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Abstract

It is widely accepted that reasoning about object shape is
important for object recognition. However, the most power-
ful object recognition methods today do not explicitly make
use of object shape during learning. In this work, motivated
by recent developments in low-shot learning, findings in de-
velopmental psychology, and the increased use of synthetic
data in computer vision research, we investigate how rea-
soning about 3D shape can be used to improve low-shot
learning methods’ generalization performance. We pro-
pose a new way to improve existing low-shot learning ap-
proaches by learning a discriminative embedding space us-
ing 3D object shape, and using this embedding by learning
how to map images into it. Our new approach improves the
performance of image-only low-shot learning approaches
on multiple datasets. We also introduce Toys4K, a 3D object
dataset with the largest number of object categories cur-
rently available, which supports low-shot learning. '

1. Introduction

Understanding the role of 3D object shape in categoriz-
ing objects from images is a classical topic in computer
vision [29, 9, 51], and the early history of object recog-
nition was dominated by considerations of object shape.
For example, David Marr’s influential theory [27] posits
that image-based recognition should be formulated as a se-
quence of information extraction steps culminating in a 3D
representation to be used for recognition. The difficulty
of reliably extracting 3D shape from images, combined
with the availability of large-scale image datasets [6, 22],
motivated the modern development of purely appearance-
based approaches to recognition and categorization. This
has culminated in current approaches such as CNNs that
learn feature representations directly from images. More-
over, a study by Geirhos et al. [14] of the inductive biases
of CNNs trained on ImageNet suggests that categorization
performance is driven primarily by a bias towards image

IThe code and data for this paper are available at our project page
https://rehg-lab.github.io/publication-pages/lowshot-shapebias/

texture rather than object shape.’

However, studies of infant learning [24, 7, 23, 15] sug-
gest that shape does play a significant role in the ability
to rapidly learn object categories from a small number of
examples, a task which is analogous to few-shot learning.
Both young children and adults who are forced to catego-
rize novel objects based on a few examples display a shape
bias, meaning that shape cues seem to play a dominant role
in comparison to color and texture when inferring category
membership. These studies beg the question of whether in-
formation about 3D object shape could be useful in learn-
ing to perform few-shot categorization from images. While
prior work has demonstrated effective approaches to object
categorization using 3D shapes as input [34, 36, 55, 56, 4],
and there is a large literature on few-shot learning from im-
ages alone [44, 53, 18, 38, 59, 49, 11], the question of how
shape cues could be used to learn effective representations
for image-based low-shot categorization has not been inves-
tigated previously.

The goal of this paper is to explore the incorporation of
a shape bias in SOTA approaches to few-shot object catego-
rization and thereby investigate the utility of shape informa-
tion in category learning. We leverage the recent availability
of datasets of 3D object models with category labels, such
as ModelNet40 [56] and ShapeNet [2]. By sampling surface
point clouds and rendering images of these models, we can
construct datasets that combine 3D shape and image cues.
Unfortunately, however, ShapeNet and ModelNet contain a
relatively small number of object categories (55 and 40 re-
spectively), making it difficult to test categorization at a suf-
ficient scale. To resolve this limitation, we introduce a new
3D object dataset, Toys4K consisting of 4,179 3D objects
from 105 object categories, designed to contain categories
of objects that are commonly encountered by infants and
children during their development.

We report on two sets of investigations. First, we ex-
amine the relative effectiveness of purely image-based and
purely shape-based approaches to few-shot categorization.

2This study does not speak to the possibility of whether shape could be
used more effectively, and it is unclear how much of the bias stems from
the composition of the ImageNet dataset itself.
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Figure 1. To perform low-shot learning with shape-bias, we train a embedding space defined by a point cloud encoder f, trained with cross-
entropy. Shape based embedding spaces are more discriminative than image-based ones (see Tbl. 1). We extract object shape embeddings,
and train an image encoder f; to map images into the shape space. If trained successfully, f; will have the discriminative properties of fp.

We demonstrate that purely shape-based few-shot learning
outperforms image-based approaches, and establish an em-
pirical upper bound on the effectiveness of a shape bias.
Second, we develop a novel approach for training an im-
age embedding representation for low-shot categorization
which incorporates an explicit shape bias, which we out-
line in Figure 1. We benchmark this approach on a repre-
sentative set of SOTA few-shot learning architectures and
demonstrate that the incorporation of shape bias results in
increased generalization accuracy over image-based train-
ing alone. In summary, this paper makes the following con-
tributions:

* A new approach to add explicit shape-bias to exist-
ing low-shot image classification methods, utilizing
3D object shape to learn similarity relationships be-
tween objects, which leads to improved low-shot per-
formance.

* The first evidence that shape information can enable
image-based low-shot classifiers to generalize with
higher accuracy to novel object categories.

* Toys4K - new 3D object dataset containing approxi-
mately twice the number of object categories as previ-
ous datasets which can be used for low-shot learning.

2. Related Work

Object Recognition from Synthetic Data

A large body of work focuses on appearance [46, 28,

, 10, 17], point cloud [34, 55, 36, 4] and voxel [56, 35]
based recognition of synthetic object data with category tax-
onomies based on object shape such as ModelNet40 [56].
The trade-offs between learning using point clouds, depth
maps, voxels, or images have been studied by [46, 35] but
their study focuses on standard supervised classification and
does not extend to low-shot classification of novel object
categories or on combining shape and appearance informa-
tion during learning.

Low-Shot Learning
Low-shot learning algorithms can be categorized into two

broad sets. Optimization-based algorithms such as MAML
[11,12], LEO [38], and Reptile [30], which during the base-
classes training stage, attempt to learn a representation that
can quickly be adapted using small amounts of informa-
tion with gradient-based learning in the low-shot learning
stage. Metric learning-based methods such as Prototypical
[44], Matching [53], and Relation [47] networks, as well as
the more recent SimpleShot [54], FEAT [59], and RFS [49]
aim to use the base class data to learn a similarity metric
that will also be discriminative for novel classes during the
low-shot phase. Despite their simplicity, metric-based ap-
proaches have superior performance on low-shot learning
benchmarks [54, 59]. Our approach of adding shape bias
belongs to the latter category, and compared to both is the
first approach to combine both appearance and shape infor-
mation for low-shot learning.

3D Object Shape Datasets
Other related works focus on building datasets of 3D object
models for recognition, single image object shape recon-
struction and shape segmentation [42, 48, 60, 21, 56, 2, 45].
The most widely used 3D shape datasets with category la-
bels are ModelNet40 [56] with 12K object instances of
40 categories with no object surface material properties,
ShapeNetCore.v2 [2] with 52K objects of 55 object cate-
gories with basic surface texture properties (basic shading
and UV mapping, but no physically based materials). The
ShapeNetSem split of ShapeNet consists of over 100 cate-
gories but is unsuitable for recognition since individual ob-
ject instances are assigned to multiple categories. Datasets
such as ABC [21] and ThingilOk [60] claim higher mesh
quality than previous datasets but lack object category an-
notation, making them more suitable for low-level tasks like
surface normal estimation and category agnostic shape re-
construction. The ModelNet40 and ShapeNet datasets were
scraped from online repositories and have categories largely
based on the data that was available in these repositories. In
contrast, our new Toys4K is curated specifically for testing
the generalization ability of learned representations to new
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classes. Compared to the aforementioned datasets, Toys4K
consists of highly diverse object instances within a category
(evident in Figure 3, detailed composition is included in the
supplement) and has the highest number of individual ob-
ject categories despite its smaller total size.

Multi-modal Learning
Aligning representations from different data modalities has
been extensively studied in vision and language works on
zero-shot learning [57, 19, 39, 13]. More recently, Schwartz
et al. [41] and Xing et al. [58] improve low shot image
classification performance on standard low-shot datasets by
combining the representation learned through the appear-
ance modality (images) with language model word vector
embeddings. In comparison, we combine appearance (im-
ages) and shape (point clouds) to learn a representation for
low shot object recognition that is biased to object shape
and leads to better low-shot generalization. It is important
to note that these works use multi-modal information for
the low-shot queries at test time, whereas our approach only
uses multi-modal information for the low-shot support set.

Another category of multi-modal learning works focuses
on learning joint embedding spaces of 3D meshes and im-
ages for image-based 3D shape retrieval [25, 26]. While
these works focus on retrieval for the same object categories
at training and testing time, our work focuses on combining
appearance and shape information for low-shot generaliza-
tion to novel object categories.

3. Using Shape for Low-Shot Classification

In principle, 3D shape is an attractive representation for
object recognition [27, 31, 26, 25] due to its invariance
to the effects of viewpoint, illumination, and background,
which can be challenging for appearance-based approaches.
While appearance-based methods may be able to model
these sources of variation given sufficient training images,
there is always a question of how well such models can gen-
eralize to novel categories and objects [ 14].

Despite its potential advantages, no previous work on
low-shot learning has utilized 3D shape, for at least two
reasons: 1) It is unclear how to leverage 3D shape in im-
proving image-based low shot learning;® 2) There is a lack
of 3D shape datasets that contain a sufficient number of ob-
ject categories to support effective experimentation. This is
due to the additional data requirements of few-shot learning:
The training/validation/testing split is over different classes
and not data points of the same class [37, 53] in order to
effectively test generalization to unseen classes.

To explain this issue more formally, let Dirain denote
the base classes, and D" and D't denote the validation
and testing sets, respectively, where these sets comprise a

30ur focus is on few-shot methods in which the queries are images,
with no 3D shape information available, as this is the most general and
useful paradigm.

disjoint partition of the total available classes. The base
classes must be sufficiently large and diverse to learn an ef-
fective feature representation in the training phase, and the
DY set must similarly support the accurate assessment of
low-shot generalization ability during hyperparameter tun-
ing (i.e. model selection while training on the base classes).
The D' set is used to generate labeled low-shot training
examples (supports), and unlabelled low-shot testing exam-
ples (queries), which are used to evaluate the generaliza-
tion performance of the model at testing time, which we
refer to as the low-shot phase. As a result of these con-
straints, the standard 3D shape datasets ModelNet40 [56]
and ShapeNet55 [2] can only support 10-way and 20-way
testing, respectively. If the number of testing classes is in-
sufficient, the estimation of the generalization performance
of the method may be inaccurate.

In this section, we describe our two primary contribu-
tions which address the limitations described above. In
§ 3.1 we present our novel method for introducing shape
bias in learning a low-shot image representation. In § 3.2,
we introduce a novel 3D object category dataset, Toys4K,
consisting of 4,179 object instances organized into 105 cat-
egories, with an average of 35 objects (3D meshes) per cate-
gory. Toys4K supports up to 50-way classification, expand-
ing well beyond ModelNet40 and ShapeNet55 (see Fig. 4).

3.1. Low-Shot Learning with Shape Bias

We begin by describing the problem formulation: We
assume that shape data in the form of 3D point clouds is
available for each RGB image in a dataset. We achieve this
by rendering RGB images from the 3D models. 3D shape
information is used directly during training and validation,
in order to construct a representation with an explicit shape
bias. In addition, during the low-shot phase, episodes are
generated so that point clouds are available for the support
objects, but not for the query objects. This assumption al-
lows for both appearance and shape information to be used
in building class prototypes, but inference is done using im-
ages only. The distinction between image only low-shot
learning and our new setting is illustrated in Figure 2.

In this work, we adopt a low-shot learning approach
based on a metric embedding space. In this approach, D"
is used to learn a function f; that maps the input data into
an embedding space where object instances of the same cat-
egory are close and instances of different categories are far
apart, according to some distance metric. This mapping can
be fixed after being learned from Dirain o fine-tuned further,
depending upon the algorithm design. During the low-shot
phase, the supports and queries are mapped into the embed-
ding space (see Figure 2), and the queries are classified ac-
cording to a nearest neighbor or nearest class prototype (e.g.
support centroid) rule. Metric-based low-shot learning has
high accuracy [54] and is significantly more computation-
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Figure 2. (a) The standard setting: Prototypes are formed from images. (b) Our novel approach in combining the modalities. Ora-
shape-biased setting: Image and shape embeddings are averaged. In both cases, the cle model has access to both image and point
image-only queries g; can be classified by identifying the closest prototype p;. The cloud information. See text for details.
training process for the mapping functions f; and f,, is illustrated in Figure 1.

ally efficient than approaches that fine-tune on the low-shot
supports. We first demonstrate that shape-based low-shot
learning allows for better generalization than image-based
low-shot learning, and then show how a shape-based em-
bedding with high generalization ability can be used to im-
prove image-based low-shot classification.

Shape-based low-shot learning outperforms image-
based low-shot learning

We perform a simple empirical study to determine
whether shape has an advantage for low-shot generalization.
We train two embedding spaces, one using image data and
one using point cloud data. For each type of data, we fol-
low the SimpleShot [54] approach, meaning that we train a
classifier using cross-entropy on D" and use the learned
feature space (output of the last pooling layer) to perform
nearest centroid-based low-shot classification in normalized
Euclidean space. We use a ResNet18 [16] for image learn-
ing and a DGCNN [55] for point cloud learning on the
ModelNet40-LS dataset (see § 4).

We present the results in Tbl. 1, and as might be ex-
pected, see significantly higher low-shot performance for
the point cloud model relative to the image model. This
quantifies the improvement in generalization to novel cate-
gories as as result of using a 3D shape-based representation
and suggests that 3D shape can yield a more discriminative
embedding space. The question then is how can this benefit
be retained when testing the model on image data alone?
Combining Appearance and Shape

Figure 1 illustrates our approach to using the 3D shape
information available at training time in order to learn how
to embed the image-only queries. First, we train a low-shot
point-cloud based classifier on the set of base-classes ptrain
resulting in an a highly discriminative embedding space for
both seen and novel categories. We then extract point cloud
embeddings for each object in the training set and train a
CNN to map images into the shape embedding space.

Let D be a dataset of paired object point clouds o,
and images o;, partitioned into D", D¥a and D*, Let

fp(z): N x R® — R? denote the trained function for map-
ping point clouds of size N into an embedding space of
dimension d. This embedding space is optimized to yield
favorable metric properties for low shot classification, us-
ing the labelled point cloud data in D", Qur goal is then
to learn a second mapping, f;(z): RE*Wx3 — R4 where
H, W are the image height and width, from images into the
shape embedding space defined by f,(x). We denote point
cloud embeddings as f,(0,) = ¢, and image embeddings
as fi(0;) = ¢.

We train a model that learns the mapping from images
to shape embeddings by minimizing two loss functions (see
part 3 of Figure 1). For a mini-batch B C D"" the first
loss minimizes the squared Euclidean distance (which we
denote as d(z, y)) between the learned point cloud embed-
dings, and the image based embeddings

Ly = Z d(¢i, ¢p).

(0i,0p)€EB

The second loss constrains the pairwise distances be-
tween the image embeddings of different object instances
to be the same as the pairwise distances of the learned
shape embeddings. Let Z denote the set of all (k,1) =
((oF,0k), (of,0,)) object instance data pairs in a mini-
batch. We define the second loss as

L= 3 (d(ok,ah) - d(ah.6)))’.

(k,))eT

During training, both losses are minimized with equal
weight. Validation for choosing f; is done by nearest cen-
troid classification on D*¥. In Section 4 we show that min-
imizing only £, results in convergence without learning to
match the distribution of the shape embedding well on the
training set, resulting in poor performance.

Inference: During the low-shot phase, as shown in Fig-
ure 2, class prototypes are built by averaging the shape ¢,
and image ¢; embeddings for each support object, whereas
only image information is used to map the query objects via
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Figure 3. Approximately one third of the objects in Toys4K, a new dataset of 3D assets for
low-shot object learning using object appearance and shape information.

fi- The queries are classified based on the nearest centroid
to the query embedding. This inference procedure is used
for all algorithms in this paper that combine both image and
shape information, with the exception of FEAT [59], which
uses an additional set-to-set mapping.

It is important to understand how the shape-biased en-
coder performs when there is no explicit shape information
available in the low-shot phase, and what is the gain in ac-
curacy by making shape available for building class proto-
types. To this end, in § 4.3 we also evaluate the setting
where there are no point clouds available in the low-shot
phase.

Why is mapping images to shape embeddings difficult?
If the mapping f;(x) is learned exactly, it would map im-
ages to their corresponding point cloud embeddings so that

V(Oi,Op) c {Dtrain U Dval U Dtest}, H¢l _ ¢p||2 =0.

This is challenging, however, since f; can only be trained on
the base classes in D"", requiring it to correctly extrapolate
to the metric properties of objects from novel classes.

We perform a simple test to validate the feasibility of
mapping images to shape embeddings in general and estab-
lish an empirical upper bound. We perform this by sim-
ply minimizing the Lo distance between the images and
their corresponding shape embeddings on combined data
from base classes, validation and test classes (DUain
{prrain y p¥al Y D)), This model is referred to as Im-
age + Point Cloud Oracle in Table 1 and provides empirical
evidence that it is possible to learn how to map images into
a shape embedding space with high accuracy when all of the
data is available. This model’s performance closely matches
that of the shape-only model, and significantly outperforms
the image-based approach, providing further evidence that
extrapolating the metric properties of the shape-embedding
space to novel categories is the key challenge in learning to
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Figure 4. The high number of categories in
Toys makes low-shot learning on Toys4K a
challenging task.

Dataset ‘ Instances ‘ Categories
Toys4K 4,179 105
ModelNet40 [56] 12,311 40
ShapeNet [2] 52,000 55
ThingilOK [60] 10,000 N/A
ABC [21] 750K N/A

Table 2. Toys4K has the most categories of
any available dataset of 3D objects.

map images to shape embeddings.

3.2. Toys4K Dataset

An object dataset with a high number of diverse cat-
egories and high-quality 3D meshes is essential to study
whether leveraging 3D object shape can enable improved
low-shot generalization. We satisfy this requirement with
our new Toys4K dataset. While it is possible to use existing
datasets such as ModelNet40 and ShapeNet (which we in-
clude in our experiments), the limited number of categories
is an obstacle to few-shot learning. For example, apply-
ing standard training/validation/test ratios (e.g. from mini-
ImageNet [53]) to the 40 categories in ModelNet40 results
in a 20-10-10 split, which limits the possibilities for many-
way testing. A comparison of Toys4K to prior datasets is
available in Table 2. In Figure 4 we demonstrate that many-
way low-shot classification on Toys4K is a challenging task
in comparison to ModelNet40 and ShapeNet.

Toys4K consists of 4,179 object instances in 105 cate-
gories, with an average of 35 object instances per category
with no less than 15 instances per category, allowing for 5
support 10 query low-shot episodes to be formed. Fig. 3
provides an example of the quality and variety of the mod-
els. Further details on the dataset composition are avail-
able in the supplement. Toys4K was collected by select-
ing freely-available objects from Blendswap [1], Sketch-
fab [43], Poly [32] and Turbosquid [50] under Creative
Commons and royalty-free licenses. Our list of object cate-
gories was developed in collaboration with experts in devel-
opmental psychology to include categories of objects avail-
able and relevant to children in their infancy. We manu-
ally selected each object and manually aligned the objects
within each category to a canonical coordinate system that
is consistent across all instances in that category.
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4. Experiments

In this section, we perform an empirical evaluation of
the benefit of explicit shape bias on multiple datasets and
image-only low-shot learning algorithms.

4.1. Datasets

In addition to our new dataset, Toys4K, we use the 3D
object category datasets ModelNet40 [56], ShapeNet [2].
For descriptions of the datasets please refer to § 2. We
render images using the Cycles ray tracing renderer in
Blender [33] using uniform lighting on white backgrounds.
For all datasets, camera pose is randomly sampled for 25
views of each object with azimuth ¢ € [0, 360] and eleva-
tion 6 € [—50, 50] degrees. Object surface point clouds are
sampled from the 3D object meshes.

Toys4K is our new low-shot learning dataset is described
in detail in § 3.2. We use a split of 40, 10, 55 for base,
low-shot validation, and testing classes, respectively. For
Toys and all other datasets, the split is designed such that
the categories with most classes are in the training set, and
the validation and testing classes are randomly chosen from
the remainder of the data.

ModelNet40-LS is the existing ModelNet40 [56]
dataset, with a 20, 10, 10 split for base, low-shot validation
and testing classes respectively.

ShapeNet-LS is the existing ShapeNetCore.v2 [56]
dataset, with a 25, 10, 20 split for base, low-shot valida-
tion and testing classes respectively, using a reduced subset
of object samples per category to reduce training time due
to the high data imbalance.

4.2. Baselines

Regarding low-shot learning, we compare with the clas-
sical low-shot learning method Prototypical Networks [44],
and the state-of-the-art algorithms FEAT [59], RFS [49],
and SimpleShot [54]. With respect to learning joint em-
beddings, we compare with a simple triplet loss-based ap-
proach that learns joint embeddings of images and point
clouds. All baselines use a standard ResNetl8 [16] as a
backbone for image encoding and a DGCNN [55] to en-
code point clouds. In the supplement we perform an abla-
tion study over different point cloud architectures including
PointNet [34] and PointNet++ [36]. Our low-shot learning
baseline implementations were all validated by re-creating
the results from the original papers.*

SimpleShot [54] is a simple low-shot learning baseline
algorithm that outperforms many recent methods. It makes
use of an embedding space learned by a CNN by training
on the base training classes for a standard classification task
using cross-entropy loss. Validation and testing are done
using a nearest neighbor classifier in the learned embedding

4Experiment implementation details included in the supplement

space, with feature normalization and training set mean sub-
traction resulting in improved performance.

RFS [49] is another simple low-shot learning algorithm
that is competitive with many recent approaches. Train-
ing the embedding space is done using cross-entropy on the
training set, but at testing time, a simple logistic regression
classifier is learned for each low-shot episode. In the origi-
nal work, the authors show that training a set of embedding
models with distillation slightly improves performance. We
omit this for a fair comparison with all metric-based works
since this addition would likely lead to performance im-
provements across the board.

Prototypical Networks [44] is a standard metric-based
low shot learning approach, which uses the base class set to
create low-shot episodes and learn a feature space that em-
beds object instances close or far based on visual similarity.

FEAT [59] builds on Prototypical Networks by learning
an additional set-to-set function implemented as a Trans-
former [52] on top of a cross-entropy pre-trained embed-
ding space to refine the class prototypes used for low-shot
classification. FEAT achieves state of the art performance
for inductive low-shot learning. Note that FEAT requires
separate retraining for each n-way m-shot configuration >.

Triplet We use a simple triplet loss-based approach as
a baseline algorithm with access to both image and shape
information during training, similar to prior approaches in
shape retrieval [25]. A joint embedding is learned by us-
ing triplet loss [3, 40], creating positive pairs between im-
age and point cloud features of same objects, and negative
pairs between image and shape features from different ob-
ject instances. Empirically we found that this performs bet-
ter than using category labels. Inference is done by nearest
centroid classification, building class prototypes that con-
tain both appearance and shape information by averaging
the individual support features.

4.3. Explicit Shape-Bias Improves Image-Based
Generalization

We evaluate our method of adding shape bias to low-shot
learning algorithms with state of the art low-shot image-
only classification algorithms and show that shape bias im-
proves performance in a low data regime. We present re-
sults on multiple datasets in Tables 3, 4, and 5 where we
refer to models as Shape Bias (w/pc) if the shape-biased
image encoder uses point cloud information to build pro-
totypes (see Fig 2(b)) and (wo/pc) if there are no point
clouds used to build prototypes for both validation and test-
ing (see Fig 2(a)). Our approach of introducing shape bias,
when trained with £4 and L2 losses improves the perfor-
mance of image-only low-shot recognition algorithms in the

5Since none of the datasets have more than 10 classes for validation,
the 20 and 30-way evaluations are done using a model trained for 10-way
classification.
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Episode Setup — 1-shot 5-way  5-shot 5-way | 1-shot 10-way 5-shot 10-way
RFS [49] 56.67 +0.30 72.64 +0.26 43.79 +o.16 60.61 +0.11
ProtoNet [44] 50.11 +o0.31 64.44 +0.24 36.44 +0.17 46.70 +0.26
Triplet 52.53 +0.66 63.07 +0.59 37.24 +o0.37 49.79 +0.26
SimpleShot [54] 58.99 +0.29 74.29 +0.24 45.82 +0.17 62.73 +o0.11
Shape Bias (w/ pc) - SimpleShot - £ only | 59.81 +0.31 71.61 +o0.26 47.89 +o0.15 59.48 +o0.11
Shape Bias (w/o pc) - SimpleShot 60.23 +0.30  75.59 +o.24 47.92 +o0.15 64.88 +o0.11
Shape Bias (w/ pc) - SimpleShot 61.91 +o.31 75.39 +0.24 49.84 +o.16 64.21 +o0.11
FEAT [59] 58.30 +0.29 71.54 +0.23 45.41 +o.16 60.44 +o0.11
Shape Bias (w/o pc) - FEAT 60.19 +0.31 74.66 +0.25 48.6 +0.16 64.08 +o.11
Shape Bias (w pc) - FEAT 62.84 +0.30  74.84 +0.24 51.49 +o0.15 63.80 +0.11

Table 3. Results on image-only and shape-biased low-shot recognition on ModelNet40-LS. Parenthesis show confidence intervals based
on 5K low shot episodes. Bold indicates best performance between a low-shot learning approach with and without shape bias; underline
indicates best overall. Adding shape bias improves performance in the 1-shot learning setting and has competitive performance otherwise.

Episode Setup — I-shot 5-way ~ 5-shot 5-way | l-shot 10-way  5-shot 10-way | 1-shot 20-way 5-shot 20-way | 1-shot 30-way 5-shot 30-way
RES [49] 67.10 +0.71 81.76 +0.54 52.94 +0.51 71.30 +0.45 40.97 +0.32 59.53 +0.30 34.34 +0.26 53.46 +0.24
ProtoNet [44] 62.48 +0.34 79.69 +0.25 48.27 +0.24 68.03 +0.21 36.38 +0.15 56.25 +0.15 30.62 +0.11 49.58 +0.11
Triplet 63.87 +0.34 73.95 +0.62 48.78 +0.54 60.44 +0.48 36.34 +0.35 47.28 +0.32 30.09 +0.25 40.08 +0.24
SimpleShot [54] 68.87 +0.32 83.69 +o0.23 55.22 +0.24 73.58 +o.19 43.05 +0.16 62.64 +0.14 36.78 +0.12 56.22 +0.12
Shape Bias (w/o pc) - SimpleShot | 68.74 +0.34 82.57 +o0.25 56.12 +0.25 72.80 +0.25 44.83 +o0.17 62.41 +0.14 38.94 +0.13 56.38 +0.11
Shape Bias (w/ pc) - SimpleShot 70.96 +0.33  81.33 +0.24 58.47 +o.25 70.81 +0.20 46.96 +0.17 60.3 +0.14 40.59 +o0.14 54.00 +o0.11
FEAT [59] 70.66 +0.33 84.13 +o0.23 57.15 +0.24 74.29 +o.19 44.84 +o0.16 63.65 +0.14 38.43 +0.12 5742 +o.11
Shape Bias (w/o pc) - FEAT 69.21 +0.32 82.56 +0.25 56.76 +0.24 72.95 +0.20 45.15 +o0.16 62.58 +0.15 39.24 +0.12 56.60 +0.11
Shape Bias (w/ pc) - FEAT 71.58 +o.34 81.45 +0.25 59.09 +o.25 71.00 +0.20 4745 f+o.17 59.98 +0.15 41.38 +0.12 53.64 +0.11

Table 4. Results on image-only and shape-biased low-shot recognition on Toys4K. Parenthesis show 95% confidence intervals based on 5K
low shot episodes. Bold indicates best performance for a low-shot approach with and without shape bias; underline indicates best overall.
Adding shape-bias improves 1-shot performance when the number of low-shot ways is higher.
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Figure 5. Examining the distribution of interclass distances in the
mappings learned by minimizing either £, or £1 + L relative to
the reference point cloud embedding shows that adding L2 in a
better approximation of the shape embedding space on both novel
categories and categories seen during training.

low-data, one-shot learning regime for the SimpleShot and
FEAT algorithms by up to 6%-points. For the (w/o pc) mod-
els that do not have any explicit shape information in the
low-shot phase, we see a smaller one-shot improvement,
but good five-shot performance. This indicates that shape
bias is useful without any explicit shape information in the
low-shot phase, and suggests possible future improvements
by using strategies other than averaging to combine image
and shape information in the low-shot phase.

We add shape-bias to SimpleShot by directly using the
learned image to shape-mapping f; for nearest class mean
classification, whereas for FEAT we train the set-to-set
Transformer module on top of f;, fine-tuning the model

end-to-end as in the original FEAT design. The object
shape embeddings for the low-shot supports are fixed and
not trained further. Notice that as the total number of cat-
egories (the number of low-shot ways) increases, the im-
provement in one-shot performance increases. Further, our
approach of learning shape bias significantly outperforms
the triplet-loss based approach, indicating that first learning
an embedding space with point clouds only is a better strat-
egy than joint training with images and point clouds. All ex-
periments for SimpleShot are averaged over 5 runs and for
FEAT are averaged over 3 runs, indicating consistent per-
formance improvements. To ensure statistical significance,
for all experiments we perform 5K low-shot episodes and
report results with 95% confidence intervals.®

4.4. Analysis of Pairwise Loss

We perform an analysis to determine the benefit of in-
cluding the pairwise distance loss L£o. In Figure 5, we plot
the pairwise interclass distances of object instances from
categories in the validation set for the learned mapping f;
trained either with one loss or both losses (blue and orange
respectively), along with the interclass distances in the point
cloud embedding that f; is trained to learn. The greater the
overall interclass distance, the better, and ideally the pair-
wise distance distributions are the same between the learned
mapping and the point cloud mapping. Just optimizing £;
results in learning a poor mapping on both the training set

6For further qualitative and quantitative analysis please refer to the sup-
plement.

1804



Episode Setup — 1-shot 5-way  5-shot 5-way | 1-shot 10-way 5-shot 10-way | 1-shot 20-way 5-shot 20-way
RFS [49] 65.79 +0.32 80.51 +0.23 52.16 +0.20 69.92 +0.10 40.25 +o0.10 58.44 +0.08
ProtoNet [44] 52.00 +0.31 69.65 +0.24 37.75 +0.19 55.87 +o0.16 27.00 +o0.11 43.16 +0.09
Triplet 61.07 +0.34 71.43 +o0.28 46.89 +0.22 58.37 +o0.18 35.09 +o0.12 46.20 +0.08
SimpleShot [54] 66.73 +0.32 80.93 +0.22 53.37 +o0.21 70.32 +o0.16 41.09 +o0.12 59.09 +o0.08
Shape Bias (w/o pc) - SimpleShot |  67.5 +0.34 81.30 +o0.23 54.99 +0.23 71.24 +o.17 43.60 +0.13 61.03 +o.08
Shape Bias (w/ pc) - SimpleShot 69.72 +0.32 80.93 +0.24 57.49 +o.21 70.75 +0.16 46.24 +o.12 60.21 +o0.08
FEAT [59] 67.81 +0.32 80.25 +0.23 54.35 +0.22 70.18 +o0.16 42.12 +o0.12 59.01 +o0.08
Shape Bias (w/o pc)- FEAT 67.78 +0.32  81.45 +o.22 55.69 +0.22 71.74 +o0.16 44.44 +0.13 61.46 +o0.08
Shape Bias (w/ pc) - FEAT 70.24 +o.32 80.95 +o0.22 58.45 +o.22 70.95 +o0.16 47.03 +o.13 60.43 +o0.08

Table 5. Results on image-only and shape-biased low-shot recognition on ShapeNet55-LS. Parenthesis show confidence intervals based on
5K low shot episodes. Bold indicates best performance between a low-shot approach with and without shape bias and underline indicates
best overall. Adding shape bias leads to consistent improvement for both FEAT and SimpleShot.

and the novel classes in the validation set, whereas adding
the pairwise term Lo leads to a better approximation of the
point cloud embedding. The utility of L is also shown in
Table 3, with the significant improvement over just £; on
SimpleShot with shape bias.

4.5. Shape Bias and Failure Analysis

To better understand the distinctions between the purely
image-based low-shot classifier and the shape-biased low
shot classifier, we compute the Pearson correlation (p <
0.05) between the accuracy achieved on the same 5K low-
shot episodes for the point cloud model and the shape-
biased and image-only classifiers (Figure 6). The shape-
biased low-shot classifier correlates more strongly with the
point cloud model across multiple datasets. This is evidence
for a qualitative difference beyond classification accuracy
between the shape biased and purely image low-shot clas-
sifiers. This would not be possible if the image data was
such that it could not be classified differently as a result
of introducing shape bias. Furthermore, in Table 6 we see
that shape-biased SimpleShot misclassifies similarly to the
point cloud SimpleShot, and that there is significant room
for improvement by learning to map images into shape em-
beddings more accurately.

‘ ModelNet ‘ ShapeNet ‘ Toys
5-way 38.73% 44.81% | 57.59%
10-way | 30.88% 38.17% | 50.53%

Table 6. Percent of queries misclassified by shape-biased Sim-
pleShot but not misclassified by point cloud model (over 5K
episodes). This indicates there is significant room for improve-
ment by learning better maps from images to shape embeddings.

5. Discussion and Conclusion

This paper takes the first step in investigating the utility
of shape bias for low-shot object categorization. Through
extensive empirical analysis of our novel approach for
adding shape bias to image-only low-shot learning algo-
rithms, we demonstrate improved generalization. We also
introduce Toys4K, a diverse and challenging dataset for ob-
ject learning with the largest number of categories available
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Figure 6. Accuracy of point cloud SimpleShot model vs. shape
bias and image SimpleShot models over the same 5K episodes
shows higher correlation between the point cloud model and shape
bias model, indicating that the shape-biased model classifies more
similarly to the point cloud model than the image only model.

to date. While dependence of our findings on synthetic ob-
ject data limits our ability to draw conclusions about shape
bias under more general conditions, it is essential since it is
currently the only feasible way to obtain matched 2D and
3D data at a large enough scale. Moreover, synthetic data
has been widely adopted for other vision tasks [5, 8, 20].

Progress in few-shot learning is crucial in order to over-
come the need for large amounts of labeled training data.
This work constitutes a step in a new direction: the exploita-
tion of the natural biases of the visual world, such as object
shape, in the design of few-shot architectures. Building on
this approach by exploiting other sources of bias is a logical
and exciting direction for future work.
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