
Manipulating a Whip in 3D via Dynamic Primitives∗

Moses C. Nah1, Aleksei Krotov2, Marta Russo3, Dagmar Sternad4,5 and Neville Hogan1,6

Abstract— A prominent challenge in the field of robotics
is manipulation of flexible objects. One major reason that
makes this task difficult is the complex dynamics emerging
from its high-dimensional structure. This argues against the
use of popular optimization-based approaches, which scale
poorly with system dimension (the “curse of dimensionality”).
Nevertheless, almost indifferent to this complexity, humans
handle it on a daily basis, without any apparent difficulty.
Inspired by human motor control, we propose that composing
movements based on primitive actions can dramatically simplify
the task of manipulating flexible objects and provides a way
around the curse of dimensionality.

Using an extreme example — manipulating a whip — we
tested in simulation whether a distant target could be reached
with a whip by using a controller composed of dynamic motor
primitives. Regardless of the target location, this approach was
able to manage the complexity of a 54 degree-of-freedom system
(yielding a 108-dimensional state-space representation) and
succeeded to identify an upper limb movement that achieved
the task. The controller had no internal model of the daunting
complexity of the whip dynamics, which thereby significantly
simplified the computational complexity of the control task.
To the extent that dynamic motor primitives offer a simplified
solution to complex object manipulation, this approach may
facilitate robotic manipulation of flexible materials, and in
general afford a simplified way to control dynamically complex
objects.

I. INTRODUCTION

Endowing robots with human-level dexterity is one of the

ultimate goals of robotics. While the gap between human and

robot performance is rapidly closing, humans’ astonishing

dexterity is still far superior to anything yet achieved in

robotic systems [1].

The disparity in performance becomes more evident when

the task involves manipulation of flexible objects with sig-

nificant dynamics. The complex dynamics emerging from

its high degree-of-freedom (DOF) structure is one of the

many factors which make this task challenging [2]. Due to

the high-dimensional structure, popular optimization based

approaches, which scale poorly with system dimension, often
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fail to identify the optimal solution (the notorious “curse

of dimensionality”) [3]. Nevertheless, humans are strikingly

adept at manipulating flexible objects, without any apparent

difficulty. With care, understanding the strategy which hu-

mans use to handle flexible objects may allow us to better

bridge the performance gap between humans and robots.

Insights gained from human motor control have already

helped inspire new ways to manipulate flexible objects [4]. In

simulation, Nah et al. used a controller composed of dynamic

motor primitives [5], [6] to reach a distant target with a whip

— one of the most complex and exotic tools which humans

can handle [2]. Simplifying the whip task via parameterized

dynamic primitives dramatically reduced the computational

complexity of the optimization problem, and succeeded to

identify an optimal movement that achieved the task.

This article extends the work reported in [4]. Previous

work considered a 2-DOF model of the human upper limb

and studied a task in which the arm, whip and target

were confined to a 2D sagittal plane. The work reported

here considered a 4-DOF model of the human upper limb,

spatial motions of arm and whip, and several different

target locations. We formulated and parameterized a 4-DOF

model of the human arm interacting with a 50-DOF whip

model, where the model parameters were derived from an

actual bullwhip [4], [7]. The upper limb movement was

generated by a feedforward motion command composed

of a single maximally-smooth trajectory, planned in joint-

space coordinates. We found that regardless of the target

location, this approach was able to manage the complexity

of a 54-DOF system (yielding a 108-dimensional state-space

representation) and succeeded to identify an upper limb

movement that achieved the task. Encoding movements with

parameterized primitive actions dramatically simplified the

control task of manipulating a whip, and offered a way

to work around the curse of dimensionality. This result

reconfirmed the effectiveness of dynamic motor primitives

to control an (extremely) high DOF object. We believe that

this approach may facilitate robotic manipulation of flexible

objects, which is currently a major challenge.

II. METHODS

The research presented in this paper used the simulation

software MuJoCo [8]. For all of the MuJoCo simulations,

the semi-implicit Euler method was chosen as the numerical

integrator, with a time step of 0.1ms (10,000Hz).

A. Modeling

The model used in the MuJoCo simulation consisted of

two main parts: a model of a human upper limb (the manip-









TABLE II: The Upper, Lower Bound of the Search Space, Optimal Movement Parameters

Movement Parameters

𝜙!,# [rad] 𝜙$,# [rad] 𝜙%,# [rad] 𝜙&,# [rad] 𝜙!,' [rad] 𝜙$,' [rad] 𝜙%,' [rad] 𝜙&,' [rad] D [s] 𝐿∗ [m]

Bounding Box 

Constraints

Lower Bound −0.5𝜋 −0.5𝜋 −0.5𝜋 0.0𝜋 0.1𝜋 −0.5𝜋 −0.5𝜋 0.0𝜋 0.4

Upper Bound 0.1𝜋 0.5𝜋 0.5𝜋 0.9𝜋 1.0𝜋 0.5𝜋 0.5𝜋 0.9𝜋 1.5

Optimal 

Movement 
Parameters

Target 1 −1.501 0.000 −0.237 1.414 1.728 0.000 0.000 0.332 0.950 0.051

Target 2 −1.103 0.737 −0.233 2.310 1.728 −1.034 −1.396 0.192 0.579 0.092

Target 3 −0.943 0.815 −1.396 1.728 2.670 −0.698 −1.396 0.052 0.950 0.127

nonlinear cup-and-ball system, which was not competently

achieved with a single minimum-jerk profile. The result pre-

sented in this paper provides an intriguing counterexample

— the targeting task involved an interaction with a 50-

DOF model, and a minimum-jerk (nominal) motion was still

able to manage this complexity. The dimensionality of the

object (50-DOF vs. 2-DOF) may account for this differ-

ence, affording more opportunities for success using simple

actions. Rather than the minimum-jerk principle showing

limited value for complex object manipulation [17], this

result instead expands its value by widening the range of

complex manipulation tasks which can be achieved.

Although the method presented in this paper provided an

effective way to significantly reduce the dimensionality of the

optimization problem, we want to emphasize that this result

does not preclude alternative approaches. For example, an

input time-history (e.g., of joint torques) might be defined by

a sparse number of knot points connected by some suitable

spline function, and that may also facilitate convergence of

the optimization. In essence, the discrete motion profile used

here is an extreme example of that approach, using only

two knot points in the R
4 space for the entire trajectory.

But one should note that the choice of motion profile was

not arbitrary, but based on biological observation of human

movements in multiple situations [18].

C. Justification of the Stiffness and Damping Matrices

Three key modeling assumptions were used to determine

the K and B matrices (Eq. 5):

• The neuromuscular stiffness corresponding to shoulder

joints J2, J3 (excluding the shoulder flexion/extension joint,

J1) and elbow joint J4 were perfectly decoupled.

— Intrinsic neuromechanical impedance arises from the

properties of muscles and their activation. Several mul-

tiarticular muscles exist which couple motion across the

shoulder and elbow joints [19]. Hence, multiarticular mus-

cles result in off-diagonal stiffness terms between the

shoulder and elbow joint. For simplicity, we assumed

that the coupling between joint J1 and J4 was largely

predominant, such that the cross-coupling stiffness terms

between shoulder joint J2, J3 and elbow joint J4 could be

neglected.

• The stiffness matrix K was chosen to be symmetric.

— Studies have shown that the force field emerging

from the elastic properties of the upper limb musculature

is nearly curl-free, meaning that the stiffness matrix of

the neuromuscular impedance of the upper extremity is

predominantly symmetric [20]. In principle, symmetry

of the stiffness matrix is consistent with passivity (i.e.,

the system may store energy and release it, but cannot

continuously supply power), which plays a key role in

preventing instability due to physical contact and dynamic

interaction with passive objects [21].

• The damping matrix B was chosen to be proportional to

joint stiffness K, i.e., B = βK for some constant β.

— To model the dynamics of the first order impedance

controller with a single time-constant, values for the joint

damping matrix B were assumed to be proportional to the

joint stiffness matrix K. For this upper limb controller, the

time-constant β was set as 0.05s [22] (Eq. 5).

Along with these key assumptions, experimental measure-

ments [23], [24] were used to construct the stiffness matrix

K and damping matrix B of the upper limb controller, which

resulted in a motion resembling the actual motor behavior of

the upper limb.

D. Dynamic Motor Primitives – Relation to Prior Work

Composing a controller based on dynamic motor primi-

tives offered a simplified solution for complex object ma-

nipulation. A single movement planned in joint-space co-

ordinates, which corresponds to a motion primitive, and a

constant impedance described by K and B, which account

for physical interactions, were able to manage the complex

dynamics of the whip [5], [6].

Note that the idea of simplifying motor control via

primitive elements is not at all new. Approaches using

dynamic movement primitives have been proposed as a

powerful, robust and adaptive method for various tasks [25],

[26]. Nevertheless, to the best of our knowledge, this prior

work mainly focused on unconstrained movements or on

the manipulation of rigid objects with comparatively low

system dimensions [27], [28]. Tasks which involve objects as

dynamically complex as a whip have not been fully explored.

The study presented in this paper has expanded the feasibility

of primitives-based approaches by managing a very complex

object using just one motion primitive.

As used in the work reported here, dynamic motor

primitives include mechanical impedances to account for

physical interaction with the object [6]. Adding mechanical

impedance as a class of dynamic primitives may facilitate
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Fig. 4: The time-sequence of upper limb (orange) and whip model (purple). (A) Target 1 (B) Target 2 (C) Target 3. The simulation was generated by the
optimal upper limb movement parameters (Table II) and re-visualized in MATLAB.

the control of physical interactions. However, by choosing

constant impedance terms, this study did not explore the

effect of mechanical impedance for complex object manipu-

lation. Studying the role of mechanical impedance is a topic

of future research.

V. CONCLUSION

The simulations presented in this paper demonstrated that

encoding control based on primitive dynamic actions enabled

optimization to successfully identify an optimal movement

that handled an extremely complex object — a whip. We an-

ticipate that applying this dynamic motor primitives approach

to robot control systems may facilitate robotic manipulation

of flexible materials, which continues to be a significant

challenge.
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