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Abstract 11 

Although early theoretical work suggests that competition for light erodes successional diversity 12 

in forests, verbal models and recent numerical work with complex mechanistic forest simulators 13 

suggest that disturbance in such systems can maintain successional diversity.  Nonetheless, if and 14 

how allocation tradeoffs between competitors interact with disturbance to maintain high diversity 15 

in successional systems remains poorly understood.  Here, using mechanistic and analytically 16 

tractable models, we show that a theoretically unlimited number of coexisting species can be 17 

maintained by allocational tradeoffs such as investing in light-harvesting organs vs. height 18 

growth, investing in reproduction vs. growth or survival vs. growth. The models describe the 19 

successional dynamics of a forest composed of many patches subjected to random or periodic 20 

disturbance, and are consistent with physiologically mechanistic terrestrial ecosystem models, 21 

including the terrestrial components of recent Earth System Models. We show that coexistence 22 

arises in our models because species specialize in the successional time they best exploit the light 23 

environment and convert resources into seeds or contribute to advance regeneration. We also 24 

show that our results are relevant to non-forested ecosystems by demonstrating the emergence of 25 

similar dynamics in a mechanistic model of competition for light among annual plant species.  26 

Finally, we show that coexistence in our models is relatively robust to the introduction of 27 

intraspecific variability that weakens the competitive hierarchy caused by asymmetric 28 

competition for light. 29 

 30 

Key words/phrases: Coexistence; Forest succession; growth-mortality tradeoff; Light 31 

competition; Terrestrial ecosystem model 32 
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Introduction 34 

One of the most accessible examples of rapid community dynamics in nature is the species 35 

turnover that occurs during secondary succession in a forest. After severe disturbance, 36 

dominance shifts from relatively short to relatively tall species with a series of repeated and rapid 37 

competitive exclusions, each taking place within a single generation (Horn 1974; Huston & 38 

Smith 1987). Competition for light is typically the dominant cause of species turnover when 39 

forest succession is rapid, although competition for water and nutrients is undoubtedly also 40 

important in many forests. Rapid competitive exclusion happens when all individuals of a 41 

species become overtopped by taller competitors, because of the 10-100 fold drop in light 42 

intensity and corresponding large decrease in carbon gain. Succession, however, raises a long-43 

standing coexistence puzzle:  if succession predictably leads to the exclusion of earlier taxa, how 44 

is the diversity of species observed over the successional sequence maintained?  45 

Despite decades of competition theory targeting succession (Horn 1975; Tilman 1985; Kohyama 46 

1993; Harte et al. 1999), we do not have an analytically tractable mechanistic theory for the 47 

maintenance of successional diversity in systems structured by light competition. There are 48 

several reasons for this gap. First, light is not an easily partitioned resource, and thus most 49 

models of light competition between trees predict little coexistence, leading to speculation that 50 

light competition is simply not conducive to high plant diversity (Barot & Gignoux 2004; Nevai 51 

& Vance 2008; Parvinen & Meszéna 2009; Gravel et al. 2010).  Second, existing models that do 52 

predict high diversity through a successional process, such as those with a competition-53 

colonization tradeoff (Levins & Culver 1971; Horn & MacArthur 1972; Tilman 1994; Kinzig et 54 

al. 1999; Arora & Boer 2006) or disturbance-maintained spatial and temporal environmental 55 

heterogeneity (Horn 1975; Connell 1978; Chesson 2000a), are highly abstract, and at least as 56 
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presented in the original papers, not consistent with the mechanisms that drive forest succession 57 

(Pacala & Rees 1998). Verbal models such as those that underpin the Intermediate Disturbance 58 

Hypothesis are not intended to explain the high observed successional diversity, but rather the 59 

qualitative pattern of elevated diversity at intermediate levels of disturbance (Bongers et al. 60 

2009).  Third, an analytically tractable and mechanistic theory of the maintenance of 61 

successional diversity is mathematically challenging. Individual trees range in stature by five or 62 

six orders of magnitude during succession, which implies the need for a size-structured model 63 

(Kohyama 1992). Even more challenging, mechanistic modeling of succession requires that one 64 

solve nonlinear differential equations for the system’s time-dependent solution to predict 65 

compositional turnover.  Such solutions are analytically impractical for almost all nonlinear 66 

systems, including the seemingly simple Lotka-Volterra competition equations.  Without a time-67 

dependent analytical solution, it is impossible to rigorously connect the functional traits of trees 68 

and the tradeoffs between them to coexistence mechanisms in successional systems. Resolving 69 

these gaps in understanding with analytical theory is important for better resolving the influence 70 

of terrestrial vegetation on climate in Earth System Models (ESM’s) because critical ecosystem 71 

functions in ESM’s are affected by the amount of successional diversity they contain (Rüger et 72 

al. 2020).  73 

One path forward involves building models simple enough to provide analytical solutions but 74 

complex enough to include the key elements of the successional process.  Because competition 75 

for light is highly asymmetric (Weiner 2012), existing simple competition models for a single 76 

resource (MacArthur 1970; Tilman 1994) are not sufficient for this task. At the other end of the 77 

complexity spectrum, individual-based, size-structured forest models of asymmetrical 78 

competition for light are highly successful in reproducing successional dynamics (Shugart et al. 79 
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1992; Botkin 1993; Pacala et al. 1993; Huth et al. 1996). Nonetheless, their predictions are 80 

difficult to apply to the successional coexistence problem because the models are both 81 

analytically intractable and computationally expensive. These models often predict the co-82 

occurrence of multiple plant species through the end of a numerical simulation, but it is not clear 83 

that this represents deterministic coexistence (Koven et al. 2019; Fisher & Koven 2020; Martínez 84 

Cano et al. 2020).  In the simulations of Rüger et al. (2020) for example, fast-growing species 85 

were excluded, but this still took 400-500 years.  In contrast, Falster et al. (2017) built a 86 

numerical simulation model fast enough to convincingly demonstrate species coexistence.  87 

Empirical and theoretical studies of forest successional diversity have traditionally focused on 88 

the shade-tolerance axis when aiming to explain coexistence (Grubb 1977; Kohyama 1993; 89 

Pacala et al. 1993; Hubbell et al. 1999; Wright et al. 2010). Indeed, many plant ecologists 90 

describe forest succession as a shift from species that grow quickly in full sun, but have low 91 

understory survival, to species with low high-light growth and high low-light survival. The many 92 

reported examples of this growth-mortality tradeoff are reviewed in Russo et al. (2020).  Falster 93 

et al., (2017) found that a growth-mortality tradeoff could, by itself, generates stable coexistence 94 

among a small number of trees species. However, interspecific variation in the size at which 95 

trees divert carbon from growth to reproduction enabled a much higher diversity of coexisting 96 

species in the same model, and when combined, the growth-mortality and reproduction-growth 97 

tradeoffs maintained high diversity of shade tolerant species, as is observed in tropical forests. 98 

These results are consistent with recent suggestions that the growth–mortality tradeoff is not a 99 

sufficiently general mechanism for coexistence in highly diverse forests (Russo et al. 2020), and 100 

that other life-history tradeoffs or a combination of them might drive the assembly of diverse 101 

communities (Salguero-Gómez et al. 2016; Rüger et al. 2018).  Resolving how these and other 102 
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tradeoffs maintain the diversity of competing species requires an analytical model of 103 

successional diversity for species competing for light. 104 

In this paper, we produce analytically tractable mechanistic models of successional diversity 105 

where species compete only for light in a successional mosaic of patches that are periodically or 106 

randomly disturbed.  To do so, we extend the single-species forest model of Farrior et al. (2016) 107 

to an arbitrary number of species, and also introduce a physiological sub-model that predicts the 108 

growth, mortality and reproduction of each individual plant from the plant’s light-limited carbon 109 

economy.  Farrior et al. (2016) developed arguably the simplest analytically tractable 110 

formulation using two approximations that successfully scale-up individual-based dynamics in 111 

forest and climate models - the ecosystem demography (ED) approximation (Moorcroft et al. 112 

2001), which handles the successional mosaic created by gap formation and recovery, and the 113 

perfect plasticity approximation (PPA) (Strigul et al. 2008), which greatly simplifies the 114 

mathematics of trees overtopping one another.  115 

Analysis of the models explains how any one of four different interspecific tradeoffs among 116 

plant vital rates can maintain successional diversity, by which we mean stable coexistence in a 117 

successional mosaic without external seeds input, with each species achieving its highest relative 118 

biomass at a different time following disturbance:  119 

 120 

I) “Up vs. Out” is the tradeoff between carbon allocated to crown area expansion vs. stem height 121 

growth (Uyehara 2019).  Crown growth in full sun yields a nonlinear increase in energy 122 

harvesting for reproduction, but height growth keeps a plant from being overtopped by 123 

neighbors, which would greatly slow energy harvesting.   124 
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II) “Growth vs. Survival” is the oft-reported shade tolerance tradeoff between growth in the 125 

canopy and survival in the understory. 126 

III) “Growth vs. Reproduction” is a tradeoff between carbon allocated to seed production vs. 127 

biomass growth in reproductively mature plants. 128 

IV) “Maturation vs. Growth” is a tradeoff between diverting carbon from growth to reproduction 129 

later in life, when larger plants can devote more carbon to reproduction per unit time, versus 130 

earlier in life, which allows plants to extend the total time for reproduction. 131 

We show that each of these tradeoffs can maintain a large number of coexisting species in our 132 

models (theoretically up to an infinite number), and for the same population dynamic reason - 133 

these tradeoffs grant species time intervals over which they are the superior competitor. We also 134 

show that the same mechanism can maintain high diversity in a model of an annual plant 135 

community, demonstrating the broad applicability of these coexisting mechanisms, as well as the 136 

robustness of these mechanisms to intraspecific variation in model parameters.  137 

 138 

 139 

Methods  140 

To maintain broad accessibility, we verbally describe the models and analysis in the Methods 141 

section while providing the mathematical analyses in five sections of Appendix S1.  However, in 142 

the Results section, we provide the formulae for the mathematical results derived in the 143 

Appendix S1, such as equilibrium abundances and coexistence criteria.  We begin by describing 144 

a model where the fundamental difference between tree species relates to their carbon allocation 145 

to crown vs. stem (the out vs. up tradeoff), and then permute that model to examine the impact of 146 
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the reproductive tradeoffs, growth-survival tradeoff, dynamics in an annual plant community and 147 

intraspecific variability in a parameter determining plant growth rates. 148 

The successional forest model is defined in continuous time and envisions trees occurring in an 149 

infinite mosaic of patches.  Trees interact only with neighbors within the same patch by 150 

overtopping and shading one another, and patches are dynamically coupled through seed 151 

dispersal.  Reproduction is continuous and size-dependent, and dispersing seeds have equal 152 

probability of landing in any patch.  Patches suffer random or periodic disturbances, which kill 153 

all the trees and reset succession.  Seeds and juveniles who are still alive after a disturbance 154 

when the forest floor is in full sun, start growing and reproducing (Fig. 1). Appendix S1: section 155 

1 describes how the equations and models can be derived from some physiologically mechanistic 156 

models of interacting individual plants.  Although the analyses in the paper can be followed 157 

without assimilating Appendix S1: section 1, some of the assumptions may be difficult to fully 158 

understand without the mechanistic context.   159 

Growth and Reproduction. Immediately after disturbance within a patch, all surviving juvenile 160 

plants of 𝑆 different species are exposed to direct sunlight. Species differ only in their allocation 161 

to stem, and energy devoted to the stem cannot be spent on the crown and vice versa. This 162 

generates an out vs. up tradeoff (Appendix S1: section1).  Specifically, for species 𝑖 individuals 163 

growing in full sun starting at negligible initial size, crown area 𝐶𝑖(𝑡), height 𝐻𝑖(𝑡), and stem and 164 

branch mass 𝑀𝑖(𝑡) at time 𝑡 are given by: 165 

(1a)  𝐶𝑖(𝑡) = 𝑘𝑖𝑡𝛾  166 

(1b)  𝐻𝑖(𝑡) = 𝑟𝑖𝑡
𝛿   167 

(1c)  𝑀𝑖(𝑡) = 𝐺𝑖𝑘𝑖𝑡𝛾+1  168 
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where 𝛾 and 𝛿 are constants common to all species defining the power of time 𝑡 over which 169 

growth in 𝐶𝑖(𝑡) and 𝐻𝑖(𝑡) is linear, 𝑘𝑖 and 𝑟𝑖 are inversely related species-specific parameters 170 

defining canopy and height growth rates, and 𝐺𝑖 is a species-dependent parameter defining 171 

growth in branch and stem mass.  The power-function growth in equations (1a-c) is a 172 

consequence of the carbon balance imposed by power-function allometries relating crown area, 173 

stem and branch mass, and leaf and fine root area (Appendix S1: section 1).  If we rank 174 

individuals of the same age from largest to smallest value of 𝑟𝑖, then this would also be their 175 

ranking from: i) tallest to shortest, ii ) smallest to largest 𝑘𝑖, and iii) smallest to largest crown 176 

area.   177 

All individuals growing in full sun produce seeds at a constant rate per unit crown area, which 178 

are distributed randomly among the patches.  Individuals in the understory are assumed to have 179 

negligible growth and reproduction, which is consistent both with the physiological 180 

consequences of a 10 to 100-fold drop in light intensity, and myriad observations in forests with 181 

the high leaf area indices that indicate strong light limitation and weak nutrient and water 182 

constraints (e.g., Ricard et al. 2003). However, this assumption does exclude shade tolerant 183 

understory shrubs and trees that reproduce in deep shade. A model where plants grow at reduced 184 

rates in the understory remains tractable, but analytical results are much more cumbersome 185 

(Appendix S1: section 3.6) and qualitatively similar to those from a version of the annual plant 186 

community model with non-zero understory growth, a case we also analyzed. 187 

Mortality. Species in the model can have any level of shade tolerance.  Species that are 188 

completely shade-intolerant die immediately in the understory and are thus assumed to delay 189 

germination until disturbance opens a patch, at which point they germinate immediately.  Shade 190 

intolerant seeds survive under closed canopy with mortality rate 𝑚𝑠.  Species with at least some 191 
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degree of shade tolerance germinate immediately after seed dispersal and have mortality rate 𝑚𝑢 192 

in the understory, but do not grow or set seeds until the canopy opens following a disturbance.  193 

After a disturbance, plants in full sun grow at the rates given by Eq. (1) with negligible mortality 194 

until they become overtopped by taller competitors (Error! Reference source not found.). Once 195 

overtopped, they resume dying at rate 𝑚𝑢 if they have some degree of shade tolerance, or die 196 

immediately if completely shade intolerant.  197 

Canopy closure is governed by the perfect plasticity approximation (PPA). The PPA simply 198 

sums the crown areas of plants in a patch from tallest to shortest.  This sum of crown area 199 

divided by patch area will be less than one when crowns are too small to fill the canopy, and 200 

must remain at one after the canopy closes, despite continued growth, which means that the 201 

shortest plants in the patch are continually being overtopped and sent to the understory (where 202 

they stop growing and reproducing). When the height threshold separating canopy and 203 

understory falls within a same-height cohort, then the cohort is split into two fractions to keep 204 

the total crown area density of the canopy equal to one.  Although the PPA may sound extreme, 205 

it works well, both in individual-based models with realistic levels of plastic growth (Strigul et 206 

al. 2008), and for trees in the field (Purves et al. 2008).  207 

More formally, the crown growth and the PPA imply a series of canopy closure thresholds ( 208 

𝑡1, 𝑡2, … , 𝑡𝑆) for a patch that can be calculated from the densities of each species present and their 209 

high-light growth rates.  The first threshold, 𝑡𝑆 , represents the time after a disturbance at which 210 

the canopy first closes (the sum of all 𝑆 species crown area densities first reaches 1). 211 

Overtopping thus begins at 𝑡𝑆 . At first, all overtopped individuals will be members of species-𝑆, 212 

because they are the shortest, though they will also have the largest crown areas by virtue of 213 

having allocated little to stem. After 𝑡𝑆, canopy growth continues until a second time, 𝑡𝑆−1, when 214 
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the last of species-𝑆 is overtopped, and the combined crown areas of the remaining 𝑆-1 species 215 

first fill the canopy.  After 𝑡𝑆−1, further growth of the canopy individuals continually leaves 216 

individuals of species-(𝑆-1) behind in the understory, until a third time, 𝑡𝑆−2, when the last 217 

individual of species-(𝑆-1) is overtopped, and so on.  Note that species-1 is the tallest and so is 218 

never overtopped by another species.  219 

The density of seeds that germinate in both natural forests and in the model (given realistic 220 

parameter values) is very large – of order hundreds per square meter (Leck et al. 1989). For this 221 

reason, the canopy closes almost immediately in the model (𝑡𝑆 ≈ 0), which allows us to greatly 222 

simplify the mathematical results by ignoring seeds that disperse to the patch and germinate after 223 

the disturbance but before the first canopy closure. For some forests, high initial density may 224 

require that the model applies to the entirety of the successional sequence from herbs to canopy 225 

trees. 226 

Disturbance.  The above description applies to succession in an individual patch, but the model 227 

follows species dynamics in a system with an infinite number of patches.  Doing so requires 228 

knowledge of the distribution of patch ages.  Most of our analytical results are presented for the 229 

case in which disturbances are periodic, i.e. they occur once every 𝑡0 years, so that at any one 230 

time the patch-age distribution is uniform. These results isolate a successional coexistence 231 

mechanism that depends on species specialization on the spatial heterogeneity created by 232 

asynchronous disturbance, and does not depend on variation in the interval between disturbances.  233 

We also provide results for some other patch age distributions, including the exponential 234 

distribution produced from purely random disturbance, which generate variable intervals among 235 

disturbances.  These results show that a second coexistence mechanism is created by species 236 

specialization on different intervals between disturbances. For example, with random 237 
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disturbance, some patches reach ages far older than the mean age of the mosaic. These patches 238 

allow the persistence of species that require a long interval to reach expected lifetime 239 

reproductive success greater than one, and thus cannot persist if disturbance have the same mean 240 

interval but are periodic. Together, the two successional coexistence mechanisms lead to higher 241 

diversity than either can on its own. 242 

Disturbances in our model are assumed to kill all saplings and adults larger than seedling size, 243 

which is consistent with the Ecosystem Demography (ED) approximation of Moorecroft et al. 244 

(2004) (see next section).  If the species are completely shade intolerant no seedlings are present 245 

when a disturbance takes place.  But for shade tolerant species, this assumption is formally 246 

equivalent to assuming that disturbances only kill canopy trees, as long as understory recruits 247 

that become canopy trees after the next disturbance have a vanishingly low probability of 248 

returning to the canopy again after being overtopped. This assumption was also made in Falster 249 

et al. (2017) and prohibits the possibility of canopy capture by super-shade tolerant juveniles that 250 

survive for perhaps a century or more in the understory through repeated periods of growth 251 

suppression and release, even though examples of such situations have been reported (Canham 252 

1985).  253 

Once overtopped, individuals formerly in the canopy do not set seed, have negligible growth and 254 

die either before or at the time of the next disturbance, and thus it is unnecessary to track their 255 

number. In contrast, small individuals and seeds do survive the disturbance event (or at least 256 

survive with positive probability), forming the pool of recruits available to grow thereafter. Thus, 257 

their mortality rate in the understory determines the initial condition of succession in a patch. 258 

Our formulation for this initial condition is exact in the case of periodic disturbance.  However, 259 

with random disturbance, we use an approximation that the understory juvenile or seed turnover 260 
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is faster than patch turnover, so when the disturbance hits the patch, the seed or juvenile pool is 261 

at equilibrium.  262 

A connection to stochastic individual-based spatial forest simulators.  Our forest model is 263 

individual-based in the sense that all of the birth, growth and death rates in it, with the exception 264 

of patch-level disturbance rates, are vital rates of individual plants such as the growth rates 265 

predicted by Eqs (1). Indeed, Appendix S1: section 1 shows one way in which these vital rates 266 

may be derived from a physiological model of an individual plant.  Moreover, the division of the 267 

landscape into patches, together with the assumption that all density-independent mortality is 268 

per-patch rather than per individual, is consistent with the Ecosystem Demography 269 

Approximation (ED, Moorcroft et al. 2001).  This approximation and the PPA were originally 270 

developed to correctly scale-up spatially explicit stochastic models of interacting individual trees 271 

into models precisely like our forest model, which predicts the time evolution of 𝑁𝑖(𝑇, 𝑡), the 272 

population density of the cohort of species-𝑖 plants at time 𝑇 in a patch 𝑡 years since the last 273 

disturbance.  The point here is that our forest model was specifically designed to be consistent 274 

with some physiologically-grounded models and with models of interacting individual plants, 275 

and so our results should be directly relevant to stochastic spatial forest simulators such as 276 

(Dietze & Latimer 2012) and to physiologically structured global vegetation models based on the 277 

ED and the PPA such as Koven et al. (2019) and Martínez Cano et al. (2020).  278 

 279 

Model Permutation 1: Alternative tradeoffs.  We examine the robustness of our results by 280 

analyzing three different permutations of the forest model with the up vs. out tradeoff.  First, we 281 

replace the out vs. up tradeoff with each of the two tradeoffs between growth and reproduction 282 

and the tradeoff between high-light growth and understory survival in shade (Error! Reference 283 
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source not found.).  Again, Appendix S1: section 1 shows one way in which each of these 284 

tradeoffs can be generated by interspecific variation in a single physiological parameter.  The up 285 

vs. out tradeoff between 𝑘 and 𝑟 in equation (1) occurs if there is variation in a single allometric 286 

parameter that constrains allocation to stem.  The fecundity vs. growth tradeoff occurs if species 287 

differ only in their partitioning of surplus energy between reproduction and biomass growth 288 

(surplus energy = energy left over from photosynthesis after paying respiration costs and 289 

replacing senescent leaves and fine roots, see Error! Reference source not found.B and 290 

Appendix S1: section 1). With this tradeoff, 𝑘 and 𝑟 now increase together as allocation to 291 

fecundity decreases and vice versa.  Growth parameters 𝑘 and 𝑟 are no longer inversely related, 292 

because all species are now assumed to have the same allometries, which constrain allocation to 293 

stem growth.  Finally, increased carbon allocation to reproduction, increases the rate of seed 294 

production per unit sun-exposed crown area.  In the maturation vs. growth tradeoff species have 295 

the same allocation of surplus energy to reproduction when sexually mature, but they differ in 296 

the threshold size at which individuals in full sun stop growing and begin to devote all surplus 297 

energy to reproduction (Fig.1C). For the growth-survival tradeoff, a species’ sun exposed growth 298 

rates, 𝑟 and 𝑘, trade-off against its understory death rate 𝑚𝑢, which is now species specific.  299 

Appendix S1: section 1 shows how this tradeoff could result solely from interspecific variation in 300 

maximum photosynthetic capacity of leaves in full light. Because of the higher costs related to 301 

maintaining high-capacity photosynthetic machinery, the seedlings in the understory will have 302 

less available carbon for investments that enhance understory survival. These include 303 

investments in chemical or structural defenses against lethal pathogens and herbivores, or in 304 

carbon storage that help a plant to survive in the stochastic sun-flecked light environment in the 305 

understory (Kitajima 1994).  Less investment in survival means a higher understory mortality 306 
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rate. The observed interspecific tradeoff between survival in the understory and growth in high 307 

light (e.g., Kitajima 1994; Wright et al. 2010; Russo et al. 2020) can be used to infer the 308 

relationship between investment in understory survival and the mortality rate.  Here we chose a 309 

simple form for the relationship between the species’ mortality rate in shady understory 𝑚𝑢,𝑖 and 310 

its growth rate determined by 𝑘𝑖 (Appendix S1: section 1.5): 311 

(2) 𝑚𝑢,𝑖 = 𝑚0[1 − (𝑘𝑖/𝑘+)1/𝛾]−𝑐  312 

where 𝑚0 is background mortality, 𝑘+ is a scaling factor and 𝑐 is an exponent larger than one to 313 

ensure the curve is concaved up (Russo et al. 2020).  The height growth parameter 𝑟𝑖 will also be 314 

an increasing function of 𝑘𝑖, but we do not need its specific form to produce the results in the 315 

paper. 316 

Model Permutation 2: An annual life history. We study whether or not our results might apply to 317 

biomes other than forests.  On the one hand, competition for water and nutrients is likely to be 318 

more important than competition for light in many non-forested ecosystems. On the other, 319 

competition for light does occur in many of these systems, at least some of the time, and so we 320 

ask: Is there anything structurally special about forest dynamics that would restrict our results 321 

exclusively to forests?  To address this question, we consider systems at the other end of the 322 

terrestrial plant size spectrum. High-diversity communities of annual plants in Mediterranean 323 

ecosystems undergo repeated succession each year when winter rains arrive, and succession is 324 

reset annually with the onset of the dry summer dormant period. Studies in California confirm 325 

that the plants compete for light, water and nitrogen (Going et al. 2009), and that succession 326 

proceeds from short to tall plants until the cessation of seasonal rain eventually ends the growing 327 

season (Godoy & Levine 2014), and each plant sets seed before dying.   328 
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The forest model can be modified rather simply to describe the between-year dynamics of an 329 

annual plant community at a single location based on the continuous-time dynamics of 330 

individuals over a growing season. In this model, seeds germinate at the beginning of the season 331 

and plants with an out vs. up tradeoff (allocation to leaf vs. stem) compete for light by 332 

overtopping one another as they grow through the year, and ultimately set seeds in proportion to 333 

size each individual reaches at the end of the season. Appendix S1: section 1.6 contains a 334 

physiological sub-model of an annual plant consistent with the growth functions (1).  We derive 335 

a time-dependent solution for the within-season model that gives next year’s germinating seeds 336 

as a function of this year’s germinating seeds.  This defines a system of finite-difference 337 

competition equations (𝑁𝑖,𝑇+1 as a function of 𝑁1,𝑇, 𝑁2,𝑇 , … , 𝑁𝑆,𝑇) that are much simpler than the 338 

nonlinear integral equations of the forest model that govern the continuous-time evolution of 339 

𝑁1(𝑇, 𝑡), 𝑁2(𝑇, 𝑡), … , 𝑁𝑆(𝑇, 𝑡).  340 

We examine two different responses to overtopping in the annual model.  In the first, overtopped 341 

individuals immediately set seed and then die without further growth.  In the second, individuals 342 

keep growing in the understory but at a reduced rate (reduced 𝑘𝑖 and 𝑟𝑖 in Eq. 1) below the 343 

canopy of their competitors.  Seed set can be any allometric function of plant size, but we 344 

provide results for seed set proportional to either crown area or plant mass.  End-of-season 345 

senescence is the only density-independent source of mortality, though similar results can be 346 

obtained if we allow within-season density-independent mortality.  Results are far simpler 347 

without it, and within season density-independent mortality in these systems is likely to be much 348 

smaller than density-dependent mortality.  Total seed set is multiplied by a germination 349 

probability to give the number of seedlings at the beginning of the next growing season.  We 350 
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assume no between-year seed dormancy, but the model remains tractable with it (see Appendix 351 

S1: section 2.3).  352 

 353 

Model Permutation 3: Within Species Variation.  354 

Model predictions resulting from a competitive tradeoff are often disrupted by introducing real-355 

world complexity, such as intraspecific variation in each species’ position along the tradeoff 356 

axis.  This is particularly true if a small difference in position along a tradeoff radically changes a 357 

species’ competitive ability (Hara 1993; Adler & Mosquera 2000), as occurs in both 358 

competition-colonization models and our model of competition for light.  In our model, if two 359 

species have nearly the same allocation to growth, then a small decrease in either species’ rate of 360 

carbon gain can reverse which of the two is capable of overtopping the other.   361 

We, therefore, introduced random intraspecific variation among the growth rates of individuals, 362 

and study how this affects diversity. Specifically, let 𝜔 be a random variable with probability 363 

density 𝑃(𝜔). At birth, each plant is assigned a value of 𝜔 that it keeps for life, and that modifies 364 

its growth rate in full sun. An individual’s value of 𝜔 phenomenologically combines all of the 365 

genetic and environmental factors, other than time and species identity, that affect an 366 

individual’s growth rates.  The addition of 𝜔 breaks the strict competitive hierarchy because a 367 

high-𝜔 member of a low-𝑟𝑖 species can be taller than a low-𝜔 member of a high-𝑟𝑖 species if the 368 

𝑟’s of the two species are sufficiently similar. The time-dependent forms of 𝐶, 𝐻, and 𝑀 are 369 

identical to Eqs 1a-c, except that we multiply 𝑡 by 𝜔. Appendix S1: section 1.3 explains that this 370 

is the correct form if 𝜔 modifies a plant’s rate of net carbon assimilation.   371 

The random variable 𝜔 is governed by a parameter 𝜃, such that intraspecific variability increases 372 

as 𝜃 → 0, and the system resembles the strict hierarchy as 𝜃 → ∞. Appendix S1: Fig. S9 shows 373 
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the distribution of the height growth rates for ten hypothetical species and for different values of 374 

𝜃. Note that the height growth rate hierarchy becomes better defined as 𝜃 increases.   375 

Mathematical Equations and Analysis.  All dynamical equations and the mathematical analyses 376 

are presented in Appendix S1: section 2-5:  Appendix S1: section 2 – derivation of the dynamical 377 

equations.  Appendix S1: section 3 – analysis and results for the forest and annuals models with 378 

the out vs. up tradeoff, Appendix S1: section 4 – analysis of the model with intraspecific 379 

variability, Appendix S1: section 5 – analysis and results for the forest models with the 380 

reproduction vs. growth, maturation vs. growth tradeoffs and survival vs. growth.  The Appendix 381 

S1: section 3 contain equilibrium abundances, coexistence criteria and continuous limits for an 382 

arbitrary number of species in all models, except the one with intraspecific variability.  Note that 383 

our understanding of the forest model with the maturation vs. growth tradeoff model is less 384 

complete than for the others, because its dynamics are considerably more complicated, including 385 

multiple simultaneously stable states (Appendix S1: section 4). 386 

 387 

Results 388 

In what follows, species are labeled in order of their investment in height growth.  For the out vs. 389 

up tradeoff, species-1 has the largest allocation to stem - the largest 𝑟 and smallest 𝑘 in Eq. (1) 390 

(Appendix S1: section 1), whereas species-𝑆 allocates the least to stem.  For the reproduction vs. 391 

growth tradeoff, species-1 is the species with the largest 𝑟 and 𝑘 and the lowest rate of seed 392 

production per unit sunlit crown area, and species-𝑆 is the reverse.  With the maturation vs. 393 

growth tradeoff, all species have the same values of 𝑟 and 𝑘 before they reach their species-394 

specific reproductive size, 𝑧𝑖, after which growth ceases, and species are labeled so that 𝑧1 >395 

𝑧2 > ⋯ > 𝑧𝑆. Finally, for the survival vs. growth tradeoffs, species-1 is the species with the 396 
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largest 𝑟 and 𝑘 and the highest mortality in shade 𝑚𝑢. With either the out vs. up, reproduction vs. 397 

growth, or survival vs. growth tradeoff, all individuals of species-1 will always be taller than any 398 

individual of species-2, which will be taller than any individual of species-3, and so on.  This is 399 

also true under the maturation vs. growth tradeoff after individuals have reached sexual maturity, 400 

but before they reach sexual maturity, any two living individuals will have identical heights, 401 

regardless of species 402 

Equilibrium 403 

The equilibrium population densities for the forest mosaic with asynchronous, fixed interval 404 

disturbance, 𝑡0, and the out vs. up tradeoff for the tallest species (subscripted 1) and all shorter 405 

species 𝑖 are: 406 

(3)  𝑁1 = 𝐹
𝛾

𝛾+1

𝑡0−𝑡1

𝑡0
 + 𝐹

1

𝛾+1
  and  𝑁𝑖 = 𝐹

𝛾

𝛾+1

𝑡𝑖−1−𝑡𝑖

𝑡0
  for 𝑖 > 1, 407 

where 𝑁𝑖 is the equilibrium density of species-𝑖 seedlings that are present within each patch after 408 

disturbance, 𝐹 is the product of the rate of seed production per unit sunlit crown area, and 409 

1−𝑒−𝑚𝑡0

𝑚
, the average survivorship of seeds in the understory (𝑚 = 𝑚𝑠) if all species are 410 

completely shade intolerant, or the average survivorship of understory plants (𝑚 = 𝑚𝑢) if all 411 

species are at least partially shade tolerant. Again, 𝑡𝑖 (𝑖 > 0) is the time since the last disturbance 412 

within a patch, when the first individual of species-𝑖 is overtopped.  Between 𝑡𝑖 and 𝑡𝑖−1, the 413 

closed canopy contains only species-1 through 𝑖, and species-𝑖 is the fastest crown expanding 414 

species still in the canopy.  The equilibrium densities of all species are proportional to the time 415 

interval over which they are the fastest growing competitor. The time thresholds for overtopping 416 

are defined by: 417 
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(4)  𝑡𝑖 = (∑ 𝑘𝑗
𝑖
𝑗=1 𝑁𝑗)

−1/𝛾
 418 

By the time the next disturbance arrives at a patch in an equilibrium mosaic, all individuals have 419 

been overtopped, except some members of species-1. The last term in the equation for species-1 420 

(𝐹/(𝛾 + 1)) represents the seed production of those individuals.   421 

Surprisingly, Eqs (3, 4) also give the equilibrium population densities (measured immediately 422 

after gap opening) for the annual plant system, if a plant’s fecundity is proportional to end-of-life 423 

mass.  However, the constant 𝐹 is now the product of seed production per unit end-of-life mass, 424 

the probability of seed survival from the end of one growing season to the beginning of the next, 425 

the probability of germination, and 𝑡0, which is now the length of the growing season.  The 426 

equilibrium for the annual plant model with crown area-dependent fecundity is qualitatively very 427 

similar to that for mass-dependent fecundity (Appendix S1: section 2.3).  428 

In Eqs (3), the abundance of each species-𝑖 on the LHS depends only on itself and all taller 429 

species on the RHS (all species-𝑗, where 𝑗 ≤ 𝑖).  This property reflects the asymmetry of 430 

competition for light, which causes amensalistic population dynamics both in the annuals model 431 

and near equilibrium in the forest model.  Although Eqs (3) and (4) cannot be explicitly solved 432 

for the 𝑁𝑖 (except for the special case 𝛾 = 1) because of the nonlinearity in 𝑡𝑖 (Eq. 4) we can use 433 

their amensalistic structure to prove a number of things about the equilibria of the system.  There 434 

are 2S equilibria because each equation can be solved for exactly two values of equilibrium 435 

density on the LHS (one of these values is zero, and some may be unfeasible because they are 436 

negative).  In Appendix S1: section 3.4, we show, using the annual plant dynamic system 437 

(unfortunately, the same stability analysis cannot be performed on the forest mosaic), that only 438 

the larger of these two equilibria is locally stable, and when the larger is positive, the species can 439 
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successfully invade an equilibrium community of the remaining species and vice versa. 440 

Moreover, because of the system’s amensalistic structure, we can solve for positive equilibria or 441 

invasion rates sequentially, beginning with species-1, either numerically or using explicit 442 

linearized forms (Appendix S1: section 3.7).  443 

Invasibility conditions 444 

We can also derive the conditions for species’ invasion and highly accurate approximations of 445 

species richness and species abundance in communities with high diversity. In short, we show 446 

that successful invasion is independent of all species that allocate less to stem than the invader, 447 

but depends critically on the invader’s stem allocation relative to taller species. Suppose that we 448 

select species from the range of possible values of the 𝑘’s (determining allocation to canopy 449 

rather than stem), up to a theoretical maximum, 𝑘𝑚𝑎𝑥, which corresponds to the largest possible 450 

allocation to crown and the smallest to stem height (i.e. 𝜙𝑖 = 0 in Appendix S1: section 1.1).  451 

Appendix S1: section 3.3 shows the 𝑘𝑖’s of species that will coexist at equilibrium must satisfy: 452 

(5)  𝑘𝑖 ≥ 𝑘𝑖−1
∗  453 

where 𝑘𝑖−1
∗  is the minimum canopy growth constant for the successful invasion of the 𝑖th species 454 

into an equilibrium resident community of 𝑖-1 taller species (the lifetime reproductive success 455 

(LRS) of invading species 𝑖 equals one if 𝑘𝑖 = 𝑘𝑖−1
∗ , Error! Reference source not found.). This 456 

limit is:  457 

(6)  𝑘𝑖−1
∗ = 𝑘0(𝑡0/𝑡𝑖−1)𝛾+1 458 

where 𝑘0 is the minimum feasible 𝑘.  Any species with 𝑘 less than 𝑘0 would have too little 459 

crown growth to reach lifetime reproductive success (LRS) greater than one between 460 
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disturbances even though it is never overtopped.  From Eqs. (3) and (4), a species with 𝑘0 would 461 

close the canopy at equilibrium at precisely the inter-patch disturbance interval, 𝑡0 (i.e. 𝑡1 = 𝑡0), 462 

and that: 463 

(7) 𝑘0 =
𝛾+1

𝐹𝑡0
𝛾 . 464 

The invasibility condition (5) also ensures long-term coexistence in a sequence of invasions from 465 

tallest to shortest, because the 𝑖-1 species with higher rank (i.e. higher allocation to stem) are not 466 

affected by the presence of species with lower rank, so a successful invasion means species-𝑖 will 467 

reach a stable equilibrium without perturbing the resident community.  468 

Species richness and continuous limit 469 

If 𝑆 𝑘’s are drawn entirely randomly from the interval between 0 and 𝑘𝑚𝑎𝑥, the interval 𝑘𝑖 −470 

𝑘𝑖−1
∗  is then an exponentially distributed random variable with expectation 𝜆 = 𝑘𝑚𝑎𝑥/(𝑆 + 1) 471 

(see Appendix S1: section 3.3). It follows that the expected number of coexisting species 𝑆𝑐 is: 472 

(8)  𝑆𝑐 = 2(𝑆 + 1)
𝑘𝑚𝑎𝑥−𝑘̅1

∗

𝑘𝑚𝑎𝑥
+ 1 473 

where 𝑘̅1
∗is the expected value of 𝑘1

∗ when 𝑘1 = 𝑘0 + 𝜆. As 𝑆 increases, the intervals between 474 

consecutive strategies, Δ𝑘𝑖 = 𝑘𝑖 − 𝑘𝑖−1 (Fig. 2), decrease, which suggests that we can pass to a 475 

continuous distribution by taking the limit 𝑛(𝑘) = lim
∆𝑘→0

𝑁(𝑘)

∆𝑘
. This limit is (Appendix S1: section 476 

3.3): 477 

(9)  𝑛(𝑘) = 𝛾(𝛾 + 1)
−

2𝛾+1

𝛾+1 (
𝐹

𝑡0
)

𝛾

𝛾+1
𝑘

−
𝛾+2

𝛾+1  478 
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The solution for a finite number of species in (3,4) collapses to the infinite-species limit (9), by 479 

dividing 𝑁𝑖 by 𝑘𝑖
∗ − 𝑘𝑖−1

∗  (Appendix S1: section 3.3). The bottom panels of Error! Reference 480 

source not found. show that the scaling is highly accurate and it can be extended to any model. 481 

Error! Reference source not found.a shows equilibrium species densities for surviving species 482 

of the forest mosaic and the annual plant system after 𝑘’s were drawn randomly from the interval 483 

between 𝑘0 and 𝑘𝑚𝑎𝑥. When 𝑁𝑖 is plotted against 𝑘𝑖, no particular patterns of species abundance 484 

relative to 𝑘 emerge.  When 𝑁𝑖 are normalized by the corresponding interval ∆𝑘𝑖
∗ (Error! 485 

Reference source not found.), they collapse along the theoretical continuous distribution (9) 486 

(Error! Reference source not found.b).  Error! Reference source not found.c,d show several 487 

analogous runs of the annual system in which plants continue to grow at a reduced rate after they 488 

are overtopped (analytical work in Appendix S1: section 3.6, including the continuous 489 

distribution analogous to Eq. (9)). 490 

 491 

Although equilibrium abundance decreases monotonically as investment in stem decreases, the 492 

distribution is U-shaped if growth in the understory is sufficiently fast, indicating that growth in 493 

the understory can compensate for being overtopped early (amber curve in Error! Reference 494 

source not found.d).  495 

The same coexistence mechanism that leads to the infinite diversity of the continuum solution (9) 496 

is also present in the forest model with the reproduction vs. growth and survival vs. growth 497 

tradeoffs (Appendix S1: section 5).  In the reproduction vs. growth tradeoff model, species that 498 

allocate most surplus carbon to reproduction grow slowly in height and are overtopped early by 499 

species that allocate less to reproduction and more to growth.  Similarly, in the understory 500 

survival vs. growth in light tradeoff model, species with lower photosynthetic capacity grow 501 



24 
 

slower are overtopped early by species with higher photosynthetic capacity. The equilibrium 502 

abundances for these tradeoffs are also given by (3,4) if we make 𝐹 a decreasing function of 𝑘𝑖 503 

(Appendix S1: section 1.5).  The corresponding continuum distributions analogous to Eq. (9) are 504 

derived in Appendix S1: sections 3.6, 5.4 and 5.5, and also is highly accurate (Error! Reference 505 

source not found.f,h). 506 

The number of species in the equilibrium community can be fairly well predicted by the 507 

expected number in Eq. (8), which shows three key factors determining species richness: the 508 

initial number of species in the pool, 𝑆, 𝑘𝑚𝑎𝑥 and the 𝑘0, which indirectly affects 𝑘̅1
∗ (Fig. 4a). 509 

 510 

Disturbance regime and habitat heterogeneity 511 

When the disturbance is not periodic, we expected that the extra variability would increase 512 

diversity by allowing the coexistence of species that specialize in different disturbance intervals.  513 

We were correct that random intervals increased diversity, but not for the reasons we expected. 514 

Inter-disturbance intervals are exponentially distributed if disturbance is entirely at random, as is 515 

the equilibrium distribution of patch age.  The coefficient of variation (CV) of an exponential 516 

distribution is one.  As CV becomes larger than one, the habitat is increasingly divided into areas 517 

with extremely long or extremely short intervals between disturbances. Because dispersal is 518 

assumed to be infinite, these could be different habitats like ridge tops prone to windthrow and 519 

valley bottoms with comparatively low wind speeds. While equilibrium diversity does indeed 520 

increase with the CV of the disturbance intervals (Error! Reference source not found.), the 521 

effect appears to be entirely due to a decrease in 𝑘0 (Error! Reference source not found.c). 𝑘0, 522 

the minimum feasible crown expansion rate, is inversely proportional to fecundity and directly 523 

proportional to the disturbance rate. Longer disturbance intervals allow for even later 524 
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successional strategies and thereby extend the range of coexisting 𝑘’s, increasing richness. 525 

Habitats that include places with chronically low disturbance can support significantly more 526 

extreme late-successional strategies, but the earliest successional strategy in an equilibrium 527 

community is almost independent of patch age CV.  This is because the late-successional 528 

extreme is set by exogenous disturbance, whereas the early-successional extreme is set 529 

endogenously by canopy closure early in succession. 530 

 531 

Maturation vs. growth tradeoff 532 

The maturation vs. growth tradeoff is also capable of producing stable coexistence of up to an 533 

infinite number of species, and by the same population dynamic mechanism responsible for 534 

coexistence with the out vs. up and reproduction vs. growth tradeoffs (Appendix S1: section 5.1).  535 

However, multispecies diversity maintained by the maturation vs. growth tradeoff is much more 536 

fragile than that maintained by the other two tradeoffs, because it requires ecologically 537 

unreasonable restrictions on the pool of available strategies.  538 

The pairwise invasibility plot in Error! Reference source not found.a,b explains why.  The 539 

resident’s full-sun LRS is maximized at intermediate reproductive threshold (which is reached at 540 

90 years of age in this example). Resident strategies between this optimum (dashed line in 541 

Error! Reference source not found.b) and the black and grey areas to its right, cannot be 542 

invaded by any strategy.  Below this optimum, the resident can be invaded by later successional 543 

strategies (black and gray areas to the left of the dashed line), and sufficiently above the 544 

optimum, by sufficiently earlier successional strategies (black and gray areas to the right of the 545 

dashed line). However, only a very limited region allows reciprocal invasion, which implies 546 

coexistence (gray areas). The important point here is that coexistence requires the absence of the 547 
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optimal species (Appendix S1: section 5.3). In contrast, the case with the reproduction vs. growth 548 

tradeoff is qualitatively very similar to the case with the out vs. up tradeoff.   Although the full-549 

sun LRS also has an optimum with the reproduction vs. growth tradeoff (Error! Reference 550 

source not found.c), all the strategies on the left can invade, and some coexist with the full-sun 551 

optimum (Error! Reference source not found.d).  552 

In addition, population dynamics with the maturation vs. growth tradeoff are complicated by 553 

multiple stable states, such as the broad area of founder control in Error! Reference source not 554 

found.b (hatched area).  Appendix S1: section 5.3 shows that this founder control is caused by 555 

the assumption that all trees have the same height growth rate before sexual maturation.  In short, 556 

the condition for the successful invasion by a later reproductive species requires that the LRS of 557 

the members of the invader that remain in the canopy after reaching maturity is greater than the 558 

LRS of the members of the resident that remain in the canopy after reaching maturity. This 559 

precludes any invasion to the right of the optimal reproductive strategy (Error! Reference 560 

source not found.a). The condition for successful invasion by a species reproducing earlier than 561 

the resident requires the invader to reproduce in a limited interval between the time it reaches 562 

maturity and the time the resident closes the canopy, which precludes invasive strategies too 563 

similar to the resident.  This leaves a broad range of strategies where neither of the above 564 

conditions for invasion is met. 565 

 566 

Intraspecific variability and coexistence 567 

If we allow some individuals of species with higher ranks (greater allocation to stem) to suffer 568 

competition from some individuals of species with lower rank, the system becomes considerably 569 

more complex (Appendix S1: section 4).  570 
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Two-species invasibility plots in Error! Reference source not found. show that in the case of a 571 

strict hierarchy (𝜃 = ∞), the invader is always successful if it has a smaller 𝑘 than the resident 572 

and is thus taller than the resident, or if its 𝑘 is larger than the sum of the resident’s 𝑘 plus a limit 573 

to similarity (shown by the white region) (see Eqs. 5-6). However, the limit to similarity vanishes 574 

as the resident’s 𝑘 approaches 𝑘0 (note the grey wedge which touches down at the point (1,1) in 575 

Error! Reference source not found.a.  Thus, the 𝑘 of the shorter of two coexisting species can 576 

be almost identical to that of the taller species, if the taller species is itself close to the tallest 577 

feasible limit (𝑘0).  A diverse species pool will tend to contain a 𝑘1 close to 𝑘0, which means a 578 

small limit to similarity, allowing 𝑘2to be close to 𝑘1, and so on for subsequent invasions.  The 579 

important point is that infinite diversity can be maintained in the model because limits to 580 

similarity vanish as more and more species are added to a community.  581 

In contrast, if 𝜃 < ∞, then the limit to similarity between the 𝑘’s of the resident and successful 582 

invader never vanishes because a classic ESS emerges (where the two black and two white 583 

regions all touch in Error! Reference source not found.b-c).  The height of the black area 584 

above the ESS shows how similar the 𝑘 of a successful invader can be to the ESS strategy.  The 585 

fact that grey areas never touch the 1:1 line if 𝜃 < ∞, means that no two strategies can coexist 586 

unless they are dissimilar by a finite amount. This obviously will decrease diversity relative to 587 

the case where 𝜃 = ∞.  If it extends to communities with more than two species, as we 588 

conjecture it does, it means that the infinite diversity possible in the model with a strict hierarchy 589 

is structurally unstable to the introduction of any 𝜃 less than infinity.  On the other hand, because 590 

the allowed species packing decreases smoothly as 𝜃 decreases (Error! Reference source not 591 

found.), we conjecture that models with realistic values of intraspecific variability would still be 592 

capable of supporting large numbers of coexisting species.   593 
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In order to explore these conjectures, we performed a set of simulations of the annuals model 594 

with different initial number of species, different values of 𝜃 and different ranges of available 595 

strategies. The long-term equilibrium was obtained by iterating the annual plant dynamic system 596 

for 10,000 seasons starting from random species abundances with 𝑘’s randomly drawn between 597 

𝑘0 and 𝑘𝑚𝑎𝑥 (in the majority of the cases 100 iterations were sufficient to reach equilibrium). 598 

Results in Error! Reference source not found. support the conjecture that diversity increases 599 

smoothly with 𝜃 and 𝑘𝑚𝑎𝑥, though some of the patterns are non-monotonic.  600 

All computations were performed in Matlab (R2019a). A commented code to compute the 601 

equilibrium density for each model is provided (Data S1: Equilibrium Density.m). 602 

 603 

Discussion  604 

In this paper, we introduce mechanistic models of coexistence among light-competing species 605 

that differ in the period of time during succession over which each is able to increase its LRS 606 

more rapidly than any other species.  This model is built on realistic plant allometries, and 607 

applies most naturally to forest trees in a mosaic of differing patch ages, but may also apply to 608 

annual plant communities during periods of light competition.  Differentiation along the 609 

successional niche axis is caused by one of three allocational tradeoffs:  growth in height vs. 610 

crown area (out vs. up), growth vs. reproduction, or growth vs. understory survival.  All three 611 

tradeoffs could generate coexistence via similar mechanisms and have the potential to maintain 612 

an unlimited number of coexisting species.  And though intraspecific variation erodes this 613 

coexistence to some extent, all but the growth vs. maturation time tradeoff would still generate 614 

large amounts of coexistence under reasonable assumptions.  Most generally, we have shown 615 

that the combination of unavoidable allocation tradeoffs in plants, asymmetric light competition, 616 
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and disturbance-driven heterogeneity in forest systems or seasonal mortality in annual systems 617 

enables a high degree of coexistence.   618 

The out vs. up tradeoff  619 

To understand the mechanism of coexistence caused by competition for light with the out vs. up 620 

tradeoff, we focus first on the models of annual plants with no understory growth, where the 621 

story is simplest.  Because the annual plant models are amensalistic (tall plants harm shorter 622 

plants but not the reverse), the coexistence problem reduces to a sequence of invasions when rare 623 

by successively shorter species.  Our results show that all species will coexist at equilibrium if 624 

the tallest species (that allocating most to stem) can invade an empty habitat, the next tallest 625 

species can invade an equilibrium monoculture of the tallest species, the third tallest species can 626 

invade an equilibrium community of the two taller competitors, and so on.  627 

Evaluating these invasion criteria requires determining the time needed to reach a plant mass 628 

sufficient for lifetime reproductive success (LRS) to be 1 (after mass is converted to next year’s 629 

germinating individuals that survive to reproduce). Because seed set in our model is proportional 630 

to end-of-life size, all species have the same replacement size 𝑡𝑟- the minimum size an individual 631 

must attain to replace itself in the next season with at least one germinant. However, species that 632 

grow quickly in crown area and mass reach replacement size before species that grow quickly in 633 

height. Thus, the time required by plants of species 𝑖 to reach replacement size, 𝑡𝑟,𝑖 increases 634 

with the species’ height growth rate 𝑟𝑖 and decreases with its crown area growth rate 𝑘𝑖 (Eqs. 1).   635 

The tallest annual species, species-1 by our labeling convention, can invade when rare if the total 636 

season length, 𝑡0, is greater than its replacement time 𝑡𝑟,1. Then its population density will grow 637 

until its canopy closes (before 𝑡0), because shading is the only factor that controls population 638 

growth.  Overtopped individuals of species-1 have a reduced LRS simply because they stop 639 
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growing when they fall into shade and are thus forced to switch to reproduction at reduced size. 640 

Population growth shortens the time of first canopy closure, 𝑡1, until the mean LRS of the 641 

species-1 monoculture is one.  At equilibrium, and even without intraspecific variation in model 642 

parameters, the population includes both individuals larger than replacement size with LRS>1, 643 

and individuals smaller than replacement size with LRS<1, because the mean LRS must be one 644 

(blue curves in Error! Reference source not found.).  As a consequence, for any given species, 645 

the timing of when it first closes the canopy - when LRS <1, is earlier than the replacement time 646 

- when LRS = 1.  647 

Each subsequent invasion of a shorter species into an equilibrium community of taller ones (e.g. 648 

sp.2 invading sp.1, sp.3 invading sp.1 and 2, and so on) is directly analogous to the invasion of 649 

species-1, if we replace the end of the growing season for species-1, with the de facto end of the 650 

season for an invading species, which is 𝑡𝑖−1, the time at which the canopy of the equilibrium 651 

resident community closes.  Each invader succeeds if and only if its replacement time is less than 652 

the canopy closure time of its taller competitor - 𝑡𝑟,𝑖 < 𝑡𝑖−1, which will be met if it has a 653 

sufficiently higher canopy area growth rate.  Once a successful invader-𝑖 reaches equilibrium, its 654 

replacement time 𝑡𝑟,𝑖 will be sandwiched between the two canopy closure times 𝑡𝑖 < 𝑡𝑟,𝑖 < 𝑡𝑖−1 655 

(Error! Reference source not found.).  In this sense, taller species competitively suppress 656 

shorter species simply by shortening the time available to grow. 657 

 658 

Because 𝑡𝑟,𝑖 decreases as the crown area growth rate 𝑘𝑖 increases, successful invasion requires 659 

that 𝑘𝑖 exceeds a threshold, 𝑘𝑖−1
∗ , which is a property of the resident community.  The threshold  660 

𝑘𝑖−1
∗  is the value of 𝑘𝑖 that would make 𝑡𝑟,𝑖 = 𝑡𝑖−1 (Eq. 6), and is always greater than the crown 661 

growth rate of the resident species (𝑘𝑖−1
∗ > 𝑘𝑖−1). Given that 𝑘𝑖 > 𝑘𝑖−1

∗ > 𝑘𝑖−1 is necessary for 662 
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each successive invasion, and thus for coexistence, each successive invader faces a limiting 663 

similarity between its crown growth rate and that of the resident species just taller than it. 664 

Nonetheless, very high diversity can be maintained because the sizes of the limiting similarities 665 

are not fixed, but instead depend on species packing. The closer the shortest resident is to the 666 

limiting similarity that governed its invasion, then the less abundant it will be, and the smaller 667 

the limiting similarity between it and any shorter invader.  Repeated invasions by species with 668 

randomly chosen 𝑘’s will thus tend to find successful 𝑘𝑖’s ever closer to the limiting similarities 669 

that govern their invasions, which will produce ever smaller limiting similarities for subsequent 670 

invaders. Repeated invasions thus create positive feedback that reduces barriers to species 671 

packing and leads in the limit to the infinite diversity of our continuum solution.   672 

At first glance, the annuals and forest models appear to be drastically different.  One is a non-673 

spatial system defined by a set of simple amensalistic finite difference equations and the other is 674 

a spatially structured system composed of a set of complex non-amensalistic integral equations. 675 

The forest model is not amensalistic because all species have some understory mortality at the 676 

seed or seedling stage which affects population dynamics.  Shade cast by every species in a 677 

closed-canopy patch thus causes increased understory mortality of the seeds or seedlings that 678 

dispersed to the patch since the last disturbance.   679 

Despite their differences, the coexistence equilibria of the annuals and forest models have 680 

mathematically identical structure if annual plant fecundity is proportional to mass and if forest 681 

disturbance is periodic.  This implies that the above explanation of coexistence in the annuals 682 

models applies equally to the forest model. It also implies that coexistence caused by 683 

competition for light and the allocation tradeoffs is surprisingly robust to changes in plant life 684 

history.   685 
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There are four reasons why the annuals and forest models with the out vs. up tradeoff predict 686 

structurally identical equilibrium communities.  First, if seed production is proportional to crown 687 

area from birth until death, as it is in the forest model, then it is also proportional to end-of-life 688 

mass, as in the annuals model, because mass is a cumulative function of the photosynthetic rate, 689 

which is directly proportional to crown area (Appendix S1: section 1.1).  Second, as justified by 690 

empirical and theoretical arguments, we have assumed that the forest canopy closes immediately 691 

after disturbance at the high total abundances found at equilibrium (i.e. dozens of seedlings m-2).  692 

This removes the non-amensalistic effect of shade on seed survival from the equilibrium 693 

equations of the forest model.  Third, the overtopping dynamics of annuals within a growing 694 

season of fixed length are quantitatively identical to those of trees within a patch during a fixed 695 

inter-disturbance interval, except for the temporal and spatial scales involved.  Fourth, the forest 696 

mosaic is ergodic when at equilibrium, which means that spatial variation in seed production 697 

between patches at any one time is the same as the temporal variation within a patch.  Suppose 698 

that, in an equilibrium forest mosaic with periodic disturbance, we select a disturbed patch at 699 

random and then collect all of the seeds produced inside the patch until the next disturbance 700 

event, and then divide by the inter-disturbance interval.  This temporal average of the densities of 701 

seeds produced by each species will be the same as the yearly seed rain in the model at any given 702 

time point or, equivalently, the spatial average of seed production in all patches.  According to 703 

this temporal average seed production, the annual system always assembles by saving all seeds 704 

produced throughout one growing season until the beginning of the next.   705 

The surprising alignment of results from the forest and annual plant community models can be 706 

used to infer the modern coexistence theory mechanisms (Chesson 2000b) underlying our central 707 

findings.  As noted in the prior paragraph, although the forest models with periodic disturbance 708 
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are simulated over a mosaic of patches, the coexistence and relative abundance observed at any 709 

one time is the same as in any single isolated patch averaged over time. Thus, as with the annual 710 

plant community model, the coexistence in the forest models follows into temporal coexistence 711 

mechanisms, and the temporal storage effect (Chesson 2000b) in particular seems well-aligned 712 

with our results.  Consider that each coexisting species has an interval of time after disturbance 713 

over which it is the fastest grower.  In the period before its favored interval (when it is not the 714 

fastest grower), it suffers none from faster growing species due to their lower height (with the 715 

out-versus-up tradeoff).  Meanwhile, in the period after its favored interval, it falls into the 716 

understory, and by virtue of converting biomass to competition-invulnerable seeds, or having a 717 

reduced growth rate independent of the dynamics of the taller species, it avoids interspecific 718 

competition.  In fact, the true competitive effect of a later/taller species on an earlier species is to 719 

reduce the time it has the maximal growth (and conspecifics always have this effect).  In fact, 720 

even the forest models with random disturbance rely on purely temporal coexistence mechanisms 721 

as they generate no more coexistence than would be observed in a single isolated patch 722 

periodically disturbed at a time interval long enough for the slowest species to be viable.   723 

All of our forest models also have a spatial diversity-enhancing equalizing mechanism, which 724 

advantages reproductive output of early successional species relative to late.  This equalizing 725 

mechanism generates from random dispersal and the spatial variability in the environment (i.e. 726 

the mosaic of patch ages). To understand that, imagine periodic disturbances perfectly 727 

synchronous that create a uniform mosaic of patches of even age at any moment in time. This 728 

scenario penalizes earlier reproductive species that must wait a long time before their seeds can 729 

germinate, and because seeds have a survival probability<1, this might also prevent very early 730 



34 
 

successional species from persisting. This equalizing mechanism is equivalent to conversion into 731 

seeds in the annual plant model, as there is no penalty to convert seeds earlier in the season. 732 

Recent studies by (Ellner et al. 2016, 2019) provide the needed simulation tools for modern 733 

coexistence theory to test the conjectures we pose here.   734 

 735 

Relationship to competition-colonization models  736 

A second surprising convergence is the similarity between the mathematics of coexistence in our 737 

models and models of the competition-colonization tradeoff (Levins & Culver 1971).  Wth the 738 

Up vs. Out tradeoff, allocation to crown growth increases a plant’s ability to rapidly capture 739 

sunlit area currently unused, whereas allocation to stem growth increases a plant’s ability to take 740 

sunlight that is already being used by a shorter species; meanwhile, shorter plants do not affect 741 

taller competitors.  This is directly analogous to the tradeoff in competition colonization models 742 

between a species’ per-capita rate of vacant space capture and its ability to take space from a 743 

poorer competitor. Similar arguments show that the other three tradeoffs we consider can also be 744 

recast as competition-colonization tradeoffs, as do others that we do not investigate but may 745 

work the same way, ( e.g. the tradeoff between many small seeds and a few large ones Muller-746 

Landau 2010).  Like our models, competition-colonization models: i) have amensalistic 747 

dynamics (only near equilibrium for the forest model), ii) include inefficient space capture by 748 

good competitors, which allows the persistence of good colonizers, iii) are affected by limiting 749 

similarities as in our model, iv) can maintain theoretically infinite diversity, and v) predict high 750 

diversity that is fragile in the sense that removing a single species can cause a cascade of further 751 

extinctions (Kinzig et al. 1999; Adler & Mosquera 2000).  752 
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Random Disturbance 753 

The system with random disturbances still produces the same dynamics among and within 754 

species, but it contains a new element.  For a given mean patch age, disturbances that are more 755 

variable in time generate more variable patch age distributions across space. Thus, the 756 

probability of finding a very old patch is higher in a more variable landscape. The presence of 757 

these old patches simply stretches the range of late-successional strategies viable at equilibrium. 758 

For example, in a landscape that is randomly disturbed, some patches remain undisturbed for 759 

much longer than the mean inter-disturbance interval.  These long-lived patches are eventually 760 

dominated by strategies that cannot get to replacement size by the mean inter-disturbance 761 

interval.  Moreover, the tallest strategy that persists at equilibrium dominates the canopy in only 762 

a tiny fraction of the patches, because the patch-age distribution decreases exponentially.  763 

 764 

Reproductive tradeoffs 765 

The system with the reproduction vs. growth tradeoff has very similar dynamics to the system 766 

with the out vs. up tradeoff.  Species with allocation to seeds at the optimal value for plants 767 

growing in full sun (Error! Reference source not found.c) are early successional specialists 768 

like species that invest heavily in crown growth.  They reach replacement size early, but are soon 769 

overtopped by species that grow more quickly in height.  Species with low allocation to 770 

fecundity are like species that allocate heavily to stem growth; they dominate late in succession 771 

because they grow quickly in height.  Both tradeoffs can maintain infinite species richness for 772 

the same reason.  The last species to reach replacement size grows faster in height than any other 773 

species present, but cannot close the canopy until relatively late in succession because it is slow 774 

to reach replacement size.  The next tallest species persists because it reaches its replacement 775 
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size before the tallest species closes the canopy, but it too leaves a sunlit period during which the 776 

subsequent species in the series can reach its replacement size, and so on.   777 

Although the maturation vs. growth tradeoff can also maintain theoretically infinite diversity, as 778 

suggested by Falster (2017), this requires that we artificially restrict the species pool to exclude 779 

superior strategies and that we manage the order in which species are introduced when the 780 

community is assembled.  The fundamental difference with the other tradeoffs, is that pre-781 

reproductive individuals are the same size under maturation vs. growth and therefore capable of 782 

harming all other individuals for some period of time.  This causes non-amensalistic dynamics 783 

and leads to founder control.  784 

 785 

The survival-growth tradeoff 786 

The survival-growth tradeoff is dynamically similar to the reproduction-growth tradeoff.  In both 787 

cases, species that grow relatively slowly at high light – because of high allocation to 788 

reproduction with the reproduction-growth tradeoff and low Amax with the survival-growth 789 

tradeoff, produce a relatively high density of new juveniles that survive until the next disturbance 790 

in the patches where they land. These dynamics are determined by high reproductive investment 791 

with the reproduction-growth tradeoff and high survivorship of juveniles with the survival-792 

growth tradeoff.  However, the two tradeoffs produce different patterns of equilibrium 793 

abundance because of the strong nonlinear increase in understory survival that accompanies slow 794 

growth with the survival-growth tradeoff (Eq. 2).  The fastest growing species has the highest 795 

abundance with the reproduction-growth tradeoff (Fig. 3e), but not with the survival-growth 796 

tradeoff (Fig. 3g).  Collectively, the relatively shade tolerant species that can survive at least ten 797 

years on average in the understory are both much more abundant and much more diverse than 798 
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less-tolerant species (Fig. 3g).  This high shade tolerant diversity is consistent with patterns 799 

observed old-growth tropical forests (Hubbell et al. 1999) and the results of Falster (2017). Also, 800 

the cause of the coexistence produced by the survivorship-growth tradeoff may be similar to that 801 

in the early size-structured model of Kohyama (1993), but this is difficult to say with certainty 802 

because Koyama’s results are numerical. 803 

One complication is that there are at least two kinds of shade intolerant species (Canham 1985).  804 

Pioneers have rapid growth, short longevity, and high early investment in reproduction.  They 805 

typically dominate after large and severe disturbances, especially disturbances such as fires that 806 

kill all advanced regeneration (saplings).  So-called gap-phase species are also relatively shade 807 

intolerant and grow rapidly, but may live as long as shade tolerant species and are conspicuous 808 

elements of late successional forests.   Yellow birch (Betula alleganiensis) is an example of a 809 

gap-phase species in the temperate zone, whereas pin cherry (Prunus pensylvanica) is a pure 810 

pioneer.   In the tropics, most Cecropia species are pure pioneers, where as many of the largest 811 

and long-lived canopy giants are often shade intolerant, such as several species of the genus 812 

Ceiba. Thus, one class of shade intolerant species reaches its maximum stand-level biomass 813 

early in succession, while the other does so very late, with the shade tolerant species in the 814 

middle.  The up vs. out and reproduction vs. growth tradeoffs with all species shade intolerant, 815 

predict succession from relatively short and short-lived species (short-lived because of 816 

overtopping), to taller and longer-lived species.  The short-lived early-successional species thus 817 

may correspond to pioneers like Cecropia and pin cherry. In contrast, the survival vs. growth 818 

tradeoff predicts succession from shade tolerant species, which dominate immediately after 819 

disturbance because of advanced regeneration, to progressively faster-growing and less shade 820 

tolerant species.  These relatively shade intolerant late-successional species thus may correspond 821 
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to the shade intolerant giants in old growth tropical forests, and to gap phase species in temperate 822 

old growth forests. The coexistence of shade tolerant species with both classes of shade 823 

intolerants may require the simultaneous operation of several tradeoffs (e.g. Rüger et al., 2020, 824 

Falster et al., 2017) .   825 

 826 

Intraspecific variability 827 

 828 

The results confirm that breaking the PPA’s strict interspecific overtopping hierarchy does 829 

reduce diversity. Nonetheless, these results also demonstrate that high diversity is still 830 

maintained, given sufficiently low levels of random intraspecific variation.  Our results also 831 

suggest, but do not prove, that the infinite diversity, theoretically possible with a perfect height 832 

hierarchy, is structurally unstable to the introduction of any intraspecific variation in height 833 

growth whatsoever.  834 

A random factor that generates different growth rates among conspecifics allows some 835 

individuals of lower-ranked species to overtop some individuals of higher-rank species.  836 

Fundamentally, this increases the interspecific effect of shorter on taller species, and therefore 837 

generating larger limits to similarity for stable coexistence.  These results are consistent with 838 

earlier studies that have explored the asymmetry of resource competition, showing that 839 

smoothing the competitiveness function, which describes competitive success as a function of 840 

mortality rate, reduces coexistence (Geritz 1995; Adler & Mosquera 2000) and other studies 841 

showing that random individual variation in competitive ability promotes competitive exclusion 842 

(Barabás & D’Andrea 2016; Hart et al. 2016). 843 
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Intraspecific variability has long been recognized to have profound ecological implications 844 

(Macarthur & Levins 1967; Violle et al. 2012), and, in natural settings, it is generated by many 845 

factors (Bolnick et al. 2003). In our model, intraspecific variability is mostly intended as non-846 

heritable phenotypic variation that affects the vital rates of an individual during its entire life.     847 

If caused by habitat variability, then it must be assumed to have very small spatial scale in our 848 

model, because each individual within a patch receives a separate random draw of the growth-849 

rate modifier.   850 

Limitations.   To obtain analytical results, we made a series of simplifying assumptions beyond 851 

the PPA and ED. Here we discuss the implications of three of these.  852 

First, although technically consistent with the ED approximation in Moorecroft et al. (2001), our 853 

specific implementation of ED prohibits plants from surviving two or more disturbances and also 854 

eliminates all density-independent mortality of individuals within a patch between disturbances.   855 

Collectively, these assumptions do not allow a slow-growing shade tolerant individual to be 856 

released from suppression more than once. Relaxing them should thus favor shade tolerant 857 

strategies.   858 

Falster et al. (2017) assumed that patch-level disturbance kills all plants in the patch, but also 859 

included density-independent mortality which may have allowed the partial release of suppressed 860 

individuals before disturbance. Also, in Kohyama's (1993) model, a fraction of individuals 861 

survived as advanced regeneration in a newly-formed gap.  However, as in our results, 862 

coexistence in these studies required patch-level disturbance, indicating that density-independent 863 

mortality between disturbances and survival across multiple disturbance events are not the 864 

crucial mechanisms for the maintenance of successional diversity. 865 
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A second potentially restrictive assumption is that all species' combined seedling densities in the 866 

forest models are high enough that the canopy closes almost immediately after disturbance. This 867 

assumption avoids continuous recruitment after gap formation and dealing with plants of 868 

different ages within the same patch. Relaxing it makes the mathematical treatment more 869 

complex, but typically has little impact on the competitive outcome. This is because the number 870 

of viable seeds that disperse and germinate into a patch after gap formation is typically small 871 

relative to the number of seeds and seedlings waiting the forest floor to grow when a gap forms. 872 

Also, because younger recruits tend to be smaller than the older ones, regardless of species, they 873 

tend to be overtopped disproportionately early, generating small LRS and limited impacts on 874 

population dynamics. 875 

A third simplification is the absence of any reproductive threshold in models with the out vs. up 876 

survival vs .growth or reproduction vs. growth tradeoffs.  Plants simply begin to reproduce as 877 

seedlings.  A more realistic model would have a species-independent reproductive threshold, 878 

after which an individual allocates a fraction of its surplus energy to reproduction instead of 879 

growth (Wright et al. 2005; Visser et al. 2016).  Although this change might improve 880 

quantitative predictions and is simple to handle, it is not likely to modify competitive outcomes 881 

much because seed production increases nonlinearly with age. So, species-level LRS is already 882 

dominated by the largest individuals in the models, as often the case in natural systems (Samson 883 

& Werk 1986). The maturation vs. growth tradeoff we modeled incorporates a size threshold but 884 

is unrealistic because it assumes that trees stop growing altogether once they begin reproducing. 885 

Another way to think about this is that the two growth-reproduction tradeoffs should represent 886 

two orthogonal axes: time to maturity and the fraction of carbon allocated to reproduction.  We 887 
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analyze them separately, but they probably should be considered in conjunction (e.g. like Falster 888 

et al., 2017). 889 

Our models contain numerous other assumptions, including species that are identical except for 890 

their position along a single tradeoff axis, infinite dispersal, no water or nutrient limitation, and 891 

the omission of numerous other processes known to affect succession and community 892 

composition.  However, the most general message of our paper is that the combination of 893 

unavoidable allocational tradeoffs in plants, amensalistic interactions characteristic of light 894 

competition, and disturbance can generate a high degree of coexistence in successional systems. 895 

So unless relaxing an assumption reduces the competitive asymmetry in the model, we expect 896 

this fundament result to hold.  897 

 898 

Conclusions 899 

We have shown that several different allocational tradeoffs, including the classic growth-900 

mortality tradeoff, can maintain the successional diversity of a theoretically infinite number of 901 

species.  The models' ability to generate coexistence requires two endogenous factors: species-902 

specific allocation strategies and asymmetric light competition, and one exogenous factor: a 903 

disturbance regime. These results challenge the classic view that successional diversity depends 904 

exclusively on species tradeoffs along a shade-tolerant axis, or on a combination of shade-905 

tolerance with other tradeoffs.  Each of the tradeoffs we consider can by itself maintain high 906 

successional diversity, including the shade tolerance tradeoff.  Each may thus contribute 907 

significantly and independently to the maintenance of successional diversity in nature. Further 908 

studies are required to better understand whether different tradeoff axes interact synergistically 909 

or antagonistically, and operate with other limiting factors, such as water and nutrients. Further 910 
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empirical work is also required to document the carbon and reproductive allocation tradeoffs 911 

operating in natural forests, and their consistency with observed patterns of coexistence.  912 
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Figure 1. Illustration of the competitive dynamics within an individual patch under different 1065 

tradeoffs. Seedlings accumulated in the patch due to in situ seed production and the arrival of seeds 1066 

from other patches. Seedlings survive in the shade and start growing and reproducing according to 1067 

species-specific allocation tradeoffs only after a disturbance kills all trees in the patch. 1068 

Reproduction (red fruits) is proportional to crown area. When an individual is overtopped, it stops 1069 

growing and reproducing (note that species 2 has no fruits in patch 4 of case I). I: the out vs. up 1070 

growth tradeoff drives the competitive dynamics of three species with different allocations to 1071 

crown expansion vs. stem height. Species with greater investment in height (1) grow faster but 1072 

have a smaller crown. II: a tradeoff between survival in the shade and growth in the light. Here 1073 

species have different maximum photosynthetic capacities (Amax). Species with higher Amax (1) 1074 

grows faster when it has access to light. However, when light is limited, the greater cost of 1075 

maintaining high-capacity photosynthetic machinery does not allow these species to make the 1076 

necessary investments in defense to survive in the understory (note that there are no saplings of 1077 

species 1 in patch 3 and 4). III: a tradeoff between growth and reproduction drives dynamics. Here 1078 

species have the same allometry, but those with a greater allocation to reproduction (2) grow 1079 

slower and are overtopped by taller competitors allocating less to reproduction.  IV: a tradeoff 1080 

between growth and maturation drives dynamics. Here also, species have the same allometry, but 1081 

they differ in the threshold size at which they start diverting all resources to reproduction. Species 1082 

that reach sexual maturation earlier (2) are overtopped by species that keep growing and delay 1083 

reproduction.  1084 

Figure 2. The strategy axis illustrates the strict hierarchy of light competition. The axis stretches 1085 

from 𝑘0 to 𝑘max, the smallest and largest feasible values of the crown area growth rate.  Strategies 1086 

on the left invest more in height, strategies on the right invest more in crown area. Under a strict 1087 
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hierarchy, species with lower k overtop species with higher 𝑘. The non-invasibility intervals (▬) 1088 

define the strategies that cannot invade given a resident community of species with higher 𝑘’s.  1089 

The ∆𝑘’s are independent exponential random variables with rate proportional to 𝑘max/(𝑆-1), where 1090 

𝑆 is the number of available strategies. As S increases ∆𝑘’s decrease, allowing coexistence of an 1091 

infinite number of species.  1092 

Figure 3. Equilibrium density of coexisting species as a function of plant strategy in a system with 1093 

strict hierarchy and periodic disturbance. a) forest mosaic with the out vs. up tradeoff (also 1094 

equivalent to a community of annual plants with fecundity proportional to end-of-season mass) c) 1095 

annual plants with the out vs. up tradeoff and in which plants continue to grow at a reduced rate in 1096 

the understory for different values of the ratio between canopy and understory net photosynthesis 1097 

per unit of crown area u, e) a forest with species-specific allocation to reproduction, and g) a forest 1098 

with species-specific tradeoff between survival in the shade and growth in the light. The top panels 1099 

show the simulations with uniform random draw of 𝑘’s (a and c), allocation parameter 𝜑‘s (e) and 1100 

survival in the shade 𝐹’s. The bottom panels show the same simulations normalized by ∆𝑘𝑖
∗, ∆𝜑𝑖

∗ 1101 

and ∆𝑙𝑜𝑔 (𝐹𝑖
∗). Analytical solutions for the continuous cases are shown as red lines (for all 1102 

simulations 𝑆 = 150, 𝛾 = 1.5, 𝑡0 = 1).  1103 

Figure 4. Equilibrium species richness in the forest mosaic (𝑆𝑐) depends on the number of species 1104 

in the initial pool (𝑆) and on the variability of the patch-age distribution. a) 𝑆𝑐 as a function 𝑆 for 1105 

two patch-age distributions with the same mean (60 yr), uniform (blue) and modified power-law 1106 

(red). The modified power-law allows generating distributions with the same mean but different 1107 

variance (Appendix S1: section 3.5). b and c) 𝑆𝑐 and 𝑘0 as function of the coefficient of variation 1108 

of the disturbance intervals for the modified power-law distributions with the same mean patch 1109 
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age (60 yr) and initial pool of 200 species. Each Dot represents an individual stochastic realization; 1110 

analytical solutions (Eq. (13)) are depicted with solid lines. 1111 

Figure 5.Two-species dynamics with a maturation vs. growth tradeoff (a-b) and a reproduction 1112 

vs. growth tradeoff (c-d). Panels a and c show the LRS of the resident individual that is never 1113 

overtopped, with an optimum at 0.4 and 90 yr (vertical dashed lines). Panels b and d are two 1114 

species invasion plots.  Invasion fails in the white and striped areas and succeeds in black and grey.  1115 

Black areas also denote the combinations of strategies that result in the competitive exclusion of 1116 

the species labeled as the resident by the species labeled as the invader.  White areas denote the 1117 

opposite – exclusion of the invader by the resident.  Grey areas show combinations of strategies 1118 

that coexist. Striped areas show combinations that produce founder control, in which neither 1119 

strategy can invade the other. Results obtained with random disturbance (exponential patch-age 1120 

distribution)  1121 

Figure 6. a-b-c) Invasibility plot and long-term dynamic: an equilibrium monoculture (resident) 1122 

is invaded by an initially rare species with a different stem allocation, for three different values of 1123 

the shape parameter 𝜃 (𝜃 = ∞ is the strict hierarchy). Invasion fails in the white areas and succeeds 1124 

in black and grey.  Black areas also denote the combinations of strategies that result in the 1125 

competitive exclusion of the species labeled as the resident by the species labeled as the invader.  1126 

White areas denote the opposite – exclusion of the invader by the resident.  Grey areas show 1127 

combinations of strategies that coexist. d) The ESS as a function of  (black curve). An equilibrium 1128 

monoculture of the ESS strategy cannot be invaded by any nearby strategy within the grey area 1129 

shown, but the ESS can invade any other strategy. The ESS (normalized by k0) approaches unity 1130 

for (strict hierarchy). The non-invasibility interval is a limit to similarity, which decreases as . 1131 

Note that below the ESS invasion is always prohibited 1132 
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Figure 7. Shannon equivalent species richness (∏ 𝑝𝑖
−𝑝𝑖𝑆

𝑖=1 , where 𝑝𝑖 is the proportion of species-1133 

𝑖) increases as a function of the parameter 𝜃 and the number of species in the initial pool 𝑆. Each 1134 

point represents the average of 1000 simulations (±standard error) where the strategy 𝑘 of each 1135 

species is randomly drawn from a uniform distribution between k0 and kmax. The equilibrium 1136 

densities are obtained by iterating the system 10,000 times (other parameters: 𝐹𝐺 = 1, 𝛾 =1137 

1.5, 𝑡0 = 1). 1138 

Figure 8. Within season dynamics at equilibrium of three annual species with the up-vs-out 1139 

tradeoff. The solid portion of each curve depicts the portion of the growing season during which 1140 

individuals are continually overtopped, at which point they reproduce and die. a) Plant height.  The 1141 

dashed portions show each species period before canopy closure.  b) Lifetime reproductive success 1142 

each individual would have if it were to die at that time (assuming that seed production is 1143 

proportional to end-of-life mass).  The horizontal dashed-line shows LRS=1, and its intersections 1144 

curves given the values of tr1 (blue), tr2 (red) and tr3 (yellow). Other parameter values: 𝐹𝐺 = 0.01 1145 

seeds m-2 day-1, 𝑡0 = 100 day and 𝛾 = 1.5.  1146 


