Online Impedance Adaptation Facilitates Manipulating a Whip
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Abstract— Manipulation of flexible objects is one of the
major challenges in robotics as the nonlinear dynamics of the
high-dimensional object structure makes it difficult to apply
current control methods. A previous simulation study showed
that control with few pre-structured joint trajectories coupled
with joint impedance (dynamic primitives) could control a
25-dimensional whip to hit a target. This was possible even
though the impedance values were constant. This paper explores
whether time-varying impedance throughout the movement
may further enhance performance. We present an online
impedance adaptation (OIA) controller that modulates the joint
impedances of a two-joint actuator in real time for the same
task. Results showed that the OIA control method increased the
speed of optimization and resulted in smaller deviation from
the zero-torque joint trajectories compared to the controller
with constant joint impedances. This novel way to modulate
both motion and impedance of a manipulator may facilitate
the control of flexible objects with significant dynamics.

I. INTRODUCTION

A prominent challenge in robotics is the manipulation of
flexible objects [1]. The complex and nonlinear dynamics
originating from the high - in principle infinite - dimensional
structure makes it difficult to apply state-of-the-art control
methods, which have been developed for rigid object ma-
nipulation [2]. It is well recognized that the computational
complexity of the task grows exponentially with system
dimension, and the optimization quickly becomes intractable
— Bellman’s “curse of dimensionality* [3]. Several attempts
have been made to simplify the problem. One avenue was to
replace the full model by a finite lumped-parameter model
and then apply optimization-based approaches [4]. Another
line of studies in human motor control proposed that a
controller based on dynamic primitives is a plausible way
to control complex actions, including interacting with the
environment [5]-[12].

Specifically, Hogan and Sternad proposed three dynamic
primitives: submovements, oscillations and impedances [5].
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Using manipulation of a whip as example, Nah et al. demon-
strated the benefits of this approach. The authors developed
a controller composed of simple pre-shaped joint trajectories
(minimum jerk profiles, or submovements) coupled with
impedances at each joint of a two-link actuator [13]-[16].
The simulation study tested whether the actuator could hit
a distant target with the tip of the whip, when controlled
by simple bell-shaped profiles that served as zero-torque
trajectories for each of the two joints. At each joint, there
was an impedance with constant values of stiffness and
damping. The off-line optimization converged to a successful
movement of the 10, 15, 20 and 25-link chain models of
the whip, without the need of a detailed model of the
whip dynamics. This approach highlighted the advantages of
primitive components for the control of a high-dimensional
flexible object.

While this approach was effective, other studies high-
lighted the benefits of modulated impedance for physical
interaction. For instance, time-varying joint impedances for
a 14-DOF Baxter Robot enabled a smooth transition from
free motion to contact [17]. Other examples can be found
in robotics [17]-[19], human-robot interaction [20]-[22] and
human motor control [23]-[26].

Therefore, coupling control via dynamic primitives with
varying impedance may improve the efficiency of the opti-
mization and lead to better task performance.

In this paper, we extended the work done in [13] by
replacing the constant impedance with an online impedance
adaptation (OIA) controller [18], [27]. This extension was
tested in three multiple-DOF (i.e., 10, 15, 25) whip models,
manipulated by the same two-joint arm. Results showed
that OIA control led to faster task optimization and smaller
joint position tracking errors compared to corresponding
simulations with constant joint impedances [13]. This ap-
proach provides a novel way to optimize the movement of a
manipulator and facilitate manipulation of complex objects.

II. METHODS

All of the simulations were conducted with MuJoCo [28].
The semi-implicit Euler method was chosen as the numerical
integrator with a time step of 0.1 [ms].

A. Modeling

A two-joint upper-limb model (the manipulator) and an
N-node whip model (the manipulated object) were used for
the simulation. The geometrical and inertial parameters of
the planar actuator, developed in [13], were borrowed from
Hatze [29].



The continuous dynamics of the whip was discretized to
an N-node lumped-parameter model. A single sub-model
of the whip was comprised of an (ideal) point-mass and
a rotational joint. Each point-mass m [kg] was suspended
from a massless cylinder with length [ [m]; the rotational
joints consisted of a linear rotational spring and a linear
rotational damper with coefficients k& [N - m/rad] and b
[N -m - s/rad], respectively [13], [14]. The N sub-models
were serially connected in a chain-like manner resulting in a
N-node whip model. The parameters (N, I, m, k, b) are the
“whip parameters” of the N-node whip model. Three whip
models were constructed (Table I): short, medium and long,
where the parameters of the latter one were experimentally
measured from a real bullwhip [13], [16].!

TABLE I: Model parameters of the whip

Whip Parameters
N l m k b
Short whip 10 0.1 0.1 0.050 0.005
Medium whip 15 0.1 0.1 0.050 | 0.005
Long whip 25 0.072 0.012 0.242 0.092

The upper limb was connected to the whip by a freely-
rotating hinge joint, i.e., no stiffness or damping elements
were included for the handle. The combined model resulted
in a sequential open-chain planar mechanism with (N + 2)-
DOFs.

B. Upper-Limb Controller

1) Impedance Controller
A first-order impedance controller with gravity compen-
sation was used for the 2-DOF upper-limb model [13]:

T=K(qa—q)+B(4s—q)+1¢ (1)

where torque 7o (t) € R? denotes the torque required for
gravity compensation (Sec. II-B.2); q(t) € R? denotes joint
displacement vector of the upper-limb model; gq4(t) € R?
denotes the “zero-torque” trajectory [13], i.e., neglecting
gravitational effects. When the actual joint trajectory q ex-
actly matches the zero-torque trajectory qq4, then zero torque
is exerted by the joint actuators (Sec. II-B.3); K (t) € R?*2
and B(t) € R?*? are the time-varying stiffness and damping
matrices representing the neuromuscular impedances of the
upper-limb segments, respectively; the impedance matrices
K (t) and B(t) are online adapted via the OIA control law
(Sec. II-B.4);

2) Gravity Compensation

Gravitational effects of the model were compensated with
7¢(t), such that the actual upper-limb posture g exactly
matched the zero-torque posture g; when the whole model
was at rest [14]:

o =J i+ I  fo+ JL s 2)

IThe experimentally-fitted whip model constructed in [13] corresponds
to the long whip model.

where J;_3 € R3*2 are the Jacobian matrices in terms
of the center of mass of the upper arm, center of mass of
the forearm, and the end-effector with respect to the frame
attached to the shoulder, respectively.

fi—3 € R3 denote the gravitational forces due to the mass
of the upper arm, forearm, and whip model, respectively [14]:

fi=Mg, fi=DMg, f3=My,g 3)

where M; = 0.291 [kg] and M5 = 0.294 [kg] denote the
mass of the upper arm and forearm, respectively [13]; M,
denotes the total mass of the whip model, which is equal
to the node number of the whip /N times the mass of each
sub-model m (M,, = N -m); g € R? denotes gravity in the
simulation environment.

3) Zero-Torque Trajectory

The zero-torque trajectory of the controller, q4(t) (Eq. 1)
followed a minimum-jerk trajectory [13], [30]:

t\3 t.\4 t\5
i) = -+ (ay - @) {10(5)° - 15(5) +6(5)° ) @

where q; = [qi,s, i)’ [rad] and qp = [qy,s,qy.e)" [rad]
denote the initial and final zero-torque joint posture, respec-
tively; D [s] is the duration of the trajectory; subscripts s and
e denote shoulder and elbow joints, respectively. For times
longer than the duration D (i.e. ¢t > D), the zero-torque
trajectory g4(t) remained at q¢ [13].

4) Online Impedance Adaptation (OIA)

The elements of the joint stiffness matrix K (¢) and damp-
ing matrix B(t) of the impedance controller were modulated

in l‘eal time
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K(t) - |:kes (t) bee (t):l (5)
where k(t) and b(t) are the stiffness and damping parameters
of the upper-limb model [31]; subscript s and e correspond to
the shoulder and elbow joints, respectively; diagonal and off-
diagonal terms correspond to the impedances arising from
the monoarticular and biarticular muscles of the upper limb,
respectively (Fig. 1).

The adaptation law of the impedance matrices K (t) and
B(t) minimized the following scalar cost function J:

J=J.+Jp (6)
The cost function J. was defined as follows:

1 [P _ -
J. = 5/0 <|vec(K)|22K + ||vec(B)||ZzB)dT (7)

which is the time integration of the weighted norms of
matrices K, B € R2%2 from the start to the end of the
zero-torque trajectory (Eq. 4); ||||@x,@p and vec(-) denote
the weighted norms and column vectorization, respectively;
Qx € R** and Qp € R*** are positive symmetric
weighting matrices, where the norm of the matrix affects
the speed of optimization [18]; K and B are defined as
the difference between the actual and expected values of the
stiffness and damping matrices [18]:

K=K-Kp, B=B-Bg (8)
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Fig. 1: Muscle model of the two-joint upper limb showing the monoarticular and biarticular muscles of the shoulder and elbow joints.

where subscript Kg and Bg denote the impedance (matri-
ces) to ensure movement stability (i.e., Eq. 13), from which
the optimal K and B are optimized.

The cost function J, is defined as follows:

D

h= [ V@ v = 3 0I@e O
where the integrand is the time differentiation of the scalar
function V' (), integrated from start to the end of the zero-
torque trajectory (Eq. 4); I'(q) € R?>*? is the inertia matrix
of the 2-DOF upper-limb model; €(t) is the time-varying
sliding variable [32], defined as follows:

e(t) = e(t) + Bé(t), e(t) = qa(t) — q(t)

where e(t) € R? is the tracking error between the zero-
torque trajectory and the actual joint trajectory of the upper-

limb model; /3 is a positive constant.
The resulting adaptation law of the impedances that min-
imized the cost function .J is as follows [18]:

(10)

QY
where (t) is an adaptation scalar defined as:

2(t) °

1+ Cle®]?

The values of the positive scalars used for the simulation
are a = 0.2 and C = 5. They were chosen to ensure
online stable adaptation control. Further details and stability
proof of the online impedance adaptation law (Eq. 11) were
presented in [18].

(12)

C. Task Definition and Optimization

The whip task was defined to evaluate the performance of
the upper-limb movement guided by the suggested controller.
The task objective was to hit a distant target with a whip (Fig.
2). That objective was quantified as minimizing the distance
between the tip of the whip and target, L [m]. The target
was located at shoulder height 0.01 [m] beyond the whip

range [13]. Three whip models — the short, medium and
long whip model (Table I) — were tested.

To demonstrate the effectiveness of the OIA control law, it
was compared to a controller with constant joint impedance
parameters [13]. The controller with constant impedance
parameters is referred to as “ZTTO” (zero-torque trajectory
optimization) controller, and the controller which adds the
online impedance adaption (OIA) law is referred to as
“ZTTO+OIA” controller.

For the ZTTO controller, submovement parameters of the
zero-torque trajectory (g s, Gi.e, Gf,s, 4f,e; D) (Eq. 4) were
optimized using the “Dividing rectangles-locally biased*
(DIRECT-L) algorithm in the “nonlinear optimization Python
tool box” (nlopt) [33]. In the ZTTO+OIA controller joint
impedances were modulated in real time after each iteration
of the submovement optimization using DIRECT-L (Eq. 11).
The optimization was terminated when the distance L was
lower than the threshold value Ly = 0.10 [m], i.e., Min(L*)
< Lg (Algorithm 1). The obtained minimal distance, L*
[m], determined the performance.

III. RESULTS

For all three whip models, the proposed ZTTO+OIA
approach outperformed the ZTTO approach in the following
aspects (see also the experimental video?):

1) Faster Task Optimization

The ZTTO+OIA controller reached the threshold value
Ly = 0.10m in fewer iterations than the ZTTO controller;
the improvement was roughly a factor of 2 (Fig. 3).

2) Smaller Tracking Errors

The ZTTO+OIA controller reached smaller tracking errors
of joint positions, indicating better tracking of the zero-
torque trajectory (Fig. 4C, 4E).

3) Time-Varying Impedance

The ZTTO+OIA controller rendered time-varying joint
impedance of the upper-limb model with average stiffness

2https://www.youtube.com/watch?v=AV_7qP6Yd-Y
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Fig. 2: Time sequence of the simulation using the long whip model (see Table I). (A) Beginning of the movement, (B) Intermediate movement phase and

the final arm posture, (C) Whip reaching the minimal distance to the target.

Algorithm 1: Optimization of the whip task

Inputs: L; = 0.10m (threshold distance);
Outputs: Optimal (g; s, Gi.e, Gf.s; 4f.e, D) (Eq. 4);
Optimization initialization, ty = 0.05 [s], 7' = 1.2
[s];
for DIRECT-L, i = 1 to 600 do
Simulation initialization;
Update (qi,s, Gie, 4f.s5 Gf.es D) (BEq. 4);
while 0 <t < T do
Compute 7¢ (Eq. 2);
while ¢ty <t <ty+ D do
Compute qq4, 44, €, € (Eq. 4 and 10);
if OIA == True then
| Update K and B (Eq. 11);
else
| Use constant K and B (Eq. 13);
end
end
Compute/command torque inputs T (Eq. 1);
Compute and save distance L;

end

Save L* = Min(L);

if Min(L*) < L, then
| break;

end

end
Save the performance Min(L*) and movement

parameters [q; s, @i, 4f,s, qfe, D]”;

smaller and average damping larger than the ZTTO controller
(Fig. 5).

IV. DISCUSSION

This study attempted to emphasize the beneficial role of
varying mechanical impedance for physical interaction in
the context of complex object manipulation. The simulation
presents a novel optimization of both motion and impedance
of an actuator when manipulating a whip — one of the most
complex tools that humans can handle. Manipulating a whip
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Fig. 3: Number of iterations before reaching the threshold distance between
whip and target Ly = 0.1 [m]. ZTTO controller assumed constant
impedances, while ZTTO+OIA controller modulated impedances.

is one example for the challenges that soft robotics faces.
Not only did the controller optimize the parameters of the
submovements of the joints (the ZTTO part of the proposed
algorithm), it also modulated the mechanical impedances in
real time (the OIA part) (Fig. 5). Adding OIA resulted in
faster optimization and smaller joint tracking errors.

The impedance values identified by the OIA method
showed that joint stiffness increased during the early part
of the arm movement, from O to 0.45 [s] (see Fig. 2), and
then dropped rapidly, approaching near-zero values by the
end of the movement (around 0.7 [s]), for all three whip
models. The time profile of damping was less regular, but
also exhibited a rapid decrease shortly before 0.45 s. By
that time, the manipulator had nearly reached its terminal
configuration while the whip had gained a high speed moving
upwards and unfolding towards the target. The fact that the
tracking error was lower in ZTTO+OID (Fig. 4) indicates a
shift of the controller’s priority from position toward force
control — such shift being likely related to the whip dynamics.

Across the three whip models, larger average stiffness and
damping were observed for the long whip model (Fig. 5).
This is likely due to its mechanical properties that were
taken from a real bullwhip; that whip was lighter, stiffer and
more viscous than the other two models [13], [16]. In-depth
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Fig. 4: Task-specific parameters during execution using the long whip model,
with the ZTTO (green) and the ZTTO+OIA (blue) controllers. (A) Distance
L between the whip and target. (B,C) Net torque input 75 and position error
es of the shoulder joint. (D,E) Net torque input 7. and position error e,
of the elbow joint. The movement started at 0.05 [s] (Algorithm 1). (F)
Average joint position error of each joint.

analysis of the whip properties may provide further insights
into the relation of whip model and the resulting controller
impedance.

Modulating impedance was previously suggested to fa-
cilitate robot interaction with environment, particularly its
transition between free motion and contact [17], [19], [21].
In addition, Braun et al. suggested increased efficiency, as
varying impedance improves energy storage capabilities of
the manipulator [21].

The simulations showed that stiffness could occasion-
ally reach negative values (Fig. 5). Similar negative val-
ues also emerged in several robotic applications of time-
varying impedance [18], [21], [27]. While negative stiffness
is generally understood to jeopardize controller stability, it
was previously shown that the present method can maintain
stability [18], provided properly selected adaptation scalar
and weighting norms for stiffness and damping matrices.

The whip manipulation task is inspired by human per-
formance. Most of impedance-related studies in humans
examined much simpler tasks such as static postures, reach-
ing, walking, and ball-catching. For example, arm joint
impedance was examined in static postures as it allowed
for careful perturbations, [31], [34], [35]. While rigorous
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Fig. 5: Time vs. elements of impedance matrices K and B using the
ZTTO+OIA controller (Eq. 5). The simulation was generated by the optimal
movement parameters of each whip model. Time -varying impedances (blue)
compared with the constant impedance value (green) used in_the ZTTO
controller (Eq. 13). Average stiffness K and average damping B (Eq. 15)
for each whip model, compared with the constant impedance value (green).

measurement of joint impedance remains a known hurdle
[36], [37], several studies have reported varying impedance
during volitional movements. Lacquaniti et al. observed
varying impedance in the human arm during catching a ball
and suggested independent control of stiffness, inertia and
damping of the arm by the central nervous system [24].
In the ankle, similar variation of impedance was suggested
to facilitate muscle efficiency while walking [23], [25].
Furthermore, Dyhre-Poulsen et al. studied landing after a
jump and reported negative stiffness in the ankle, suggesting
that this might facilitate damping by the soleus muscle [26].
Rouse et al. suggested that negative viscosity in the ankle
may facilitate energy storage during the early stance phase
[25]. Aside from these observations in humans, negative
damping was found to facilitate generalization motor skill
in humans and also facilitate human-robot interaction [20],
[22]. The time-varying impedance of the manipulator may be
an efficient means of improving energy-storing capabilities of
the robot and facilitating its interaction with external objects.

While some promising implementations of the OIA con-
troller have already been reported [18], [27], [38], more
rigorous evaluation of these conjectures are needed. In move-
ment neuroscience it remains to be an important goal to
develop experimental paradigms that study human interaction
with real-world complex objects [16]. Such investigation may
reveal further information for both neuroscience and robotics.



APPENDIX

The joint stiffness matrix K € R?*? and damping matrix
B € R?*? used for the ZTTO controller are given by [13]:

29.5 143 2.95 1.43

K:[14.3 39.3 1.43 3.93} (13)

| oo

The average values of the joint stiffness K and damping
matrices B are calculated as follows:

= i: <Z§V_o |U€C(K?\i](to +5- AT)>’ "
=0

1 (X vee(B)ilto + j - AT)]

3_42( “ ) (1)

i=0
where tg = 0.05 [s] is the time when the movement starts,
A = 0.1 [ms] is the time step of the simulation and N is the
number of samples collected from start to end of zero-torque
trajectory with duration D, i.e., N = D/AT.
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