, for example, Davis et al. (2014), Feldman and Topaloglu (2015), and Li et al. (2015)

for work under other choice models that builds on a similar fractional structure of the expected

revenue function. This structure immediately breaks down when we include the expected utility in

the objective function. Our approach, which constructs a lower bound on the objective function

of the revenue-utility assortment optimization problem and parametrically maximizes this lower

bound, differs substantially from the approaches used in the literature. Other work on assortment

optimization under the multinomial logit model includes Wang (2012), Aouad et al. (2018), Sen

et al. (2018), Wang and Sahin (2018), Aouad et al. (2019), and Flores et al. (2019).

All of the work on incorporating customer-centric objectives into assortment optimization

problems is quite recent. Truong (2014) formulates an assortment optimization problem to find

a menu of medication options offered by an insurer. Her objective is to minimize the difference

between the expected cost of the purchased medication and the expected utility of the customer.

Anupindi et al. (2015) give an integer programming formulation for the assortment optimization

problem of a retailer under the assumption that there are multiple customer segments and the

customers in each segment associate a deterministic utility with each product. L’Ecuyer et al.

(2017) focus on the problem of ranking search results to maximize a linear combination of the

expected revenue and the search relevance. The probability of clicking a search result is a separable

function of the position of the search result and its other characteristics. Shi (2019) formulates the

problem of designing school options as a large-scale optimization problem, in which he maximizes

the expected utility subject to a constraint on the expected capacity utilization of the schools.

Derakhshan et al. (2019) consider the problem of choosing a sequence of products to recommend in

online search results with the goal of maximizing the expected utility of the customer or the market

share of the platform, but the authors do not consider the two objectives simultaneously. None of

these papers impose constraints on the assortment of offered alternatives.

There is substantial literature on fitting choice models to data and using these choice models to

understand the expected utility implications of policy decisions. Duch-Brown et al. (2017) and Quan

and Williams (2018) focus on choices for retailers and consumer products, Train (2015) focuses

on choices for video streaming services, Puig-Junoy et al. (1998) focus on choices for healthcare

providers, Chen and Farias (2012) focus on choices for airlines and fares, Gupta et al. (2006) focus

on route choices of commuters, and Kling and Thomson (1996) focus on choices for recreational

activity locations. In these papers, the authors fit a multinomial or nested logit model to data

and use the fitted choice models to understand the expected utility implications of different policy

decisions. In modeling healthcare provider choices, for example, the policy decision may be making
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certain providers more accessible. In modeling route choices, the policy decision may be changing

the tolls on certain roads. The authors use the same closed-form expression that we use to capture

the expected utility of the customers. In Chen and Farias (2012), the policy decisions are the fares

and flight capacities, and the authors make these decisions by solving a continuous optimization

problem. In all other papers, the authors try a small number of hand-picked policy decisions, so

there is no optimization problem that automates the policy decision.

We do not explicitly model the repeated interactions between the firm and the customers, though

one motivation for customer-centric objectives is certainly to improve long-term outcomes. There

is work on repeated interactions. In Calmon et al. (2018), the future budget allocations of the

customers depend on their valuations for the past services they received. The authors analyze

myopic policies. Aflaki and Popescu (2014) provide a stylized model that focuses on the interactions

with one customer. In Adelman and Mersereau (2013), the future demands of the customers depend

on their past fill rates and the firm has limited capacity. The authors examine approximate dynamic

programming methods. Ho et al. (2006) develop a model in which the purchase rate of a customer

depends on the service quality in the last interaction and improving the service quality comes at a

cost. In Gans (2002), each customer chooses among suppliers based on her past cumulative service

quality. The author analyzes the game between multiple suppliers.

Our pricing application uses discrete price menus. Pricing models traditionally assume a

parametric relationship between the price and the preference weight of a product. For example, if

the mean utility of a product is linear in its price, then the preference weight of product i, as a

function of its price p, is given by eαi−βi p for constants (αi, βi) (Song and Xue 2007, Dong et al.

2009, Li and Huh 2011, Gallego and Wang 2014, Li and Huh 2015, Li and Webster 2017). We

allow the preference weight of a product to depend on its price in an arbitrary fashion, without

any restriction. Moreover, our discrete price menus can limit attention to operationally appealing

prices, such as those in increments of a dollar or those that have 99 cents as the final digits.

Chen and Hausman (2000) examine a joint assortment optimization and pricing problem under

the multinomial logit model with a finite price menu. They maximize only the expected revenue by

using a continuous relaxation of a fractional programming formulation that yields binary solutions.

Organization: In Section 2, we formulate the revenue-utility assortment optimization problem.

In Section 3, we show that the problem can be solved by finding an assortment that maximizes only

the expected revenue, after adjusting the revenues of all products by the same additive amount. In

Section 4, we use this observation to formulate a parametric LP to generate a collection of candidate

assortments. In Section 5, we study the properties of the efficient frontier. In Section 6, we give our

approximation scheme. In Section 7, we discuss applications with totally unimodular constraints.

In Section 8, we give numerical experiments. In Section 9, we conclude.
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2. Problem Formulation

Let N = {1,2, . . . , n} denote the set of products. The revenue associated with product i

is ri ≥ 0. We use x= (x1, . . . , xn) ∈ {0,1}n to capture the subset of products that we offer to the

customers, where xi = 1 if and only if we offer product i. We refer to the vector x simply as

the assortment that we offer. The customers make a choice within the assortment that we offer

according to the multinomial logit model. Under the multinomial logit model, a customer associates

a random utility with each product i, which has the Gumbel distribution with location and scale

parameters (µi,1). Similarly, a customer associates a random utility with the no-purchase option,

which also has the Gumbel distribution with location and scale parameters (µ0,1). The customer

chooses the available alternative that provides the largest utility. This alternative may be one of the

products in the offered assortment or the no-purchase option. Letting vi = eµi denote the preference

weight of product i and v0 = eµ0 denote the preference weight of the no-purchase option, if we offer

the assortment x, then the customer chooses product i with probability

φi(x) =
vi xi

v0 +
∑

j∈N vj xj
.

Given that we offer the assortment x, the expected utility that the customer obtains from the

chosen alternative is log(v0 +
∑

i∈N vi xi) + θ, where θ is the Euler constant (McFadden 1974).

We have two goals in mind when choosing the assortment of products to offer. First, we

want to maximize the expected revenue obtained from the customer. When the customer chooses

product i, we obtain a revenue of ri, so if we offer the assortment x, then the expected revenue

obtained from the customer is
∑

i∈N φi(x) ri =
∑

i∈N ri vi xi/
(
v0 +

∑
j∈N vj xj

)
. Second, we want

to maximize the expected utility that the customer receives from the chosen alternative, net of

the expected utility that she obtains when she must choose the no-purchase option. The expected

utility of the no-purchase option is log v0 + θ. Therefore, if we offer the assortment x, then the

expected utility of the customer from the alternative she chooses, net of the expected utility she

obtains when she must choose the no-purchase option, is log
(
v0 +

∑
i∈N vi xi

)
+ θ − log v0 − θ =

log
(

1 +
∑

i∈N
vi
v0
xi

)
. Letting V (x) =

∑
i∈N

vi
v0
xi for notational brevity and using r = (r1, . . . , rn)

to denote the vector of product revenues, if we offer the assortment x, then the expected revenue

and the net expected utility of the customer are, respectively, given by

Rev(x;r) =

∑
i∈N ri vi xi

v0 +
∑

i∈N vi xi
and Util(x) = log(1 +V (x)).

Throughout the paper, we need to find assortments that maximize the expected revenue under

different product revenues, so we make explicit the dependence of the expected revenue Rev(x;r)
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on the product revenues r. We focus on the expected utility of the customer, net of the expected

utility she obtains when she must choose the no-purchase option. Intuitively speaking, we use

Util(x) to capture the value that the customer derives from the offered assortment. Therefore, the

net expected utility Util(x) captures the utility of the customer when we make an assortment x

available, as opposed to when the only available alternative is the no-purchase option. Another

important reason for focusing on the net expected utility is that if we increase the utility of each

alternative by a fixed constant, then the alternative that the customer chooses does not change.

Therefore, if we estimate the location parameters of the utilities of the alternatives from the data,

then we can estimate them only up to an additive constant (Section 3.5, Train 2003). Noting

that vi = eµi and v0 = eµ0 , if we shift the location parameters by an additive constant K, then

the net expected utility of the customer is log(1 +
∑

i∈N
eµi+K

eµ0+K
xi) = log(1 +

∑
i∈N

eµi

eµ0
xi), which is

insensitive to the additive constant that we cannot estimate from the data anyway.

The set of feasible assortments that we can offer is given by F = {x∈ {0,1}n : Ax≤ b},
where m is the number of constraints, A∈Rm×n is a totally unimodular constraint matrix, and

the vector b ∈ Rm on the right side is integral. Recall that the matrix A is totally unimodular if

the determinant of any square submatrix of A is +1, 0 or −1. Thus, the inverse of any square

submatrix of a totally unimodular matrix has integer entries, whenever the inverse exists. We

express our set of feasible assortments with “less than or equal to” constraints, but negating or

duplicating a row of a totally unimodular matrix preserves its total unimodularity (Proposition

2.2 in Chapter III.1, Nemhauser and Wolsey 1988). Therefore, we can accommodate an “equal to”

constraint by replacing it with a pair of “less than or equal to” and “greater than or equal to”

constraints. Our goal is to find a feasible assortment that maximizes a linear combination of the

expected revenue and the net expected utility. Let λ≥ 0 be a parameter that controls the tradeoff

between the expected revenue and the net expected utility. We want to solve the problem

Z∗λ = max
x∈F

{
Rev(x;r) +λUtil(x)

}

= max
x∈F

{ ∑
i∈N ri vi xi

v0 +
∑

i∈N vi xi
+λ log(1 +V (x))

}
. (Revenue-Utility)

Throughout the rest of the paper, for conciseness, we refer to Util(x) as expected utility, rather

than net expected utility. We close this section with an example to demonstrate that the optimal

assortment in the Revenue-Utility problem can change significantly based on the value of λ. Consider

a problem instance with four products. The product revenues are (r1, r2, r3, r4) = (6,3,2,1) and the

preference weights are (v1, v2, v3, v4) = (2,1,5,8). The preference weight of the no-purchase option

is v0 = 1. The set of feasible assortments is F = {x∈ {0,1}4 :
∑4

i=1 xi ≤ 2}, so we can offer at most
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Inter. for λ Opt. Assr. Exp. Rev. Exp. Util.

[0.00,0.87] {1} 4.00 1.10
[0.87,1.44] {1,2} 3.75 1.39
[1.44,2.62] {1,3} 2.75 2.08
[2.62,∞) {3,4} 1.29 2.64

Table 1 Optimal solution to the Revenue-Utility problem for different values of λ.

two products. In Table 1, we give the optimal assortment for all possible values of λ. The first

column shows intervals for possible values of λ. The second column shows the optimal assortment

to offer when λ is in each interval. The third and fourth columns, respectively, show the expected

revenue and the expected utility from the optimal assortment. For λ ∈ [0,0.87], corresponding to

the smallest values for λ, we mainly focus on maximizing the expected revenue. In this case, it is

optimal to offer the assortment {1}, yielding an expected revenue of 4.00. Product 1 has the largest

revenue. Offering any other product along with product 1 dilutes the expected revenue from the

assortment. For λ∈ [0.87,1.44], the weight on the expected utility increases and it is optimal to offer

the assortment {1,2}. The expected revenue from the assortment {1,2} is 3.75, which is smaller

than the expected revenue from the assortment {1}, but offering product 2 increases the expected

utility of the assortment {1} from 1.10 to 1.39. For λ∈ [1.44,2.62], we put even more weight on the

expected utility, in which case, it is optimal to offer the assortment {1,3}. To maximize the expected

utility, we need to offer products with larger preference weights. When product 2 in the assortment

{1,2} is replaced with product 3, the expected revenue of the assortment {1,2} decreases from 3.75

to 2.75 but its expected utility increases from 1.39 to 2.08. For λ∈ [2.62,∞), corresponding to the

largest values for λ, we mainly focus on maximizing the expected utility. In this case, it is optimal

to offer the assortment {3,4}. If our focus is on maximizing the expected utility, then it is optimal

to offer an assortment that has the largest total preference weight. Products 3 and 4 are the two

products with the largest preference weights, so we offer the assortment {3,4} when we focus on

maximizing the expected utility. If we do not have any constraints on the offered assortment, then

it is optimal to offer all products to maximize the expected utility.

In the next section, we characterize the optimal solution to the Revenue-Utility problem and

use this characterization to construct a collection of candidate assortments that is guaranteed to

contain an optimal solution to the Revenue-Utility problem.

3. Characterization of an Optimal Assortment

In the Revenue-Utility problem, both the expected revenue Rev(x;r) and the expected utility Util(x)

depend on the offered assortment x. The next lemma provides a lower bound on the objective

function of the Revenue-Utility problem that requires computing only the expected revenue, but
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not the expected utility. In this lemma and throughout the rest of the paper, we let e ∈ Rn be a

vector of all ones. Moreover, we assume that F includes a nonempty assortment; otherwise, the

Revenue-Utility problem is trivial. Since A is totally unimodular, we can check this assumption by

solving the LP maxx∈[0,1]n{
∑

i∈N ci xi | Ax≤ b}, for any (c1, . . . , cn) with ci > 0 for all i∈N .

Lemma 3.1 (Lower Bound) Noting that the objective function of the Revenue-Utility problem is

Rev(x;r) +λ log(1 +V (x)), for all x∈F and t≥ 0, we have

Rev(x;r) +λ log(1 +V (x)) ≥ Rev(x;r+λ (1 + t)e) + λ (log(1 + t)− t) .

Proof: Consider increasing the revenues of all products by some amount α∈R. Using the definitions

of Rev(x;r) and V (x), for any x∈F , we have

Rev(x;r+αe) =

∑
i∈N (ri +α)vi xi

v0 +
∑

i∈N vi xi
=

∑
i∈N ri vi xi

v0 +
∑

i∈N vi xi
+

α
∑

i∈N
vi
v0
xi

1 +
∑

i∈N
vi
v0
xi

= Rev(x;r) +
αV (x)

1 +V (x)
.

Noting that log(1 + a) is concave in a and its derivative at a is 1/(1 + a), by the subgradient

inequality, we have log(1 + b) ≤ log(1 + a) + 1
1+a

(b − a) for all a, b ∈ R+, which is equivalent to

log(1 + a)≥ log(1 + b)− b+ (1+b)a

1+a
. For any x ∈ F and t≥ 0, using this inequality with a= V (x)

and b= t, we get log(1 +V (x))≥ log(1 + t)− t+ (1+t)V (x)

1+V (x)
. So, we have

Rev(x;r) +λ log(1 +V (x)) ≥ Rev(x;r) +λ

{
log(1 + t)− t+

(1 + t)V (x)

1 +V (x)

}

= Rev(x;r+λ (1 + t)e) + λ (log(1 + t)− t) ,

where the last equality follows by using the identity that we give at the beginning of the proof

with α= λ (1 + t) and rearranging the terms.

Since Rev(x;r+λ (1 + t)e) +λ (log(1 + t)− t) is a lower bound on the objective function of the

Revenue-Utility problem for all x∈F and t≥ 0, we can maximize this function over all x∈F and

t ≥ 0 to obtain a lower bound on the optimal objective value of the Revenue-Utility problem. In

other words, we can solve the problem

max
t≥0

{
max
x∈F

{
Rev(x;r+λ (1 + t)e)

}
+λ (log(1 + t)− t)

}
. (Parametric)

In the next theorem, we show that the lower bound on the optimal objective value of the

Revenue-Utility problem obtained by solving the above Parametric problem is tight. Furthermore,

we can use the Parametric problem to obtain an optimal solution to the Revenue-Utility problem,

yielding a characterization of an optimal solution to the Revenue-Utility problem.
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Theorem 3.2 (Characterization of Revenue-Utility Solution) If (t∗,x∗) is an optimal

solution to the Parametric problem, then x∗ is also an optimal solution to the Revenue-Utility

problem. Conversely, if x̂ is an optimal solution to the Revenue-Utility problem, then (V (x̂), x̂) is

also an optimal solution to the Parametric problem.

Proof: Let x̂ be an optimal solution to the Revenue-Utility problem providing the optimal objective

value Z∗λ and (t∗,x∗) be an optimal solution to the Parametric problem. Noting that x∗ is a feasible

solution to the Revenue-Utility problem, we have Z∗λ ≥ Rev(x∗; r) +λ log(1 +V (x∗)). In this case,

using Lemma 3.1 with x=x∗ and t= t∗, we have

Rev(x∗; r) +λ log(1 +V (x∗)) ≥ Rev(x∗; r+λ (1 + t∗)e) +λ (log(1 + t∗)− t∗)
(a)

≥ Rev(x̂ ; r+λ (1 +V (x̂))e) + λ (log(1 +V (x̂))−V (x̂))

(b)
= Rev(x̂ ;r) +

λ (1 +V (x̂))V (x̂)

1 +V (x̂)
+λ (log (1 +V (x̂))−V (x̂))

= Rev(x̂ ;r) + λ log(1 +V (x̂)) = Z∗λ.

In the above chain of inequalities, (a) holds because V (x̂) ≥ 0, in which case, it follows that

(V (x̂), x̂) is a feasible but not necessarily an optimal solution to the Parametric problem. On

the other hand, (b) follows by using the identity that we give at the beginning of the proof

of Lemma 3.1 with α = λ (1 + V (x̂)). At the beginning of the proof, we argue that Z∗λ ≥
Rev(x∗; r) + λ log(1 + V (x∗)), so all of the above inequalities must hold as equalities. Therefore,

we have Rev(x∗; r) + λ log(1 + V (x∗)) = Z∗λ, which implies that x∗ is an optimal solution

to the Revenue-Utility problem. Similarly, using the fact that all of the above inequalities

must hold as equalities, we also obtain Rev(x̂ ; r+λ (1 +V (x̂))e) +λ (log(1 +V (x̂))−V (x̂)) =

Rev(x∗; r+λ (1 + t∗)e) +λ (log(1 + t∗)− t∗), in which case, it follows that (V (x̂), x̂) is an optimal

solution to the Parametric problem as well.

By Theorem 3.2, letting t∗ be an optimal solution to the outer maximization problem in the

Parametric problem, we can obtain an optimal solution to the Revenue-Utility problem by solving

the problem maxx∈F Rev(x;r + λ (1 + t∗)e). Thus, we can solve the Revenue-Utility problem by

finding an assortment that maximizes only the expected revenue, as long as we shift all product

revenues by λ (1 + t∗). However, finding an optimal solution to the outer maximization problem in

the Parametric problem to compute t∗ is difficult. In Figure 3, we plot the objective function of the

outer maximization problem as a function of t for a particular problem instance. This objective

function involves multiple local maxima. Instead of trying to find the global maximum for the outer

maximization problem, we will generate a collection of candidate assortments without knowing the

value of t∗ such that this collection is guaranteed to contain an optimal solution to the problem
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Figure 1 Objective function of the outer maximization in the Parametric problem as a function of t ≥ 0 for

a problem instance with n = 6, F = {0,1}n, λ = 0.37, (r1, . . . , r6) = (1.89,1.71,1.65,0.67,0.45,0.34),

(v1, . . . , v6) = (0.24,0.54,1.05,1.94,2.11,2.51) and v0 = 1.

maxx∈F Rev(x;r+λ (1 + t∗)e). Thus, the collection of candidate assortments includes an optimal

solution to the Revenue-Utility problem as well. By checking the objective value associated with each

candidate assortment, we obtain an optimal solution to the Revenue-Utility problem. We discuss the

question of generating the candidate assortments in the next section. Lastly, by the identity at the

beginning of the proof of Lemma 3.1, note that Rev(x;r+λ (1 + t∗)e) =Rev(x;r)+λ (1+t∗) V (x)

1+V (x)
.

We have V (x)

1+V (x)
=

∑
i∈N vi xi

v0+
∑
i∈N vi xi

, so V (x)

1+V (x)
is the probability that a customer makes a purchase

within the assortment x. By Theorem 3.2, to align the Revenue-Utility problem with the goal of

maximizing only the expected revenue, it turns out that we need to provide an additional reward

of λ (1 + t∗) for each customer who makes a purchase.

We close this section with a corollary to Theorem 3.2, which shows that a revenue-ordered

assortment is optimal to the Revenue-Utility problem when there is no constraint.

Corollary 3.3 (Revenue-Ordered) If there is no constraint, then a revenue-ordered assortment

solves the Revenue-Utility problem; that is, if F = {0,1}n and the products are indexed such that

r1 ≥ r2 ≥ . . .≥ rn, then there exists an optimal solution x∗ to the Revenue-Utility problem such that

x∗i = 1 for all i≤ j∗ and x∗i = 0 for all i > j∗ for some j∗ ∈N .

Proof: It is well-known that a revenue-ordered assortment maximizes the expected revenue when

there is no constraint; that is, if r1 ≥ r2 ≥ . . . ≥ rn, then an optimal solution x∗ to the problem

maxx∈{0,1}n Rev(x;r) is of the form x∗i = 1 for all i≤ j∗ and x∗i = 0 for all i > j∗ for some j∗ ∈N
(Talluri and van Ryzin 2004). By the discussion that follows Theorem 3.2, an optimal solution to



14 Sumida et al. Revenue-Utility Tradeoff for Assortment Optimization under the MNL

maxx∈{0,1}n Rev(x;r+λ (1 + t)e) for some t≥ 0 is also an optimal solution to the Revenue-Utility

problem. In the last problem, the revenue of product i is ri + λ (1 + t). Since adding a constant

to the revenue of each product does not change the ordering of the revenues, a revenue-ordered

assortment is optimal for the last problem as well.

Corollary 3.3 generalizes the existing results on the optimality of revenue-ordered assortments

for the unconstrained expected revenue maximization problem. In Section 5, we will show that the

optimal revenue-ordered assortment includes more products as the weight λ on the expected utility

increases. In the next section, we focus on generating our collection of candidate assortments.

4. Constructing Candidate Assortments

From the discussion that follows Theorem 3.2, we know that we can obtain an optimal

solution to the Revenue-Utility problem by solving the problem maxx∈F Rev(x;r + λ (1 + t∗)e)

for some t∗ ≥ 0. Note that Rev(x;r+λ (1 + t∗)e) =
∑
i∈N (ri+λ (1+t∗))vi xi
v0+

∑
i∈N vi xi

≥ γ if and only if
∑

i∈N (ri− γ+λ (1 + t∗))vi xi ≥ v0 γ. Motivated by this observation, we consider the LP

LP(γ) = max
x∈Rn+

{∑

i∈N
(ri− γ)vi xi

∣∣∣ Ax ≤ b, xi ≤ 1 ∀ i∈N
}
. (Candidate LP)

Noting that the constraint matrix A is totally unimodular, it is a standard result that the

above Candidate LP has an optimal solution with all decision variables taking binary values

(Proposition 2.2 in Chapter III.1, Nemhauser and Wolsey 1988). Therefore, letting xLP(γ) be an

optimal solution to the Candidate LP as a function of γ, we have xLP(γ) ∈ F for each γ ∈ R. We

consider the collection of candidate assortments given by {xLP(γ) : γ ∈R}. Solving the Candidate

LP for all γ ∈ R is a parametric LP problem, which can be solved by using the homotopy

method (Chapter 7.2, Vanderbei 2014). The optimal objective value LP(γ) of the Candidate LP

is continuous, piecewise linear, decreasing and convex in γ. The number of breakpoints of the

function LP(·) corresponds to the cardinality of {xLP(γ) : γ ∈ R}. In the next theorem, we show

that {xLP(γ) : γ ∈R} contains an optimal solution to the Revenue-Utility problem.

Theorem 4.1 (Collection of Candidate Assortments) There exists an optimal solution to

the Revenue-Utility problem that is in the collection of assortments {xLP(γ) : γ ∈R}.

Proof: The result follows by showing that an optimal solution to the Candidate LP with a certain

choice of γ is also an optimal solution to the problem maxx∈F Rev(x;r+λ (1 + t∗)e), and by

recalling that an optimal solution to the problem maxx∈F Rev(x;r + λ (1 + t∗)e) is also an

optimal solution to the Revenue-Utility problem. For each α∈R, let γα = maxx∈F Rev(x;r+αe). In
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addition, let xα =xLP(γα−α); that is xα is an optimal solution to the Candidate LP when we

solve this LP with γ = γα−α. We claim that xα is also an optimal solution to the problem

maxx∈F Rev(x;r + αe). To prove the claim, let x̂ be an optimal solution to the problem

maxx∈F Rev(x;r+αe), so γα = Rev(x̂ ;r + αe) =
∑
i∈N (ri+α)vi x̂i
v0+

∑
i∈N vi x̂i

. Focusing on the first and last

terms in this chain of equalities and rearranging the terms, we have v0 γ
α =

∑
i∈N (ri− γα +α)vi x̂i.

Moreover, note that x̂ is a feasible, but not necessarily an optimal, solution to the Candidate LP

when we solve this LP with γ = γα−α, so
∑

i∈N (ri− γα +α)vi x
α
i ≥

∑
i∈N (ri− γα +α)vi x̂i. Thus,

we get
∑

i∈N (ri − γα + α)vi x
α
i ≥

∑
i∈N (ri− γα +α)vi x̂i = v0 γ

α. Focusing on the first and last

terms in this chain of inequalities and collecting the terms that involve γα together, we have
∑

i∈N ri vi x
α
i

v0 +
∑

i∈N vi x
α
i

≥ γα = maxx∈F Rev(x;r+αe).

The left side of the above chain of inequalities corresponds to Rev(xα;r+αe), so xα must be an

optimal solution to the problem maxx∈F Rev(x;r+αe), establishing the claim.

Let t∗ be an optimal solution to the outer maximization problem in the Parametric problem. Using

the claim in the previous paragraph with α = λ (1 + t∗), the solution xLP(γλ (1+t∗) − λ (1 + t∗))

is optimal to the problem maxx∈F Rev(x;r + λ (1 + t∗)e), in which case, by Theorem 3.2, the

solution xLP(γλ (1+t∗) − λ (1 + t∗)) is optimal to the Revenue-Utility problem as well. Naturally, we

have xLP(γλ (1+t∗)−λ (1 + t∗))∈ {xLP(γ) : γ ∈R}. Therefore, there exists an optimal solution to the

Revenue-Utility problem in the collection of assortments {xLP(γ) : γ ∈R}.

We can use a parametric LP to construct the collection of assortments {xLP(γ) : γ ∈ R} such

that this collection includes an optimal solution to the Candidate LP for all γ ∈ R. By the above

theorem, an optimal solution to the Revenue-Utility problem is guaranteed to be in this collection. To

emphasize that this collection has a finite number of assortments, we write {xLP(γ) : γ ∈R} =

{x`Cand : `= 1, . . . ,L}, where L is the number of candidate assortments and x`Cand is a candidate

assortment corresponding to an optimal solution to the Candidate LP for some γ. If there are

multiple optimal solutions to the Candidate LP for some γ, then we break ties using a deterministic

tie-breaking rule. By expressing the collection of candidate assortments as {x`Cand : `= 1, . . . ,L},
we highlight the finite nature of the collection of candidate assortments.

In the next theorem, we show that the number of candidate assortments L is upper bounded

by the minimum of three terms. By the first two terms, for fixed preference weights and revenues,

L is linear in the number of products n. By the third term, for a fixed number of constraints m, L

is polynomial in n. In the theorem, we assume that the preference weights, as well as the product

of the revenues and the preference weights, are integers. Noting that Rev(x;r) =
∑
i∈N ri vi xi

v0+
∑
i∈N vi xi

, we

can scale the revenues of all products and the parameter λ by the same multiplicative constant
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without changing the optimal solution to the Revenue-Utility problem. Similarly, noting that

V (x) = 1 +
∑

i∈N
vi
v0

, we can also scale the preference weights of all products and the no-purchase

option by the same multiplicative constant. Therefore, this assumption is innocuous as long as the

preference weights and revenues of the products take rational values.

Theorem 4.2 (Number of Candidate Assortments) If vi and ri vi are integers for all i∈N ,

then L ≤ min
{

1 +n maxi∈N vi, 2 + 2n maxi∈N ri vi, (m+n)1+m
}

.

Proof: The bound (m+ n)1+m follows by counting the number of extreme point solutions of the

Candidate LP. Including the slack variables for the two sets of constraints, the Candidate LP has

2n+m decision variables and n+m constraints, in which case, by a naive argument, the number of

extreme point solutions of this LP is
(
2n+m
n+m

)
=O((2n+m)n), but since n of the n+m constraints

are bounds on the decision variables, we can use a more refined argument to establish the bound of

(m+n)1+m. We defer the details to Appendix A. Here, we prove the bounds 1 +n maxi∈N vi and

2+2n maxi∈N ri vi by adapting a technique from Carstensen (1983). Note that LP(γ) is continuous,

piecewise linear, decreasing and convex in γ. As γ ranges over R, the number of breakpoints of

LP(·) gives the number of possible optimal solutions to the Candidate LP. For each x ∈ F , let

`x(γ) =
∑

i∈N (ri − γ)vi xi, which is linear in γ. In this case, using the fact that there exists a

binary-valued optimal solution to the Candidate LP taking values in F , we have

LP(γ) = max{`x(γ) : x∈F} .

Thus, LP(·) is the pointwise maximum of the lines {`x(·) :x∈F}. If two lines `x′(·) and `x′′(·) have

the same slope, then we can eliminate one of them from the set {`x(·) :x∈F} without changing the

function LP(·). Hence, the number of lines necessary to describe the function LP(·) is equal to the

number of different slopes for the lines {`x(·) : x ∈ F}. The slope of the line `x(·) is −∑i∈N vi xi,

which is an integer between−n maxi∈N vi and zero. Thus, there are at most 1+nmaxi∈N vi different

slopes for the lines {`x(·) :x∈F}, yielding at most 1 +nmaxi∈N vi breakpoints.

Similarly, if three lines `x′(·), `x′′(·), and `x′′′(·) have the same intercept, then we can eliminate

one of them from the set {`x(·) :x∈F} without changing the function LP(·). Therefore, the number

of lines necessary to describe the function LP(·) is no larger than twice the number of different

intercepts for the lines {`x(·) : x ∈ F}. The intercept of the line `x(·) is
∑

i∈N ri vi xi, which is

an integer between zero and n maxi∈N ri vi. Thus, there are at most 1 + n maxi∈N ri vi different

intercepts, yielding at most 2 + 2nmaxi∈N ri vi breakpoints.

The bound (m+ n)1+m is based on counting the number of extreme point solutions of an LP,

so it holds even when vi and ri vi are not integers. We can construct problem instances where



Sumida et al. Revenue-Utility Tradeoff for Assortment Optimization under the MNL 17

the number of candidate assortments increases exponentially with the number of constraints. In

Appendix B, we give a problem instance with n2 decision variables and 2n constraints, where the

number of candidate assortments increases exponentially with n. In such a pathological problem

instance, the preference weights and revenues must increase exponentially with n; otherwise, by

the bounds 1 + n maxi∈N vi and 2 + 2n maxi∈N ri vi in Theorem 4.2, the number of candidate

assortments must increase linearly with n. Nevertheless, we emphasize that there is no practical

reason for the preference weights or revenues of the products to depend on the number of products,

especially when we consider a set of products in the same product category. Thus, we expect the

number of candidate assortments in practical applications to increase linearly with n. For the

problem instances in our computational experiments, we can construct the collection of candidate

assortments in a matter of seconds, even when we have hundreds of products and hundreds of

constraints under consideration. We work with noninteger values for vi and ri vi in these problem

instances and observe that the number of candidate assortments is roughly linear in n.

5. Efficient Frontier for the Revenue-Utility Tradeoff

The parameter λ in the Revenue-Utility problem controls the tradeoff between the expected revenue

and the expected utility. Often, we want to see how the expected revenue and the expected utility

change as a function of λ. In other words, letting x∗λ be an optimal solution to the Revenue-Utility

problem as a function of λ, we want to compute Rev(x∗λ;r) and Util(x∗λ) for all λ ≥ 0. The key

observation is that the parameter λ does not play any role in the Candidate LP. Thus, the collection

of candidate assortments {x`Cand : `= 1, . . . ,L}, which is obtained by solving the Candidate LP for

all γ ∈R through parametric LP, is independent of the value of λ. When solving the Revenue-Utility

problem for any value of λ≥ 0, we can use the same candidate assortments; that is, for all λ≥ 0,

x∗λ = arg max
{
Rev(x`Cand;r) +λUtil(x`Cand) : `= 1, . . . ,L

}
. In Figure 2, we show the efficient frontier

of attainable expected revenue-utility pairs {(Rev(x∗λ;r),Util(x∗λ)) : λ≥ 0} for a particular problem

instance. For fixed `, f `(λ) = Rev(x`Cand;r) + λUtil(x`Cand) is linear in λ, so solving the problem

max
{
Rev(x`Cand;r) +λUtil(x`Cand) : `= 1, . . . ,L

}
for all λ ≥ 0 corresponds to finding the pointwise

maximum of the L linear functions
{
f `(·) : `= 1, . . . ,L

}
. To find the pointwise maximum of the L

linear functions
{
f `(·) : `= 1, . . . ,L

}
, we simply need to find the intersection of each pair of lines

and identify the maximum of the lines between successive intersections.

In the next lemma, we give three properties of the efficient frontier. By the first two properties,

if we increase λ so that we put more weight on the expected utility, then Util(x∗λ) increases and

Rev(x∗λ;r) decreases. By the third property, if we connect the successive points on the efficient

frontier, then the boundary of the efficient frontier is concave. The proof of the lemma uses standard

arguments in multi-objective optimization. We defer it to Appendix C.
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Figure 2 The efficient frontier for a problem instance with n= 1000, F = {x ∈ {0,1}n :
∑
i∈N xi ≤ 100}, v0 = 5,

ri is sampled from the uniform distribution over [0,1] for each i∈N and vi = 1− ri.

Lemma 5.1 (Efficient Frontier) Using x∗λ to denote an optimal solution to the Revenue-Utility

problem as a function of λ, for λ> β, we have Rev(x∗λ;r) ≤ Rev(x∗β;r), Util(x∗λ) ≥ Util(x∗β) and

− 1

λ

{
Rev(x∗λ;r)−Rev(x∗β;r)

}
≤ Util(x∗λ)−Util(x∗β) ≤ − 1

β

{
Rev(x∗λ;r)−Rev(x∗β;r)

}
.

By Corollary 3.3, if there is no constraint on the offered assortment, then a revenue-ordered

assortment solves the Revenue-Utility problem. Using the second property in Lemma 5.1, we can

see that the optimal revenue-ordered assortment includes more products as the weight λ on the

expected utility increases. Specifically, if λ > β, then we have Util(x∗λ)≥Util(x∗β) by the second

property, but we have Util(x∗λ)≥Util(x∗β) if and only if V (x∗λ)≥ V (x∗β). We can choose x∗λ and x∗β as

revenue-ordered assortments when there is no constraint, so we have V (x∗λ)≥ V (x∗β) if and only if

the revenue-ordered assortment x∗λ includes more products than the revenue-ordered assortment x∗β.

Moreover, using the third property in Lemma 5.1, it is evident that if we connect the successive

points on the efficient frontier, then the boundary of the efficient frontier is concave. Specifically,

let {(Revk,Utilk) : k = 1, . . . ,K} be the points on the efficient frontier. For λ1 > λ2 > . . . > λK , we

index these points such that Revk =Rev(x∗
λk

;r) and Utilk =Util(x∗
λk

). No two points on the efficient

frontier can have the same expected revenue, so since λ1 >λ2 > . . . > λK , by the first property, we

have Rev1 <Rev2 < . . . <RevK . Since λk−1 >λk >λk+1, by the third property, we get

Utilk−Utilk+1

Revk−Revk+1 ≤ −
1

λk
≤ Utilk−1−Utilk

Revk−1−Revk
,

which implies that the slope of the line segment that connects the points (Revk−1,Utilk−1) and

(Revk,Utilk) is greater than the slope of the line segment that connects the points (Revk,Utilk)
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Figure 3 Optimal assortments corresponding to six expected revenue-utility pairs (0.05,2.99), (0.12,2.91),

(0.34,2.61), (0.49,2.30), (0.55,2.15) and (0.64,1.51) on the efficient frontier.

and (Revk+1,Utilk+1). Thus, if we connect the successive points on the efficient frontier, then the

boundary of the efficient frontier is concave. Coupled with concavity, the boundary of the efficient

frontier on its right-side may be rather steep, in which case, it may be possible to increase the

expected utility substantially without incurring a huge loss in the expected revenue. In Figure 2,

for example, the expected revenue-utility pairs (0.638,1.513) and (0.632,1.692) are on the efficient

frontier, so we can increase the expected utility by 11.89% by incurring a loss of no more than 1%

in the expected revenue. An increase in Util(x) implies an increase in V (x), which, in turn, implies

a decrease in the probability that a customer leaves the system without a purchase. In this problem

instance, an increase of 11.89% in the expected utility corresponds to a decrease of 16.46% in the

no-purchase probability. To make this numerical observation more concrete, by the third property

in Lemma 5.1, for λ> 0 with Rev(x∗λ;r) 6=Rev(x∗0;r), we have

Util(x∗λ)−Util(x∗0)

Rev(x∗0;r)−Rev(x∗λ;r)
≥ 1

λ
.

Thus, instead of maximizing only the expected revenue, which corresponds to using a value of

zero for λ, if we use a positive value of λ, then the increase in the expected utility relative to the

decrease in the expected revenue is at least 1/λ, which can be quite large when λ is small.

The optimal solution to the Revenue-Utility problem can be quite different for different values

of λ. In Figure 2, the six expected revenue-utility pairs (0.05,2.99), (0.12,2.91), (0.34,2.61),

(0.49,2.30), (0.55,2.15) and (0.64,1.51) are on the efficient frontier. In Figure 3, we show the

optimal assortments for each one of these six expected revenue-utility pairs. Each cross on the

horizontal axis shows the revenue of a product. Each sequence of the horizontal crosses shows the

products offered in one of the six assortments. In the problem instance in Figure 2, as a function
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of its revenue, the preference weight of product i is vi = 1− ri, so we can characterize a product

only by its revenue. The expected-revenue utility pair (0.64,1.51) has a relatively large expected

revenue. Its corresponding optimal assortment focuses on offering products with large revenues, but

products with extremely large revenues have extremely small preference weights, so such products

are not offered given that we can offer at most 100 products in this problem instance. The expected

revenue-utility pair (0.05,2.99) has a relatively large expected utility. Its corresponding optimal

assortment offers products with small revenues, which have large preference weights.

In our computational experiments, we can construct the collection of candidate assortments for

practical problem instances in a matter of seconds. Nevertheless, a natural question is whether we

can still use some information on the optimal solution to the Revenue-Utility problem to eliminate

some of the candidate assortments from consideration. In the next lemma, we use an upper bound

on V (x∗λ) for this purpose. Specifically, we show that we can associate a threshold λ(γ) for each

candidate assortment xLP(γ) such that we can eliminate the candidate assortment xLP(γ) from

consideration whenever we have λ< λ(γ) in the Revenue-Utility problem.

Lemma 5.2 (Thresholds) Letting x∗λ be an optimal solution to the Revenue-Utility problem,

t be an upper bound on V (x∗λ) and λ(γ) = 1+V (xLP(γ))

1+t
× (Rev(xLP(γ);r)− γ) , the collection of

assortments {xLP(γ) : λ≥ λ(γ)} includes an optimal solution to the Revenue-Utility problem.

The proof of the lemma uses the fact that if x∗λ is an optimal solution to the Revenue-Utility

problem, then V (x∗λ) is an optimal solution to the outer maximization problem in the Parametric

problem. We give the proof in Appendix D. To get the efficient frontier, we solve the Revenue-Utility

problem simultaneously for all λ≥ 0. Each candidate assortment xLP(γ) corresponds to a specific

value for γ ∈R, so we can compute λ(γ) for each candidate assortment xLP(γ) and eliminate the

candidate assortment xLP(γ) from consideration when solving the Revenue-Utility problem for any

λ < λ(γ). Since {xLP(γ) : γ ∈ R} includes an optimal solution to the Revenue-Utility problem, a

simple upper bound on V (x∗λ) is t= max{V (xLP(γ)) : γ ∈R}. In the problem instance in Figure 2,

we have 861 candidate assortments in the collection {xLP(γ) : γ ∈R} and considering the values

of λ in [0,0.95] is sufficient to construct the efficient frontier. In Figure 4, for each λ ∈ [0,0.95],

we show the number of candidate assortments left after eliminating the unnecessary assortments

using Lemma 5.2. When solving the Revenue-Utility problem with λ = 0.2, for example, we need

to consider 455 candidate assortments, eliminating the other 406. In Appendix D, we also give a

stronger result that uses both upper and lower bounds on V (x∗λ) to eliminate candidate assortments,

but using this result to eliminate candidate assortments is more computationally intensive. Lastly,

note that not all candidate assortments appear on the efficient frontier. In Figure 2, we have 682

points on the efficient frontier, but 861 candidate assortments in the collection {xLP(γ) : γ ∈R}.
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Figure 4 Number of candidate assortments left after eliminating the unnecessary assortments using Lemma 5.2.

6. Fully Polynomial-Time Approximation Scheme

In this section, we give a fully polynomial-time approximation scheme that allows us to use a

smaller collection of candidate assortments to obtain a near-optimal solution to the Revenue-Utility

problem, while controlling the quality of the solutions that we obtain.

Maximizing Expected Revenue Through an LP:

Our approximation scheme requires repeatedly finding an assortment that maximizes only the

expected revenue under totally unimodular constraints on the offered assortment. Thus, we begin

by formulating an LP to find an assortment that maximizes only the expected revenue and use this

LP as a subroutine in our approximation scheme. Furthermore, there can be settings where the goal

is to maximize only the expected revenue without paying attention to the expected utility. In this

case, the LP that we formulate indicates that we can simply solve a single LP to find an assortment

that maximizes the expected revenue under totally unimodular constraints. After formulating the

LP, we give our approximation scheme. Specifically, we consider the problem maxx∈F Rev(x;r),

which finds an assortment that maximizes the expected revenue. Using the decision variables

y= (y1, . . . , yn)∈Rn+ and y0 ∈R+, we consider the LP

max
(y,y0)∈Rn+1

+

{∑

i∈N
ri vi yi

∣∣∣ Ay≤ y0 b, yi ≤ y0 ∀ i∈N , v0 y0 +
∑

i∈N
vi yi = 1

}
. (Revenue LP)

The Charnes-Cooper transformation is useful for converting a fractional program into an LP

(Charnes and Cooper 1962). We can use this transformation to immediately show that the above LP

has the same optimal objective value as the problem maxx∈F Rev(x;r), but we will ultimately need
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extra care to convert an optimal solution to the above LP into a binary solution that characterizes

an assortment. Since Rev(x;r) =
∑
i∈N ri vi xi

v0+
∑
i∈N vi xi

, the problem maxx∈F Rev(x;r) is equivalent to

max
x∈Zn+

{ ∑
i∈N ri vi xi

v0 +
∑

i∈N vi xi

∣∣∣ Ax≤ b, xi ≤ 1 ∀ i∈N
}
. (Max-Revenue)

By the Charnes-Cooper transformation, for some fixed f ,c ∈Rn+, d ∈R+, A ∈Rm×n and b ∈Rm,

the optimal objective value of the fractional program

max
x∈Rn+

{
f>x

d+ c>x

∣∣∣ Ax≤ b, x≤ e
}

is equal to that of the LP max(y,y0)∈Rn+1
+
{f> y |Ay ≤ y0 b, y ≤ y0 e, c>y+ dy0 = 1}. In addition,

letting (y∗, y∗0) be an optimal solution to the LP, (y∗1/y
∗
0 , . . . , y

∗
n/y

∗
0) is an optimal solution

to the fractional program. Note that the objective function of the Max-Revenue problem is

quasiconvex, so an optimal solution is attained at an extreme point. Since the matrix A is totally

unimodular, the polyhedron {x∈ [0,1]n : Ax≤ b} has integral extreme points. Therefore, we can

relax the integrality constraints in the Max-Revenue problem, in which case, we can apply the

Charnes-Cooper transformation to this problem. Setting f = (r1 v1, . . . , rn vn), c= (v1, . . . , vn) and

d = v0 in the Charnes-Cooper transformation, it immediately follows that the optimal objective

value of the Revenue LP is equal to that of the Max-Revenue problem, which is in turn equal to

the optimal objective value of the problem maxx∈F Rev(x;r). In the next theorem, we go one step

beyond the equality of the optimal objective values by showing that we can convert an optimal

solution to the Revenue LP into a binary solution that characterizes an assortment.

Theorem 6.1 (Revenue LP) In a basic optimal solution (y∗, y∗0) to the Revenue LP, we have

y∗i /y
∗
0 ∈ {0,1} for all i∈N , so the solution

(y∗1
y∗0
, . . . , y

∗
n
y∗0

)
is optimal to the problem maxx∈F Rev(x;r).

Proof: For the solution (y∗, y∗0), defining the slack variables ζ∗ = (ζ∗1 , . . . , ζ
∗
m) and γ∗ = (γ∗1 , . . . , γ

∗
n)

for the first and second sets of constraints, by the constraints of the Revenue LP, we have

Ay∗+ ζ∗ = y∗0 b, y∗i + γ∗i = y∗0 ∀ i∈N , v0 y
∗
0 +
∑

i∈N
vi y

∗
i = 1.

Note that y∗0 > 0; otherwise, we have y∗i = 0 for all i ∈ N by the second set of constraints, in

which case, the left side of the third constraint must be zero. Also, since y∗0 > 0, we cannot have

y∗i = 0 and γ∗i = 0 for some i ∈ N . So, defining the sets N 0 = {i∈N : y∗i is basic and γ∗i is basic},
N 1 = {i∈N : y∗i is basic and γ∗i is nonbasic} andN 2 = {i∈N : y∗i is nonbasic and γ∗i is basic}, the

three sets partition N , satisfying |N 0| + |N 1| + |N 2| = n. We claim that y∗i ∈ {0, y∗0} for all

i ∈ N 0. To prove the claim, using M= {1, . . . ,m} to index the rows of the matrix A, let
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M0 = {`∈M : ζ∗` is nonbasic}. Observe that the four sets N 0, N 1, N 2 and M0 completely

characterize the basis. Since y∗0 > 0, the number of basic variables in the solution (y∗, y∗0 ,ζ
∗,γ∗) is

1 + 2|N 0|+ |N 1|+ |N 2|+m− |M0|= 1+ |N 0|+n+m−|M0|. Since there are m+n+1 constraints

in the Revenue LP, we must have 1 + |N 0|+ n+m− |M0| = m+ n+ 1, so |M0| = |N 0|. On the

other hand, we have ζ∗` = 0 for all `∈M0 and y∗i = 0 for all i∈N 2. Moreover, for all i∈N 1, since

γ∗i = 0, we have y∗i = y∗0 . Therefore, letting a`i be the (`, i)th entry of the matrix A and b` be the

`th entry of the vector b, by the first set of constraints in the Revenue LP, for each `∈M0, we have
∑

i∈N0 a`i y
∗
i +
∑

i∈N1 a`i y
∗
0 = b` y

∗
0 , which is equivalent to

∑

i∈N0

a`i y
∗
i =

(
b`−

∑

i∈N1

a`i

)
y∗0 ∀ `∈M0.

Viewing {y∗i : i ∈ N 0} as unknowns, there are |N 0| unknowns and |M0| equations above. Since

|M0|= |N 0|, the number of equations is equal to the number of unknowns.

In the above system of equations, there must be a unique solution for {y∗i : i ∈N 0}; otherwise,

we have two different basic solutions corresponding to the same basis. Therefore, {y∗i : i∈N 0}
is given by the inverse of the matrix with entries {a`i : ` ∈ M0, i ∈ N 0} multiplying the

vector with entries {(b`−
∑

i∈N1 a`i)y
∗
0 : `∈M0}. Since the matrix A is totally unimodular, all

of its entries take values in {−1,0,+1} and the inverses of its submatrices have integer entries

(Proposition 2.1 in Chapter III.1, Nemhauser and Wolsey 1988). Thus, for each i ∈ N 0, y∗i must

be an integer multiple of y∗0 . Also, by the second set of constraints in the Revenue LP, we have

y∗i ≤ y∗0 , which implies that y∗i ∈ {0, y∗0} for all i∈N 0, establishing the claim.

If i∈N 0, then y∗i ∈ {0, y∗0} by the claim in the previous paragraph. If i∈N 1, then γ∗i = 0, which

implies that y∗i = y∗0 . If i∈N 2, then y∗i = 0. Thus, we have y∗i /y
∗
0 ∈ {0,1} for all i∈N .

Approximation Scheme for Revenue-Utility Maximization:

We return to the problem of solving the Revenue-Utility problem for a fixed value of λ. As discussed

at the end of Section 4, it takes a matter of seconds to generate the candidate assortments for

the problem instances in our computational experiments, but one can come up with pathological

cases in which the number of candidate assortments increases exponentially with the input size. We

give an approximation scheme that keeps the number of candidate assortments polynomial in the

input size while incurring a bounded loss in optimality. By Theorem 3.2, letting x∗ be an optimal

solution to the Revenue-Utility problem, we can recover an optimal solution to the Revenue-Utility

problem by solving the inner maximization problem in the Parametric problem with t = V (x∗).

Letting Vmin = mini∈N vi and Vmax = maxi∈N vi, since F includes a nonempty assortment, we have

V (x∗) ∈ [Vmin, nVmax]. In our approximation scheme, for some fixed accuracy parameter ρ > 0, we
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focus on integer powers of 1 + ρ over the interval [Vmin, nVmax]. Instead of solving the problem

maxx∈F Rev(x;r+ λ (1 + t)e) with t= V (x∗), we solve this problem for each value of t that is an

integer power of 1 + ρ. For each value of t, we get a candidate assortment by solving the problem

maxx∈F Rev(x;r+λ (1+t)e). We check the objective value that each candidate assortment provides

for the Revenue-Utility problem and pick the best one. Here is our approximation scheme.

Initialization: Pick an accuracy parameter ρ > 0. Using d·e and b·c to denote the round up and

round down functions, define a grid over the interval [Vmin, nVmax] as

Grid=
{

(1 + ρ)k : k= dlogVmin/ log(1 + ρ)e, . . . , blog(nVmax)/ log(1 + ρ)c
}
∪
{
Vmin, nVmax

}
.

Approximation Scheme: For each t ∈ Grid, let x̂t be an optimal solution to the problem

maxx∈F Rev(x,r+λ (1 + t)e).

Output: Return the assortment x̂ from the collection {x̂t : t∈Grid} with the largest objective

value for the Revenue-Utility problem; that is, x̂= arg max
t∈Grid Rev(x̂t,r) +λ log(1 +V (x̂t)).

In the next theorem, we show that the output x̂ of the approximation scheme provides a

1/(1 + ρ)-approximate solution to the Revenue-Utility problem.

Theorem 6.2 (Approximation Scheme) The output x̂ is a 1/(1 + ρ)-approximation to the

Revenue-Utility problem; that is, Rev
(
x̂;r

)
+λ log(1 +V (x̂))≥Z∗λ/(1 + ρ).

Proof: Let x∗ be an optimal solution to the Revenue-Utility problem. Since V (x∗) ∈ [Vmin, nVmax],

let t̂∈Grid be such that t̂≤ V (x∗)≤ (1 + ρ) t̂. By the definition of x̂, we get

Rev (x̂ ; r) +λ log
(
1 +V (x̂)

)
≥Rev (x̂t̂ ; r) +λ log

(
1 +V (x̂t̂)

)

(a)

≥ Rev
(
x̂t̂ ; r+λ (1 + t̂ )e

)
+λ

(
log(1 + t̂ )− t̂

) (b)

≥ Rev
(
x∗ ; r+λ (1 + t̂ )e

)
+λ

(
log(1 + t̂ )− t̂

)
,

where (a) follows from using Lemma 3.1 with x = x̂t̂ and t = t̂, whereas (b) follows because, by

definition of the approximation scheme, x̂t̂ = arg maxx∈F Rev(x ; r+λ ( 1 + t̂ )e).

We have Rev(x∗;r+λ ( 1 + t̂ )e) = Rev(x∗;r) + λ ( 1+t̂ )V (x∗)
1+V (x∗) by the identity at the beginning of

the proof of Lemma 3.1, so we get

Rev
(
x∗ ; r+λ (1 + t̂ )e

)
+λ

(
log(1 + t̂ )− t̂

)
= Rev (x∗;r) +λ

{
(1 + t̂ )V (x∗)

1 +V (x∗)
− t̂

}
+λ log

(
1 + t̂

)

(c)

≥ Rev (x∗;r) +λ log
(
1 + t̂

) (d)

≥ Rev (x∗;r) +λ log

(
1 +

V (x∗)

1 + ρ

)
,

where (c) holds because a
1+a

is increasing in a and V (x∗)≥ t̂, so we have V (x∗)
1+V (x∗) ≥ t̂

1+t̂
, and (d)

follows from the fact that (1 + ρ) t̂ ≥ V (x∗). For all a ∈ R+ and ρ ∈ R+, we have the inequality
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(1 + a)1+ρ ≥ 1 + (1 + ρ)a. Using this inequality with a= V (x∗)/(1 + ρ), we get
(

1 + V (x∗)
1+ρ

)1+ρ

≥
1 +V (x∗). Therefore, we have

Rev(x∗;r) + λ log

(
1 +

V (x∗)

1 + ρ

)
≥ Rev(x∗;r) +

λ log(1 +V (x∗))

1 + ρ
(e)

≥ 1

1 + ρ

{
Rev(x∗;r) + λ log(1 +V (x∗))

}
=

Z∗λ
1 + ρ

,

where (e) holds because Rev(x∗;r) ≥ 0. By the three chains of inequalities displayed above, we

have Rev
(
x̂;r

)
+λ log(1 +V (x̂))≥Z∗λ/(1 + ρ), as desired.

Our approximation scheme constructs one candidate assortment for each t ∈ Grid and there are

O
(

log(nVmax)−log(Vmin)

log(1+ρ)

)
= O

(
1
ρ

log(nVmax/Vmin)
)

points in Grid, which implies that we can find a

1/(1 + ρ)-approximate solution to the Revenue-Utility problem by checking the objective values of

O
(

1
ρ

log(nVmax/Vmin)
)

candidate assortments. Thus, the accuracy parameter ρ balances solution

quality with computational effort. The running time of our approximation scheme is polynomial in

the input size and 1
ρ
, making it a fully polynomial-time approximation scheme. Our approximation

scheme solves the problem maxx∈F Rev(x;r + λ (1 + t)e) for each t ∈ Grid. In this problem, we

maximize only the expected revenue and the revenue of product i is ri +λ(1 + t). To solve this

problem, we can replace the revenue of product i with ri +λ(1 + t) in the Revenue LP.

7. Applications of Totally Unimodular Constraints

In this section, we give examples of assortment optimization settings that fit our formulation

with totally unimodular constraints. In each of these settings, we can use our approach to solve

the Revenue-Utility problem, yielding an assortment that maximizes a linear combination of the

expected revenue and the expected utility.

7.1 Cardinality Constraints and Their Variants

In certain applications, due to limited space in a physical store or on a web page, we are interested in

limiting the cardinality of the offered assortment. Using b to denote the upper bound on the number

of products that we can offer, the set of feasible assortments is F = {x∈ {0,1}n :
∑

i∈N xi ≤ b}.
Here, the constraint matrix A = (1, . . . ,1) has a single row consisting of all ones. Therefore,

the matrix A is totally unimodular, in which case we can use our approach to find an

assortment that maximizes the linear combination of the expected revenue and the expected

utility. Our approach can handle slightly more general cardinality constraints, which we call

nested cardinality constraints. In particular, consider the case in which we have a collection

of subsets of products {Sk ⊆N : k= 1, . . . ,K}, where for any pair of subsets, either one subset
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includes the other or their intersection is empty; that is, for all k, ` = 1, . . . ,K, we have Sk ⊆ S`
or S` ⊆ Sk or Sk ∩S` =∅. In nested cardinality constraints, the cardinality of the products

that we can offer within each subset Sk is limited to bk. Thus, the set of feasible assortments

is F = {x∈ {0,1}n :
∑

i∈Sk xi ≤ bk ∀k= 1, . . . ,K}. Using the fact that Sk ⊆ S` or S` ⊆ Sk or

Sk ∩S` =∅, we can arrange the columns of this constraint matrix in such a way that each

row includes only consecutive ones. Such a matrix is called an interval matrix, and it is totally

unimodular (Corollary 2.10 in Chapter III.1, Nemhauser and Wolsey 1988).

For example, if we choose an assortment of shirts to offer with S1 being the set of all available

shirts, S2 being the set of all long-sleeved shirts, and S3 being the set of all short-sleeved shirts,

then S2 ⊆ S1, S3 ⊆ S1, and S2 ∩S3 =∅. In this case, the nested cardinality constraints ensure that

the number of offered shirts is at most b1, the number of offered long-sleeved shirts is at most b2,

and the number of offered short-sleeved shirts is at most b3. If, in addition, S4 is the set of all blue

long-sleeved shirts, then S4 ⊆ S1, S4 ⊆ S2, and S4 ∩ S3 = ∅, in which case the nested cardinality

constraints ensure that the number of offered blue long-sleeved shirts is at most b4.

7.2 Display Location Effects

When a product is displayed at a prominent location in a retail store or at the top of a list of

search results in online retail, customers may be more likely to choose it. We consider the case

where the preference weight of a product depends on the location at which the product is displayed

(Abeliuk et al. 2016, Chen and Jiang 2017, L’Ecuyer et al. 2017, Gallego et al. 2019). We use

N = {1,2, . . . , n} to index the items that we can offer to the customers and K = {1,2, . . . ,K} to

index the possible locations at which we can display the items. If we display item i at location k,

then its preference weight is vik. We use the vector x= {xik : i∈N , k ∈K} ∈ {0,1}n×K to capture

our assortment decisions, where xik = 1 if and only if we offer item i at location k. Thus, the set

of products is N ×K and offering the product (i, k) corresponds to displaying item i at location k.

The expected revenue and the expected utility from our assortment decisions, along with the set

of feasible assortments, are given by

Rev(x;r) =

∑
(i,k)∈N×K ri vik xik

v0 +
∑

(i,k)∈N×K vik xik
, Util(x) = log

(
1 +

∑

(i,k)∈N×K

vik
v0
xik

)

F =

{
x∈ {0,1}n×K :

∑

k∈K
xik ≤ 1 ∀ i∈N ,

∑

i∈N
xik ≤ 1 ∀k ∈K

}
,

where the first set of constraints ensures that each item is displayed at no more than one location

and the second set of constraints ensures that each location is used by at most one item. The above
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constraint matrix is the constraint matrix of an assignment problem, which is totally unimodular

(Corollary 2.9 in Chapter III.1, Nemhauser and Wolsey 1988). If we convert the first set of

constraints into equalities, then all products must be offered and we choose only the product

locations. If the locations have a natural sequence, as in online search results, then our formulation

allows skipping a location, but if vi1 ≥ vi2 ≥ . . .≥ viK for all i ∈N , so that locations with smaller

indices are more preferable, then we can show that it is not optimal to skip a location.

7.3 Pricing with Discrete Price Menus

In our problem setup up to this point, the prices of the products are fixed. Consider the case

in which the price of each product is a decision variable rather than being fixed. The preference

weight of each product depends on its price. Given a finite set of possible price levels, we want to

choose the assortment of products to offer and the corresponding prices. We use N = {1,2, . . . , n}
to index the items that we can offer to the customers and K= {1,2, . . . ,K} to index the possible

price levels that we can choose for the items. The price that corresponds to price level k is rk, so

the set of possible prices for the items is {rk : k ∈ K}. If we use the price level k for item i, then

its preference weight is vik. Note that we do not require a specific functional form between the

preference weight of an item and its price. The price-demand relationship can be arbitrary. Our

notation indicates that the set of possible prices for each item is the same, but it is straightforward

to extend our formulation to incorporate different sets of possible prices for different items. To

capture our assortment decisions, we use the vector x = {xik : i ∈ N , k ∈ K} ∈ {0,1}n×K , where

xik = 1 if and only if we offer item i at price level k. In this case, the set of products is N ×K and

offering the product (i, k) corresponds to offering item i at price level k.

The expected revenue and the expected utility from our assortment decisions and the set of

feasible assortments are given by

Rev(x;r) =

∑
(i,k)∈N×K rk vik xik

v0 +
∑

(i,k)∈N×K vik xik
, Util(x) = log

(
1 +

∑

(i,k)∈N×K

vik
v0
xik

)

F =

{
x∈ {0,1}n×K :

∑

k∈K
xik ≤ 1 ∀ i∈N

}
.

The constraints ensure that each item, if offered, has one price level. Each row of the constraint

matrix corresponds to an item i and includes consecutive ones, corresponding to the different price

levels for item i. Thus, the constraint matrix is an interval matrix, which is totally unimodular. If

we want to impose a limit of b on the number of offered products, then we can add the constraint
∑

(i,k)∈N×K xik ≤ b. The additional constraint amounts to adding a row of ones to the constraint

matrix and the constraint matrix is still an interval matrix. In many formulations of the pricing
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problem under the multinomial logit model, there is a specific relationship between the prices and

the preference weights. For example, if the price of the product i is p, then its preference weight is

eαi−βi p, which arises when the mean utility of the product is linear in its price. In our formulation,

the relationship between the prices and the preference weights can be arbitrary.

7.4 Pricing with a Price Ladder Constraint

We can extend the pricing model in the previous section to accommodate a price ladder constraint

that imposes an ordering of the prices. Suppose there is an inherent ordering 1� 2� . . .� n among

the products, where, in some sense, product 1 is the best product and product n is the worst. Such

an ordering occurs when the products have a clear ranking in terms of quality, richness of features,

or durability. We want to choose the prices of the products in a way that is consistent with their

rank; that is, better products have higher prices. We refer to such constraints on the prices as

price ladder constraints. Price ladder constraints appear in practice frequently. Rusmevichientong

et al. (2006) describe an application in automobile pricing in which a vehicle with more features

must have a higher price than a vehicle of the same model with fewer features. Jagabathula and

Rusmevichientong (2017) give additional applications. We index the items by N = {1,2, . . . , n}
and the possible price levels by K= {1,2, . . . ,K}. In our formulation, all products must be offered

and we need to choose their prices. Without loss of generality, we order the prices {rk : k ∈K}
corresponding to the different price levels so that r1 ≥ r2 ≥ . . .≥ rK . If the price of product i is rk,

then its preference weight is vik. The price ladder constraint is such that the price of product i

should be no larger than the price of product i−1. We capture our assortment decisions using the

vector x= {xik` : i ∈N , k ∈K, ` ∈K, k ≥ `} ∈ {0,1}n×K×(K+1)/2, where xik` = 1 if and only if we

offer item i at price level k and item i− 1 at price level `. Thus, we offer item i at price level k

if and only if
∑k

`=1 xik` = 1. For item i= 1, although we do not have an item indexed by zero, we

still use the decision variables {x1k` : k, ` ∈ K, k ≥ `} to capture our pricing decisions for item 1.

We offer item 1 at price level k if and only if
∑k

`=1 x1k` = 1.

The expected revenue and the expected utility from our assortment decisions and the set of

feasible assortments are given by

Rev(x;r) =

∑
i∈N

∑
k∈K

∑k

`=1 rk vik xik`

v0 +
∑

i∈N
∑

k∈K
∑k

`=1 vik xik`
, Util(x) = log

(
1 +

∑

i∈N

∑

k∈K

k∑

`=1

vik
v0
xik`

)

F =

{
x∈ {0,1}n×K×(K+1)/2 :

∑

k∈K

k∑

`=1

x1k` = 1,
k∑

`=1

xi−1,k` =
K∑

`=k

xi`k ∀ i= 2, . . . , n, k ∈K
}
.

The first constraint ensures that we charge some price for item 1. The second constraint ensures

that if we charge the price level k for item i−1, then we can charge one of the price levels k, . . . ,K



Sumida et al. Revenue-Utility Tradeoff for Assortment Optimization under the MNL 29

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

(4,1)

(4,2)

(4,3)src

snkx111

x122

x121

x132

x131

x133

x211

x222

x221

x232

x231

x233

x311

x322

x321

x332

x331

x333

x411

x422

x421

x432

x431

x433

Figure 5 The graph corresponding to the price ladder constraints for a problem instance with n= 4 items and

K = 3 price levels.

for item i. In particular, the left side of the constraint takes a value of one if we charge price level k

for item i− 1. Noting the definition of the decision variable xik`, the right side of the constraint

takes a value of one if we charge one of the price levels k, . . . ,K for item i and the price level k for

item i− 1. In the next proposition, we show that the constraints above correspond to flow balance

constraints over a certain graph, which implies that the constraint matrix is totally unimodular

(Proposition 3.1 in Chapter III.1, Nemhauser and Wolsey 1988).

Proposition 7.1 (Connection to Network Flow) The constraints for the price ladder are flow

balance constraints in a directed graph with (n− 1)K + 2 vertices and nK(K + 1)/2 edges.

Proof: Consider a directed graph whose vertices are indexed by {(i, k) : i = 2, . . . , n, k ∈ K} ∪
{source, sink} and whose edges are indexed by {(i, k, `) : i ∈ N , k ∈ K, ` ∈ K, k ≥ `}. For

i= 2, . . . , n− 1, the edge (i, k, `) leaves the vertex (i, `) and enters the vertex (i+ 1, k). The edge

(1, k, `) leaves the vertex source and enters the vertex (2, k). The edge (n,k, `) leaves the vertex (n, `)

and enters the vertex sink. The decision variable xik` in our price ladder constraints corresponds to

the flow on the edge (i, k, `). The first constraint is the flow balance constraint of the vertex source.

The second constraint is the flow balance constraint of the vertex (i, k). The supply at the vertex

source is +1. The demand at the vertex sink is −1. The flow balance constraint for the vertex sink

is redundant, so we do not write this constraint explicitly in our formulation of the price ladder

constraints. In Figure 5, we show the construction of the graph for the price ladder constraints for

a problem instance with n= 4 items and K = 3 price levels.

In our price ladder, we use a complete ordering of the items with 1 � 2 � . . . � n. By slightly

modifying the graph in Figure 5, we can handle a partial ordering. For example, consider the partial
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ordering 1� {2,3,4} � 5, meaning that the price of item 1 must be higher than the prices of items

2, 3, and 4, whereas the prices of the items 2, 3 and 4 must be higher than the price of item 5, but

there is no required ordering among the prices of items 2, 3, and 4. Building on the approach in

this section, we can capture such partial order using totally unimodular constraints. Moreover, in

our formulation, all of the items are offered and the only decision variable is the price to charge for

each item. Once again, we can slightly modify the graph in Figure 5 to choose the items to offer,

as well as the prices of the offered items, while satisfying a price ladder constraint. Lastly, we can

join the two extensions to handle problems in which there is a partial ordering and we choose the

items to offer, as well as the prices of the offered items.

7.5 Product Precedence Constraints

We focus on assortment optimization problems in which a particular product cannot be offered

unless a certain set of related products is also offered. This kind of a constraint may arise when a

company is prohibited, by company policy or law, from offering a more expensive or sophisticated

version of the product unless an inexpensive or basic version is also offered. For example, it may

not be possible to offer the brand name version of a drug unless the generic version is also offered.

To model such product precedence constraints, we use Si ⊆N to denote the set of products that

must be offered in order to be able to offer product i. Thus, the set of feasible assortments is given

by F = {x ∈ {0,1}n : xi − xj ≤ 0 ∀ i ∈ N , j ∈ Si}, indicating that we can have xi = 1 only when

xj = 1 for all j ∈ Si. In this constraint matrix, each row includes only a +1 and a −1. Such matrices

are totally unimodular (Proposition 2.6 in Chapter III.1, Nemhauser and Wolsey 1988). Note that

the subsets {Si : i∈N} in the product precedence constraints can be arbitrary. In particular, they

can be overlapping and products can have circular dependencies on each other.

8. Computational Experiments

In our first set of computational experiments, we work with a large number of randomly generated

instances of the assortment optimization problem with display location effects. Our goal is to

demonstrate that generating the candidate assortments and applying our approximation scheme

requires reasonable computational effort. In Appendix E, we also give similar computational

experiments on a large number of randomly generated instances of the pricing problem with discrete

price menus. In our second set of computational experiments, we use a publicly available dataset

that is provided by Expedia and work with pricing problems with discrete price menus. Our goal

is to demonstrate the possible tradeoffs between the expected revenue and the expected utility on

a dataset coming from a real-world setting.
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8.1 Computational Results for Display Location Effects

We focus on assortment optimization problems with display location effects, which correspond

to the application discussed in Section 7.2. We use the following approach to generate our test

problems. In all of our test problems, we have n= 60 items. There are K possible locations indexed

by K= {1, . . . ,K}, where K is a parameter that we vary. We follow the convention that location 1

is the most desirable and location K is the least desirable. We sample the revenue ri of item i

from the uniform distribution over [0,10]. To come up with the preference weights associated with

the item-location pairs, we sample β from the uniform distribution over [0,1]. For each item i,

we sample αi from the uniform distribution over [0,2] and set the preference weight vik of item i

when offered at location k as vik = eαi+(0.1×(K−k))−(β×ri). Therefore, the items with higher prices

tend to be less attractive and the parameter β captures the price sensitivity shared by all items.

To determine the preference weight of the no-purchase option, letting NK be the set of K items

with the smallest values for the preference weights {viK : i∈N}, we set v0 = p0
∑

i∈NK viK/(1− p0),
where p0 is another parameter that we vary. In this case, ignoring the fact that we can place at

most one item at each location, even if we offer all items at the least desirable location, a customer

leaves without making a purchase with a probability of p0.

Parametric LP and Efficient Frontier: Varying K ∈ {15,30,45,60} and p0 ∈ {0.1,0.3,0.5},
we obtain 12 parameter configurations. For each parameter configuration, we generate 50 test

problems as described in the previous paragraph. For each test problem, we construct a collection

of candidate assortments that is guaranteed to include an optimal solution to the Revenue-Utility

problem, which requires obtaining an optimal solution to the Candidate LP for all γ ∈R through

parametric LP. Using the candidate assortments, we also construct an efficient frontier that shows

all attainable optimal expected revenue-utility pairs in the Revenue-Utility problem as we vary

λ∈R+. Letting {x`Cand : ` = 1, . . . ,L} to be the collection of candidate assortments, the optimal

objective value of the Revenue-Utility problem is Z∗λ = max`=1,...,LRev(x
`
Cand;r) +λUtil(x`Cand). For

fixed x`Cand, the function λ 7→Rev(x`Cand;r) +λUtil(x`Cand) is linear in λ. Therefore, the function

λ 7→Z∗λ is the pointwise maximum of L linear functions, so it is continuous, piecewise linear and

convex in λ. When λ takes values between the successive breakpoints of this function, the optimal

solution to the Revenue-Utility problem does not change. Thus, constructing the efficient frontier

requires finding the pointwise maximum of L linear functions, which can be done in O(L logL)

operations (Chapter 5, Kleinberg and Tardos 2005).

We give our computational results in Table 2. In this table, the first column shows the parameter

configuration (K,p0). Recall that we generate 50 test problems in each parameter configuration. The

second column shows the average number of candidate assortments that we generate, where the
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Param. # Cand. # Opt. CPU
(K,p0) Assr. Assr. Secs.

(15,0.1) 476.41 84.46 1.89
(15,0.3) 474.30 97.42 1.85
(15,0.5) 476.50 102.72 1.88

(30,0.1) 1095.02 187.18 9.28
(30,0.3) 1084.58 212.20 9.35
(30,0.5) 1112.58 244.66 9.59

Param. # Cand. # Opt. CPU
(K,p0) Assr. Assr. Secs.

(45,0.1) 1514.96 290.4 21.77
(45,0.3) 1476.48 323.02 21.33
(45,0.5) 1533.12 379.16 22.14

(60,0.1) 1650.78 356.28 37.48
(60,0.3) 1628.40 391.08 36.56
(60,0.5) 1527.14 360.62 34.23

Table 2 The number of candidate assortments, number of optimal assortments and CPU seconds for assortment

optimization problems with display location effects.

average is computed over the 50 test problems in each parameter configuration. The third column

shows the average number of candidate assortments that actually turn out to be an optimal solution

to the Revenue-Utility problem for some λ∈R+, corresponding to the average number of assortments

that appear on the efficient frontier. We emphasize that the collection of candidate assortments

is guaranteed to include an optimal solution to the Revenue-Utility problem, but some candidate

assortments may never be optimal to the Revenue-Utility problem, regardless of the value of λ. Also,

using Lemma 5.2 to eliminate candidate assortments did not improve our computation times. The

fourth column shows the average CPU seconds to generate all candidate assortments for a test

problem. We carried out our computational experiments in Java 1.7.0 on a 2.8 GHz Intel Core i7

CPU running MacOS with 16 GB of RAM. We used Gurobi 6.5.0 as our LP solver.

For the smaller test problems with K = 15 locations, we can generate all candidate assortments

in less than two seconds. For the larger test problems with K = 60 locations, this computational

effort increases to just over half a minute. After generating the candidate assortments, in each of

our test problems, it took less than a millisecond to construct the efficient frontier. The number of

candidate assortments L increases approximately linearly with the number of products. Specifically,

the number of products corresponds to the number of item-location pairs, which is nK. Normalizing

the number of candidate assortments by dividing L by nK, the average value of L/(nK) is roughly

constant. For the test problems with 15, 30, 45, and 60 locations, the average values of L/(nK)

are, respectively, 0.53 0.61, 0.56, and 0.45. This result is consistent with Theorem 4.2, which shows

that L is bounded above by an expression that is linear in the number of products.

Figure 6 gives the efficient frontier for a problem instance with K = 45 and p0 = 0.5. Each data

point corresponds to a different value of λ with a different optimal solution for the Revenue-Utility

problem. Between successive data points, the optimal solution does not change.

Approximation Scheme: Thus far, our discussion has focused on exact solutions of the

Revenue-Utility problem. We now discuss the performance of our approximation scheme when we

find approximate solutions to the Revenue-Utility problem for some representative values of λ. Based
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Figure 6 Efficient frontier for a particular instance of the assortment optimization problem with display location

effects with K = 45 and p0 = 0.5.

on the discussion presented earlier in this section, the optimal objective value Z∗λ of the Revenue-

Utility problem is a continuous, piecewise linear and convex function of λ. We use {λf : f = 1, . . . ,F}
to denote the breakpoints of this function, where F is the number of breakpoints. To choose

representative values of λ, we focus on the 10th, 30th, 50th and 70th percentiles of the data

{λf : f = 1, . . . ,F}. Letting λ10, λ30, λ50, and λ70 denote these percentiles, for each of the 50 test

problems in a parameter configuration, we use our approximation scheme to obtain an approximate

solution to the Revenue-Utility problem with λ ∈ {λ10, λ30, λ50, λ70}. We use representative values

for λ because the Revenue-Utility problem may become simple to solve for extreme values of λ. In

particular, if λ is too large, then we put excessive weight on the expected utility, in which case, it

is near-optimal to maximize the total preference weight of the offered products. Noting that A is

totally unimodular, we can find an assortment that maximizes the total preference weight of the

offered products by maximizing the objective function
∑

i∈N vi xi subject to the constraints that

Ax≤ b and x∈ [0,1]n. If λ is too small, then we put excessive weight on the expected revenue, in

which case, it is near-optimal to maximize the expected revenue. By Theorem 6.1, we can maximize

the expected revenue by solving a single LP. In Figure 6, we show the expected revenue-utility

pairs corresponding to λ10, λ30, λ50 and λ70 for a particular problem instance.

We give our computational results in Table 3. In this table, the first column shows the parameter

configuration (K,p0). The second column shows the value of λ ∈ {λ10, λ30, λ50, λ70} on which we

focus. The remainder of the table has two blocks, each containing three columns. The two blocks,

respectively, show the performance of our approximation scheme when we use this scheme with

the accuracy parameters of ρ= 1 and ρ= 0.1. In each block, the first column shows the maximum
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ρ= 1 ρ= 0.1
Max. # Max. #

Param. % CPU Cand. % CPU Cand.
(K,p0) λ Gap Secs. Assr. Gap Secs. Assr.

(15,0.1) λ10 0.044 0.35 23.4 0.001 1.77 157.4
λ30 0.289 0.40 23.4 0.003 1.88 157.4
λ50 0.187 0.45 23.4 0.007 1.88 157.4
λ70 0.316 0.42 23.4 0.006 1.94 157.4

(15,0.3) λ10 0.050 0.46 24.6 0.000 2.29 165.4
λ30 0.157 0.49 24.6 0.002 2.14 165.4
λ50 0.185 0.42 24.6 0.004 2.03 165.4
λ70 0.307 0.44 24.6 0.003 1.99 165.4

(15,0.5) λ10 0.032 0.45 24.8 0.000 2.02 168.4
λ30 0.168 0.43 24.8 0.003 1.93 168.4
λ50 0.540 0.44 24.8 0.009 2.08 168.4
λ70 0.193 0.43 24.8 0.010 2.19 168.4

(30,0.1) λ10 0.028 1.08 29.0 0.001 4.51 197.4
λ30 0.175 1.28 29.0 0.004 4.46 197.4
λ50 0.196 1.06 29.0 0.005 4.20 197.4
λ70 0.284 1.13 29.0 0.006 4.35 197.4

(30,0.3) λ10 0.031 1.06 28.4 0.000 3.72 192.0
λ30 0.227 1.15 28.4 0.003 3.88 192.0
λ50 0.248 0.99 28.4 0.005 3.82 192.0
λ70 0.287 1.09 28.4 0.005 3.96 192.0

(30,0.5) λ10 0.022 0.88 24.8 0.001 3.23 167.8
λ30 0.165 0.87 24.8 0.004 3.20 167.8
λ50 0.290 0.91 24.8 0.008 3.25 167.8
λ70 0.291 0.90 24.8 0.005 3.44 167.8

ρ= 1 ρ= 0.1
Max. # Max. #

Param. % CPU Cand. % CPU Cand.
(K,p0) λ Gap Secs. Assr. Gap Secs. Assr.

(45,0.1) λ10 0.037 1.83 27.8 0.002 5.56 193.0
λ30 0.199 1.84 27.8 0.004 5.71 193.0
λ50 0.208 1.83 27.8 0.005 5.59 193.0
λ70 0.206 1.90 27.8 0.004 6.00 193.0

(45,0.3) λ10 0.041 2.02 28.4 0.001 6.86 197.4
λ30 0.193 1.84 28.4 0.004 6.09 197.4
λ50 0.211 2.08 28.4 0.008 6.87 197.4
λ70 0.215 1.99 28.4 0.008 6.93 197.4

(45,0.5) λ10 0.029 1.84 29.8 0.001 6.31 204.2
λ30 0.163 1.90 29.8 0.002 6.75 204.2
λ50 0.361 1.94 29.8 0.008 6.57 204.2
λ70 0.259 1.97 29.8 0.005 6.86 204.2

(60,0.1) λ10 0.051 2.93 31.6 0.001 7.84 218.4
λ30 0.193 2.93 31.6 0.004 8.16 218.4
λ50 0.252 2.69 31.6 0.005 7.79 218.4
λ70 0.137 2.78 31.6 0.008 8.10 218.4

(60,0.3) λ10 0.044 2.67 28.4 0.002 7.11 194.0
λ30 0.313 2.77 28.4 0.005 7.55 194.0
λ50 0.247 2.66 28.4 0.004 7.32 194.0
λ70 0.273 2.58 28.4 0.005 7.11 194.0

(60,0.5) λ10 0.035 2.83 30.0 0.001 8.66 205.2
λ30 0.204 2.56 30.0 0.004 7.90 205.2
λ50 0.306 2.97 30.0 0.006 8.38 205.2
λ70 0.279 2.76 30.0 0.007 8.74 205.2

Table 3 Performance of the approximation scheme for assortment optimization problems with display location

effects.

percent optimality gap of the solutions obtained by the approximation scheme, where the maximum

is computed over the 50 test problems in a parameter configuration. The second column shows

the average CPU seconds for the approximation scheme. The third column shows the average

number of candidate assortments generated by the approximation scheme. Our results indicate that

our approximation scheme can find near-optimal solutions for the Revenue-Utility problem rather

quickly. For the larger test problems with K = 60 locations, using the smallest accuracy parameter

of ρ = 0.1, the average CPU seconds is 7.88 and the approximation scheme finds solutions with

optimality gaps no larger than 0.008% by using an average of 205.2 candidate assortments. The

practical performance of the approximation scheme is substantially better than its theoretical

guarantee. Using an accuracy parameter of ρ= 1, which corresponds to a performance guarantee

of 1/2, the optimality gap of the solutions that we get is at most 0.54%. In Appendix E, we give

additional computational experiments on a large number of randomly generated instances of the

pricing problem with discrete price menus.

8.2 Computational Results on the Expedia Dataset

We give computational experiments on a pricing problem by using a publicly available dataset

provided by Expedia (Kaggle 2016). These experiments have two goals. First, we want to

demonstrate that we may significantly improve customer-centric objectives, such as expected utility
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and purchase probability, by incurring a relatively small degradation in the firm-centric objective of

expected revenue. Second, we want to demonstrate that shifting the weight from expected revenue

to expected utility may significantly change the optimal decisions in the Revenue-Utility problem.

Dataset and Experimental Setup: We have the results of search queries for hotels on

Expedia. A search query is akin to an assortment, corresponding to a set of hotels displayed to a

customer. In the dataset, each row corresponds to a hotel displayed in a specific search query. Each

column corresponds to the attributes of the hotel displayed in the search query and the purchase

decision of the customer making the search query. We preprocessed the dataset to remove the

columns and rows with missing entries. After preprocessing, we end up with 14 columns and 595,965

rows, corresponding to 34,461 search queries. In the first column, we have a unique user identifier

giving the customer making the search query. Using this column, we can access the assortment

of hotels displayed to a customer in a search query. In the second column, we have an indicator

for whether the customer making the search query booked the hotel. The remaining 12 columns

give the attributes of the hotel, including its star rating, review score and displayed price. In the

dataset, the customer booked a hotel in 16.92% of the search queries. The average number of hotels

displayed in a search query is 17.24, ranging between 4 and 37. In Appendix F, we discuss the

details of our preprocessing approach and the 14 columns that we use.

Based on the single dataset provided by Expedia, to enrich our experimental setup, we use

bootstrapping to generate multiple datasets. In each dataset, we vary the fraction of search queries

that result in a booking. In particular, each dataset that we generate includes 10,000 search queries.

Using ϕ to denote the fraction of search queries that result in a booking, we sample ϕ× 10,000

search queries within the original Expedia search queries that resulted in a booking. Also, among

the original Expedia search queries that did not result in a booking, we sample (1−ϕ)× 10,000

search queries. Putting the two samples together, we get 10,000 search queries in our dataset. We

vary ϕ over {0.1,0.3,0.5} to obtain three datasets. In this way, in each of the three datasets, we have

10,000 search queries. For each search query, we have access to the attributes of the hotels displayed

to the customer, along with the hotel, if any, the customer booked. Note that one of the attributes

of each hotel is its displayed price. For economy of space, we report our results on one bootstrapped

dataset for each value for ϕ∈ {0.1,0.3,0.5}, but we repeated our computational experiments on 10

bootstrapped datasets. Our results do not change significantly from one bootstrapped dataset to

another. In Appendix G, we give the results on all bootstrapped datasets.

We split each dataset into testing and training portions, containing, respectively, 64% and 36% of

the search queries. We use maximum likelihood estimation on the training data to fit a multinomial

logit model to each dataset. The preference weight of hotel i is of the form eβ
0+

∑12
`=1 β

` z`i , where the
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vector (z1i , . . . , z
12
i ) captures the values of the last 12 columns giving the attributes of hotel i and the

vector (β0, β1, . . . , β12) corresponds to the coefficients that we estimate. We normalize the preference

weight of the no-purchase option as v0 = 1. Since one of the attributes correspond to the displayed

price of the hotel, once we fit a multinomial logit model, we can use the expression eβ
0+

∑12
`=1 β

` z`i to

compute the preference weight of hotel i at any price. Using K= {1, . . . ,K} with K = 100 to index

the possible price levels that we can charge for a hotel and {rk : k ∈K} to denote the set of 100

possible prices equally spaced over the interval [0,R], let vik be the preference weight for hotel i

when we charge price level k. To choose R, assuming that the prices take values over a continuum,

we use the approach in Li and Huh (2011) to compute the prices that maximize only the expected

revenue from a customer making a search query. We choose R as four times the maximum price

charged for any hotel. Given the assortment of hotels displayed in a search query, building on the

discussion in Section 7.3, we can formulate an LP to compute the prices to charge for these hotels to

maximize a linear combination of the expected revenue and the expected utility. Letting N be the

assortment of hotels displayed in a search query, we use x= {xik : i∈N , k ∈K} ∈ {0,1}|N |×K to

capture the prices charged for the hotels, where xik = 1 if and only if we charge price level k for

hotel i. To find the prices to charge for the hotels displayed in a search query without changing

the assortment of hotels displayed, we simply modify the definition of the set of feasible solutions

in Section 7.3 as F =
{
x∈ {0,1}|N |×K :

∑
k∈K xik = 1 ∀ i∈N

}
.

Results: We compute two sets of prices for each search query in the testing data. First, we

compute the prices that maximize the expected revenue from the assortment of hotels displayed in a

search query. We call these prices revenue-maximizing prices. To compute such prices, we set λ= 0

in the Revenue-Utility problem. In this way, we get the largest achievable expected revenue. Second,

we compute the prices that maximize the expected utility, while losing at most 1% of the expected

revenue when compared with the largest achievable one. We call these prices utility-focused

prices. By Lemma 5.1, the expected utility in an optimal solution to the Revenue-Utility problem

is increasing in λ, so we compute the utility-focused prices by using bisection over λ.

We give our computational results in Table 4. In the top portion of the table, we compare

the performance of the revenue-maximizing and utility-focused prices. Each row corresponds to

a bootstrapped dataset with a different value for ϕ. The first column gives the value of ϕ. The

remainder of the table has three blocks, each containing four columns. In the first block, we compare

the probability that a customer makes a purchase under the revenue-maximizing and utility-focused

prices. Letting xtRev capture the revenue-maximizing prices for the assortment of hotels displayed

in search query t of the testing data, under these prices, the customer makes a purchase with

probability φtRev = V (xtRev)/(1 +V (xtRev)). Similarly, letting xtUtil capture the utility-focused prices
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1% Allowed Decrease in Expected Revenue

% Increase in Purch. Prb. % Increase in Exp. Utility % Change in Price
ϕ Avg. Min. Max. Std. Avg. Min. Max. Std. Avg. Min. Max. Std.

0.1 12.49 8.73 14.33 0.85 14.45 14.30 15.05 0.08 11.98 8.94 13.41 0.66
0.3 13.36 10.48 14.33 0.55 14.39 14.29 14.69 0.04 12.65 10.37 13.40 0.42
0.5 14.05 11.90 14.34 0.21 14.35 14.28 14.53 0.03 13.18 11.51 13.39 0.16

2% Allowed Decrease in Expected Revenue

% Increase in Purch. Prb. % Increase in Exp. Utility % Change in Price
ϕ Avg. Min. Max. Std. Avg. Min. Max. Std. Avg. Min. Max. Std.

0.1 17.65 12.12 20.39 1.25 20.56 20.34 21.48 0.12 16.65 12.55 18.57 0.89
0.3 18.93 14.73 20.40 0.81 20.46 20.33 20.92 0.06 17.55 14.54 18.57 0.56
0.5 19.95 16.71 20.40 0.31 20.41 20.33 20.61 0.04 18.26 15.98 18.57 0.21

3% Allowed Decrease in Expected Revenue

% Increase in Purch. Prb. % Increase in Exp. Utility % Change in Price
ϕ Avg. Min. Max. Std. Avg. Min. Max. Std. Avg. Min. Max. Std.

0.1 21.57 14.64 24.98 1.57 25.27 24.98 26.50 0.17 20.12 15.29 22.32 1.04
0.3 23.18 17.93 25.00 1.02 25.13 24.97 25.79 0.08 21.17 17.67 22.33 0.66
0.5 24.47 20.42 25.03 0.39 25.05 24.97 25.40 0.04 21.99 19.37 22.34 0.25

Table 4 Percent changes in the purchase probabilities, expected utilities and prices as a function of the maximum

allowed percent change in the expected revenue.

for the assortment of hotels displayed in search query t of the testing data, under these prices

a customer makes a purchase with probability φtUtil = V (xtUtil)/(1 +V (xtUtil)). Thus, 100× φtUtil−φ
t
Rev

φt
Util

captures the percent improvement in the purchase probability if we are willing to incur 1% loss

in the expected revenue in favor of increasing the expected utility. For the 3,600 search queries

in the testing data, the four columns in the first block, respectively, give the average, minimum,

maximum and standard deviation of the data {100× φtUtil−φ
t
Rev

φt
Util

: t= 1, . . . ,3,600}. In the second block,

we compare the expected utility of a customer under the revenue-maximizing and utility-focused

prices. In particular, 100× Util(xtUtil)−Util(x
t
Rev)

Util(xt
Util

)
gives the percent improvement in the expected utility of

the customer in search query t if we are willing to incur 1% loss in the expected revenue. The second

block focuses on the data {100× Util(xtUtil)−Util(x
t
Rev)

Util(xt
Util

)
: t= 1, . . . ,3,600} and gives for this data the same

four statistics provided in the first block. In the third block, we compare the revenue-maximizing

and utility-focused prices. Letting pti,Rev and pti,Util, respectively, be the revenue-maximizing and

utility-focused prices for hotel i in search query t, 100× |p
t
i,Rev−p

t
i,Util|

pt
i,Util

corresponds to the percent

change in the price charged for the hotel if we are willing to incur 1% loss in the expected revenue

in favor of increasing the expected utility. Letting N t be the assortment of hotels displayed in

search query t, the third block focuses on the data {100× |p
t
i,Rev−p

t
i,Util|

pt
i,Util

: t= 1, . . . ,3,600, i∈N t} and

gives for this data the same four statistics provided in the first block.

Our results indicate that we can significantly improve the purchase probability and the expected

utility of a customer by incurring a rather small loss in the expected revenue. If we are willing to

incur 1% loss in the expected revenue, then we can increase the purchase probability of a customer

by 13.30% on average. As the value of ϕ increases, so that a larger fraction of the customers in
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Figure 7 Efficient frontiers for the assortments of hotels displayed to customers in 16 different search queries.

the training data make a booking, the improvements in the purchase probabilities become more

noticeable. Intuitively speaking, as a larger fraction of the customers make a booking, the estimated

mean utilities of the hotels, relative to the mean utility of the no-purchase option, end up being

larger, in which case, we can obtain more noticeable improvements in the purchase probabilities by

adjusting the prices charged for the hotels. If we are willing to incur 1% loss in the expected revenue,

then we can increase the expected utility of a customer by 14.39% on average. These observations

are consistent with the discussion presented in Section 5. Specifically, the boundary of the efficient

frontier on its right-side may be rather steep, in which case, it may be possible to increase the

expected utility substantially without incurring a huge loss in the expected revenue. In Figure 7, we

show the efficient frontier for the assortments of hotels displayed to customers in 16 different search

queries in the testing data. The revenue-maximizing prices correspond to the right-most point on

each efficient frontier. Lastly, the average percent deviation between the revenue-maximizing and

utility-focused prices is 12.60%. Therefore, if we shift our focus from maximizing only the expected

revenue to increasing the expected utility with a relatively small loss in the expected revenue, then

the prices that we need to charge can change significantly.

We repeated our computational experiments by allowing at most 2% and 3% loss in the expected

revenue when we compute the utility-focused prices. Our results are shown in the middle and

bottom portions of Table 4. Our observations remain qualitatively unchanged.

9. Conclusion

We examined assortment optimization problems that consider the tradeoff between the expected

revenue and the expected utility under the multinomial logit model and totally unimodular

constraints. In future work, one can investigate customer-centric objectives, other than the expected



Sumida et al. Revenue-Utility Tradeoff for Assortment Optimization under the MNL 39

utility, that are amenable to efficient optimization. We gave a problem instance where the number

of candidate assortments increases exponentially with the number of constraints, but this instance

does not establish the computational complexity of our assortment optimization problem. One

can focus on characterizing the computational complexity of the problem. Alternatively, one can

explore polynomial-time algorithms to solve our assortment optimization problem. Our work on

the Expedia dataset involved a pricing application. One can carry out empirical work on other

datasets to check the extent of improvements in the expected utility, especially when we have more

stringent constraints on the feasible assortments that we can offer. Lastly, one can work with other

choice models, such as the nested and paired combinatorial logit models.
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Online Appendix

Revenue -Utility Tradeoff in Assortment Optimization
under the Multinomial Logit Model with

Totally Unimodular Constraints

Appendix A: Bounding the Number of Candidate Assortments

We establish an upper bound of (1 + n)(n+m)m/m! ≤ (m+ n)1+m on the number of candidate

assortments. To prove this result, we show that as γ varies over R, the number of optimal solutions

of the Candidate LP is at most (1 +n)(n+m)m/m!. UsingM= {1, . . . ,m} to index the rows of the

matrix A, let a`i be the (`, i)th entry of the matrix A and b` be the `th entry of the vector b. Since

F is nonempty, the Candidate LP is feasible and bounded, so the strong duality holds. Using the

variables µ= (µ1, . . . , µm) and σ= (σ1, . . . , σn), the dual of the Candidate LP is

LP(γ) = min
(µ,σ)∈Rm+n

+

{∑

`∈M
b` µ` +

∑

i∈N
σi

∣∣∣
∑

`∈M
a`i µ` +σi ≥ (ri− γ)vi ∀ i∈N

}

= min
(µ,σ,ζ)∈Rm+2n

+

{∑

`∈M
b` µ` +

∑

i∈N
σi

∣∣∣
∑

`∈M
a`i µ` +σi− ζi = (ri− γ)vi ∀ i∈N

}
,

where the last equality follows from introducing the slack variables ζ = (ζ1, . . . , ζn). To complete the

proof, it suffices to show that the function LP(·) has at most (1 +n)(m+n)m/m!− 1 breakpoints.

As a function of γ, let (µ∗(γ),σ∗(γ),ζ∗(γ)) denote a basic optimal solution to the dual of the

Candidate LP. The constraint coefficients of the decision variables σi and ζi are linearly dependent,

so both of these decision variables cannot be basic at the same time. Therefore, we can partition

the set of products N into three disjoint sets given by

N̂0(γ) = {i∈N : σ∗i (γ) is nonbasic and ζ∗i (γ) is nonbasic}

N̂1(γ) = {i∈N : σ∗i (γ) is nonbasic and ζ∗i (γ) is basic}

N̂2(γ) = {i∈N : σ∗i (γ) is basic and ζ∗i (γ) is nonbasic} .

Furthermore, we let M̂0(γ) = {`∈M : µ∗`(γ) is basic}. We refer to a pair (M̂0(γ), N̂0(γ)) as a

basis, although we also need to fix N̂1(γ) and N̂2(γ) to fully specify a basis. Nevertheless, it will

shortly become clear that specifying (M̂0(γ), N̂0(γ)) is enough to compute the values of all of the

decision variables (µ∗(γ),σ∗(γ),ζ∗(γ)) in a basic optimal solution to the dual of the Candidate

LP. In the next lemma, we show that we can limit the number of bases {(M̂0(γ), N̂0(γ)) : γ ∈R}
to (m+n)m/m! as γ ranges over R.
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Lemma A.1 There exists a collection of bases {(Mk
0 ,N k

0 ) : k= 1, . . . ,K} with Mk
0 ⊆M, N k

0 ⊆N
and K ≤ (m+n)m/m! such that {(M̂0(γ), N̂0(γ)) : γ ∈R} ⊆ {(Mk

0 ,N k
0 ) : k= 1, . . . ,K}.

Proof: Because there are n constraints in the dual of the Candidate LP, the number of basic

variables satisfies |N̂1(γ)|+ |N̂2(γ)|+ |M̂0(γ)|= n. Since N = N̂0(γ)∪ N̂1(γ)∪ N̂2(γ), we also have

n= |N̂0(γ)|+ |N̂1(γ)|+ |N̂2(γ)|. The last two equalities imply that |M̂0(γ)|= |N̂0(γ)|. Furthermore,

there are n products in the dual of the Candidate LP, so |N̂0(γ)| ≤ n. Noting that |M̂0(γ)| ≤m,

we get |M̂0(γ)| = |N̂0(γ)| ≤ min{n,m}. Thus, the number of bases {(M̂0(γ), N̂0(γ)) : γ ∈ R} as

γ ranges over R is bounded by the number of pairs (M0,N0) with M0 ⊆ M, N0 ⊆ N and

|M0|= |N0| ≤min{m,n}. Using the fact that
(
x
y

)
≤ xy

y!
for any 1≤ y ≤ x, the number of possible

such pairs is upper bounded by

min{m,n}∑

k=0

(
m

k

)(
n

k

)
=

min{m,n}∑

k=0

(
m

m− k

)(
n

k

)
≤

min{m,n}∑

k=0

mm−k

(m− k)!

nk

k!

≤
m∑

k=0

mm−k

(m− k)!

nk

k!
=

1

m!

m∑

k=0

(
m

k

)
mm−knk =

(m+n)m

m!
.

In the next lemma, we show that specifying (M̂0(γ), N̂0(γ)) is enough to compute the values of

the decision variables (µ∗(γ),σ∗(γ),ζ∗(γ)) in a basic optimal solution to the dual of the Candidate

LP. In this lemma, we use Ik to denote the set of values of γ ∈ R such that the optimal basis

(M̂0(γ), N̂0(γ)) in the dual of the Candidate LP is (Mk
0 ,N k

0 ); that is, we have

Ik =
{
γ ∈R : (M̂0(γ), N̂0(γ)) = (Mk

0 ,N k
0 )
}
.

Lemma A.2 There exist linear functions {fk` (·) : ` ∈M} and {gki (·) : i ∈ N} such that, for each

γ ∈ Ik, we have µ∗`(γ) = fk` (γ) for all `∈M and σ∗i (γ) = [gki (γ)]+ for all i∈N .

Proof: Fix γ ∈ Ik so that M̂0(γ) =Mk
0 and N̂0(γ) =N k

0 . By the same argument at the beginning of

the proof of Lemma A.1, we have |Mk
0 |= |N k

0 |. By the definition of N̂0(γ), we have σ∗i (γ) = ζ∗i (γ) = 0

for all i∈N k
0 . Moreover, by the definition of M̂0(γ), we have µ∗`(γ) = 0 for all `∈M\Mk

0 . Thus,

the constraints of the dual of the Candidate LP implies that

∑

`∈Mk
0

a`i µ
∗
`(γ) = (ri− γ)vi ∀ i∈N k

0 .

Because |Mk
0 | = |N k

0 |, the above system of equations has |N k
0 | unknowns and |N k

0 | equations.

Moreover, since {µ∗`(γ) : `∈Mk
0} are basic variables, their constraint coefficients must be linearly

independent. Therefore, the values of {µ∗`(γ) : ` ∈Mk
0} are given by the inverse of the matrix
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with entries {a`i : ` ∈Mk
0 , i ∈ N k

0 } multiplied by the vector with entries {(ri − γ)vi : i ∈ N k
0 }.

Thus, for all `∈Mk
0 , µ∗`(γ) is a linear function of γ and this function is completely determined by

(Mk
0 ,N k

0 ). On the other hand, µ∗`(γ) = 0 for all ` ∈M\Mk
0 . Therefore, for all ` ∈M, µ∗`(γ) is a

linear function of γ and this function is completely determined by (Mk
0 ,N k

0 ). Thus, for all `∈M,

we have µ∗`(γ) = fk` (γ) for some fk` (·), where fk` (γ) is linear in γ. Lastly, noting the constraints of

the dual of the Candidate LP, in an optimal solution to this problem, we have

σ∗i (γ) =
[
(ri− γ)vi−

∑

`∈M
a`i µ

∗
`(γ)

]+
=
[
(ri− γ)vi−

∑

`∈M
a`i f

k
` (γ)

]+
.

Because (ri− γ)vi−
∑

`∈M a`i f
k
` (γ) is linear in γ, it follows that σ∗i (γ) = [gki (γ)]+ for some gki (·),

where gki (γ) is linear in γ.

It is a standard result in parametric LP that Ik is a finite union of closed intervals except

that the first and last of these intervals can be of the form (−∞, a] and [a,∞) for some a ∈ R

(Chapter 5.5, Bertsimas and Tsitsiklis 1997). Let γk = max{γ : γ ∈ Ik} and γk = min{γ : γ ∈ Ik}.
Using the functions {fk` (·) : `∈M} and {gki (·) : i∈N} in Lemma A.2, we define

LPk(γ) =

{∑
`∈M b` f

k
` (γ) +

∑
i∈N [gki (γ)]+ if γ ∈ [γk, γk]

∞ otherwise.

The expression in the first case above corresponds to the objective function of the dual of the

Candidate LP evaluated at the solution (µ,σ,ζ) with µ` = fk` (γ) for all `∈M and σi = [gki (γ)]+ for

all i∈N . By Lemma A.2, if γ ∈ Ik, then this solution is optimal to the dual of the Candidate LP,

but if γ ∈ [γk, γk] \ Ik, then this solution is not necessarily optimal.

In the next lemma, we use the functions {LPk(·) : k= 1, . . . ,K} to construct the function LP(·),
which corresponds to the optimal objective value of the dual of the Candidate LP.

Lemma A.3 For each γ ∈R, we have

LP(γ) = min{LPk(γ) : k= 1, . . . ,K}.

Proof: Fix γ̂ ∈R and let k= 1, . . . ,K be such that γ̂ ∈ Ik. By Lemma A.2, the solution (µ∗,σ∗,ζ∗)

with µ∗` = fk` (γ̂) for all ` ∈ M and σ∗i = [gki (γ̂)]+ for all i ∈ N is optimal to the dual of the

Candidate LP with γ = γ̂, so we have LP(γ̂) = LPk(γ̂). Thus, if we can show that LPt(γ̂)≥ LP(γ̂)

for all t∈ {1, . . . ,K} \ {k}, then the desired result follows. Choose an arbitrary t 6= k. If γ̂ 6∈ [γt, γt],

then LPt(γ̂) =∞, so LPt(γ̂)≥ LP(γ̂). In the rest of the proof, we assume that γ̂ ∈ [γt, γt].

By the definition of γt, we have γt ∈ It. Thus, by Lemma A.2, the solution (µ,σ,ζ) with

µ` = f t` (γ
t) for all `∈M and σi = [gti(γ

t)]+ for all i∈N is optimal to the dual of the Candidate LP
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when we solve this problem with γ = γt. Noting that the decision variable µ` is nonnegative in

the dual of the Candidate LP, it must be the case that f t` (γ
t) ≥ 0 for all ` ∈M. Using the same

argument, we also have f t` (γ
t) ≥ 0 for all ` ∈M. In this case, since f t` (γ

t) ≥ 0, f t` (γ
t) ≥ 0 and

γ̂ ∈ [γt, γt], using the fact that f t` (γ) is linear in γ, we get f t` (γ̂)≥ 0 for all `∈M. Thus, the solution

(µ,σ,ζ) with µ` = f t` (γ̂) for all `∈M and

σi =
[
(ri− γ̂)vi−

∑

`∈M
a`i f

t
` (γ̂)

]+

for all i∈N satisfies the constraints of the dual of the Candidate LP, along with the nonnegativity

constraints, when we solve this problem with γ = γ̂. By the definition of gti(·) in the proof of Lemma

A.2, the right side of the above expression is [gti(γ̂)]+. Thus, the solution (µ,σ,ζ) with µ` = f t` (γ̂)

for all ` ∈M and σi = [gti(γ̂)]+ for all i ∈ N is feasible to the dual of the Candidate LP when we

solve this problem with γ = γ̂. Furthermore, by the definition of LPt(·), this solution provides the

objective value of LPt(γ̂) for the dual of the Candidate LP, so LPt(γ̂)≥ LP(γ̂).

We need one more lemma to show the final result.

Lemma A.4 Let α(γ) and β(γ) be piecewise linear and convex in γ and θ(γ) = min{α(γ), β(γ)} be

convex in γ. Then, the number of breakpoints of θ(·) is at most the sum of the number of breakpoints

of α(·) and β(·).

Proof: If there exists a breakpoint of θ(·) that is not a breakpoint of α(·) or β(·), then α(·) and β(·)
must intersect at this point. Since θ(γ) = min{α(γ), β(γ)} and the minimum of two intersecting

lines is concave, θ(·) cannot be convex in a small neighborhood of this intersection point.

Here is the proof of Theorem 4.2. Noting the term
∑

i∈N [gki (γ)]+ in the definition of LPk(γ),

since gki (γ) is linear in γ, LPk(·) is piecewise linear and convex and it has n + 2 breakpoints,

including γk and γk. Furthermore, LP(γ) is convex in γ by LP duality. So, by Lemmas A.3 and

A.4, the number of breakpoints of LP(·) is at most K (n + 2). If γk 6=∞, then it is a common

breakpoint for at least two of the functions {LPk(·) : k= 1, . . . ,K} and we drop the double-counted

breakpoints. Dropping also ∞ and −∞, the number of remaining breakpoints of LP(·) is at most

K (n+ 2)− (K − 1)− 2≤ (n+ 1) (m+n)m/m!− 1, where the inequality uses Lemma A.1.

Appendix B: Exponentially Many Candidate Assortments

Recall that as a function of γ, we use LP(γ) to denote the optimal objective value of the Candidate

LP. In this section, we give an instance of a variant of the Candidate LP for which the number of

breakpoints of LP(·) increases exponentially with the number of constraints. The instance that we
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give is adapted from Zadeh (1973), where the author gives an instance of the min-cost network flow

problem for which the number of iterations of the simplex method to reach the optimal solution

increases exponentially with the number of nodes. His instance immediately implies that if we view

the optimal cost in the min-cost network flow problem as a function of the total supply in the

network, then the number of breakpoints of this function increases exponentially with the number

of nodes. With some additional work, we will be able to convert the problem instance in Zadeh

(1973) into an instance of a variant of the Candidate LP for which the number of breakpoints of

LP(·) increases exponentially with the number of constraints. Specifically, for some generic index

set N = {1, . . . , n} and fixed parameters {rij : i, j ∈N}, {si : i∈N}, {dj : j ∈N} and {uij : i, j ∈N},
using the decision variables x= {xij : i∈N , j ∈N}, we consider the LP

f(γ) = max
x∈Rn2+

{∑

i∈N

∑

j∈N
(rij − γ)xij

∣∣∣
∑

j∈N
xij ≥ si ∀ i∈N ,

∑

i∈N
xij ≥ dj ∀ j ∈N ,

xij ≤ uij ∀ i, j ∈N
}
. (Parametric Cost LP)

The above constraint matrix is the constraint matrix of an assignment problem, which is totally

unimodular (Corollary 2.9 in Chapter III.1, Nemhauser and Wolsey 1988).

The Parametric Cost LP is a variant of the Candidate LP, where the products are indexed by

(i, j)∈N 2 and the decision variable for product (i, j) has an upper bound of uij instead of one. An

upper bound other than one on a decision variable in the Candidate LP simply captures the

case with multiple products sharing the same revenues, preference weights and constraint matrix

coefficients. In this case, the Candidate LP focuses on how many of these products to offer. Noting

that f(γ) is the optimal objective value of the Parametric Cost LP as a function of γ, using the fact

that there are n2 decision variables and 2n constraints in this LP, by precisely the same argument

in the proof of Theorem 4.2, we can show that the number of breakpoints of f(·) is bounded by

min{1 + n2 max(i,j)∈N uij, 2 + 2n2 max(i,j)∈N2 rij uij, (2n+ n2)2n+1}. In the rest of our discussion,

we will use the two sequences of integers {pi : i∈N} and {qi : i∈N} defined as

pi =





1 if i= 1

4 if i= 2

2i−3 + 2i−1 if i≥ 3,

qi =





2 if i= 1

2 if i= 2

2i−3 + 2i−1 if i≥ 3.

Using these sequences of integers, we give specific values for the parameters in the Parametric Cost

LP that ensure that the number of breakpoints of f(·) increases exponentially with n.

Note that the parameters in the Parametric Cost LP are {rij : i, j ∈N}, {si : i∈N}, {dj : j ∈N}
and {uij : i, j ∈N}. Using the sequences of integers {pi : i ∈ N} and {qi : i ∈ N} defined in the
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previous paragraph, we set the values of these parameters as follows. For all i, j ∈ N , we set

rij = 2max{i,j}−1− 1. Moreover, for all i, j ∈N , we set

uij =





1 if i= j = 1

min{pi, qj} if i 6= j

0 otherwise.

Lastly, using {uij : i, j ∈ N} as defined above, we set si =
∑

j∈N uij − pi for all i ∈ N and

dj =
∑

i∈N uij − qj for all j ∈N .

To argue that the number of breakpoints of f(·) increases exponentially with n, we first relate

the Parametric Cost LP to the problem instance in Zadeh (1973). Consider the LP

g(δ) = max
x∈Rn2+

{∑

i∈N

∑

j∈N
rij xij

∣∣∣
∑

j∈N
xij ≥ si ∀ i∈N ,

∑

i∈N
xij ≥ dj ∀ j ∈N ,

xij ≤ uij ∀ i, j ∈N ,
∑

i∈N

∑

j∈N
xij = δ

}
. (Parametric Flow LP)

The sum of all decision variables in the above LP is restricted to be δ. Naturally, we must have

δ ≥∑i∈N si and δ ≥∑j∈N dj for the LP to be feasible. With the way we set the parameters

{rij : i, j ∈N}, {si : i∈N}, {dj : j ∈ N} and {uij : i, j ∈N} in the previous paragraph, it is

straightforward to check that the Parametric Flow LP is equivalent to the instance of the min-cost

network flow problem provided by Zadeh (1973). Noting that g(δ) is the optimal objective value of

the Parametric Flow LP as a function of δ, Zadeh (1973) shows that the number of breakpoints of

g(·) increases exponentially with n. Building on this result, we adapt an approach from Carstensen

(1983) to show that the number of breakpoints of f(·) also increases exponentially with n. Our

approach is based on arguing that f(·) is the convex conjugate of g(·). In particular, using X ⊆Rn2+
to denote the set of feasible solutions to the Parametric Cost LP, we have

f(γ) = max
x∈X

{∑

i∈N

∑

j∈N
(rij − γ)xij

}
= max

δ∈R
max
x∈X

{∑

i∈N

∑

j∈N
(rij − γ)xij :

∑

i∈N

∑

j∈N
xij = δ

}

= max
δ∈R

{
max
x∈X

{∑

i∈N

∑

j∈N
rij xij :

∑

i∈N

∑

j∈N
xij = δ

}
− γ δ

}
= max

δ∈R

{
g(δ)− γ δ

}
,

where the third equality follows from the fact that any x ∈ X satisfying
∑

i∈N
∑

j∈N xij = δ is a

feasible solution to the Parametric Flow LP.

By the above chain of equalities, f(·) is the convex conjugate of g(·), so by Lemma 1 in

Carstensen (1983), the numbers of breakpoints of f(·) and g(·) differ by one. Thus, since the number

of breakpoints of g(·) increases exponentially with n, the number of breakpoints of f(·) must

also increase exponentially with n, as long as we set the parameters {rij : i, j ∈N}, {si : i∈N},
{dj : j ∈N} and {uij : i, j ∈N} as discussed earlier in this section. In Figure EC.1, we plot the

number of breakpoints of f(·) as a function of n, which indeed increases exponentially with n.
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Figure EC.1 Number of breakpoints of f(·) as a function of n; note that the vertical axis is in log-scale.

Appendix C: Proof of Lemma 5.1

Using the fact that x∗λ is an optimal solution to the Revenue-Utility problem as a function of λ, we

have the inequalities

Rev(x∗λ;r) +λUtil(x∗λ) ≥ Rev(x∗β;r) +λUtil(x∗β)

Rev(x∗β;r) +βUtil(x∗β) ≥ Rev(x∗λ;r) +βUtil(x∗λ).

Subtracting the two inequalities above, we have (λ− β)Util(x∗λ) ≥ (λ− β)Util(x∗β). Noting that

λ> β, the last inequality yields Util(x∗λ) ≥ Util(x∗β), establishing the second property in the

lemma. In this case, using the fact that Util(x∗λ) ≥ Util(x∗β), the second inequality above yields

Rev(x∗β;r)≥Rev(x∗λ;r) +β (Util(x∗λ)−Util(x∗β))≥Rev(x∗λ;r), establishing the first property in the

lemma. Lastly, write the two inequalities above as λ (Util(x∗λ)−Util(x∗β))≥Rev(x∗β;r)−Rev(x∗λ;r)

and Rev(x∗β;r)− Rev(x∗λ;r)≥ β (Util(x∗λ)−Util(x∗β)). Multiplying the first inequality by 1/λ and

the second inequality by 1/β, we obtain

− 1

λ

{
Rev(x∗λ;r)−Rev(x∗β;r)

}
≤ Util(x∗λ)−Util(x∗β) ≤ − 1

β

{
Rev(x∗λ;r)−Rev(x∗β;r)

}
,

yielding the third property in the lemma. Therefore, all of the three properties that are given in

the lemma hold.

Appendix D: Eliminating Candidate Assortments

In the next lemma, we use both upper and lower bounds on V (x∗λ) to eliminate candidate

assortments, in which case, Lemma 5.2 follows as a corollary to this result.
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Lemma D.1 Letting x∗λ be an optimal solution to the Revenue-Utility problem, t be an upper bound

on V (x∗λ), t be a lower bound on V (x∗λ),

γλ = max
x∈F

{
Rev(x;r)− λ (1 + t)

1 +V (x)

}
and γ

λ
= max

x∈F

{
Rev(x;r)− λ (1 + t)

1 +V (x)

}
,

the collection of assortments {xLP(γ) : γλ ≤ γ ≤ γ
λ
} includes an optimal solution to the

Revenue-Utility problem.

Proof: Fix λ≥ 0. Let t∗ be an optimal solution to the outer maximization problem in the Parametric

problem. By the discussion in the proof of Theorem 4.1, letting γ∗ = maxx∈F Rev(x;r+λ (1 + t∗)e),

the solution xLP(γ∗ − λ (1 + t∗)) is optimal to the problem maxx∈F Rev(x;r+λ (1 + t∗)e), in

which case, by Theorem 3.2, the solution xLP(γ∗ − λ (1 + t∗)) is optimal to the Revenue-Utility

problem as well. Therefore, if we can show that γλ ≤ γ∗ − λ (1 + t∗) ≤ γ
λ
, then it follows that

xLP(γ∗−λ (1 + t∗))∈ {xLP(γ) : γλ ≤ γ ≤ γλ}, so the desired result holds. By the definition of γ∗, we

have the chain of equalities

γ∗ = max
x∈F

Rev(x;r+λ (1 + t∗)e)
(a)
= max

x∈F

{
Rev(x;r) +λ (1 + t∗)

V (x)

1 +V (x)

}

= max
x∈F

{
Rev(x;r) +λ (1 + t∗)

(
1− 1

1 +V (x)

)}
,

where (a) follows from the identity that we give at the beginning of the proof of Lemma 3.1.

Arranging the terms, the above chain of equalities yields

γ∗−λ (1 + t∗) = max
x∈F

{
Rev(x;r)− λ (1 + t∗)

1 +V (x)

}
.

By Theorem 3.2, we can choose t∗ as V (x∗λ), in which case, we have t≤ V (x∗λ) = t∗ ≤ t. Therefore,

by the above equality, it follows that

γλ = max
x∈F

{
Rev(x;r)− λ (1 + t)

1 +V (x)

}
≤ γ∗− λ (1 + t∗) ≤max

x∈F

{
Rev(x;r)− λ (1 + t)

1 +V (x)

}
= γ

λ
.

Lemma 5.2 follows as a corollary to the above lemma.

Proof of Lemma 5.2:

We claim that if γ ≥ γλ, then we have λ ≥ λ(γ). If we can show this claim, then it follows

that {xLP(γ) : γ ≥ γλ} ⊆ {xLP(γ) : λ≥ λ(γ)}. In this case, noting that the collection of assortments

{xLP(γ) : γ ≥ γλ} includes an optimal solution to the Revenue-Utility problem by Lemma D.1, it

must be the case that the collection of assortments {xLP(γ) : λ≥ λ(γ)} includes an optimal solution
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Figure EC.2 Number of candidate assortments left after eliminating the unnecessary assortments using Lemmas

5.2 and D.1.

to the Revenue-Utility problem as well. Thus, we proceed to showing that the claim holds. If γ ≥ γλ,

then we have

γ ≥ γλ = max
x∈F

{
Rev(x;r)− λ (1 + t)

1 +V (x)

}
≥ Rev(xLP(γ);r)− λ (1 + t)

1 +V (xLP(γ))
.

Focusing on the first and last terms in the above chain of inequalities and arranging the terms, we

get λ≥ 1+V (xLP(γ))

1+t
×
(
Rev(xLP(γ);r)− γ

)
= λ(γ), which establishes the claim.

Computing γλ and γ
λ

in Lemma D.1 requires solving the problems maxx∈F{Rev(x;r)− λ (1+t)

1+V (x)
}

and maxx∈F{Rev(x;r) − λ (1+t)

1+V (x)
}. In contrast, computing λ(γ) in Lemma 5.2 does not require

solving an optimization problem. Thus, eliminating candidate assortments by using Lemma D.1

is computationally more intensive. In Figure EC.2, we focus on the problem instance in Figure

2. For each λ ∈ [0,0.95], we compare the number of candidate assortments left after eliminating

the unnecessary ones by using Lemmas 5.2 and D.1. The solid data series show the number of

candidate assortments left when we use Lemma 5.2 to eliminate the unnecessary ones. This data

series is identical to the one in Figure 4. The dotted data series show the number of candidate

assortments left when we use Lemma D.1 to eliminate the unnecessary ones. Tracing the proof of

Lemma 5.2, any candidate assortment that is eliminated by using Lemma 5.2 must be eliminated

by using Lemma D.1. In that sense, Lemma D.1 is stronger than Lemma 5.2. Therefore, we indeed

expect the dotted data series to lie below the solid one. In Figure EC.2, we observe that we can

eliminate a significantly larger number of candidate assortments by using Lemma D.1, though at

the expense of additional computational effort. When λ is close to zero, we can use Lemma D.1 to

eliminate all but a handful of the candidate assortments.
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Appendix E: Computational Results for Pricing with Discrete Price Menus

We focus on pricing problems with discrete price menus, as discussed in Section 7.3. We use the

following approach to generate our test problems. The number of items is fixed at n= 100. There

are K possible price levels indexed by K= {1, . . . ,K}, where K is a parameter that we vary. The

possible prices for an item are {rk : k ∈K}, evenly spread over the interval [1,K], where r1 =K is

the largest possible price and rK = 1 is the smallest possible price. To come up with the preference

weights associated with item i, we sample αi from the uniform distribution over [0,1] and βi from

the uniform distribution over [0,0.1] and set vik = eαi−(βi×rk) for all k ∈K. For the preference weight

of the no-purchase option, we set v0 = p0
∑

i∈N viK/(1− p0), where p0 is another parameter that we

vary. In this case, if we offer all items at their lowest possible prices, then a customer leaves without

making a purchase with probability p0. Varying K ∈ {20,40,60,80} and p0 ∈ {0.1,0.3,0.5}, we get

12 parameter configurations. For each parameter configuration, we generate 50 test problems by

using the approach described above. For each test problem, we construct a collection of candidate

assortments that is guaranteed to include an optimal solution to the Revenue-Utility problem. Using

these candidate assortments, we also construct an efficient frontier showing all attainable expected

revenue-utility pairs. Lastly, we test the performance of our approximation scheme.

Parametric LP and Efficient Frontier: We present our computational results in Table EC.1.

The layout of this table is identical to that of Table 2. For the smaller test problems with K = 20

possible price levels, we can generate the candidate assortments in about ten seconds, whereas

the corresponding computational effort for the larger test problems with K = 80 possible price

levels is less than four minutes. Given that there are more than 6,000 candidate assortments

for the largest test problems, such computational effort corresponds to about 0.03 seconds to

generate each candidate assortment. Similar to our results for assortment optimization problems

with display location effects, once we generate the candidate assortments, we can quickly construct

the efficient frontier. For each of our test problems, we can construct the efficient frontier in 0.003

seconds. Lastly, as in the test problems with display location effects, the number of candidate

assortments L increases approximately linearly with the number of products, which is nK in this

setting, corresponding to the number of item-price combinations, because we have one product for

each item-price combination in our formulation of the pricing problem with discrete price menus.

For the test problems with 20, 40, 60, and 80 price levels, the average values of L/(nK) are,

respectively, 0.93, 0.90, 0.89, and 0.85. These results are consistent with Theorem 4.2.

Approximation Scheme: Table EC.2 shows the performance of our approximation scheme.

The layout of this table is identical to that of Table 3. Our approximation scheme obtains solutions
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Param. # Cand. # Opt. CPU
(K,p0) Assr. Assr. Secs.

(20,0.1) 1877.38 1271.66 12.22
(20,0.3) 1838.96 1456.40 12.15
(20,0.5) 1886.98 1568.26 12.53

(40,0.1) 3726.78 2276.22 47.99
(40,0.3) 3496.50 2291.74 45.17
(40,0.5) 3574.12 2271.92 46.27

Param. # Cand. # Opt. CPU
(K,p0) Assr. Assr. Secs.

(60,0.1) 5398.14 2876.58 92.65
(60,0.3) 5373.28 2915.42 93.93
(60,0.5) 5375.42 2746.22 93.58

(80,0.1) 6974.04 3324.90 228.38
(80,0.3) 6690.46 3149.60 221.75
(80,0.5) 6838.40 2956.66 225.42

Table EC.1 The number of candidate assortments, number of optimal assortments and CPU seconds for pricing

problems with discrete price menus.

ρ= 1 ρ= 0.1
Max. # Max. #

Param. % CPU Cand. % CPU Cand.
(K,p0) λ Gap Secs. Assr. Gap Secs. Assr.

(20,0.1) λ10 0.093 0.70 17.0 0.005 10.26 111.4
λ30 0.328 0.69 17.0 0.008 10.19 111.4
λ50 0.011 0.70 17.0 0.007 10.57 111.4
λ70 0.013 0.76 17.0 0.004 10.92 111.4

(20,0.3) λ10 0.038 0.58 17.0 0.001 10.27 111.6
λ30 0.261 0.59 17.0 0.007 10.22 111.6
λ50 0.167 0.61 17.0 0.010 10.34 111.6
λ70 0.018 0.63 17.0 0.003 10.35 111.6

(20,0.5) λ10 0.003 0.54 17.2 0.000 9.73 110.8
λ30 0.100 0.58 17.2 0.002 9.66 110.8
λ50 0.169 0.58 17.2 0.005 9.80 110.8
λ70 0.029 0.59 17.2 0.003 9.84 110.8

(40,0.1) λ10 0.042 1.92 21.0 0.001 24.88 138.6
λ30 0.202 1.95 21.0 0.005 25.49 138.6
λ50 0.262 2.03 21.0 0.007 25.95 138.6
λ70 0.013 2.13 21.0 0.006 27.08 138.6

(40,0.3) λ10 0.014 1.81 21.0 0.000 25.19 137.6
λ30 0.022 1.84 21.0 0.002 25.31 137.6
λ50 0.319 1.86 21.0 0.009 25.64 137.6
λ70 0.012 1.90 21.0 0.006 26.00 137.6

(40,0.5) λ10 0.007 1.81 20.2 0.000 26.47 138.6
λ30 0.022 1.94 20.2 0.002 27.19 138.6
λ50 0.231 1.98 20.2 0.004 27.26 138.6
λ70 0.030 2.05 20.2 0.003 27.75 138.6

ρ= 1 ρ= 0.1
Max. # Max. #

Param. % CPU Cand. % CPU Cand.
(K,p0) λ Gap Secs. Assr. Gap Secs. Assr.

(60,0.1) λ10 0.011 3.80 24.0 0.000 46.73 165.0
λ30 0.064 3.95 24.0 0.002 48.08 165.0
λ50 0.276 3.91 24.0 0.005 48.14 165.0
λ70 0.016 3.96 24.0 0.008 48.49 165.0

(60,0.3) λ10 0.008 3.72 24.0 0.000 48.03 164.0
λ30 0.054 3.81 24.0 0.002 48.54 164.0
λ50 0.295 3.89 24.0 0.006 49.48 164.0
λ70 0.012 4.01 24.0 0.006 49.86 164.0

(60,0.5) λ10 0.005 3.81 24.0 0.000 47.92 163.2
λ30 0.008 3.99 24.0 0.002 48.97 163.2
λ50 0.220 4.08 24.0 0.005 49.89 163.2
λ70 0.023 4.21 24.0 0.002 50.40 163.2

(80,0.1) λ10 0.008 3.03 27.6 0.000 56.56 186.6
λ30 0.079 2.88 27.6 0.002 56.78 186.6
λ50 0.111 2.92 27.6 0.005 57.36 186.6
λ70 0.024 2.82 27.6 0.008 58.58 186.6

(80,0.3) λ10 0.002 2.80 27.8 0.000 59.40 188.0
λ30 0.090 2.86 27.8 0.002 60.98 188.0
λ50 0.277 2.78 27.8 0.008 61.11 188.0
λ70 0.013 2.70 27.8 0.005 60.88 188.0

(80,0.5) λ10 0.003 2.66 27.2 0.000 60.59 186.4
λ30 0.010 2.78 27.2 0.001 60.47 186.4
λ50 0.229 2.71 27.2 0.005 60.69 186.4
λ70 0.036 2.54 27.2 0.001 60.01 186.4

Table EC.2 Performance of the approximation scheme for pricing problems with discrete price menus.

with remarkably small optimality gaps by using substantially smaller numbers of candidate

assortments. For the larger test problems with K = 80 price levels, using an accuracy parameter

of ρ= 0.1, the approximation scheme obtains solutions with optimality gaps of at most 0.008% in

about a minute by using 186.4 candidate assortments on average. With an accuracy parameter of

ρ= 1, the largest optimality gap is 0.328%, with computational effort under four seconds.

Appendix F: Preprocessing the Expedia Dataset

We preprocessed the dataset from Expedia as follows. The full dataset provided by Expedia has

about ten million rows and 54 columns. We used three criteria to drop some of the rows and

columns in the dataset. First, in some search queries, the price is displayed as the total amount

over the whole length of the stay, whereas in some others, the price is displayed as the amount per

night. We are not able to tell with certainty which approach is used in each search query. Thus,
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we focused only on the search queries for a single night stay and dropped the others. Second, we

dropped the columns for which the entries were missing for more than 25% of the rows. For the

remaining columns, we dropped the search queries for which the entries were missing in one of

the remaining columns. Third, some of the rows in the dataset included exorbitantly high or low

values. Specifically, we dropped all search queries which had a column entry that falls outside the

0.5th and 99.5th percentile band of all entries in the corresponding column.

Once we preprocess the dataset, we have 595,965 rows corresponding to 34,561 search queries

and 14 columns. We discuss the first two columns in the main text. The remaining 12 columns give

the star rating and the average review score for the hotel, an indicator for whether the hotel is a

chain, two location scores, the average past price of the hotel, the displayed price, an indicator for

whether the price is a promotion, the number of days until the day of stay, the number of adults

and children for the stay, and an indicator for whether the stay is over a weekend.

Appendix G: Computational Results for All Bootstrapped Datasets

In Table EC.3, we give a summary of our results for all of the 10 bootstrapped datasets. In the

top, middle and bottom portions of the table, we compute the utility-focused prices by allowing,

respectively, at most 1%, 2% and 3% loss in the expected revenue. Each of the top, middle

and bottom portions of the table has three blocks, each containing six columns. Each block

corresponds to a value of ϕ∈ {0.1,0.3,0.5}, capturing the fraction of search queries that result

in a booking in the bootstrapped dataset. In each block, there are six columns. The first two

columns give the average and standard deviation of the percent improvement in the purchase

probabilities when we use the utility-focused prices instead of revenue-maximizing prices. The

next two columns give the average and standard deviation of the percent improvement in the

expected utilities when we, once again, use the utility-focused prices instead of revenue-maximizing

prices. The last two columns give the average and standard deviation of the percent gap between

the revenue-maximizing and utility-focused prices. A row of the table corresponds to a different

set of three bootstrapped datasets. Each of these three bootstrapped datasets is obtained by using

a value of ϕ ∈ {0.1,0.3,0.5}. The first rows in the top, middle and bottom portions of the table

correspond to the three datasets that we work with in Section 8.2. Therefore, the statistics that

we report in these rows match the ones in Table 4. The results in Table EC.3 indicate that our

observations do not change significantly from one bootstrapped dataset to the next.
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1% Allowed Decrease in Expected Revenue
ϕ= 0.1 ϕ= 0.3 ϕ= 0.5

% Inc. in % Inc. in % Chg. in % Inc. in % Inc. in % Chg. in % Inc. % Inc. % Chg. in
Prch. Prob. Exp. Util. Price Prch. Prob. Exp. Util. Price Prch. Prob. Exp. Util. Price
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

12.49 0.85 14.45 0.08 11.98 0.66 13.36 0.55 14.39 0.04 12.65 0.42 14.05 0.21 14.35 0.03 13.18 0.16
12.48 0.84 14.45 0.08 11.96 0.66 13.33 0.55 14.39 0.04 12.63 0.43 14.05 0.19 14.35 0.03 13.18 0.15
12.48 0.84 14.45 0.08 11.96 0.66 13.35 0.55 14.38 0.04 12.64 0.43 14.05 0.20 14.35 0.03 13.18 0.15
12.47 0.86 14.45 0.08 11.96 0.68 13.35 0.51 14.38 0.04 12.65 0.40 14.05 0.19 14.35 0.03 13.18 0.15
12.46 0.83 14.45 0.07 11.95 0.65 13.36 0.56 14.39 0.04 12.65 0.43 14.05 0.19 14.35 0.03 13.18 0.15
12.47 0.83 14.45 0.07 11.96 0.65 13.34 0.54 14.39 0.04 12.64 0.42 14.05 0.18 14.35 0.03 13.18 0.14
12.50 0.85 14.45 0.08 11.98 0.67 13.36 0.55 14.39 0.04 12.65 0.43 14.03 0.18 14.35 0.03 13.16 0.14
12.50 0.83 14.45 0.08 11.98 0.65 13.36 0.55 14.38 0.04 12.65 0.43 14.05 0.20 14.35 0.03 13.18 0.15
12.45 0.85 14.45 0.08 11.94 0.67 13.34 0.55 14.39 0.04 12.63 0.43 14.06 0.18 14.35 0.03 13.19 0.14
12.42 0.85 14.45 0.08 11.92 0.67 13.33 0.54 14.39 0.04 12.63 0.42 14.05 0.19 14.35 0.03 13.18 0.15

2% Allowed Decrease in Expected Revenue
ϕ= 0.1 ϕ= 0.3 ϕ= 0.5

% Inc. in % Inc. in % Chg. in % Inc. in % Inc. in % Chg. in % Inc. % Inc. % Chg. in
Prch. Prob. Exp. Util. Price Prch. Prob. Exp. Util. Price Prch. Prob. Exp. Util. Price
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

17.65 1.25 20.56 0.12 16.65 0.89 18.93 0.81 20.46 0.06 17.55 0.56 19.95 0.31 20.41 0.04 18.26 0.21
17.63 1.23 20.57 0.12 16.64 0.88 18.89 0.81 20.46 0.06 17.53 0.57 19.96 0.28 20.41 0.04 18.26 0.19
17.63 1.25 20.57 0.12 16.64 0.88 18.92 0.82 20.46 0.06 17.55 0.57 19.95 0.30 20.41 0.04 18.26 0.20
17.61 1.27 20.57 0.12 16.63 0.90 18.92 0.76 20.46 0.06 17.55 0.53 19.96 0.29 20.41 0.04 18.26 0.20
17.61 1.22 20.57 0.12 16.62 0.87 18.93 0.83 20.46 0.06 17.56 0.58 19.95 0.28 20.41 0.04 18.26 0.19
17.62 1.23 20.57 0.12 16.63 0.87 18.91 0.79 20.46 0.06 17.54 0.55 19.96 0.27 20.41 0.03 18.26 0.18
17.66 1.26 20.56 0.12 16.66 0.89 18.93 0.82 20.46 0.06 17.56 0.57 19.92 0.27 20.41 0.04 18.24 0.19
17.66 1.22 20.56 0.12 16.66 0.87 18.93 0.82 20.46 0.06 17.55 0.57 19.95 0.29 20.41 0.04 18.26 0.20
17.59 1.25 20.57 0.12 16.61 0.89 18.90 0.81 20.46 0.06 17.53 0.57 19.97 0.27 20.41 0.03 18.27 0.18
17.55 1.26 20.57 0.13 16.58 0.89 18.89 0.80 20.46 0.06 17.53 0.56 19.95 0.28 20.41 0.04 18.26 0.20

3% Allowed Decrease in Expected Revenue
ϕ= 0.1 ϕ= 0.3 ϕ= 0.5

% Inc. in % Inc. in % Chg. in % Inc. in % Inc. in % Chg. in % Inc. % Inc. % Chg. in
Prch. Prob. Exp. Util. Price Prch. Prob. Exp. Util. Price Prch. Prob. Exp. Util. Price
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

21.57 1.57 25.27 0.17 20.12 1.04 23.18 1.02 25.13 0.08 21.17 0.66 24.47 0.39 25.05 0.04 21.99 0.25
21.55 1.56 25.28 0.16 20.10 1.02 23.13 1.03 25.14 0.08 21.14 0.66 24.48 0.36 25.05 0.04 22.00 0.22
21.54 1.57 25.28 0.16 20.10 1.03 23.17 1.03 25.13 0.08 21.16 0.67 24.47 0.37 25.05 0.04 21.99 0.24
21.52 1.60 25.28 0.17 20.08 1.06 23.17 0.96 25.13 0.07 21.16 0.62 24.48 0.37 25.05 0.04 22.00 0.23
21.52 1.54 25.28 0.16 20.08 1.02 23.19 1.05 25.13 0.08 21.17 0.67 24.47 0.36 25.05 0.04 21.99 0.22
21.53 1.55 25.28 0.16 20.09 1.02 23.15 1.00 25.13 0.08 21.15 0.65 24.48 0.34 25.05 0.04 22.00 0.21
21.58 1.59 25.27 0.16 20.12 1.05 23.19 1.03 25.13 0.08 21.17 0.66 24.44 0.34 25.06 0.04 21.97 0.22
21.58 1.54 25.27 0.16 20.12 1.01 23.18 1.03 25.13 0.08 21.16 0.67 24.47 0.37 25.05 0.04 21.99 0.23
21.49 1.58 25.28 0.17 20.06 1.04 23.14 1.03 25.14 0.08 21.14 0.66 24.49 0.33 25.05 0.04 22.00 0.21
21.44 1.59 25.29 0.17 20.03 1.05 23.13 1.01 25.14 0.08 21.14 0.65 24.47 0.36 25.05 0.04 21.99 0.23

Table EC.3 Computational results on 10 bootstrapped datasets.


