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ABSTRACT

With their extensive coverage, marine low clouds greatly impact global climate. Presently,
marine low clouds are poorly represented in global climate models, and the response of marine
low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source
of uncertainty in climate simulations. The Eastern North Atlantic (ENA) is a region of
persistent but diverse subtropical marine boundary layer clouds, whose albedo and
precipitation are highly susceptible to perturbations in aerosol properties. In addition, the ENA
is periodically impacted by continental aerosols, making it an excellent location to study the
cloud condensation nuclei (CCN) budget in a remote marine region periodically perturbed by
anthropogenic emissions, and to investigate the impacts of long-range transport of aerosols on
remote marine clouds. The Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-
ENA) campaign was motivated by the need of comprehensive in-situ measurements for
improving the understanding of marine boundary layer CCN budget, cloud and drizzle
microphysics, and the impact of aerosol on marine low cloud and precipitation. The airborne
deployments took place from June 21 to July 20, 2017 and January 15 to February 18, 2018 in
the Azores. The flights were designed to maximize the synergy between in-situ airborne
measurements and ongoing long-term observations at a ground site. Here we present
measurements, observation strategy, meteorological conditions during the campaign, and
preliminary findings. Finally, we discuss future analyses and modeling studies that improve
the understanding and representation of marine boundary layer aerosols, clouds, precipitation,

and the interactions among them.
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Comprehensive in-situ and remote sensing measurements during the ACE-ENA campaign
allow for improved understanding of aerosols, clouds, precipitation, and interactions among

them in remote marine environment.
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There are large uncertainties in the magnitude of the global aerosol radiative forcing
(Lohmann and Feichter 2005; IPCC 2013; Bellouin et al. 2020). Major contributions to this
uncertainty derive from poor understanding of cloud and precipitation processes (Gettelman et
al. 2013), the cloud and precipitation responses to aerosol changes (Rosenfeld et al. 2014b;
Rosenfeld et al. 2014a), and the natural aerosol state that is being perturbed by anthropogenic
emissions (Carslaw et al. 2013). Remote marine low cloud systems are particularly susceptible
to perturbations in aerosol properties associated with anthropogenic emissions because of
relatively low cloud optical thickness and background aerosol concentrations (Twomey 1977;
Carslaw et al. 2013; Wang et al. 2019b). Indeed, studies found that a large fraction of the global
aerosol indirect forcing can be attributed to the changes in marine low clouds (Kooperman et
al. 2013), despite their relatively long distance from most anthropogenic sources. The responses
of low cloud systems to changes in atmospheric aerosols are among the major sources of
uncertainty that limit our ability to predict future climate (Bony and Dufresne 2005; Lohmann
and Feichter 2005; Wang et al. 2019b). Precipitation processes that impact the natural cloud
and aerosol states are also important for setting cloud feedbacks to greenhouse gases (Bodas-
Salcedo et al. 2019), highlighting the importance of aerosol-cloud interactions not only for
aerosol radiative forcing but also for the cloud feedbacks. Next, we overview the current
understanding and knowledge gaps in four interconnected topical areas on aerosol, cloud, and
precipitation that are critical to quantifying the aerosol indirect forcing of marine low clouds

and the feedbacks to greenhouse gases.

Mechanisms controlling the aerosol population in the marine boundary layer

Vertically transported aerosol from free troposphere represents a major source of boundary

layer particles in remote environments (Raes 1995; Wang et al. 2016b). Over the mid-latitude
5
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oceans, boundary layer aerosol is continually being modified by entrained free troposphere air
with a time scale ranging from hours to several days. The sources of the free troposphere
aerosol include long-range transport of continental emissions (e.g., Zheng et al. 2020c), and
new particle formation in the outflow regions of distant deep convection (e.g., Clarke et al.
1998). Some of the free troposphere particles entrained into the marine boundary layer (MBL)
readily serve as CCN (Wood et al. 2012), whereas others require condensational growth to
reach sufficient sizes (Russell et al. 1998; Quinn and Bates 2011; Frossard et al. 2014; Zheng
et al. 2018; Zheng et al. 2020a). While it has long been recognized that sulfate produced from
dimethyl sulfide (DMS) oxidation is a major species for particle condensational growth in the
remote marine environment (e.g., Charlson et al. 1987), recent studies suggest that secondary
organics may also contribute to the particle condensational growth in the MBL (Quinn and
Bates 2011; Willis et al. 2017; Briiggemann et al. 2018). At present, the contribution of
secondary organics to the particle growth in the MBL and the seasonal variation of this
contribution are not clear. Nucleation and formation of new particles in the MBL have mostly
been observed when the surface area of pre-existing aerosol was low under conditions of low
wind and strong precipitation (Petters et al. 2006; Wood et al. 2011). However, the impact of
new particle formation inside the MBL on CCN population and marine low clouds remains
poorly understood. Sea spray aerosol (SSA) can also contribute substantially to the MBL CCN
population (O'Dowd et al. 2004; Prather et al. 2013; Quinn et al. 2015). In the MBL, the main
loss mechanism for CCN is coalescence scavenging, namely the process of drizzle drops
accreting cloud droplets (Feingold et al. 1996; Wood et al. 2012). The loss by coalescence
scavenging is a strong function of precipitation rate, which is influenced by aerosol itself and

likely depends on the mesoscale structure of low clouds as discussed below. .
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Effects of Aerosol on Clouds and Precipitation

Twomey (1977) first suggested that variations in aerosol concentration change cloud
droplet number concentration (Ng), a phenomenon that was later confirmed using ground-based
and airborne measurements (e.g., Feingold et al. 2003; Painemal and Zuidema 2013). A change
in Ny also modifies the cloud droplet size and therefore the efficiency of precipitation formation
(Albrecht 1989), which can alter the macrophysical properties of low clouds. In the last decade,
numerous field observations and modeling studies have confirmed that drizzle is strongly
susceptible to the variations in Ng and CCN concentration (Hudson and Yum 2001; Feingold
and Siebert 2009; Sorooshian et al. 2010; Terai et al. 2012; Mann et al. 2014), but the cloud
responses to drizzle suppression are complex and challenging to observe. Suppression of
drizzle by anthropogenic aerosol allows clouds to retain more condensate, potentially leading
to a further increase in cloud albedo (Albrecht 1989). However, drizzle suppression also drives
stronger turbulence and entrainment of free troposphere air (Ackerman et al. 2004; Wood
2007), possibly resulting in cloud thinning and subsequent decrease in albedo. Aircraft
observations of ship tracks (Chen et al. 2012) confirm earlier satellite studies (e.g., Coakley
and Walsh 2002) in showing that cloud condensate responses to CCN increases can be either
positive or negative, depending upon several aspects of the cloud state being perturbed,
including cloud base height (Wood 2007; Chen et al. 2011) and the dryness of the free
troposphere (Ackerman et al. 2004; Christensen and Stephens 2011). It is likely that the
susceptibility of precipitation to aerosol concentration also depends on cloud type (e.g.,
shallower stratocumulus vs. deeper convective clouds) and state (e.g., Stevens and Feingold
2009). However, studies disagree about the magnitude of the susceptibility (L'Ecuyer et al.

2009; Wood et al. 2009; Terai et al. 2015) and how the susceptibility varies with the cloud type
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(Sorooshian et al. 2010; Mechem et al. 2012; Terai et al. 2012; Terai et al. 2015), leaving a

significant knowledge gap that has major impact on the magnitude of aerosol indirect effects.

Cloud Microphysical and Macrophysical Structures, and Entrainment Mixing

As follows from the discussion above, improved understanding of the microphysics and
macrophysical structures of precipitating low clouds under a broad range of meteorological
and cloudiness conditions is needed to quantify the sensitivity of the low cloud systems to
aerosols and meteorology. The entrainment of free troposphere air into the cloud topped MBL
has important consequences for the thermodynamic structure as well as cloud macro- and
microphysical properties. Entrainment of warm, dry free troposphere air into the cloudy MBL
results in evaporation of cloud droplets and subsequent deviations from adiabatic liquid water
profiles (Nicholls and Leighton 1986; Gerber 1996). These effects strongly influence the
macrophysical structure of MBL clouds. The magnitude of cloud-top entrainment is driven by
the strength of vertical gradients in buoyancy and horizontal winds in the entrainment
interfacial layer (Wang and Albrecht 1994; Gerber et al. 2005; Albrecht et al. 2016). However,
how the entrainment rate of free troposphere air into cloud topped MBL relates to the
turbulence remains one of the main unresolved questions of MBL dynamics. Boundary layer
turbulence is strongly modulated by cloud processes, so interactions between clouds,
turbulence and entrainment are of major importance for cloud-climate feedback (Bretherton
2015). Equally important is the subsequent turbulent mixing process (homogeneous vs.
inhomogeneous mixing) and its effects on cloud microphysics (Lehmann et al. 2009; Lu et al.
2011; Yum et al. 2015). The intimate connections among the microphysical, dynamical, and
thermodynamic properties associated with different entrainment mixing processes remains the
focus of active investigation (Lu et al. 2013b; Lu et al. 2013a; Yeom et al. 2017; Pinsky and
Khain 2018; Hoffmann and Feingold 2019). The dependence of the entrainment mixing process

8
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on spatial scale and altitude also needs to be further elucidated (Burnet and Brenguier 2007;

Wang et al. 2009; Lu et al. 2014; Yum et al. 2015; Kumar et al. 2018).

Evaluating and improving the current retrievals of MBL cloud and drizzle properties from

ground-based remote sensing

Drizzle plays a crucial role in determining the lifecycle of maritime warm clouds.
Currently, many weather and climate models struggle to produce drizzle with the right amount
and frequency (Stephens et al. 2010; Wyant et al. 2015). This demonstrates the need for
concurrent estimates of cloud and drizzle microphysical properties that can help to improve
our process-level understanding of drizzle formation. However, characterizing properties of
drizzling clouds from remote sensing observations is challenging. The challenge arises from
the difficulty in separating cloud and drizzle, as cloud signals are obscured by coexisting drizzle
drops that dominate radar returns. To overcome this obstacle, some methods use radar Doppler
spectra to separate signals from cloud and embryonic precipitation particles (Luke and Kollias
2013; Nguyen and Chandrasekar 2014; Joshil et al. 2020), which are useful for identifying
drizzle initiation and understanding the associated trigger conditions. Quantitative drizzle
microphysical properties in sub-cloud layers can be obtained by combining observations from
radar and lidar (O’Connor et al. 2005; Wu et al. 2015) or multi-wavelength lidars (Westbrook
et al. 2010; Lolli et al. 2013). In contrast, for retrieving in-cloud drizzle properties, the methods
typically require additional observational constraints from shortwave radiometer (Fielding et
al. 2015) or microwave radiometer (Rusli et al. 2017; Cadeddu et al. 2020; Wu et al. 2020). All
these methods provide invaluable cloud and drizzle properties, but their retreival quality has

not been evaluated against in-situ measurements.

The Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) campaign

was motivated by the need of comprehensive in-situ measurements for addressing the above
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knowledge gaps in aerosol and cloud processes, and validating and improving retrieval
algorithms of surface-based remote sensing (Wang et al. 2016a). The ACE-ENA was
conducted in the Azores, taking advantage of ongoing long-term ground-based measurements.
The ACE-ENA campaign provided simultaneous in-situ characterizations of meteorological
parameters, trace gases, aerosol, cloud, and drizzle fields under a variety of representative
meteorological and cloud conditions, which are critical to understanding the key processes that

drive the properties and interactions between aerosols, clouds, and precipitation.

Measurements and observation strategy

In October 2013, an atmospheric observatory (i.e., ENA site) was established on Graciosa
Island in the Azores, Portugal (39° 5' 30" N, 28° 1' 32" W, 30.48 m above mean sea level) by
the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate
Research Facility (Mather and Voyles 2013). The ENA site provides continuous measurements
of atmospheric state, aerosols, clouds, and precipitation using a large array of state-of-the-art
instruments/sensors (Table S1). The site straddles the boundary between the subtropics and
mid-latitudes in the ENA, and experiences a great diversity of meteorological and cloud
conditions (Remillard and Tselioudis 2015; Mechem et al. 2018; Giangrande et al. 2019). In
addition, the ENA site is often downwind of the North American continent and is periodically
impacted by continental anthropogenic aerosols (Wood et al. 2015). Therefore, the site is an
excellent location to study the CCN budget in a remote marine region periodically perturbed
by anthropogenic emissions, and to investigate the impacts of long-range transport of aerosols
on remote marine clouds. The ACE-ENA campaign was designed to take advantage of the ideal
location and the long-term measurements at the ENA site. During the ACE-ENA campaign,
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the Gulfstream-1 (G-1) research aircraft of the ARM Aerial Facility (Schmid et al. 2014) was
deployed in two intensive operational periods (IOPs) in summer of 2017 and in winter of 2018,
respectively. Deployments during both seasons allow for examination of key aerosol and cloud
processes under a variety of representative meteorological and cloud conditions. A total of 39
flights (20 during the summer IOP and 19 during the winter IOP) were conducted in the vicinity

of the ENA site (Fig. 1).

Most G-1 flights consisted of 4 to 6 vertical profiles from near the ocean surface to about
3000 m, providing the vertical profiles of atmospheric state, trace gases, aerosol, and cloud
properties in the MBL and lower free troposphere. The flights also included horizontal legs
near the surface of the ocean, just below clouds, within clouds, at cloud top, and above clouds
(i.e., in the lower free troposphere), with some additional porpoising legs to characterize the
cloud top and inversion layers during selected flights. The horizontal legs were flown using
two different patterns, with examples shown in Fig. 2. The first one was an L-shaped pattern
consisting of ~ 30 km upwind and crosswind legs at different altitudes. During most of the
flights employing the L-shaped pattern, the L “corner” was located above the ENA site, which
1s ~ 500 m from the north shore of Graciosa Island. The crosswind legs extended from the site
towards the ocean (e.g., Fig. 2a) to minimize the potential influence of local emissions from
the island. The 2™ type of pattern for the horizontal legs was a “Lagrangian drift”, where the
G-1 performed crosswind stacks (i.e., the heading of G-1 was perpendicular to the wind
direction) of several straight and level runs approximately 60 km in length below, within, and
above cloud while drifting with the prevailing MBL wind. Measurements during the
“Lagrangian drift” allow for characterization of the detailed vertical structures of the same
cloud and drizzle clusters and their evolution. During four flights, the G-1 started the
“Lagrangian drift” upwind of the ENA site and drifted towards the ENA site. The date, time,
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weather/cloud conditions, and patterns of horizontal legs for each flight are detailed in Table

S2.

The ACE-ENA deployments were specifically designed to maximize the synergy between
the in-situ measurements onboard the G-1 and the ongoing measurements at the ENA site,
including state of the art profiling and scanning radars (Table S1). For the L-shaped G-1 flight
patterns centered at the ENA site, the second generation Scanning ARM Cloud Radar (SACR-
2,e.g., Kollias et al. 2016) performed crosswind and along wind Range Height Indicator (RHI)
scans alternately to cover the G-1 flight path. When the G-1 performed “Lagrangian drift” legs
towards the ENA site, crosswind RHI scans were performed by the SACR-2 to characterize
the cloud field sampled by the G-1 as it advected over the radar (Lamer et al. 2014). In addition,
the high sensitivity second generation X-band Scanning Precipitation Radar (X-SAPR2)
documented the horizontal structures and variability of precipitation within a 40-km radius
around the ENA site by performing several low-elevation Plan Point Indicator (PPI) scans
(Lamer et al. 2019) while the vertically-pointing Ka-band Zenith Radar, laser ceilometer, and
Micropulse Lidar monitored the atmospheric column over the site. To our knowledge, this is
the first field campaign that combined aircraft measurements in marine low clouds with
collocated high-sensitivity, scanning radar data to explore how atmospheric processes vary
across MBL cloud systems with varying mesoscale organization. An example of the
coordination between G-1 flights and the operation of surface based remote sensing is given in
the supplement and Fig S1. The summer IOP overlapped with the Azores stratoCumulus
measurements Of Radiation, turbulEnce and aeroSols (ACORES) campaign, during which
helicopter-borne observations of aerosols, stratocumulus microphysical and radiative

properties were carried out at the ENA site (Siebert et al. 2020). The collocated measurements
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from ACORES provide additional synergy in advancing some of the ACE-ENA scientific

objectives.

Instruments and measurements onboard the G-1 aircraft

The instruments deployed on the G-1 aircraft during ACE-ENA are listed in Table S3 (in
supplement). Collectively, these instruments provide comprehensive measurements of aerosol
particles, cloud droplets, and trace gas species, in addition to solar radiation, atmospheric state
variables, and meteorological parameters. The mixing ratio of carbon monoxide (CO) was
measured by a CO/N»O analyzer to help identify the air mass types. An lonicon quadrupole
high-sensitivity Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) was used to measure
the mixing ratio of selected gas-phase volatile organic compounds, including DMS and
isoprene. Particle number concentrations were measured by Condensation Particle Counters
(CPCs) and aerosol size distributions were characterized by several instruments with different
but overlapping size ranges, including the Fast Integrated Mobility Spectrometer (FIMS)
(Kulkarni and Wang 2006; Wang et al. 2017; Wang et al. 2018) and Passive Cavity Aerosol
Spectrometer Probe (PCASP). CCN concentrations were measured at two supersaturations (S
=0.14% and 0.32% during the summer IOP and S = 0.14% and 0.37% during the winter IOP).
A high-resolution time-of-flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed to
measure the bulk nonrefractory aerosol composition (sulfate, nitrate, ammonium, and
organics). Samples collected using a Particle-Into-Liquid Sampler (PILS) were analyzed using
ion chromatography to provide sub-micrometer water-soluble aerosol chemical composition
(i.e., inorganics, organic acids, amines). Black carbon (BC) mass in individual particles was
quantified using a Single Particle Soot Photometer (SP2). A Time-Resolved Aerosol Collector

(TRAC) was deployed to collect atmospheric particles for multiple off-line post-campaign
13

File generated with AMS Word template 1.0



292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

laboratory analyses (Laskin et al. 2019). The size spectrum of hydrometeors, including cloud
droplets and drizzle drops, was characterized by a suite of optical probes (Table S3). A novel
Holographic Detector for Clouds (HOLODEC) was deployed to sample an ensemble of
hydrometeors in a localized volume (~ 20 cm?) by digitally reconstructing interference patterns

recorded by a charge-coupled device camera (Fugal and Shaw 2009).

Two aerosol sampling inlets were used onboard the G-1 during ACE-ENA. An isokinetic
inlet samples interstitial aerosol with aerodynamic diameters below 5 pm. By imposing a
counterflow airstream, a counterflow virtual impactor (CVI) inlet allows only cloud droplets
and large aerosol particles to be sampled. The FIMS, HR-ToF-AMS, and SP2 were switched
between the isokinetic and CVI inlets, making it possible to compare the properties of cloud
droplet residuals and aerosol outside of the clouds. The number concentration of nonvolatile
particles was characterized by a CPC (Model 3010, TSI Inc.) downstream of a thermal denuder
(Fierz et al. 2007) operated at a temperature of 300 °C. The FIMS also periodically sampled
downstream of the thermal denuder to characterize the particle size distribution of the non-

volatile components.

Additional measurements at the ENA site

During ACE-ENA, additional aerosol measurements were carried out at the ENA site
(Table S4) from June 2017 to June 2018. Aerosol size distributions from 10 to 470 nm were
characterized by a scanning mobility particle sizer (SMPS). The aerosol number concentration
(CN) was measured concurrently by a CPC. Both the aerosol size distribution and number
concentration measurements were alternated between ambient samples and those processed by

a thermal denuder operated at 300°C every 4 minutes. The activated fraction of size selected
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particles as a function of supersaturation was measured using a system that consists of a
Differential Mobility Analyzer (DMA, TSI Inc., Model 3081) coupled to a CPC (TSI Inc.,
Model 3010) and a CCN counter (CCNC, Droplet Measurement Technologies, Boulder, CO)
(Mei et al. 2013b; Thalman et al. 2017). The activated fraction allows for the derivation of the
particle hygroscopicity parameter under supersaturated conditions (xccn) (Petters and

Kreidenweis 2007; Mei et al. 2013a; Wang et al. 2019a).

Meteorological conditions

The Azores are largely dominated by the North Atlantic Oscillation, which is comprised of
the semi-permanent Azores high and Icelandic low (Cropper et al. 2015; Wood et al. 2015).
During the summer IOP (Fig. 3a), the Azores high is the dominant feature in the Atlantic and
i1s commonly located to southwest of the Azores (Wood et al. 2015; Mechem et al. 2018). The
Icelandic low is diminished and often broken into smaller circulations. During the winter IOP
(Fig. 3b), the center of the Azores high shifts to the eastern Atlantic and is primarily located
directly over the Azores. Compared to the winter IOP, the midlatitude cyclone tracks during
the summer IOP are further north, with less-frequent frontal passages across the Azores, as
indicated by the smaller standard deviations in mean sea level pressure (MSLP). These mean
structures are largely consistent with the 32-year climatology calculated from reanalysis (Fig.
2a,b in Wood et al. 2015). However, while the Azores high is climatologically stronger during
the summer than the winter (Hasanean 2004, Wood et al. 2015), the opposite was observed
during the two IOPs with the average MSLP being 5 hPa higher during the winter. The
Icelandic low deepens during the winter and is associated with a higher frequency of
midlatitude cyclone tracks of which many contain frontal systems that extend south to the
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Azores, as indicated by the higher standard deviation in MSLP. During the winter IOP
particularly near the end of January, as midlatitude cyclones tracked eastward over the north
Atlantic, the cyclones became occluded near Iceland and the cold fronts associated with these

systems would lose upper-level support and stall over the Azores.

Surface conditions at the ENA site (Fig. 4a) indicate more frequent high MSLP during the
winter [OP, with a median MSLP of 1031.5 hPa and 1024.5 hPa during the winter and summer,
respectively. The wider spread in MSLP during the winter IOP is generated by passing frontal
systems. Distributions in temperature (dew point temperature) are relatively similar between
both IOPs, but offset by around 6.5°C (6.2°C; Fig. 4b,c). Distributions of surface RH values
are also similar, with the winter IOP having a higher frequency of RH values below 65% (Fig.
4d). Surface winds typically range from southwest to northeast during the summer IOP and are
typically directly out of the southwest or northeast during the winter IOP, which are consistent
with climatology (Fig. 2¢,d in Wood et al. 2015) except for the high frequency of northeasterly
winds during the winter (Fig. 4e,f). Stronger winds are also present during the winter, with

wind speeds surpassing 9 m s 33% of the time as compared to 20% during the summer.

Temperature and RH profiles taken by soundings launched from the ENA site showcase
the variability of the boundary layer across the summer and winter IOPs (Fig. 5a-d). During
the first half of the summer IOP, on-site observers noted stratocumulus cloud layers that
developed were often very thin and rapidly dissipated after sunrise (not shown), resulting in
lower cloud fraction (Fig. Se,g). The first half of the IOP was characterized by a lack of well-
defined inversions (Fig. 5a,c), with unbroken overcast stratocumulus becoming more prevalent
only later in the period. The winter IOP contained more consistent stratocumulus conditions
(Fig. 5f;)h) and regularly exhibited a well-defined boundary layer, with sharper gradients in RH
across the boundary-layer top that corresponded with stronger inversions (Fig. 5b,d).
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Observations and early findings

In this section, we highlight some of the observations and early findings from the ACE-ENA

in the four key topic areas described above.

Aerosol properties and processes in the remote MBL

The MBL in the ENA is often decoupled into two sublayers (i.e., a surface mixed layer
above the ocean surface and an upper decoupled layer), especially following the passage of
cold fronts, when strong convective activities often lead to deeper boundary layers. Using the
airborne measurements during ACE-ENA, Zheng et al. (2020b) show that new particle
formation takes place in the upper decoupled layer following the passage of cold fronts, when
open-cell convection and scattered cumulus clouds frequently occur. The new particle
formation is due to the combination of low existing aerosol surface area, cold air temperature,
availability of reactive gases, and high actinic fluxes in the clear regions between scattered
cumulus clouds. As the new particle formation occurs aloft in the upper MBL, it could not be
directly observed in earlier studies based on surface measurements alone (e.g., Bates et al.
1998). The new particles formed in the upper part of the MBL are mixed down to the surface
layer, where they can grow through condensation. The year-long aerosol size distribution
measurements at the ENA site frequently show continuous growth of nucleation mode particles
with initial mode diameter below 20 nm, suggesting such new particle formation occurs
frequently, and that the growth of the new particles helps replenish aerosol and CCN in the
remote MBL following the passage of cold fronts (Zheng et al. 2020b). Given the high
susceptibility of marine low clouds, the new particle formation inside the MBL and its impact

on CCN population need to be further studied.
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The large number of flights allows for statistical characterization of the vertical profiles of
aerosol properties and their variations between the two seasons (Wang et al. 2021). Here
particles that are too small to form cloud droplets under the average cloud supersaturation
inside the MBL (i.e., particles below the Hoppel minimum) are referred to as “pre-CCN”. On
average, concentrations of CCN (Nccn), pre-CCN particles (Npre-con), and particles larger than
(N>10) all exhibit higher values during the summer than the winter in both the MBL and lower
free troposphere (Fig. 6a-c). During the summer, at an altitude of ~ 2000 m, average Nccn and
mass concentrations of BC (mp.) and organics (morg) are substantially higher than their
corresponding median values, indicating periods of abnormally high Nccn, mpe, and morg in
the lower free troposphere (Fig. 6¢, 6¢e, and 6f). As there is no substantial source of BC in the
lower free troposphere over the open ocean, the abnormally high Ncen, mpc, and morg are
attributed to long-range transported aerosol layers deriving from continental emissions. The
sources of the aerosol in these free troposphere layers include both biomass burning and
pollution from North America (e.g., Zheng et al. 2020c; Zawadowicz et al. 2021), with the
contribution of pollution likely being the dominant one (Wang et al. 2021). On average, Nccn
in the lower free troposphere is slightly lower than that in the MBL, suggesting that entrainment
of free troposphere air does not serve as a direct source of CCN in the MBL. However, in both
seasons, entrainment of free troposphere air is a major source of pre-CCN particles (i.e.,
nucleation/Aitken mode particles) in the MBL due to much elevated Nyre-con in the lower free

troposphere (Fig. 6b).

Once the pre-CCN particles are entrained into the MBL, they can reach CCN size ranges
through condensational growth (Zheng et al. 2018; Zheng et al. 2020a). Therefore, free
troposphere entrainment represents an important, but “indirect” source of CCN in the

midlatitude MBL. The higher MBL Nccn during the summer is partially due to the increased
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condensational growth rate of Aitken mode particles as a result of stronger oceanic emissions
of volatile organic compounds including DMS (Zawadowicz et al. 2021). Zheng et al. (2020a)
derived the hygroscopicity of condensing species during particle growth events from the size-
resolved particle activated fraction measured at the ENA site. By taking advantage of the
contrasting hygroscopicities between sulfate and secondary organics, they showed that
organics represent important or even the dominant condensing species during ~80% of growth
events. The secondary organic species likely derive from a variety of precursors, including
isoprene, monoterpenes, and aliphatic amines related to marine biogenic activity (e.g., Willis
et al. 2017; Mayer et al. 2020) and those produced by the oxidation reactions at the air—sea
interface, such as organic acids (Mungall et al. 2017). The higher precipitation rates in the
winter campaign (Fig. 8, discussed in the next section) likely leads to increased coalescence
scavenging of CCN and thus contributes to the seasonal variation of Nccn in the MBL. The
vertical profile of sulfate mass concentration indicates a surface source in both seasons (Fig.
6d), consistent with the picture that over open oceans, sulfate in submicron aerosol is mostly

derived from DMS through both gas phase and in-cloud oxidations (Ovadnevaite et al. 2014).

Aerosol impacts on cloud microphysics and precipitation

The strong summertime maximum in CCN concentration discussed above was noted during
an earlier deployment at Graciosa Island in 2009/10 (Wood et al. 2015). ACE-ENA provides
the first in-situ measurements in the region showing correspondingly higher N4 on average.
Intriguingly, the ratio of the mean summer to winter Mg (~1.5) 1s much lower than the seasonal
ratio of accumulation mode aerosol concentration (Nacc) in the surface mixed layer inferred
from the PCASP number (~2.9) and CCN concentration (Nccn, ~2.9) measurements. Figure 7

shows that the relationship between Ngq and Nacc 1s seasonally dependent, with a much steeper
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slope in winter than in summer. Thus, a higher fraction of the accumulation mode particles is
being activated in winter than in summer, which helps dampen the seasonal cycle in Nq. For a
fixed updraft speed, higher aerosol concentrations lead to lower peak supersaturations and
lower activation fractions due to competition for water vapor, which could partly explain the
damped seasonal cycle of Ny compared with Ncen or Nace. However, this is certainly not the
sole reason for the greater “activation efficiency” in winter. Results from the turbulence
measurements on the G-1 indicate that updrafts tend to be stronger in winter on average (Wyant
et al., 2020). Further, vertical profiles from the G-1 indicate that the MBL is more decoupled
during the summer than the winter, which results in stronger aerosol stratification in summer.
On average, Nacc decreases with height in the MBL in a similar manner as Nccew (see Fig. 6c¢),
but the decrease is more pronounced in summer. Most MBL clouds reside in and activate
aerosol primarily from the upper MBL. The greater stratification and weaker updraft speed
serve to dampen the seasonal cycle of Ng compared with the cycles of surface Nacc and Ncen

(Wyant et al. 2020).

Although the seasonal N4 cycle is weaker than that in Nccn, an important question is
whether wintertime low clouds precipitate more readily than summertime clouds, as would be
expected from prior assessments of the sensitivity of warm rain to CCN (Sorooshian et al.
2010; Terai et al. 2012; Mann et al. 2014). We find that for intermediate precipitation rates
(0.1-10 mm day!), there is a shift toward higher precipitation rates in the winter IOP (Fig. 8),
with little difference in the frequency of the heaviest precipitation rates. Liquid water path
(LWP) distributions at the ENA site (not shown) are similar between summer and winter,
leaving the potential for the seasonality in precipitation to be driven by the seasonal Ny and
aerosol contrasts. However, synoptic forcing differences between winter and summer play a

role at modulating low cloud properties and the condensate distributions, so controlling for
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synoptic regime (e.g., using self-organizing maps, Mechem et al., 2018) will be required to
appropriately account for seasonal synoptic variability before a definitive assessment of the

role of aerosols in the seasonal cycle of warm rain over the Azores.

Cloud Microphysical and Macrophysical Structures, and Turbulent Entrainment Mixing

Processes

Following Warner (1973) and Baker et al. (1980), entrainment-mixing processes can be
homogeneous or inhomogeneous based on the ratio of turbulent mixing time and droplet
evaporation time defined as the Damkoehler number (D,). In the homogeneous mixing
scenario, turbulent mixing is much faster than droplet evaporation and all droplets evaporate
simultaneously; in the extreme inhomogeneous mixing scenario, turbulent mixing is slow
compared to droplet evaporation and some droplets evaporate completely while others do not
evaporate at all. The effect of entrainment-mixing on droplet size spectrum appears to be
dependent on the sampling scales (Burnet and Brenguier 2007; Lu et al. 2014; Beals et al. 2015;
Kumar et al. 2018). Gao et al. (2020) analyzed in-situ ACE-ENA data and found two opposite
trends of scale dependency: entrainment mixing can become more homogeneous or more
inhomogeneous with increasing averaging scales, depending on the properties of the entrained
dry air, cloud microphysics, and turbulence. Addressing this perplexing issue requires
measurements at centimeter scales from the HOLODEC deployed during ACE-ENA (Fig. S2),

and 1s a topic of ongoing research.

The effect of entrainment-mixing on droplet size spectrum can also vary vertically. Most
previous studies showed that entrainment-mixing appears to be more homogeneous with

decreasing altitude, attributed to more pronounced droplet evaporation in cloud parcels with
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lower liquid water content (i.e., cloud parcels that are more strongly influenced by entrainment
mixing) as the cloud parcels descend from cloud top (Wang et al. 2009; Yum et al. 2015). Such
vertical trend is also evident during some of the ACE-ENA flights (Yeom et al. 2020). Figure
9 shows an example of such behavior examined in a new type of mixing diagram composed of
the two axes, LogioL and Logioz, where L is cloud droplet liquid water content and 7, is the
phase relaxation time, which represents the time required to restore saturation in the
entrainment-affected and subsaturated parcel by evaporation of cloud droplets (Yeom et al.
2020). The relationship between LogioL and Logio7, indicates extreme inhomogeneous mixing
near cloud top (Fig. 9a), whereas the mixing appears more homogeneous in the mid-level of
the cloud layer (Fig. 9b). In stratiform clouds, entrainment occurs primarily at the top of the
clouds owing to cloud-top radiative and/or evaporative cooling (Wood 2012). The vertical
variation of the entrainment-mixing process may also be related to the vertical variation of the
RH of engulfed clear air parcels (i.e., eddies), which is expected to increase as the parcels move
downward and mix with cloudy air. The mixing of engulfed clear air with cloudy air and the
subsequent evaporation of cloud droplets increase the RH of the clear air parcel, until the parcel
becomes saturated and the clear air parcel “disappears”. All else being equal, a higher RH
results in a longer time required for the droplets to evaporate and thus would favor a transition
to more homogeneous mixing with increasing distance below cloud top. However, some
nonprecipitating stratiform clouds sampled during ACE-ENA exhibited an unusual increase in
the homogeneous mixing degree () (Lu et al. 2013b) with height, and an example from the
flight on June 28, 2017 is given in Fig. 10a. This opposite trend is generally consistent with the
vertical profiles of D, (Fig. 10a) and the transition scale number (N, Fig. 10a), which is defined
as the ratio of the transition length scale (L*) (Lehmann et al. 2009) to the Kolmogorov length

scale () (Lu et al. 2011). The vertical profiles support the notion that the specific entrainment-
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mixing process is determined by the relative role of turbulent mixing time versus the droplet
evaporation time and due primarily to the increase with height of turbulent dissipation rate (g)
and droplet sizes (Fig. 10b). However, clear air parcels, which originate from entrained dry air,
exhibit increasing sizes with altitude, leading to longer turbulent mixing time near cloud top
and thus favoring the opposite trend (i.e., more heterogenous mixing near cloud top). More
studies are needed to understand the vertical variations of turbulent dissipation rate, droplet
sizes, and clear air parcel sizes, and their relationships to cloud top instability and cloud
(de)coupling. A number of ACE-ENA flights included porpoising legs that provide
microphysical, thermodynamic, and dynamical properties with high vertical resolutions near
the cloud top. Combination of these comprehensive measurements during the porpoising legs
and the horizontal legs at various altitudes will likely shed additional light on the vertical

variations of entrainment-mixing mechanisms.

In addition to the entrainment mixing, the sub-grid scale horizontal variations of cloud
water content and Ny, the covariance between them, and the implications for the parameterized
autoconversion rate in global climate models were examined using ACE-ENA measurements
(Zhang et al. 2020). Chiu et al. (2021) introduced new parameterizations of autoconversion and
accretion rates using machine learning techniques and in-situ measurements during ACE-ENA.
They also discovered a key role of drizzle number concentration in predicting autoconversion

rates, which is supported by theory and should be also considered in future parameterizations.

Evaluation of remote sensing retrievals

The ACE-ENA campaign provided high-quality collocated in-situ measurements that are

essential for evaluating and advancing remote sensing techniques for drizzling clouds. Wu et
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al. (2020) retrieved concurrent cloud and drizzle microphysical properties using measurements
of lidar, Ka-band zenith pointing cloud radar, and microwave radiometer (MWR) during the
ACE-ENA campaign. Based on evaluations against in-situ cloud probe measurements, the
associated median errors of their retrieval are in the order of magnitude of 15%—-50%. In this
type of synergistic retrieval methods, active sensors play a key role in providing information
on the profiles of cloud and drizzle drop size, while passive sensors are crucial for constraining

cloud column properties, such as LWP.

Similarly, the Ensemble Cloud Retrieval method (ENCORE) described in Fielding et al.
(2015) also relies on lidar and Ka-band cloud radar, but it uses shortwave zenith radiance
measurements to constrain cloud optical depth. This allows us to use MWR observations as an
independent dataset for additional evaluations, as detailed below. Figure 11 shows an example
from 18 July 2017 with a persistent stratocumulus deck. For cloud properties, the ENCORE-
retrieved LWP agrees well with those from MWR observations at the ENA site (Fig. 12); the
associated RMSE is about 33 g m 2, comparable to the uncertainty in MWR retrievals (Crewell
and Lohnert 2003). The retrieved cloud droplet number concentration appears consistent with
in-situ observations at 0.5-1 km altitude (Fig. 13a), mainly ranging between 40—-80 cm ™. The
in-situ data also show an increase in cloud effective radius and water content with height,
though the water content has a decrease at cloud tops. Overall, the agreement between in-situ
data and the ENCORE retrieval tends to be better in the middle of cloud layers at 0.75—-1 km

than near cloud bases and cloud tops (Fig. 13a—c).

For drizzle properties, we have used cloud probe measurements in the bin sizes of 50-500
pum in diameter. Figures 13d—f show that the retrieved number concentrations follow a similar
vertical structure to observations, ranging mainly between 0.01 and 0.1 cm™. The agreement

in drizzle effective radius and water content is good in the lower part of clouds, considering
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the large spatial and temporal variability of drizzle fields. However, while the retrieved drizzle
drop size and water content decrease with height, consistent with our conceptual model that
drizzle drops become bigger via accretion when they fall through the cloud layer, the in-situ
observations show an opposite gradient. This opposite behavior is likely due to the strong
sensitivity to the cut-off threshold used in in-situ data for defining the maximum drizzle size,
but also possibly due to sampling issues. Although further examinations of the entire campaign
dataset are necessary to ensure that an appropriate cut-off is used and that the intercomparison
is meaningful, these preliminary results are encouraging and highlight a crucial step forward
in better characterizing concurrent cloud and drizzle properties from remote sensing

observations.

Summary and outlook

The large number of ACE-ENA flights provided comprehensive characterizations of
boundary layer and lower free troposphere structures and associated vertical distributions and
horizontal variations of low clouds and aerosols in the Azores under representative
meteorological conditions. Already, analyses of the ACE-ENA data have advanced our
understanding of the processes driving MBL CCN concentrations, seasonal variations of cloud
and drizzle properties, and the effect of entrainment mixing on cloud microphysics. The in-situ
ACE-ENA measurements have allowed for the evaluation of retrieval algorithms for ground-
based remote sensing. Together with the long-term observations at the ENA site, the
comprehensive datasets collected during ACE-ENA will enable a more holistic and complete
understanding of the controlling processes for MBL CCN population, cloud lifecycle, and the
interactions among aerosol, clouds, and precipitation. Following are a sampling of the scientific

objectives that can be addressed in ongoing and future studies:
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(1) Developing the budget of the CCN population in the remote MBL and the variation of
different budget terms with both season and synoptic conditions. These budget terms include
the contributions from different sources (e.g., new particle formation, entrainment of free
troposphere air, production of sea spray aerosol, and growth of pre-CCN particles), and

removal by various processes (e.g., coalescence scavenging).

(2) Evaluating key processes controlling the MBL CCN budget using LES models with
fully interactive aerosol processing, including an assessment of the role played by pre-CCN

particles.

(3) Evaluating the representation of aerosol properties, their vertical profiles and temporal
variability over different seasons and synoptic conditions in global climate models using the
ACE-ENA measurements and long-term ENA observations. Through model sensitivity
experiments the causes for the model biases would be examined and the representation of the

key aerosol processes be improved.

(4) Quantifying the role of aerosol in the seasonal cycle of warm rain in the ENA. The
analysis will employ a statistical approach to separate effects of cloud microphysics from
macrophysical controls on precipitation by taking advantage of (1) the measurements from the
large number of ACE-ENA flights, and (2) cloud/drizzle vertical profiles retrieved from long-
term surface based remote sensing using algorithms validated by ACE-ENA in-situ

measurements.

(5) Investigating the variations of the entrainment mixing process with spatial scale and
altitude by examining the cloud microphysical relationships using both the measurements from

conventional probes and centimeter scale measurements from HOLODEC.

(6) Examining the relationship between entrainment-mixing process and spectral shape of

cloud droplet size distributions, investigating the entrainment rate near cloud top and factors
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affecting the entrainment rate, and examining the comprehensive thermodynamics-dynamics-
microphysics connections by combining in-situ measurements and cloud structures retrieved

from surface based remote sensing.

(7) Providing cloud process rates in warm rain formation by applying advanced retrieval
methods to long-term ENA observations, for improving our process-level understanding and

model prediction of drizzle frequency and amount.
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Figure 1. The fight paths of the G-1 research aircraft colored by altitude during (a) the summer
IOP and (b) the winter IOP. Most of the flight paths are in the vicinity of the ENA site on
Graciosa Island (c). A photo of the G-1 aircraft is shown in (d), and the general geographic

location of the sampling area is shown in (e).
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Figure 2. Examples of G-1 flight paths during the ACE-ENA colored by UTC time. (a) L-shape
patterns consisting of ~ 30 km upwind and crosswind legs at different altitudes on July 18,
2017, with the “corner” of L-pattern above the ENA site, (b) Lagrangian drift pattern consisting
of crosswind stacks of several straight and level runs approximately 60 km in length below, in,
and above cloud on July 15, 2017. The white arrow indicates the wind direction, and the star

represents the location of the ENA site on Graciosa Island.
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1002  Figure 3. The average mean sea level pressure (MSLP; color-filled contours) and standard
1003  deviation of MSLP (black-contours) across the (a) summer and (b) winter IOPs generated using

1004  the six-hourly ECMWF interim reanalysis (ERA-Interim; Dee et al. 2011).
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Figure 4. Kernel density estimation of (a) sea level pressure, (b) temperature at 2 m, (c) dew
point and 2 m, and (d) relative humidity at 2 m measured at the ENA atmospheric observatory
on Graciosa Island. The left (right) side of the plots represents the probability density during
the winter (summer) IOP. Wind rose plots represent the surface wind conditions observed

across the (e) summer and (f) winter IOPs.
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Figure 5. The (a, b) potential temperature and (c, d) relative humidity profiles measured by
alternating 11:30 and 23:30 UTC (11:30 and 23:30 local in the summer and 12:30 and 00:30
local in the winter) radiosonde launches from Graciosa Island. The (e, f) radar-derived
hydrometeor frequency of occurrence (Kollias et al. 2007) and (g, h) lidar-derived total cloud
fraction below 4 km. The left and right columns represent conditions during the summer and
winter IOPs, respectively. Gray areas in (f) denote times when the cloud radar was unavailable

and thus no hydrometeor retrievals are made.
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Figure 6. Vertical profiles of (a) the concentrations of particles larger than 10 nm (N-10), (b)

concentrations of pre-CCN particles (i.e., particles that are too small to form cloud droplet

under average conditions inside MBL, Npre-con), (¢) the concentrations of cloud condensation

nuclei, (d) mass concentrations of sulfate, (¢) mass concentrations of organics, and (f) mass

concentrations of black carbon (BC) in the ENA during the summer (red) and winter (blue)

IOPs. Npre-con is derived as the difference between N-19 and the CCN concentration, which is

calculated by integrating the bimodal size distribution measured by the FIMS for particles

with diameter larger than the Hoppel minimum. The box whisker plots show 10%, 251, 50,

75", and 90™ percentiles, respectively, and the circle markers represent the mean values.
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Figure 7. Flight mean cloud droplet concentration (Ng) from all in-cloud samples plotted

against the mean BL accumulation mode (i.e., particles with diameter above 100 nm)

concentration Nacc measured by a Passive Cavity Aerosol Spectrometer (PCASP), for summer

(red) and winter (blue) flights.
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Figure 8. Histogram of in-cloud precipitation rate estimated from the 2D-S probe

measurements onboard the G-1 during the summer (red) and winter (blue) IOPs. Although

there is little seasonal contrast in the highest rates, there is a shift toward higher intermediate

rates (0.1-10 mm day!) during winter.
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Figure 9. Examples of LogioL-Logio7, mixing diagram for near cloud top (a) and mid-level
(b) horizontal penetrations during the flight on July 18, 2017. The dashed line indicates the
expected data trend for extreme inhomogeneous mixing (IM) and the solid lines indicate the
expected trends for homogeneous mixing with different RH of entraining air. The phase
relaxation time (zp) and liquid water content (L) are derived from droplet size spectrum

measured by the FCDP.
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Figure 10. An example of height dependence of turbulent entrainment-mixing processes and

related quantities (Flight on 6/28/2017, Summer IOP RF05), where y, Da, Ni, €, and rva denote

the homogeneous mixing degree, Damkoehler number, transition scale number, turbulent

dissipation rate, and adiabatic mean volume radius, respectively. The cloud droplet size

distributions were measured with a Fast Cloud Droplet Probe (FCDP) at 10 Hz. Humidity was

measured with an Open Path Tunable Diode Laser Hygrometer (Diskin et al., 2002) at 10 Hz.

Air temperature, air pressure, and altitude were measured with the Aircraft Integrated

Meteorological Measurement System (AIMMS) at 20 Hz. Turbulent dissipation rate is derived

from the 20 Hz AIMMS-20 air motion measurements.
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1074

1075  Figure 11. Time-height radar reflectivity profiles on 18 July 2017 during the ACE-ENA
1076  campaign. The black dots represent cloud base heights, determined using a threshold in
1077  attenuated lidar backscatter of 0.00005 m™' sr!. The big red dots indicate the G-1 aircraft flight

1078  height and time.

1079
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1083  Figure 12. A scatter plot of retrieved liquid water paths from ENCORE vs. those from
1084  microwave radiometer observations. The solid line represents the 1:1 line, while the dash lines

1085  depart + 30 g m 2 from the solid line.
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Figure 13. Box plots of (a) cloud droplet number concentration, (b) cloud effective radius and

(c) cloud water content calculated from in-situ measurements (blue) and from ENCORE
retrievals (red) on 18 July 2017. The boundaries of each box represent the 25% and 75%

quartiles, and the line inside the box represents the median. The whiskers mark the range within
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1.5 times the interquartile distance. Note that the retrieved cloud droplet number concentration
in (a) is independent of height, and thus is only plotted once and placed in the altitude bin of
0.5-0.75 km. (d)—(f) are same as (a)—(c), but for drizzle properties. In-situ size distributions
were used only when the aircraft was within 10 km of the ENA site. The final sample size is

about 1800 profiles.
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