Deserv: Decentralized Serverless Computing

Samuel H. Christie V

Amit K. Chopra

Munindar P. Singh

School of Computing and Communications School of Computing and Communications Department of Computer Science

Lancaster University
Lancaster, UK
ORCID: 0000-0003-1341-0087

Abstract—A decentralized application involves multiple au-
tonomous principals, e.g., humans and organizations. Autonomy
motivates (i) specifying a decentralized application via a protocol
that captures the interactions between the principals, and (ii) a
programming model that enables each principal to independently
(from other principals) construct its own protocol-compliant
agent. An agent encodes its principal’s decision making and
represents it in the application. We contribute Deserv, the first
protocol-based programming model for decentralized applica-
tions that is suited to the cloud. Specifically, Deserv demonstrates
how to leverage function-as-a-service (FaaS), a popular serverless
programming model, to implement agents. A notable feature of
Deserv is the use declarative profocols to specify interactions.
Declarative protocols support implementing stateful agents in a
manner that naturally exploits the concurrency and autoscaling
benefits offered by serverless computing.

Index Terms—multiagent systems, protocols, programming
model

I. INTRODUCTION

Many applications in important domains such as e-
commerce, health, and finance are conceptually decentralized
because they involve autonomous principals, such as humans
and organizations. Autonomy means that each principal exer-
cises independent decision making and engages in arms-length
interactions with others.

Autonomy motivates a software architecture wherein each
principal is represented by a software agent that (i) encodes
the principal’s decision making, and (ii) interacts with other
agents via asynchronous messaging. Moreover, this archi-
tecture is loosely coupled in that each agent is constructed
independently of other agents. Decentralization motivates an
application representation that reflects such an architecture.
Loose coupling means decentralization remains valuable even
when the same principal controls all agents—by enabling
incremental maintenance.

Notably, traditional software approaches realize an applica-
tion as a unitary machine (e.g., a Web service) and are there-
fore inadequate for modeling and implementing decentralized
applications [1].

Protocols are crucial to realizing such a decentralized archi-
tecture [2]. A protocol specifies a decentralized application by
specifying the constraints on messaging between agents, but
otherwise leaves the principals free to implement their own
agents as they desire. A protocol-based programming model
facilitates the implementation of protocol-compliant agents via
concrete programming abstractions that constitute an API [3],

Lancaster University
Lancaster, UK
ORCID: 0000-0003-4629-7594

North Carolina State University
Raleigh, USA
ORCID: 0000-0003-3599-3893

[4]. The idea is that if an agent developer follows the model,
then the agent is guaranteed to be compliant with the protocol.
Of course, the developer is responsible for ensuring the agent
does what its principal desires.

With the arrival of serverless computing, cloud computing
is moving into a new era. Whereas earlier, cloud computing
supported the deployment of containerized applications, with
serverless computing, developers use cloud-native program-
ming abstractions to develop applications [5]. The Function-
as-a-Service (FaaS) programming model is the basis for to-
day’s serverless computing. Although still maturing, FaaS is
representative of the ambition of the serverless paradigm—
abstract away the cloud from application developers as much
as possible. Specifically, the ambition is that developers need
only focus on writing the application logic, leaving scaling,
fault tolerance, and resource management in general to the
cloud. FaaS is offered by Amazon AWS Lambda, Microsoft
Azure Functions, IBM Cloud Functions, and Google Cloud
Functions.

FaaS, however, is a programming model strictly in the
traditional mold: It is a programming model for implementing
an application as a Web service [6]. The service orchestrates
[7] other services and remains a unitary locus of control.
Therefore, the abstractions FaaS offers are inadequate for
modeling and implementing decentralized applications.

The problem we address is how to build decentralized appli-
cations using FaaS in which each constituent agent maps to a
separate computation; the agents communicate asynchronously
and share no storage, reflecting modern thinking on building
loosely-coupled systems [8].

We contribute Deserv, a programming model for serverless
decentralized applications. Deserv enables realizing a decen-
tralized application as a protocol-based multiagent system. A
declarative information protocol specifies the roles that agents
would adopt and the messages between roles [9]. Whether it is
correct for an agent to send a message at some point depends
solely upon what information the agent has observed in prior
messages, whether sent or received. Receptions are uncon-
strained: an agent can receive any message that has arrived
at any point. This means that a protocol can be enacted over
infrastructure without requiring ordering guarantees. Further,
protocols support maximal concurrency, since each task to
be performed or message to be sent can proceed when the
agent has the requisite information. An agent may ignore any

message or process messages in any order.

Given a protocol, Deserv enables implementing agents out
of FaaS abstractions. The heart of Deserv is a generic adapter
built via FaaS abstractions. Given a protocol and a role played
by an agent, the adapter captures the necessary reasoning to
guarantee compliance with the protocol: ensure validity of
outgoing messages and verify validity of incoming messages.
The adapter supports an interface for plugging in the agent’s
business logic, that is, its decision making. When the agents
are realized in FaaS, we obtain the benefits of FaaS for a
decentralized application. Specifically, Deserv modularizes an
agent’s decision making across as many FaaS functions as
needed. Instances of a function are launched as needed by the
serverless platform, thus taking advantage of its autoscaling
capabilities.

To summarize, Deserv’s contributions are the following.

e It is the first programming model geared toward decen-

tralized applications in the cloud.

o The programming model is such that it naturally exploits

FaaS features for concurrency and autoscaling.

The rest of the paper is organized as follows. Section II
introduces to FaaS and introduces our running example.
Section III introduces the idea of an information protocol.
Section IV introduces a programming model for implementing
serverless agents based on protocols. Section V gives details
of the implementation of our programming model, especially
how it leverages FaaS. Section VI presents a performance
evaluation indicating that Deserv performs as well as tradi-
tional methods. Section VII concludes with a discussion of
implications and future work. Section VIII provides links to
our implementation.

II. FAAS

Existing FaaS programming models are based on stateless
functions, also known as the function-as-a-service (FaaS)
paradigm. In this paradigm, every function is a service that
clients can request. Functions are supposed to be stateless,
which is an architectural constraint that discourages storing
session (client) state in the service [10]. Statelessness promotes
scalability: A new service instance can be spawned for every
request and can be garbage collected as soon as the request
has been handled. Most FaaS implementations are stricter,
imposing a maximum runtime for a service instance (15
minutes for AWS Lambda, after which the instance is killed).
Most FaaS programming models support composing functions
via workflows, i.e., as orchestrations.

Most interesting applications, however, are naturally state-
ful. Stateless functions can be used to implement stateful ap-
plications by persisting application state to a backend database.
For example, a customer (as client) can place a purchase order
(PO) with a merchant by invoking a function that returns
an identifier for the PO. The PO would be persisted by
the function in a database. Another function would enable
the customer to retrieve the status of the PO. However, the
stateless function programming model offers no abstractions
for managing state. To address this limitation, some serverless

Merchant

~ N

Address Items
e .
Labeler Wrapper

\ /
Shipping label Items wrapped

N e

ltems packed

Packer

Fig. 1. Interactions in the PO Fulfillment scenario.

programming models have begun to offer stateful functions.
For example, Microsoft Azure offers Durable Functions [11].
Durable Entities, an enhancement, map to actors [12], [13].

It is worth remarking that although a system of actors can
be viewed as decentralized in the sense that the system is
nothing more than actors communicating via messages, Deserv
is concerned with abstractions that facilitate the representation
and implementation of decentralized applications. Although
actors could be used to implement agents, the notion of a pro-
tocol and a protocol-based programming model that facilitates
implementing agents (our focus) are concerns orthogonal to
the actor model itself.

Our running example is a simple scenario for purchase order
(PO) fulfillment [4] that captures the essential elements of
real-life decentralized applications. The scenario involves four
parties: MERCHANT, WRAPPER, LABELER, and PACKER.
MERCHANT receives POs, comprising one or more items,
from a customer. MERCHANT requests WRAPPER to wrap
each item and requests LABELER to create a shipping label
with the customer’s address. WRAPPER sends wrapped items
to PACKER who puts items in shipping boxes (one per PO).
LABELER sends a label for each PO to PACKER, who affixes
it to that PO’s box, and notifies MERCHANT for each item
packed in the box. Figure 1 illustrates the information flow
between the parties.

In FaaS, an application is either a function or, more gen-
erally, an orchestration of functions. For example, Amazon’s
AWS Step Functions enables composition of functions (and
others services) into a workflow. An orchestration, however,
is ill-suited for decentralized applications because it captures
only one party’s perspective. For example, MERCHANT, as
orchestrator, may offer two functions as services, POFunction
and PackedFunction. POFunction is triggered by incoming
POs in response to which it sends requests to both LA-
BELER and WRAPPER and stores its requests in a database.
PackedFunction 1is triggered by notifications of packed items
from PACKER; it checks that the notification corresponds to a
previously logged request. The orchestration does not capture
the entire decentralized application—it omits how LABELER
and WRAPPER handle requests from MERCHANT, how they
communicate with PACKER, and how PACKER proceeds.

III. REPRESENTING A DECENTRALIZED APPLICATION AS
AN INFORMATION PROTOCOL

Deserv begins from a protocol specifying a decentral-
ized application. Specifically, we adopt information protocols,
which specify information causality and integrity constraints
[9]. Information causality captures information dependencies:
what information must be known (and not known) in its local
state (history of messages sent and received by it) to be able
to send a message. Information integrity captures consistency
in distributed settings: there cannot be two messages sent with
conflicting information. Given the local state of an agent,
an agent can send any message that satisfies the specified
causality and integrity constraints.

We illustrate the main ideas of information protocols via
Listing 1, which gives a protocol named Fulfillment that
is enacted by roles MERCHANT, LABELER, WRAPPER, and
PACKER. Fulfillment composes several message specifica-
tions, each with its sender and receiver roles, and some
information parameters. For example, RequestLabel is from
MERCHANT to LABELER and its parameters are orderlD and
address. A concrete message (instance) associates values (bind-
ings) to the parameters, e.g., orderlD to 10 and address to 123
Main Street.

A. Information Integrity

Some parameters in a message specification are annotated
key. Key parameters support integrity. A tuple of bindings for
the key parameters of a message specification identifies an
instance of the specification. Further, in an enactment, relative
to the binding for the key parameters, a nonkey parameter
may have at most one binding. This enables correct correlation
across messages. For example, say RequestLabel occurs with
bindings [orderID: 10, address: 123 Main Street]. Then,
a Labeled that occurs with [orderID: 10, address: 123 Main
Street, label: GHT454] would satisfy integrity. However, a
Labeled with [orderID: 10, address: 987 Elm Street, label:
GHT454] would violate integrity because for the same binding
of orderID, there are different bindings of address.

Further, both RequestWrapping with [orderID: 10, itemlID:
X1, item: apple] and RequestWrapping with [orderID: 10,
itemlD: X2, item: kiwi] satisfy integrity since they feature
different bindings for the composite key consisting of orderlD
and itemID. Assume the RequestWrapping with item apple
has occurred. Then, Wrapped with [orderD: 10, itemID: X1,
item: kiwi, wrapping: foil] would violate integrity because
for the same tuple of bindings for the composite key, there are
different bindings of item.

Packed demonstrates a sophisticated correlation pattern
where information with different keys is brought together: In
any Packed instance, the binding for label must be correct with
respect to the binding for orderlD and the bindings for itemID
and wrapping must be correct with respect to the bindings for
orderID and itemID.

B. Information Causality

Every message parameter is adorned "in, Tout™, or "nil™.
Adornments capture information causality. For a parameter
adorned "in'', the sender must already know its binding from
prior communications, that is, from its local state. For a
parameter adorned "out™, the sender must not already know its
binding; however, in sending the message, the sender generates
a binding for it (at which point the binding becomes known to
the sender). For, a parameter adorned "nil™, the sender must
not already know its binding nor can it generate it (that is, the
message is sent without any binding for the parameter). Note
that we can only talk about knowing a parameter relative to
some binding for the associated key. Thus, given some binding
of orderlD, we can talk about knowing or not knowing the
binding of address; and relative to some tuple of bindings for
the composite key comprised of orderID and itemID, we can talk
about knowing or not knowing the binding of item.

We give some examples to make the idea concrete. All
parameters of RequestLabel are adorned "out™. Thus, MER-
CHANT can send a RequestLabel instance at any point (that
is, in any local state) because it can generate bindings for
them both. In RequestWrapping, orderlD is adorned "in’,
whereas itemID and item are adorned "out™. Thus, MERCHANT
can send RequestWrapping by supplying an already known
(binding of) orderlD (from a previously sent RequestLabel)
and generating bindings for itemID and item. Parameters orderID,
itemID, wrapping, and label are all "in™ in Packed; only status is
Tout ™. Thus, MERCHANT can send RequestWrapping by sup-
plying already known orderID, itemID, wrapping, and label (from
received Wrapped and Labeled messages) and generating a
binding for status.

Notice that the only way to generate a parameter binding
is via an "out” adornment. And once a binding has been
generated, there is no way to update it. That is, information
generated in a protocol enactment is immutable.

C. Transport Assumptions

An information protocol constrains only the emission of
messages by agents. The protocol itself imposes no con-
straints upon message reception; specifically, a message can
be received by an agent at any point, that is, no matter
what its local state. This means that no ordered delivery
transport or middleware, such as TCP or message queues, is
required for protocol enactment; the protocol can be enacted
over an unordered transport such as UDP. Further, once a
message has been recorded in an agent’s local state, it can be
retransmitted as often as needed because receiving a message
more than once makes no difference to the receiver’s local
state. Retransmissions make it possible to enact the protocol
reliably over lossy transports such as UDP [4], [14].

D. Expressiveness

Although Fulfillment does not feature any mutually ex-
clusive choice between messages, information protocols can
express choice by setting up conflicts between messages.
For example, imagine that WRAPPER has a choice between

Listing 1. The Fulfillment Protocol

Fulfillment {

role Merchant, Wrapper, Labeler, Packer

parameter out orderlD key, out itemID key, out item, out status

Merchant—> Labeler:
Merchant—> Wrapper: RequestWrapping[in orderlD key,
Wrapper-> Packer: Wrapped[in orderlD key,
Labeler—> Packer: Labeled[in orderID key,

in itemID key,
in address,

Packer—> Merchant: Packed[in orderID key, in itemID key,

sending Wrapped and Decline (to MERCHANT). A protocol
could express that by introducing the same parameter, say
decision in both messages and adorning it "out ' in both. Now if
WRAPPER sends one of them, decision becomes bound, which
makes it impossible to send the other.

Information protocols being declarative don’t employ tradi-
tional control-flow constructs such as sequencing and loops.
The causality constraints achieve the effect of sequencing and
the notion of keys enables repetition in an interaction. For
example, Fulfillment enables the agents to handle as many
POs as needed (each identified by orderID), each with as many
items (each identified by itemID) as needed.

Information protocols have been extended to support dy-
namic role binding, roles being played by multiple agents, and
multicast [15]. In this paper, however, we confine ourselves to
the basic representation as illustrated above.

E. Threats to Integrity

In the foregoing choice example, the choice between
Wrapped and Decline is local to the WRAPPER. Therefore,
WRAPPER can ensure that if one happens, then the other
doesn’t. However, it is possible to write a protocol where
the same parameter may be bound concurrently by multiple
agents. When enacting such a protocol, local checking by
agents in insufficient to ensure integrity. Such a protocol is
unsafe. It can be verified statically where a protocol is safe or
not [16]. An unsafe protocol is not fit as a basis for application
design.

If a protocol were safe and agents were compliant in emit-
ting messages, then integrity would be guaranteed under the
(routinely-made and practical) assumption that the underlying
transport does not deliver corrupt messages. To protect itself
from noncompliant (misbehaving) agents, an agent can defen-
sively check received messages for integrity before inserting
them into their local state [17]. Agents designed following
Deserv are guaranteed to be compliant to the protocol. If
all agents enacting a protocol were (correctly) implemented
following Deserv, then such defensive checking wouldn’t be
necessary, but it is good practice to check.

F. Completion and Composition

Notice the parameter declaration line toward the beginning
of Fulfillment. It lifts the notion of instance to protocols. The
line means that each tuple of bindings for orderID, itemID, item,

RequestLabel[out orderlD key, out address]
out itemlID key,

in wrapping,

out item]

in item, out wrapping]
out label]

in label, out status]

and status constitutes a complete instance of the protocol. A
protocol is live if any instance can progress to completion [16].

The parameter line supports protocol composition by de-
scribing an “interface” for the protocol, saying what pa-
rameters the protocol generates via its own computations
(those adorned "out™) and what parameters needs from other
protocols (those adorned "in"). In Fulfillment, all parameters
are adorned "out’ in the parameter line, which means that
it can be enacted standalone—without composing with other
protocols.

Our tool suite (available at https://gitlab.com/masr/
protocheck) checks protocols for liveness, safety, and other
properties.

G. Public versus Internal Computation

Protocol enactment captures the public computation in a
decentralized application. A protocol leaves an agent’s internal
computation, as reflected in its decision making, unspecified.
The internal computation determines whether the agent sends
a message and the bindings of the "out™ parameters in the
message. For example, WRAPPER could determine by some
internal business logic that a particular Wrapped message
should be sent with wrapping bound to silk and not plas—
tic. Note though that it is only the sending of the message
(specifically, the recording of the message in the local state)
that generates the binding in the public computation.

IV. PROGRAMMING MODEL

The Deserv programming model shows how to realize
decentralized applications on FaaS. We specifically used AWS
Lambda (whose functions are referred to as lambdas). Specif-
ically, given a protocol, the programming model enables sepa-
rately constructing each agent that plays a role in the protocol.
Each agent is guaranteed to be compliant with the protocol. A
working implementation of the adapter is available along with
the rest of our code at https://gitlab.com/masr/deserv.

A. Adapter

The Deserv programming model is realized in a generic
protocol adapter that resides in each agent. Given a protocol
and the role the agent plays in it, the adapter ensures that the
agent only sends and receives compliant messages. Thereby,
Deserv standardizes and facilitates the implementation of any
agent playing a role in any protocol.

The adapter captures the crux of decentralization: each agent
has local knowledge of each protocol enactment [17]. An
agent’s local state comprises precisely the information that it
sends or receives in a message: hence, the local state is shared
with others. In addition, each agent maintains internal state to
support its decision making. Internal state cannot be shared
except by copying parts of it to a message, i.e., adding it to
the local state.

Figure 2 shows the components of an adapter and how it
interfaces with the rest of the agent. Filled boxes are functional
components. The Receiver and Emitter interface with the com-
munication infrastructure to transmit messages. The Checker
maintains the local state. For an outgoing message, it verifies
causality and integrity (the local state contains bindings for
all Tin" parameters and for no "out™ and "nil" parameters)
and updates the state by inserting bindings for the "out™
parameters. For an incoming message, it verifies integrity:
that there isn’t already a conflicting binding for any "in™ or
Tout ' parameter. The Checker logs and discards incoming or
outgoing messages that fail its checks.

Internal Store

. i . i

Proactor Reactor
A
Agent Internals ‘
Adapter
Local State
, f ! ,
Checker
Receiver Emitter

Fig. 2. Agent architecture schematically, showing the components involved
in the agent internals and the generic adapter and interfaces between the
components. Functional components (which map to FaaS functions) are filled
gray boxes, state components are not filled.

In our reference implementation, each agent is a compo-
sition of multiple functions, specified in a serverless frame-
work configuration file that lists the resources (e.g., state
databases) and functions, and specifies the events they listen
for and how they are to be invoked. Within the agent, the
functional components (represented in the diagram by filled
boxes) are each implemented as FaaS functions. The Emitter,
Receiver, and each Reactor and Proactor are implemented as
separate FaaS functions that can be scaled up to multiple
instances. By default, the Emitter and Receiver communicate
using JSON objects transmitted over HTTP, but in theory
any communication infrastructure supported by AWS may be
used. Communication between the components of an agent is
done via direct, asynchronous lambda invocations. To ensure
consistency, we limit the Checker to one instance per agent; a
more sophisticated implementation might use synchronization

primitives such as locks or sharding based on enactment keys
instead.

The Local State is implemented using DynamoDB, which
is simply used to store message objects indexed by their
enactment keys. By logging every message in the Local
State table, and using it as the official agent history during
compliance checks, the agent can easily be resumed after a
crash or lambda timeout. The Internal Store is more abstract,
referring to any other knowledge or components used by the
agent implementation in its decision making if necessary;
perhaps other functions or databases. For example, in our
logistics scenario, the MERCHANT uses a DynamoDB table
of purchase orders to trigger enactment of the protocol.

This design has several implications. First, it is somewhat
scalable, because the individual components and logic of the
agent are run concurrently, and some of them can themselves
be replicated. The main limitations for scaling are the Checker
and Local State, which must operate synchronously to ensure
there are no race conditions between message events. Other
than these points, fine-grained synchronization is unnecessary,
because the agents operate asynchronously and independently
of each other, and the protocol they enact (if verified safe)
ensure that no inconsistency can arise between agents. The
complexity of using multiple FaaS functions to represent a
single agent does make debugging somewhat harder should
they break, but most of the components are simple, and the
main agent behavior is funneled through the core adapter
component (Checker), meaning that during normal operation
the Checker’s log is the only one that need be examined.

B. Agent Reasoning

An agent may have several instances of the two decision-
making components, Proactor and Reactor. Proactors and
Reactors are implemented as separate FaaS functions, and
have separate entries in the agent’s serverless framework
configuration file.

Proactors are not invoked by the adapter, but can be con-
figured to receive other events. A Proactor is proactive and
can initiate actions independently of other events; that is, a
Proactor can send messages that are not directly in response
to other messages. In a self-contained application, at least
one agent must include a Proactor to initiate the enactment.
MERCHANT initiates the logistics scenario by proactively
sending RequestLabel. In our implementation, MERCHANT
sends RequestLabel in response to a database event (when
a PO is submitted), but that is not a protocol event, and so not
automatically handled by the Checker.

Reactors are invoked by the adapter according to a con-
figuration file mapping message schemas to FaaS functions.
Each Reactor handles one message schema, communicated as
a function invocation passing a JSON object encoded in a
string as the payload. For example, when LABELER receives
a RequestLabel message from MERCHANT, it invokes the
corresponding Reactor with the contents of the message and
some relevant enactment history information. The Reactor may

then generate a label, which it passes on to LABELER’s adapter
for checking and logging before sending it to PACKER.

C. Deployment

Deployment is managed by serverless framework tools. A
single configuration file describes all the components of an
agent, as well as any resources it might need. Within that
composition specification, the developer references further
“layers” (composable filesystem data) containing files that
configure the individual components. One file contains the
protocol, encoded in JSON for the adapter’s use, primarily for
checking schemas and identifying which role should receive
which messages. Another file maps the role names to the
URLs of their Receiver endpoints, so the adapter knows how
to contact the recipients of its messages.

V. IMPLEMENTATION

The previous section described our programming model and
architecture at a high level, which should be applicable to any
FaaS platform. However, for greater clarity, we now present
some details about our reference implementation.

We used the Serverless Framework tooling for configura-
tion and deployment, but ultimately used many AWS-specific
components, so our implementation is not cross-platform. Our
logistics scenario implementation is split into two main pieces,
the shared adapter components and the scenario-specific agent
implementations.

An important concept from cloud deployments is the stack,
which is a collection of resources managed together. AWS has
many distinct services, each with their own unique configura-
tion parameters; to simplify the deployment of a system which
might require multiple services (e.g., API gateway, Lambda
functions, and databases), AWS provides a configuration man-
agement tool called CloudFormation, which uses declarative
specifications to deploy multiple related resources at the same
time and interconnect them. The Serverless Framework man-
ages the configuration of multiple resources in a cross-platform
way, using the name service.

Below, we give snippets from Serverless Framework service
files to illustrate how to configure and deploy a Deserv system,
but we adopt the AWS term (stack) for clearer distinction
from web services. We can deploy the stack by passing it
to the cloud deployment system (e.g., CloudFormation), or the
stack specification may be interpreted locally by the Serverless
Framework tools to instantiate all the component resources.
Since the stack is a declarative specification, CloudFormation
or the framework tools adjust any settings to match the new
desired values, and atomically deploy or rollback the entire
stack.

We use a separate stack for each agent, because they are
separate compositions of multiple functions and resources that
should not be tightly coupled.

A. Adapter Components

As described in Section IV, our adapter consists of three
main components: Receiver, Emitter, and Checker. In our

implementation, these three are bundled together into a com-
ponent library, which can be deployed as its own reusable
stack, so that it only needs to be uploaded once and can then
be referenced by each agent.

Listing 2. Checker component layer specification
checker:
path: layer # required, path to layer contents on disk
name: PosCheckerLayer # optional, Deployed Lambda layer
name
description: Layer for sharing the PoS checker module #
optional , Description to publish to AWS
licenselnfo: GPLv3 # optional, a string specifying
license information
package :
include :
= /e
— checker.py

Listing 2 shows a snippet from the component stack’s
serverless configuration that specifies the Checker component.
This snippet declares the layer for the checker component,
and declares it to contain the checker.py file. Other parts
of the configuration file export this layer with a public name
so that the agents can refer to it, or declare basics about the
components and their dependencies so they can be deployed
in a local test environment.

These components need to be deployed to AWS to be avail-
able resources for deploying agents. Separating these common
components into a separate stack makes developing them
somewhat more complex, because they must be separately
redeployed when changes are made. Once they are stable
and deployed, however, they form a reusable resource that
can be referenced by every subsequent agent instead of being
replicated.

B. Scenario Components

Once the adapter components have been deployed, the
scenario needs to be implemented and deployed. Because each
agent is itself a composition, each agent has its own serverless
framework configuration file and must be separately deployed.
Since real-world decentralized systems would have interacting
agents from multiple organizations, no single organization
would be responsible for deploying all the agents. Therefore,
separate deployment of agents is preferable. However, to
simplify this process somewhat, we did write a script for
applying a serverless command (e.g., deploy or remove) to
all components necessary for the scenario.

1) Scenario Configuration: A multiagent system is imple-
mented according to one or more protocols that are enacted
by its constituent agents. When two or more agents in the
same system are deployed by a single organization, it may be
helpful to deploy the configuration as a separate stack so that
it can be referenced instead of copied by each of those agents.
Unfortunately, referencing another stack does not enable dy-
namic propagation of updates to the configuration; each agent
must be redeployed if the configuration changes, because the
agents import a specific instance of the configuration layer
rather than link to an abstract dynamic reference.

Listing 3. Role Endpoint Mapping File

"Merchant”: " https ://5yo8ouXXXX.execute—-api.us—-east-1.amazonaws.com/merchant/messages”,
“Labeler”: ”https ://awj8rrXXXX.execute-api.us-east-1.amazonaws.com/labeler/messages”,
"Wrapper”: ”https ://23y4xcXXXX.execute-api.us—east—1.amazonaws.com/wrapper/messages”,
"Packer”: ”https ://akufOnXXXX.execute-api.us—east-1.amazonaws.com/packer/messages”

}

The configuration layer in our example scenario implemen-
tation contains two files: the role endpoint mapping file, and
a JSON representation of the protocol.

Listing 3 shows an example endpoint mapping file, mapping
each role name to the HTTP endpoint of an agent’s Receiver.
These endpoints are invoked using a POST request to submit
a JSON object encoding the message contents, which the
Receiver parses and hands off to the Checker.

Listing 4 gives the first portion of the Logistics protocol
represented in JSON, for use by the Checker. The primary use
of this specification is to identify each message’s schema and
recipient for compliance checking and routing, respectively.

2) Agent Specification: To illustrate how scenario com-
ponents are specified, we examine MERCHANT because it
includes both a Reactor and a Proactor.

First, MERCHANT’s serverless configuration file specifies all
the components it needs—not only its Proactor and Reactor,
but also its copies of Emitter, Receiver, and Checker.

Listing 4. JSON Protocol Specification

{
"name”: ”Logistics”,
"type”: “protocol”,
"parameters”: [”orderlD”, ”itemID”, ”item”, ”"status’],
"keys”: [”orderlD”, ”itemID"],
"ins " [],
"outs”: ["orderID”, "itemID”, ”item”, ”status”],
"nils”: [],
“roles”: [”Merchant”, "Wrapper”, "Labeler”, ”Packer”],
"messages”: {
"RequestLabel ”: {
"name”: "Logistics/RequestLabel”,
“type”: "message”,
"parameters”: [”orderlD”, ”address’],
"keys”: [”orderlD”],
”ins ”: s
"outs”: ["orderID”, “address”],
“nils”: [],
"to”: "Labeler”,
"from”: ”Merchant”

I

Listing 5 shows the portion of MERCHANT’s configuration
that specifies the Checker component. It declares a new
function MerchantChecker, which uses the Checker—
LayerExport to load the checker code, which includes the
Checker, and loads the configuration layer described above.
Uniquely, the Checker component is a singleton; all other
components may freely scale.

Listing 5. MERCHANT Checker Specification
MerchantChecker :
name: MerchantChecker
handler: /opt/checker.lambda_handler
layers:
- ${cf:pos—components-dev.CheckerLayerExport}
- ${cf:pos—components—dev.DepsLayerExport}
- ${cf:logistics —dev. ConfigurationLayerExport}
reservedConcurrency: 1

Listing 6 shows how a Reactor is declared. It is given a
name, its lambda handler is identified, and the necessary code
is loaded.

Listing 6. MERCHANT’s Reactor for Packed
PackedReactor:
name: Merchant_Packed_Reactor
handler: packed_reactor.lambda_handler
package:
include :
- packed_reactor.py

In this case, all the Reactor does is log successful processing
of the item, as shown in Listing 7.

Listing 7. MERCHANT’s Reactor for Packed
def lambda_handler(event, context):
print ("Reactor of Packed message: ” +

” ”

str(event[”message”]) + ”; Enactment is +
str (event[”enactment”]))

To register the Reactor, another configuration file is pro-
vided to map the message schema names to their handling
Reactor functions. The configuration snippet in Listing 8
shows how the reactors. json file is added for MER-
CHANT; the package specification applies to all the functions,
indicating that they should exclude all files, but include
reactors. json.

Listing 8. MERCHANT Package Specification

package:
individually :
include :

= Tles

true

- reactors.json

MERCHANT’s reactors. json file, shown in Listing 9,
maps the names of messages the agent can receive to the
Amazon Resource Name (ARN) of the function that should be
invoked to handle it. These ARNs don’t exist until the function
has been deployed once, so the Reactors must be deployed and
added to this mapping file before the Checker is deployed the
first time.

Listing 10 gives a slightly more complex Reactor, imple-
menting PACKER’s reaction to the Wrapped message. This
example shows more clearly how the enactment context can
be used to correlate information from multiple messages to
reason about. Proactors differ from Reactors in that they are
not invoked by the Checker in response to a received message,
and must be triggered by some other event.

Listing 11 shows the portion of MERCHANT’s serverless
framework function specification that declares its Proactor.
The details are likely unique to this Proactor, but give an
example of how Proactors can work. For this scenario, we give
MERCHANT an extra POST endpoint for customers to submit
their purchases, which populates a database. Proactors differ

Listing 9. MERCHANT Reactor Mapping

"Logistics/Packed”:
¥

from Reactors in that they are not invoked by the Checker in
response to a received message, so they must be triggered by
some other event. The ordersTable generates events when
POs are added, triggering PO_proactor, which initiates a
new enactment of Logistics.

Listing 10. PACKER’s Reactor for Wrapped
def lambda_handler(event, context):
wrapped reactor
message = event[”message”]
enactment = event[”enactment”]
labeled_msg = next((m for m in enactment if
m.get(”label”)), None)
if labeled_msg:
send packed notification for item

payload = {
“type”: "send”,
“to”: "Merchant”,
"message”: {
"orderlD”: message[” orderlD "],
“itemlID”: message[”itemID "],
“wrapping ”: message[” wrapping”],
“label”: labeled_msg[”label”],
”status”: ”packed”,
F
¥
payload = json.dumps(payload).encode (” utf -8”)

print (”Sending Packed: {}”.format(payload))
response = client.invoke (
FunctionName ="PackerChecker”,
InvocationType="Event”,
LogType="Tail ",
Payload=payload,
)

print (response)

Listing 11. MERCHANT Proactor Specification
functions

order:
handler: order.writeToDynamo
events:
— httpApi: POST /orders
package:
include :
- order.py
PO_proactor:
handler: PO_proactor.get_order_proactor
events:
- stream:

type: DynamoDB
arn:
Fn:: GetAtt:
package:
include :
- PO_proactor.py

[ordersTable, StreamArn]

VI. EVALUATION

A Deserv agent is modular. It encapsulates reasoning about
interactions separately from its internal reasoning encoded in
its Proactors and Reactors.

Contrast a Deserv agent for MERCHANT with the orches-
trator agent described in Section II. Suppose both agents
implement the same functionality—i.e., the orchestrator is
programmed to perform the same checks as the Deserv agent.

The Deserv agent presents greater opportunities for concur-
rency (involving its adapter, a Proactor for processing POs,

"arn :aws:lambda:us—east-1:834106683512:function : Merchant_Packed_Reactor”

a Reactor for incoming Packed messages, the emitter, and
receiver) than the orchestrator (which comprises just two
functions).

Below, we present results from an empirical study that
demonstrates that a Deserv agent may be executing several
instances of the each of its components at the same time
(except the Checker, of which there can be only one instance
at any time to ensure local state consistency). We will refer to
the deployed instance of the Merchant agent as M-Agent to
distinguish it from the conceptual Merchant role.

A. Experimental Design

We conducted an experiment deploying Fulfillment on AWS
Lambda to verify Deserv’s performance and scalability. For
each run, we randomly generated 1,000 POs, each containing
one to four items, using a script in our repository that would
asynchronously submit them to M-Agent via HTTP. We set
all DynamoDB tables to autoscale, and did not throttle any
requests. We submitted POs via HTTP request to another
Lambda function that stored them in a separate PO table. M-
Agent’s Proactor subscribed to this table’s update event stream
and initiated the enactments.

We considered two settings: normal, and delayed, with a
one-second delay to each Reactor and Proactor—to simulate
heavier processing than the adapter. The delay was imple-
mented by adding a sleep statement to the beginning of each
Reactor’s lambda_handler to increase its execution time by
one second.

Performance results were computed by exporting M-Agent’s
history table and analyzing the message timestamps using
a script included in our repository. We also examined the
maximum number of concurrently running instances of the
Lambda functions during an experiment using the online AWS
CloudWatch monitoring console.

B. Results

Table I shows our performance results. Both settings
yield similar average duration—low effect size (Cohen’s d =
0.015)—and throughput. Reactor computation without delay
ranged from 1ms to 380ms, so a delay of ls is substantial.
Yet, average processing duration and throughput change only
slightly even with the added delay.

TABLE I
PERFORMANCE RESULTS

PO Duration Throughput
Experiment Mean (s) St. Dev. (s) POs/s Items/s
Normal 266.51 51.45 1.23 2.37
Delayed 267.27 46.45 1.21 2.34

Although it is possible that the added delay was insufficient
to outweigh the Checker’s bottleneck, we can infer that
AWS Lambda scaling was able to compensate for some of
the increased Reactor duration by looking at the maximum
concurrency of each of M-Agent’s components. In the normal
setting, we observe a maximum of three concurrent emitter
instances, two receiver instances, and two Reactor instances.
With delay, we observe up to five emitters and two receivers,
but 13 Reactor instances, since each Reactor takes much longer
to handle a single message. This indicates that Deserv benefits
from FaaS’s flexible scaling to maintain throughput.

Although our setting is much smaller than the thousands
of concurrent functions that AWS Lambda is capable of, the
results demonstrate that the Deserv architecture can take ad-
vantage of automatic function scaling. The singleton Checker
component and database interactions may be a bottleneck, but
the Reactors and Proactors are where the business logic is
processed. If one of the Reactors happens to take a long time
to process a message, up to a 15-minute execution limit for
AWS Lambda functions, then many instances could be run
concurrently to handle the same throughput as the Checker
and Local Store.

VII. DISCUSSION

We conceptualized a decentralized application as consisting
of agents who represent autonomous principals and interact via
asynchronous messaging. Any decentralized setting necessar-
ily motivates a protocol by which the agents communicate. The
architectural choice is between specifying and not specifying
the protocol. Specifying the protocol makes it possible to build
loosely coupled applications: Each agent can be constructed
and maintained independently based on the protocol. Current
approaches don’t specify the protocol formally, as a conse-
quence of which the resulting application is either realized
in a centralized fashion, e.g., as an orchestration, or in an
operationally decentralized but tightly coupled way. Deserv
can be used wherever a loosely coupled architecture is desired
even if no autonomous principals are involved.

Deserv is a protocol-based programming model for build-
ing decentralized serverless applications. It enables building
compliant agents in a modular fashion via abstractions such
as the Proactor and Reactor, which developers use for plug-
ging in the agent’s decision making. In fact, Deserv shares
serverless computing’s ambition of letting developers focus on
the business logic, but goes farther in that an agent developer
need not worry about issues that messaging in a decentralized
setting pose. For example, the agent developer need not handle
message orders or correlation and need not write code to
interface with the communication infrastructure itself. In a
sense, the developer programs to the adapter.

Deserv is modular at two levels. First, it separates the
agents realizing a decentralized application from one an-
other by reducing their coupling to what’s specified in a
protocol—precisely what’s needed for the application. Second,
it structures each agent’s internals so that an agent becomes a

composition of microservices, ideally suited for FaaS. Infor-
mation in protocol enactments is immutable, which improves
concurrency within and between agents. Immutability is well-
aligned with functional programming, which is a promising
connection to explore further.

Deserv simplifies programming decentralized applications
because it adopts information protocols. This approach is
declarative and contrasts with traditional approaches for spec-
ifying interactions between autonomous principals as a chore-
ography, which specifies a control flow of messages [18], [19].
Choreographies, however, do not support flexible interactions
as they require the enacting parties to move in lockstep.
Specifically, in a choreography, if a party sends a message to
another, the latter must be in a state where it can receive the
message. Further, choreographies typically assume ordering
guarantees (e.g., FIFO) from the communication infrastruc-
ture. Information protocols address these and other limitations
of choreographies [20].

The Financial products Markup Language (FpML) [21]
exemplifies current approaches to realizing decentralized ap-
plications. Message formats are described in enormous detail;
however, the business protocols themselves are specified via
UML interaction diagrams, an informal notation. This means
that there is little support by way of a programming model
for implementing agents. Specifying financial interactions as
information protocols would enable using Deserv for pro-
gramming agents. Deserv enables programming based on
the structure of interactions; it assumes low-level operational
details such as message formats. We anticipate that applying
Deserv to model and implement financial interactions will
reveal the need for practical enhancements to Deserv.

Abstractions for building stateful serverless applications is
a direction in serverless computing. Ongoing work in this
direction is targeted toward unitary applications that coordinate
via shared memory [22]-[25]. Deserv is unique in that it
addresses the modeling and implementation of stateful decen-
tralized applications in the serverless paradigm. Importantly,
agents do not share state. The application state may be viewed
as a vector, each of whose elements is the local state of
one agent; however, the application state is not materialized
anywhere. Each agent’s local state is managed by its Checker
that ensures it is updated only with correct messages, as
described in Section IV. Constraining updates in this manner
ensures consistency even when the agents send messages
in true concurrency over an asynchronous infrastructure that
doesn’t preserve message order.

The components internal to an agent, as shown in Figure 2,
share the agent’s local state; however, the Checker is the
only module that can update the local state and to avoid
inconsistencies, it serializes updates requested by the other
components. This serialization is a bottleneck and techniques
for alleviating it would be a worthwhile direction of research.
Traditional systems techniques could be complemented with
information-based techniques. For example, we could exploit
the fact that key bindings identify unrelated protocol instances,
which could be updated concurrently.

Deserv has some similarities with other declarative ser-
vice and composition specification frameworks such as Ope-
nAPI [26] and CloudFormation [27]. OpenAPI declaratively
specifies the API of a service as the endpoints and schemas
it supports; In contrast, BSPL specifies an interaction—all the
messages and dependencies between multiple agents. Also,
BSPL agents may send messages proactively, not just respond
to API calls. AsyncAPI [28] extends OpenAPI to support
event-based systems, with synchronous pub/sub channels,
rather than synchronous request/response endpoints alone.
AsyncAPI is closer to BSPL, but it does not describe the
message dependencies, only their schemas. CloudFormation
is the AWS solution for declaratively specifying and de-
ploying compositions of cloud resources within the same
context; Deserv enables interactions between agents across
organizational boundaries. Deserv and CloudFormation are
complimentary; in fact, Deserv uses CloudFormation to deploy
agent components as described in Section V.

Current approaches for building distributed applications rely
on special fault handling transport or middleware. However,
doing so violates the end-to-end principle [29], according to
which faults are best handled at the application level because
the relevant information is only available at the application
level. In fact, what constitutes a fault and how to handle it are
both application-level considerations. Incorporating protocol-
based abstractions for fault tolerance [4], [14] into Deserv is
an important future direction.

VIII. REPRODUCIBILITY

Our toolchain for verifying the correctness of BSPL pro-
tocols is available at https://gitlab.com/masr/protocheck. An
implementation of Deserv is available at https://gitlab.com/
masr/deserv. The distributed directory in the Deserv
repository contains the adapter components, a deployment
script, and a sample implementation of the Logistics scenario
with a run_test.py script for submitting POs, and a
process_results.py script for analyzing the M-Agent’s
history dump.

ACKNOWLEDGMENTS

Christie and Chopra were supported by EPSRC grant
EP/N027965/1 (Turtles). Singh was supported by the National
Science Foundation under grant IIS-1908374.

REFERENCES

[11 A. K. Chopra and M. P. Singh, “From social machines to social
protocols: Software engineering foundations for sociotechnical systems,”
in Proceedings of the 25th International World Wide Web Conference.
Montréal: ACM, 2016, pp. 903-914.

[2] N. Desai, A. U. Mallya, A. K. Chopra, and M. P. Singh, “Interaction pro-
tocols as design abstractions for business processes,” IEEE Transactions
on Software Engineering, vol. 31, no. 12, pp. 1015-1027, December
2005.

[3] A. Giinay and A. K. Chopra, “Stellar: A programming model for
developing protocol-compliant agents,” in Preproceedings of the 6th
International Workshop on Engineering Multi-Agent Systems, ser. LNCS,
vol. 11375. Stockholm: Springer, 2018, pp. 117-136.

[4] S.H. Christie V, D. Smirnova, A. K. Chopra, and M. P. Singh, “Protocols
over Things: A decentralized programming model for the Internet of
Things,” IEEE Computer, vol. 53, no. 12, pp. 60-68, 2020.

[5]

[6

=

[7

—

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

M. Roberts, “Serverless architectures,” https://www.martinfowler.com/
articles/serverless.html, May 2018.

A. Jangda, D. Pinckney, Y. Brun, and A. Guha, “Formal foundations
of serverless computing,” Proceedings of the ACM on Programming
Languages (OOPSLA), vol. 3, pp. 149:1-149:26, Oct. 2019.

M. P. Singh and M. N. Huhns, Service-Oriented Computing: Semantics,
Processes, Agents. Chichester, United Kingdom: John Wiley & Sons,
2005.

J. Lewis and M. Fowler, “Microservices,” https://www.martinfowler.
com/articles/microservices.html, Mar. 2014.

M. P. Singh, “Information-driven interaction-oriented programming:
BSPL, the Blindingly Simple Protocol Language,” in Proceedings of the
10th International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS). Taipei: IFAAMAS, May 2011, pp. 491-498.

R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

Microsoft, “Azure durable functions documentation,” https://docs.
microsoft.com/en-us/azure/azure-functions/durable/, accessed: 7 Jun
2021.

C. Hewitt, “Viewing control structures as patterns of passing messages,”
Artificial Intelligence, vol. 8, no. 3, pp. 323-364, Jun. 1977.

G. A. Agha, Actors. Cambridge, Massachusetts: MIT Press, 1986.

S. H. Christie V, A. K. Chopra, and M. P. Singh, “Bungie: Improving
fault tolerance via extensible application-level protocols,” IEEE Com-
puter, vol. 54, no. 5, pp. 44-53, May 2021.

A. K. Chopra, S. H. Christie V, and M. P. Singh, “Splee: A declarative
information-based language for multiagent interaction protocols,” in
Proceedings of the 16th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS). Sao Paolo: IFAAMAS, May 2016.
M. P. Singh, “Semantics and verification of information-based pro-
tocols,” in Proceedings of the 11th International Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS). Valencia, Spain:
IFAAMAS, Jun. 2012, pp. 1149-1156.

——, “LoST: Local State Transfer—An architectural style for the
distributed enactment of business protocols,” in Proceedings of the 9th
IEEE International Conference on Web Services (ICWS). Washington,
DC: IEEE Computer Society, Jul. 2011, pp. 57-64.

X. Fu, T. Bultan, and J. Su, “Conversation protocols: A formalism for
specification and verification of reactive electronic services,” Theoretical
Computer Science, vol. 328, no. 1-2, pp. 19-37, 2004.

WS-CDL, “Web services choreography description language version
1.0,” Nov. 2005, www.w3.org/TR/ws-cdl-10/.

A. K. Chopra, S. H. Christie V, and M. P. Singh, “An evaluation of
communication protocol languages for engineering multiagent systems,”
Journal of Artificial Intelligence Research, vol. 69, pp. 1351-1393, 2020.
FpML, “FpML 5.11 recommendation,” https://www.fpml.org/spec/
fpml-5-11-9-rec-1/, Dec. 2019, accessed: 8 Jun 2021.

P. Leitner, E. Wittern, J. Spillner, and W. Hummer, “A mixed-method
empirical study of Function-as-a-Service software development in in-
dustrial practice,” PeerJ Preprints, vol. 6, p. €27005, 2018.

D. Barcelona-Pons, M. Sanchez-Artigas, G. Paris, P. Sutra, and
P. Garcia-Lépez, “On the FaaS track: Building stateful distributed
applications with serverless architectures,” in Proceedings of the 20th
International Middleware Conference. New York, NY, USA: ACM,
2019, pp. 41—54.

S. Shillaker and P. R. Pietzuch, “FAASM: Lightweight isolation for
efficient stateful serverless computing,” in Proceedings of the 2020
USENIX Annual Technical Conference, 2020, pp. 419-433.

V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. Gonzalez, J. M.
Hellerstein, and A. Tumanov, “Cloudburst: Stateful Functions-as-a-
Service,” Proceedings of the VLDB Endowment, vol. 13, no. 11, pp.
2438-2452, 2020.

OpenAPI, “OpenAPI specification v3.1.0,” 2021, the Linux Foundation.
[Online]. Available: https://spec.openapis.org/oas/v3.1.0

AWS, “CloudFormation,” 2021, Amazon AWS. [Online]. Available:
https://aws.amazon.com/cloudformation/

AsyncAPI, “AsyncAPI specification 2.0.0,” 2019, AsyncAPI Initiative.
[Online]. Available: https://www.asyncapi.com/docs/specifications/v2.0.
0

J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in
system design,” ACM Transactions on Computer Systems, vol. 2, no. 4,
pp. 277-288, Nov. 1984.

