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Abstract— Manipulation of flexible objects is one of the
major challenges in robotics as the nonlinear dynamics of the
high-dimensional object structure makes it difficult to apply
current control methods. A previous simulation study showed
that control with few pre-structured joint trajectories coupled
with joint impedance (dynamic primitives) could control a
25-dimensional whip to hit a target. This was possible even
though the impedance values were constant. This paper explores
whether time-varying impedance throughout the movement
may further enhance performance. We present an online
impedance adaptation (OIA) controller that modulates the joint
impedances of a two-joint actuator in real time for the same
task. Results showed that the OIA control method increased the
speed of optimization and resulted in smaller deviation from
the zero-torque joint trajectories compared to the controller
with constant joint impedances. This novel way to modulate
both motion and impedance of a manipulator may facilitate
the control of flexible objects with significant dynamics.

I. INTRODUCTION

A prominent challenge in robotics is the manipulation of

flexible objects [1]. The complex and nonlinear dynamics

originating from the high - in principle infinite - dimensional

structure makes it difficult to apply state-of-the-art control

methods, which have been developed for rigid object ma-

nipulation [2]. It is well recognized that the computational

complexity of the task grows exponentially with system

dimension, and the optimization quickly becomes intractable

– Bellman’s “curse of dimensionality“ [3]. Several attempts

have been made to simplify the problem. One avenue was to

replace the full model by a finite lumped-parameter model

and then apply optimization-based approaches [4]. Another

line of studies in human motor control proposed that a

controller based on dynamic primitives is a plausible way

to control complex actions, including interacting with the

environment [5]–[12].

Specifically, Hogan and Sternad proposed three dynamic

primitives: submovements, oscillations and impedances [5].
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Using manipulation of a whip as example, Nah et al. demon-

strated the benefits of this approach. The authors developed

a controller composed of simple pre-shaped joint trajectories

(minimum jerk profiles, or submovements) coupled with

impedances at each joint of a two-link actuator [13]–[16].

The simulation study tested whether the actuator could hit

a distant target with the tip of the whip, when controlled

by simple bell-shaped profiles that served as zero-torque

trajectories for each of the two joints. At each joint, there

was an impedance with constant values of stiffness and

damping. The off-line optimization converged to a successful

movement of the 10, 15, 20 and 25-link chain models of

the whip, without the need of a detailed model of the

whip dynamics. This approach highlighted the advantages of

primitive components for the control of a high-dimensional

flexible object.

While this approach was effective, other studies high-

lighted the benefits of modulated impedance for physical

interaction. For instance, time-varying joint impedances for

a 14-DOF Baxter Robot enabled a smooth transition from

free motion to contact [17]. Other examples can be found

in robotics [17]–[19], human-robot interaction [20]–[22] and

human motor control [23]–[26].

Therefore, coupling control via dynamic primitives with

varying impedance may improve the efficiency of the opti-

mization and lead to better task performance.

In this paper, we extended the work done in [13] by

replacing the constant impedance with an online impedance

adaptation (OIA) controller [18], [27]. This extension was

tested in three multiple-DOF (i.e., 10, 15, 25) whip models,

manipulated by the same two-joint arm. Results showed

that OIA control led to faster task optimization and smaller

joint position tracking errors compared to corresponding

simulations with constant joint impedances [13]. This ap-

proach provides a novel way to optimize the movement of a

manipulator and facilitate manipulation of complex objects.

II. METHODS

All of the simulations were conducted with MuJoCo [28].

The semi-implicit Euler method was chosen as the numerical

integrator with a time step of 0.1 [ms].

A. Modeling

A two-joint upper-limb model (the manipulator) and an

N -node whip model (the manipulated object) were used for

the simulation. The geometrical and inertial parameters of

the planar actuator, developed in [13], were borrowed from

Hatze [29].



The continuous dynamics of the whip was discretized to

an N -node lumped-parameter model. A single sub-model

of the whip was comprised of an (ideal) point-mass and

a rotational joint. Each point-mass m [kg] was suspended

from a massless cylinder with length l [m]; the rotational

joints consisted of a linear rotational spring and a linear

rotational damper with coefficients k [N · m/rad] and b
[N ·m · s/rad], respectively [13], [14]. The N sub-models

were serially connected in a chain-like manner resulting in a

N -node whip model. The parameters (N, l, m, k, b) are the

“whip parameters” of the N -node whip model. Three whip

models were constructed (Table I): short, medium and long,

where the parameters of the latter one were experimentally

measured from a real bullwhip [13], [16].1

TABLE I: Model parameters of the whip

Whip Parameters

𝑁 𝑙 𝑚 𝑘 𝑏

Short whip 10 0.1 0.1 0.050 0.005

Medium whip 15 0.1 0.1 0.050 0.005

Long whip 25 0.072 0.012 0.242 0.092

The upper limb was connected to the whip by a freely-

rotating hinge joint, i.e., no stiffness or damping elements

were included for the handle. The combined model resulted

in a sequential open-chain planar mechanism with (N + 2)-
DOFs.

B. Upper-Limb Controller

1) Impedance Controller

A first-order impedance controller with gravity compen-

sation was used for the 2-DOF upper-limb model [13]:

τ = K (qd − q) +B (q̇d − q̇) + τG (1)

where torque τG(t) ∈ R
2 denotes the torque required for

gravity compensation (Sec. II-B.2); q(t) ∈ R
2 denotes joint

displacement vector of the upper-limb model; qd(t) ∈ R
2

denotes the “zero-torque” trajectory [13], i.e., neglecting

gravitational effects. When the actual joint trajectory q ex-

actly matches the zero-torque trajectory qd, then zero torque

is exerted by the joint actuators (Sec. II-B.3); K(t) ∈ R
2×2

and B(t) ∈ R
2×2 are the time-varying stiffness and damping

matrices representing the neuromuscular impedances of the

upper-limb segments, respectively; the impedance matrices

K(t) and B(t) are online adapted via the OIA control law

(Sec. II-B.4);

2) Gravity Compensation

Gravitational effects of the model were compensated with

τG(t), such that the actual upper-limb posture q exactly

matched the zero-torque posture qd when the whole model

was at rest [14]:

τG = JT
1
f1 + JT

2
f2 + JT

3
f3 (2)

1The experimentally-fitted whip model constructed in [13] corresponds
to the long whip model.

where J1−3 ∈ R
3×2 are the Jacobian matrices in terms

of the center of mass of the upper arm, center of mass of

the forearm, and the end-effector with respect to the frame

attached to the shoulder, respectively.

f1−3 ∈ R
3 denote the gravitational forces due to the mass

of the upper arm, forearm, and whip model, respectively [14]:

f1 = M1g, f1 = M2g, f3 = Mwg (3)

where M1 = 0.291 [kg] and M2 = 0.294 [kg] denote the

mass of the upper arm and forearm, respectively [13]; Mw

denotes the total mass of the whip model, which is equal

to the node number of the whip N times the mass of each

sub-model m (Mw = N ·m); g ∈ R
3 denotes gravity in the

simulation environment.

3) Zero-Torque Trajectory

The zero-torque trajectory of the controller, qd(t) (Eq. 1)

followed a minimum-jerk trajectory [13], [30]:

qd(t) = qi+(qf −qi)

{
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(4)

where qi = [qi,s, qi,e]
T [rad] and qf = [qf,s, qf,e]

T [rad]

denote the initial and final zero-torque joint posture, respec-

tively; D [s] is the duration of the trajectory; subscripts s and

e denote shoulder and elbow joints, respectively. For times

longer than the duration D (i.e. t > D), the zero-torque

trajectory qd(t) remained at qf [13].

4) Online Impedance Adaptation (OIA)

The elements of the joint stiffness matrix K(t) and damp-

ing matrix B(t) of the impedance controller were modulated

in real time:

K(t) =

[

kss(t) kse(t)
kes(t) kee(t)

]

, B(t) =

[

bss(t) bse(t)
bes(t) bee(t)

]

(5)

where k(t) and b(t) are the stiffness and damping parameters

of the upper-limb model [31]; subscript s and e correspond to

the shoulder and elbow joints, respectively; diagonal and off-

diagonal terms correspond to the impedances arising from

the monoarticular and biarticular muscles of the upper limb,

respectively (Fig. 1).

The adaptation law of the impedance matrices K(t) and

B(t) minimized the following scalar cost function J :

J = Jc + Jp (6)

The cost function Jc was defined as follows:

Jc =
1

2

∫ D

0

(

‖vec(K̃)‖2QK
+ ‖vec(B̃)‖2QB

)

dτ (7)

which is the time integration of the weighted norms of

matrices K̃, B̃ ∈ R
2×2 from the start to the end of the

zero-torque trajectory (Eq. 4); ‖·‖QK ,QB
and vec(·) denote

the weighted norms and column vectorization, respectively;

QK ∈ R
4×4 and QB ∈ R

4×4 are positive symmetric

weighting matrices, where the norm of the matrix affects

the speed of optimization [18]; K̃ and B̃ are defined as

the difference between the actual and expected values of the

stiffness and damping matrices [18]:

K̃ = K −KE , B̃ = B −BE (8)
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Fig. 1: Muscle model of the two-joint upper limb showing the monoarticular and biarticular muscles of the shoulder and elbow joints.

where subscript KE and BE denote the impedance (matri-

ces) to ensure movement stability (i.e., Eq. 13), from which

the optimal K and B are optimized.

The cost function Jp is defined as follows:

Jp =

∫ D

0

V̇ (τ)dτ, V (t) =
1

2
εT (t)I(q)ε(t) (9)

where the integrand is the time differentiation of the scalar

function V (t), integrated from start to the end of the zero-

torque trajectory (Eq. 4); I(q) ∈ R
2×2 is the inertia matrix

of the 2-DOF upper-limb model; ε(t) is the time-varying

sliding variable [32], defined as follows:

ε(t) = e(t) + βė(t), e(t) = qd(t)− q(t) (10)

where e(t) ∈ R
2 is the tracking error between the zero-

torque trajectory and the actual joint trajectory of the upper-

limb model; β is a positive constant.
The resulting adaptation law of the impedances that min-

imized the cost function J is as follows [18]:

K(t) = F (t)eT (t), B(t) = F (t)ėT (t), F (t) =
ε(t)

γ(t)
(11)

where γ(t) is an adaptation scalar defined as:

γ(t) =
a

1 + C‖ε(t)‖2
. (12)

The values of the positive scalars used for the simulation

are a = 0.2 and C = 5. They were chosen to ensure

online stable adaptation control. Further details and stability

proof of the online impedance adaptation law (Eq. 11) were

presented in [18].

C. Task Definition and Optimization

The whip task was defined to evaluate the performance of

the upper-limb movement guided by the suggested controller.

The task objective was to hit a distant target with a whip (Fig.

2). That objective was quantified as minimizing the distance

between the tip of the whip and target, L [m]. The target

was located at shoulder height 0.01 [m] beyond the whip

range [13]. Three whip models — the short, medium and

long whip model (Table I) — were tested.

To demonstrate the effectiveness of the OIA control law, it

was compared to a controller with constant joint impedance

parameters [13]. The controller with constant impedance

parameters is referred to as “ZTTO” (zero-torque trajectory

optimization) controller, and the controller which adds the

online impedance adaption (OIA) law is referred to as

“ZTTO+OIA” controller.

For the ZTTO controller, submovement parameters of the

zero-torque trajectory (qi,s, qi,e, qf,s, qf,e, D) (Eq. 4) were

optimized using the “Dividing rectangles-locally biased“

(DIRECT-L) algorithm in the “nonlinear optimization Python

tool box” (nlopt) [33]. In the ZTTO+OIA controller joint

impedances were modulated in real time after each iteration

of the submovement optimization using DIRECT-L (Eq. 11).

The optimization was terminated when the distance L was

lower than the threshold value Ld = 0.10 [m], i.e., Min(L∗)

< Ld (Algorithm 1). The obtained minimal distance, L∗

[m], determined the performance.

III. RESULTS

For all three whip models, the proposed ZTTO+OIA

approach outperformed the ZTTO approach in the following

aspects (see also the experimental video2):

1) Faster Task Optimization

The ZTTO+OIA controller reached the threshold value

Ld = 0.10m in fewer iterations than the ZTTO controller;

the improvement was roughly a factor of 2 (Fig. 3).

2) Smaller Tracking Errors

The ZTTO+OIA controller reached smaller tracking errors

of joint positions, indicating better tracking of the zero-

torque trajectory (Fig. 4C, 4E).

3) Time-Varying Impedance

The ZTTO+OIA controller rendered time-varying joint

impedance of the upper-limb model with average stiffness

2https://www.youtube.com/watch?v=AV_7qP6Yd-Y
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analysis of the whip properties may provide further insights

into the relation of whip model and the resulting controller

impedance.

Modulating impedance was previously suggested to fa-

cilitate robot interaction with environment, particularly its

transition between free motion and contact [17], [19], [21].

In addition, Braun et al. suggested increased efficiency, as

varying impedance improves energy storage capabilities of

the manipulator [21].

The simulations showed that stiffness could occasion-

ally reach negative values (Fig. 5). Similar negative val-

ues also emerged in several robotic applications of time-

varying impedance [18], [21], [27]. While negative stiffness

is generally understood to jeopardize controller stability, it

was previously shown that the present method can maintain

stability [18], provided properly selected adaptation scalar

and weighting norms for stiffness and damping matrices.

The whip manipulation task is inspired by human per-

formance. Most of impedance-related studies in humans

examined much simpler tasks such as static postures, reach-

ing, walking, and ball-catching. For example, arm joint

impedance was examined in static postures as it allowed

for careful perturbations, [31], [34], [35]. While rigorous
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controller (Eq. 13). Average stiffness K and average damping B (Eq. 15)
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measurement of joint impedance remains a known hurdle

[36], [37], several studies have reported varying impedance

during volitional movements. Lacquaniti et al. observed

varying impedance in the human arm during catching a ball

and suggested independent control of stiffness, inertia and

damping of the arm by the central nervous system [24].

In the ankle, similar variation of impedance was suggested

to facilitate muscle efficiency while walking [23], [25].

Furthermore, Dyhre-Poulsen et al. studied landing after a

jump and reported negative stiffness in the ankle, suggesting

that this might facilitate damping by the soleus muscle [26].

Rouse et al. suggested that negative viscosity in the ankle

may facilitate energy storage during the early stance phase

[25]. Aside from these observations in humans, negative

damping was found to facilitate generalization motor skill

in humans and also facilitate human-robot interaction [20],

[22]. The time-varying impedance of the manipulator may be

an efficient means of improving energy-storing capabilities of

the robot and facilitating its interaction with external objects.

While some promising implementations of the OIA con-

troller have already been reported [18], [27], [38], more

rigorous evaluation of these conjectures are needed. In move-

ment neuroscience it remains to be an important goal to

develop experimental paradigms that study human interaction

with real-world complex objects [16]. Such investigation may

reveal further information for both neuroscience and robotics.



APPENDIX

The joint stiffness matrix K ∈ R
2×2 and damping matrix

B ∈ R
2×2 used for the ZTTO controller are given by [13]:

K =

[

29.5 14.3
14.3 39.3

]

, B = 0.1K =

[

2.95 1.43
1.43 3.93

]

(13)

The average values of the joint stiffness K and damping

matrices B are calculated as follows:

K =
1

4

3
∑

i=0

(

∑N

j=0
|vec(K)i(t0 + j ·∆T )|

N

)

, (14)

B =
1

4

3
∑

i=0

(

∑N

j=0
|vec(B)i(t0 + j ·∆T )|

N

)

(15)

where t0 = 0.05 [s] is the time when the movement starts,

∆ = 0.1 [ms] is the time step of the simulation and N is the

number of samples collected from start to end of zero-torque

trajectory with duration D, i.e., N = D/∆T .
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