Facebook’s Tectonic Filesystem: Efficiency from Exascale

Satadru Pan!, Theano Stavrinos', Yunqiao Zhang!, Atul Sikaria', Pavel Zakharov', Abhinav Sharma',
Shiva Shankar P!, Mike Shueyl , Richard Wareingl , Monika Gangapuraml , Guanglei Cao!, Christian
Preseau', Pratap Singh', Kestutis Patiejunas', JR Tipton', Ethan Katz-Bassett?, and Wyatt Lloyd?

L Facebook, Inc., 2 Princeton University, 3 Columbia University

Abstract

Tectonic is Facebook’s exabyte-scale distributed filesystem.
Tectonic consolidates large tenants that previously used
service-specific systems into general multitenant filesystem
instances that achieve performance comparable to the spe-
cialized systems. The exabyte-scale consolidated instances
enable better resource utilization, simpler services, and less
operational complexity than our previous approach. This pa-
per describes Tectonic’s design, explaining how it achieves
scalability, supports multitenancy, and allows tenants to spe-
cialize operations to optimize for diverse workloads. The
paper also presents insights from designing, deploying, and
operating Tectonic.

1 Introduction

Tectonic is Facebook’s distributed filesystem. It currently
serves around ten tenants, including blob storage and data
warehouse, both of which store exabytes of data. Prior to
Tectonic, Facebook’s storage infrastructure consisted of a
constellation of smaller, specialized storage systems. Blob
storage was spread across Haystack [11] and f4 [34]. Data
warehouse was spread across many HDFS instances [15].

The constellation approach was operationally complex, re-
quiring many different systems to be developed, optimized,
and managed. It was also inefficient, stranding resources in
the specialized storage systems that could have been reallo-
cated for other parts of the storage workload.

A Tectonic cluster scales to exabytes such that a single
cluster can span an entire datacenter. The multi-exabyte ca-
pacity of a Tectonic cluster makes it possible to host several
large tenants like blob storage and data warehouse on the
same cluster, with each supporting hundreds of applications
in turn. As an exabyte-scale multitenant filesystem, Tectonic
provides operational simplicity and resource efficiency com-
pared to federation-based storage architectures [8, 17], which
assemble smaller petabyte-scale clusters.

Tectonic simplifies operations because it is a single system
to develop, optimize, and manage for diverse storage needs. It
is resource-efficient because it allows resource sharing among
all cluster tenants. For instance, Haystack was the storage
system specialized for new blobs; it bottlenecked on hard disk
IO per second (IOPS) but had spare disk capacity. f4, which
stored older blobs, bottlenecked on disk capacity but had spare
10 capacity. Tectonic requires fewer disks to support the same
workloads through consolidation and resource sharing.

In building Tectonic, we confronted three high-level chal-
lenges: scaling to exabyte-scale, providing performance isola-
tion between tenants, and enabling tenant-specific optimiza-
tions. Exabyte-scale clusters are important for operational
simplicity and resource sharing. Performance isolation and
tenant-specific optimizations help Tectonic match the perfor-
mance of specialized storage systems.

To scale metadata, Tectonic disaggregates the filesys-
tem metadata into independently-scalable layers, similar to
ADLS [42]. Unlike ADLS, Tectonic hash-partitions each
metadata layer rather than using range partitioning. Hash
partitioning effectively avoids hotspots in the metadata layer.
Combined with Tectonic’s highly scalable chunk storage layer,
disaggregated metadata allows Tectonic to scale to exabytes
of storage and billions of files.

Tectonic simplifies performance isolation by solving the
isolation problem for groups of applications in each tenant
with similar traffic patterns and latency requirements. Instead
of managing resources among hundreds of applications, Tec-
tonic only manages resources among tens of traffic groups.

Tectonic uses tenant-specific optimizations to match the
performance of specialized storage systems. These optimiza-
tions are enabled by a client-driven microservice architecture
that includes a rich set of client-side configurations for con-
trolling how tenants interact with Tectonic. Data warehouse,
for instance, uses Reed-Solomon (RS)-encoded writes to im-
prove space, 10, and networking efficiency for its large writes.
Blob storage, in contrast, uses a replicated quorum append
protocol to minimize latency for its small writes and later
RS-encodes them for space efficiency.

Tectonic has been hosting blob storage and data warehouse
in single-tenant clusters for several years, completely replac-
ing Haystack, f4, and HDFS. Multitenant clusters are being
methodically rolled out to ensure reliability and avoid perfor-
mance regressions.

Adopting Tectonic has yielded many operational and effi-
ciency improvements. Moving data warehouse from HDFS
onto Tectonic reduced the number of data warehouse clusters
by 10x, simplifying operations from managing fewer clusters.
Consolidating blob storage and data warehouse into multi-
tenant clusters helped data warehouse handle traffic spikes
with spare blob storage 10 capacity. Tectonic manages these
efficiency improvements while providing comparable or better
performance than the previous specialized storage systems.



2 Facebook’s Previous Storage Infrastructure

Before Tectonic, each major storage tenant stored its data
in one or more specialized storage systems. We focus here
on two large tenants, blob storage and data warehouse. We
discuss each tenant’s performance requirements, their prior
storage systems, and why they were inefficient.

2.1 Blob Storage

Blob storage stores and serves binary large objects. These
may be media from Facebook apps (photos, videos, or mes-
sage attachments) or data from internal applications (core
dumps, bug reports). Blobs are immutable and opaque. They
vary in size from several kilobytes for small photos to several
megabytes for high-definition video chunks [34]. Blob stor-
age expects low-latency reads and writes as blobs are often
on path for interactive Facebook applications [29].

Haystack and f4. Before Tectonic, blob storage consisted
of two specialized systems, Haystack and f4. Haystack han-
dled “hot” blobs with a high access frequency [11]. It stored
data in replicated form for durability and fast reads and writes.
As Haystack blobs aged and were accessed less frequently,
they were moved to f4, the “warm” blob storage [34]. f4 stored
data in RS-encoded form [43], which is more space-efficient
but has lower throughput because each blob is directly acces-
sible from two disks instead of three in Haystack. f4’s lower
throughput was acceptable because of its lower request rate.

However, separating hot and warm blobs resulted in poor
resource utilization, a problem exacerbated by hardware and
blob storage usage trends. Haystack’s ideal effective replica-
tion factor was 3.6x (i.e., each logical byte is replicated 3%,
with an additional 1.2x overhead for RAID-6 storage [19]).
However, because IOPS per hard drive has remained steady
as drive density has increased, IOPS per terabyte of storage
capacity has declined over time.

As a result, Haystack became IOPS-bound; extra hard
drives had to be provisioned to handle the high IOPS load
of hot blobs. The spare disk capacity resulted in Haystack’s
effective replication factor increasing to 5.3 x. In contrast, f4
had an effective replication factor of 2.8 x (using RS(10,4)
encoding in two different datacenters). Furthermore, blob stor-
age usage shifted to more ephemeral media that was stored in
Haystack but deleted before moving to f4. As a result, an in-
creasing share of the total blob data was stored at Haystack’s
high effective replication factor.

Finally, since Haystack and f4 were separate systems, each
stranded resources that could not be shared with other sys-
tems. Haystack overprovisioned storage to accommodate peak
IOPS, whereas 4 had an abundance of IOPS from storing a
large volume of less frequently-accessed data. Moving blob
storage to Tectonic harvested these stranded resources and
resulted in an effective replication factor of ~2.8x.

Tectonic cluster Tectonic cluster

<, geo-replication
‘;{ dc2:blobstore dc2:warehouse
Metadata appz Metadata
Store oo Store

Chunk Chunk
Store Store

Datacenter 1 Datacenter 2

dcl:blobstore J dcl:warehouse

appA appZ

Figure 1: Tectonic provides durable, fault-tolerant stor-
age inside a datacenter. Each tenant has one or more sep-
arate namespaces. Tenants implement geo-replication.

2.2 Data Warehouse

Data warehouse provides storage for data analytics. Data
warehouse applications store objects like massive map-reduce
tables, snapshots of the social graph, and Al training data
and models. Multiple compute engines, including Presto [3],
Spark [10], and Al training pipelines [4] access this data,
process it, and store derived data. Warehouse data is parti-
tioned into datasets that store related data for different product
groups like Search, Newsfeed, and Ads.

Data warehouse storage prioritizes read and write through-
put over latency, since data warehouse applications often
batch-process data. Data warehouse workloads tend to issue
larger reads and writes than blob storage, with reads averaging
multiple megabytes and writes averaging tens of megabytes.

HDFS for data warehouse storage. Before Tectonic,
data warehouse used the Hadoop Distributed File System
(HDES) [15, 50]. However, HDFS clusters are limited in size
because they use a single machine to store and serve metadata.

As aresult, we needed tens of HDFS clusters per datacenter
to store analytics data. This was operationally inefficient; ev-
ery service had to be aware of data placement and movement
among clusters. Single data warehouse datasets are often large
enough to exceed a single HDFS cluster’s capacity. This com-
plicated compute engine logic, since related data was often
split among separate clusters.

Finally, distributing datasets among the HDFS clusters cre-
ated a two-dimensional bin-packing problem. The packing
of datasets into clusters had to respect each cluster’s capacity
constraints and available throughput. Tectonic’s exabyte scale
eliminated the bin-packing and dataset-splitting problems.

3 Architecture and Implementation

This section describes the Tectonic architecture and imple-
mentation, focusing on how Tectonic achieves exabyte-scale
single clusters with its scalable chunk and metadata stores.

3.1 Tectonic: A Bird’s-Eye View

A cluster is the top-level Tectonic deployment unit. Tectonic
clusters are datacenter-local, providing durable storage that is
resilient to host, rack, and power domain failures. Tenants can
build geo-replication on top of Tectonic for protection against
datacenter failures (Figure 1).



!

Client IMI‘_) Background
Liblfanry ] Keg;?éue le—s| Services
[ Blockiayer i (stateless)
Metadata Store Garbage collectors
I Rebalancer
Stat service
Disk inventory
N Block repair/scan
Storage node health
checker
Chunk Store

Figure 2: Tectonic architecture. Arrows indicate network
calls. Tectonic stores filesystem metadata in a key-value
store. Apart from the Chunk and Metadata Stores, all
components are stateless.

A Tectonic cluster is made up of storage nodes, metadata
nodes, and stateless nodes for background operations. The
Client Library orchestrates remote procedure calls to the meta-
data and storage nodes. Tectonic clusters can be very large: a
single cluster can serve the storage needs of all tenants in a
single datacenter.

Tectonic clusters are multitenant, supporting around ten
tenants on the same storage fabric (§4). Tenants are distributed
systems that will never share data with one another; tenants
include blob storage and data warehouse. These tenants in turn
serve hundreds of applications, including Newsfeed, Search,
Ads, and internal services, each with varying traffic patterns
and performance requirements.

Tectonic clusters support any number of arbitrarily-sized
namespaces, or filesystem directory hierarchies, on the same
storage and metadata components. Each tenant in a cluster
typically owns one namespace. Namespace sizes are limited
only by the size of the cluster.

Applications interact with Tectonic through a hierarchi-
cal filesystem API with append-only semantics, similar to
HDEFS [15]. Unlike HDFS, Tectonic APIs are configurable at
runtime, rather than being pre-configured on a per-cluster or
per-tenant basis. Tectonic tenants leverage this flexibility to
match the performance of specialized storage systems (§4).

Tectonic components. Figure 2 shows the major compo-
nents of Tectonic. The foundation of a Tectonic cluster is the
Chunk Store (§3.2), a fleet of storage nodes which store and
access data chunks on hard drives.

On top of the Chunk Store is the Metadata Store (§3.3),
which consists of a scalable key-value store and stateless
metadata services that construct the filesystem logic over the
key-value store. Their scalability enables Tectonic to store
exabytes of data.

Tectonic is a client-driven microservices-based system, a
design that enables tenant-specific optimizations. The Chunk
and Metadata Stores each run independent services to handle
read and write requests for data and metadata. These services
are orchestrated by the Client Library (§3.4); the library con-

verts clients’ filesystem API calls into RPCs to Chunk and
Metadata Store services.

Finally, each cluster runs stateless background services to
maintain cluster consistency and fault tolerance (§3.5).

3.2 Chunk Store: Exabyte-Scale Storage

The Chunk Store is a flat, distributed object store for chunks,
the unit of data storage in Tectonic. Chunks make up blocks,
which in turn make up Tectonic files.

The Chunk Store has two features that contribute to Tec-
tonic’s scalability and ability to support multiple tenants. First,
the Chunk Store is flat; the number of chunks stored grows
linearly with the number of storage nodes. As a result, the
Chunk Store can scale to store exabytes of data. Second, it
is oblivious to higher-level abstractions like blocks or files;
these abstractions are constructed by the Client Library using
the Metadata Store. Separating data storage from filesystem
abstractions simplifies the problem of supporting good per-
formance for a diversity of tenants on one storage cluster
(§85). This separation means reading to and writing from stor-
age nodes can be specialized to tenants’ performance needs
without changing filesystem management.

Storing chunks efficiently. Individual chunks are stored
as files on a cluster’s storage nodes, which each run a local
instance of XFS [26]. Storage nodes expose core IO APIs
to get, put, append to, and delete chunks, along with APIs
for listing chunks and scanning chunks. Storage nodes are
responsible for ensuring that their own local resources are
shared fairly among Tectonic tenants (§4).

Each storage node has 36 hard drives for storing chunks [5].
Each node also has a 1 TB SSD, used for storing XFS meta-
data and caching hot chunks. Storage nodes run a version
of XFS that stores local XFS metadata on flash [47]. This
is particularly helpful for blob storage, where new blobs are
written as appends, updating the chunk size. The SSD hot
chunk cache is managed by a cache library which is flash
endurance-aware [13].

Blocks as the unit of durable storage. In Tectonic, blocks
are a logical unit that hides the complexity of raw data storage
and durability from the upper layers of the filesystem. To the
upper layers, a block is an array of bytes. In reality, blocks are
composed of chunks which together provide block durability.

Tectonic provides per-block durability to allow tenants to
tune the tradeoff between storage capacity, fault tolerance, and
performance. Blocks are either Reed-Solomon encoded [43]
or replicated for durability. For RS(7, k) encoding, the block
data is split into r equal chunks (potentially by padding the
data), and k parity chunks are generated from the data chunks.
For replication, data chunks are the same size as the block
and multiple copies are created. Chunks in a block are stored
in different fault domains (e.g., different racks) for fault toler-
ance. Background services repair damaged or lost chunks to
maintain durability (§3.5).



Layer Key Value Sharded by Mapping

Name (dir_id, subdirname) subdir_info, subdir_id dir_id dir — list of subdirs (expanded)
(dir_id, filename) file_info, file_id dir_id dir — list of files (expanded)

File (file_id, blk_id) blk_info file_id file — list of blocks (expanded)

Block blk_id list<disk_id> blk_id block — list of disks (i.e., chunks)
(disk_id, blk_id) chunk_info blk_id disk — list of blocks (expanded)

Table 1: Tectonic’s layered metadata schema. dirname and filename are application-exposed strings. dir_id, file_id,
and block_id are internal object references. Most mappings are expanded for efficient updating.

3.3 Metadata Store: Naming Exabytes of Data

Tectonic’s Metadata Store stores the filesystem hierarchy and
the mapping of blocks to chunks. The Metadata Store uses
a fine-grained partitioning of filesystem metadata for opera-
tional simplicity and scalability. Filesystem metadata is first
disaggregated, meaning the naming, file, and block layers
are logically separated. Each layer is then hash partitioned
(Table 1). As we describe in this section, scalability and load
balancing come for free with this design. Careful handling of
metadata operations preserves filesystem consistency despite
the fine-grained metadata partitioning.

Storing metadata in a key-value store for scalability and
operational simplicity. Tectonic delegates filesystem meta-
data storage to ZippyDB [6], a linearizable, fault-tolerant,
sharded key-value store. The key-value store manages data at
the shard granularity: all operations are scoped to a shard, and
shards are the unit of replication. The key-value store nodes
internally run RocksDB [23], a SSD-based single-node key-
value store, to store shard replicas. Shards are replicated with
Paxos [30] for fault tolerance. Any replica can serve reads,
though reads that must be strongly consistent are served by
the primary. The key-value store does not provide cross-shard
transactions, limiting certain filesystem metadata operations.
Shards are sized so that each metadata node can host several
shards. This allows shards to be redistributed in parallel to
new nodes in case a node fails, reducing recovery time. It
also allows granular load balancing; the key-value store will
transparently move shards to control load on each node.

Filesystem metadata layers. Table 1 shows the filesystem
metadata layers, what they map, and how they are sharded.
The Name layer maps each directory to its sub-directories
and/or files. The File layer maps file objects to a list of blocks.
The Block layer maps each block to a list of disk (i.e., chunk)
locations. The Block layer also contains the reverse index of
disks to the blocks whose chunks are stored on that disk, used
for maintenance operations. Name, File, and Block layers are
hash-partitioned by directory, file, and block IDs, respectively.

As shown in Table 1, the Name and File layer and disk
to block list maps are expanded. A key mapped to a list is
expanded by storing each item in the list as a key, prefixed
by the true key. For example, if directory d1 contains files
foo and bar, we store two keys (d1, foo) and (d1, bar) in d1’s
Name shard. Expanding allows the contents of a key to be

modified without reading and then writing the entire list. In a
filesystem where mappings can be very large, e.g., directories
may contain millions of files, expanding significantly reduces
the overhead of some metadata operations such as file creation
and deletion. The contents of a expanded key are listed by
doing a prefix scan over keys.

Fine-grained metadata partitioning to avoid hotspots.
In a filesystem, directory operations often cause hotspots
in metadata stores. This is particularly true for data ware-
house workloads where related data is grouped into directo-
ries; many files from the same directory may be read in a
short time, resulting in repeated accesses to the directory.

Tectonic’s layered metadata approach naturally avoids
hotspots in directories and other layers by separating search-
ing and listing directory contents (Name layer) from reading
file data (File and Block layers). This is similar to ADLS’s
separation of metadata layers [42]. However, ADLS range-
partitions metadata layers whereas Tectonic hash-partitions
layers. Range partitioning tends to place related data on the
same shard, e.g., subtrees of the directory hierarchy, making
the metadata layer prone to hotspots if not carefully sharded.

We found that hash partitioning effectively load-balances
metadata operations. For example, in the Name layer, the
immediate directory listing of a single directory is always
stored in a single shard. But listings of two subdirectories
of the same directory will likely be on separate shards. In
the Block layer, block locator information is hashed among
shards, independent of the blocks’ directory or file. Around
two-thirds of metadata operations in Tectonic are served by
the Block layer, but hash partitioning ensures this traffic is
evenly distributed among Block layer shards.

Caching sealed object metadata to reduce read load.
Metadata shards have limited available throughput, so to re-
duce read load, Tectonic allows blocks, files, and directories
to be sealed. Directory sealing does not apply recursively, it
only prevents adding objects in the immediate level of the
directory. The contents of sealed filesystem objects cannot
change; their metadata can be cached at metadata nodes and
at clients without compromising consistency. The exception
is the block-to-chunk mapping; chunks can migrate among
disks, invalidating the Block layer cache. A stale Block layer
cache can be detected during reads, triggering a cache refresh.



Providing consistent metadata operations. Tectonic re-
lies on the key-value store’s strongly-consistent opera-
tions and atomic read-modify-write in-shard transactions for
strongly-consistent same-directory operations. More specif-
ically, Tectonic guarantees read-after-write consistency for
data operations (e.g., appends, reads), file and directory oper-
ations involving a single object (e.g., create, list), and move
operations where the source and destination are in the same
parent directory. Files in a directory reside in the directory’s
shard (Table 1), so metadata operations like file create, delete,
and moves within a parent directory are consistent.

The key-value store does not support consistent cross-shard
transactions, so Tectonic provides non-atomic cross-directory
move operations. Moving a directory to another parent di-
rectory on a different shard is a two-phase process. First, we
create a link from the new parent directory, and then delete
the link from the previous parent. The moved directory keeps
a backpointer to its parent directory to detect pending moves.
This ensures only one move operation is active for a direc-
tory at a time. Similarly, cross directory file moves involve
copying the file and deleting it from the source directory. The
copy step creates a new file object with the underlying blocks
of the source file, avoiding data movement.

In the absence of cross-shard transactions, multi-shard
metadata operations on the same file must be carefully imple-
mented to avoid race conditions. An example of such a race
condition is when a file named f7 in directory d is renamed
to f2. Concurrently, a new file with the same name is created,
where creates overwrite existing files with the same name.
The metadata layer and shard lookup key (shard(x)) are listed
for each step in parentheses.

A file rename has the following steps:

R1: get file ID fid for fI (Name, shard(d))

R2: add f2 as an owner of fid (File, shard(fid))

R3: create the mapping f2 — fid and delete fI/ — fidin
an atomic transaction (Name, shard(d))

A file create with overwriting has the following steps:

C1: create new file ID fid_new (File, shard(fid_new))

C2: map fl — f£id_new; delete fI — £id (Name, shard(d))

Interleaving the steps in these transactions may leave the
filesystem in an inconsistent state. If steps C1 and C2 are
executed after R1 but before R3, then R3 will erase the newly-
created mapping from the create operation. Rename step R3
uses a within-shard transaction to ensure that the file object
pointed to by fI has not been modified since R1.

3.4 Client Library

The Tectonic Client Library orchestrates the Chunk and Meta-
data Store services to expose a filesystem abstraction to appli-
cations, which gives applications per-operation control over
how to configure reads and writes. Moreover, the Client Li-
brary executes reads and writes at the chunk granularity, the
finest granularity possible in Tectonic. This gives the Client
Library nearly free reign to execute operations in the most

performant way possible for applications, which might have
different workloads or prefer different tradeoffs (§5).

The Client Library replicates or RS-encodes data and writes
chunks directly to the Chunk Store. It reads and reconstructs
chunks from the Chunk Store for the application. The Client
Library consults the Metadata Store to locate chunks, and
updates the Metadata Store for filesystem operations.

Single-writer semantics for simple, optimizable writes.
Tectonic simplifies the Client Library’s orchestration by allow-
ing a single writer per file. Single-writer semantics avoids the
complexity of serializing writes to a file from multiple writers.
The Client Library can instead write directly to storage nodes
in parallel, allowing it to replicate chunks in parallel and to
hedge writes (§5). Tenants needing multiple-writer semantics
can build serialization semantics on top of Tectonic.

Tectonic enforces single-writer semantics with a write to-
ken for every file. Any time a writer wants to add a block to a
file, it must include a matching token for the metadata write
to succeed. A token is added in the file metadata when a pro-
cess opens a file for appending, which subsequent writes must
include to update file metadata. If a second process attempts
to open the file, it will generate a new token and overwrite the
first process’s token, becoming the new, and only, writer for
the file. The new writer’s Client Library will seal any blocks
opened by the previous writer in the open file call.

3.5 Background Services

Background services maintain consistency between metadata
layers, maintain durability by repairing lost data, rebalance
data across storage nodes, handle rack drains, and publish
statistics about filesystem usage. Background services are
layered similar to the Metadata Store, and they operate on one
shard at a time. Figure 2 lists important background services.

A garbage collector between each metadata layer cleans
up (acceptable) metadata inconsistencies. Metadata incon-
sistencies can result from failed multi-step Client Library
operations. Lazy object deletion, a real-time latency optimiza-
tion that marks deleted objects at delete time without actually
removing them, also causes inconsistencies.

A rebalancer and a repair service work in tandem to relocate
or delete chunks. The rebalancer identifies chunks that need
to be moved in response to events like hardware failure, added
storage capacity, and rack drains. The repair service handles
the actual data movement by reconciling the chunk list to
the disk-to-block map for every disk in the system. To scale
horizontally, the repair service works on a per-Block layer
shard, per-disk basis, enabled by the reverse index mapping
disks to blocks (Table 1).

Copysets at scale. Copysets are combinations of disks that
provide redundancy for the same block (e.g., a copyset for an
RS(10,4)-encoded block consists of 14 disks) [20]. Having
too many copysets risks data unavailability if there is an un-
expected spike in disk failures. On the other hand, having too



few copysets results in high reconstruction load to peer disks
when one disk fails, since they share many chunks.

The Block Layer and the rebalancer service together at-
tempt to maintain a fixed copyset count that balances unavail-
ability and reconstruction load. They each keep in memory
about one hundred consistent shuffles of all the disks in the
cluster. The Block Layer forms copysets from contiguous
disks in a shuffle. On a write, the Block Layer gives the Client
Library a copyset from the shuffle corresponding to that block
ID. The rebalancer service tries to keep the block’s chunks
in the copyset specified by that block’s shuffle. Copysets are
best-effort, since disk membership in the cluster changes con-
stantly.

4 Multitenancy

Providing comparable performance for tenants as they move
from individual, specialized storage systems to a consolidated
filesystem presents two challenges. First, tenants must share
resources while giving each tenant its fair share, i.e., at least
the same resources it would have in a single-tenant system.
Second, tenants should be able to optimize performance as
in specialized systems. This section describes how Tectonic
supports resource sharing with a clean design that maintains
operational simplicity. Section 5 describes how Tectonic’s
tenant-specific optimizations allow tenants to get performance
comparable to specialized storage systems.

4.1 Sharing Resources Effectively

As a shared filesystem for diverse tenants across Facebook,
Tectonic needs to manage resources effectively. In particular,
Tectonic needs to provide approximate (weighted) fair shar-
ing of resources among tenants and performance isolation
between tenants, while elastically shifting resources among
applications to maintain high resource utilization. Tectonic
also needs to distinguish latency-sensitive requests to avoid
blocking them behind large requests.

Types of resources. Tectonic distinguishes two types of
resources: non-ephemeral and ephemeral. Storage capacity
is the non-ephemeral resource. It changes slowly and pre-
dictably. Most importantly, once allocated to a tenant, it can-
not be given to another tenant. Storage capacity is managed
at the tenant granularity. Each tenant gets a predefined ca-
pacity quota with strict isolation, i.e., there is no automatic
elasticity in the space allocated to different tenants. Recon-
figuring storage capacity between tenants is done manually.
Reconfiguration does not cause downtime, so in case of an
urgent capacity crunch, it can be done immediately. Tenants
are responsible for distributing and tracking storage capacity
among their applications.

Ephemeral resources are those where demand changes
from moment to moment, and allocation of these resources
can change in real time. Storage IOPS capacity and meta-
data query capacity are two ephemeral resources. Because
ephemeral resource demand changes quickly, these resources

need finer-grained real-time automated management to ensure
they are shared fairly, tenants are isolated from one another,
and resource utilization is high. For the rest of this section, we
describe how Tectonic shares ephemeral resources effectively.

Distributing ephemeral resources among and within ten-
ants. Ephemeral resource sharing is challenging in Tectonic
because not only are tenants diverse, but each tenant serves
many applications with varied traffic patterns and perfor-
mance requirements. For example, blob storage includes pro-
duction traffic from Facebook users and background garbage
collection traffic. Managing ephemeral resources at the tenant
granularity would be too coarse to account for the varied work-
loads and performance requirements within a tenant. On the
other hand, because Tectonic serves hundreds of applications,
managing resources at the application granularity would be
too complex and resource-intensive.

Ephemeral resources are therefore managed within each
tenant at the granularity of groups of applications. These appli-
cation groups, called TrafficGroups, reduce the cardinality of
the resource sharing problem, reducing the overhead of man-
aging multitenancy. Applications in the same TrafficGroup
have similar resource and latency requirements. For example,
one TrafficGroup may be for applications generating back-
ground traffic while another is for applications generating
production traffic. Tectonic supports around 50 TrafficGroups
per cluster. Each tenant may have a different number of Traffic-
Groups. Tenants are responsible for choosing the appropriate
TrafficGroup for each of their applications. Each TrafficGroup
is in turn assigned a TrafficClass. A TrafficGroup’s Traffic-
Class indicates its latency requirements and decides which
requests should get spare resources. The TrafficClasses are
Gold, Silver, and Bronze, corresponding to latency-sensitive,
normal, and background applications. Spare resources are
distributed according to TrafficClass priority within a tenant.

Tectonic uses tenants and TrafficGroups along with the
notion of TrafficClass to ensure isolation and high resource
utilization. That is, tenants are allocated their fair share of
resources; within each tenant, resources are distributed by
TrafficGroup and TrafficClass. Each tenant gets a guaranteed
quota of the cluster’s ephemeral resources, which is subdi-
vided between a tenant’s TrafficGroups. Each TrafficGroup
gets its guaranteed resource quota, which provides isolation
between tenants as well as isolation between TrafficGroups.

Any ephemeral resource surplus within a tenant is shared
with its own TrafficGroups by descending TrafficClass. Any
remaining surplus is given to TrafficGroups in other tenants
by descending TrafficClass. This ensures spare resources are
used by TrafficGroups of the same tenant first before being
distributed to other tenants. When one TrafficGroup uses
resources from another TrafficGroup, the resulting traffic gets
the minimum TrafficClass of the two TrafficGroups. This
ensures the overall ratio of traffic of different classes does not
change based on resource allocation, which ensures the node
can meet the latency profile of the TrafficClass.



Enforcing global resource sharing. The Client Library
uses a rate limiter to achieve the aforementioned elastic-
ity. The rate limiter uses high-performance, near-realtime
distributed counters to track the demand for each tracked
resource in each tenant and TrafficGroup in the last small
time window. The rate limiter implements a modified leaky
bucket algorithm. An incoming request increments the de-
mand counter for the bucket. The Client Library then checks
for spare capacity in its own TrafficGroup, then other Traffic-
Groups in the same tenant, and finally other tenants, adhering
to TrafficClass priority. If the client finds spare capacity, the re-
quest is sent to the backend. Otherwise, the request is delayed
or rejected depending on the request’s timeout. Throttling
requests at clients puts backpressure on clients before they
make a potentially wasted request.

Enforcing local resource sharing. The client rate limiter
ensures approximate global fair sharing and isolation. Meta-
data and storage nodes also need to manage resources to
avoid local hotspots. Nodes provide fair sharing and isolation
with a weighted round-robin (WRR) scheduler that provision-
ally skips a TrafficGroup’s turn if it will exceed its resource
quota. In addition, storage nodes need to ensure that small IO
requests (e.g., blob storage operations) do not see higher la-
tency from colocation with large, spiky 10 requests (e.g., data
warehouse operations). Gold TrafficClass requests can miss
their latency targets if they are blocked behind lower-priority
requests on storage nodes.

Storage nodes use three optimizations to ensure low latency
for Gold TrafficClass requests. First, the WRR scheduler pro-
vides a greedy optimization where a request from a lower
TrafficClass may cede its turn to a higher TrafficClass if the
request will have enough time to complete after the higher-
TrafficClass request. This helps prevent higher-TrafficClass
requests from getting stuck behind a lower-priority request.
Second, we limit how many non-Gold IOs may be in flight
for every disk. Incoming non-Gold traffic is blocked from
scheduling if there are any pending Gold requests and the non-
Gold in-flight limit has been reached. This ensures the disk is
not busy serving large data warehouse 10s while blob storage
requests are waiting. Third, the disk itself may re-arrange the
10 requests, i.e., serve a non-Gold request before an earlier
Gold request. To manage this, Tectonic stops scheduling non-
Gold requests to a disk if a Gold request has been pending
on that disk for a threshold amount of time. These three tech-
niques combined effectively maintain the latency profile of
smaller 10s, even when outnumbered by larger 1Os.

4.2 Multitenant Access Control

Tectonic follows common security principles to ensure that
all communications and dependencies are secure. Tectonic
additionally provides coarse access control between tenants
(to prevent one tenant from accessing another’s data) and fine-
grained access control within a tenant. Access control must
be enforced at each layer of Tectonic, since the Client Library

talks to each layer directly. Since access control is on path for
every read and write, it must also be lightweight.

Tectonic uses a token-based authorization mechanism that
includes which resources can be accessed with the token [31].
An authorization service authorizes top-level client requests
(e.g., opening a file), generating an authorization token for the
next layer in the filesystem; each subsequent layer likewise
authorizes the next layer. The token’s payload describes the re-
source to which access is given, enabling granular access con-
trol. Each layer verifies the token and the resource indicated
in the payload entirely in memory; verification can be per-
formed in tens of microseconds. Piggybacking token-passing
on existing protocols reduces the access control overhead.

5 Tenant-Specific Optimizations

Tectonic supports around ten tenants in the same shared
filesystem, each with specific performance needs and work-
load characteristics. Two mechanisms permit tenant-specific
optimizations. First, clients have nearly full control over how
to configure an application’s interactions with Tectonic; the
Client Library manipulates data at the chunk level, the finest
possible granularity (§3.4). This Client Library-driven de-
sign enables Tectonic to execute operations according to the
application’s performance needs.

Second, clients enforce configurations on a per-call basis.
Many other filesystems bake configurations into the system or
apply them to entire files or namespaces. For example, HDFS
configures durability per directory [7], whereas Tectonic con-
figures durability per block write. Per-call configuration is
enabled by the scalability of the Metadata Store: the Meta-
data Store can easily handle the increased metadata for this
approach. We next describe how data warehouse and blob
storage leverage per-call configurations for efficient writes.

5.1 Data Warehouse Write Optimizations

A common pattern in data warehouse workloads is to write
data once that will be read many times later. For these work-
loads, the file is visible to readers only once the creator closes
the file. The file is then immutable for its lifetime. Because
the file is only read after it is written completely, applications
prioritize lower file write time over lower append latency.

Full-block, RS-encoded asynchronous writes for space,
10, and network efficiency. Tectonic uses the write-once-
read-many pattern to improve 10 and network efficiency,
while minimizing total file write time. The absence of partial
file reads in this pattern allows applications to buffer writes
up to the block size. Applications then RS-encode blocks in
memory and write the data chunks to storage nodes. Long-
lived data is typically RS(9,6) encoded; short-lived data, e.g.,
map-reduce shuffles, is typically RS(3,3)-encoded.

Writing RS-encoded full blocks saves storage space, net-
work bandwidth, and disk IO over replication. Storage and
bandwidth are lower because less total data is written. Disk
10 is lower because disks are more efficiently used. More



100
95
75
290 - 3
c c
g 3 50 -
85 ]
a o
25 -
80 Hedging —o—
No Hedging —+—
75 1 1 1 1 1 ] 0
800 1000 1200 1400 1600 1800 2000 0 50

72MB block write latency (ms)
(a) Data warehouse full block writes

Write Latency (ms)

(b) Blob storage write latency

100 -
75
=2
€
8 50
@
Haystack =——+— 25
Quorum append —o— Tectonic =—o—
Standlard appemli — | . . Hlaystack I—‘— |
0
100 150 200 0 20 40 60 80 100

Read Latency (ms)

(c) Blob storage read latency

Figure 3: Tail latency optimizations in Tectonic. (a) shows the improvement in data warehouse tail latency from hedged
quorum writes (72MB blocks) in a test cluster with ~80% load. (b) and (c) show Tectonic blob storage write latency
(with and without quorum appends) and read latency compared to Haystack.

IOPS are needed to write chunks to 15 disks in RS(9,6), but
each write is small and the total amount of data written is
much smaller than with replication. This results in more effi-
cient disk IO because block sizes are large enough that disk
bandwidth, not IOPS, is the bottleneck for full-block writes.

The write-once-read-many pattern also allows applications
to write the blocks of a file asynchronously in parallel, which
decreases the file write latency significantly. Once the blocks
of the file are written, the file metadata is updated all together.
There is no risk of inconsistency with this strategy because a
file is only visible once it is completely written.

Hedged quorum writes to improve tail latency. For full-
block writes, Tectonic uses a variant of quorum writing which
reduces tail latency without any additional IO. Instead of
sending the chunk write payload to extra nodes, Tectonic first
sends reservation requests ahead of the data and then writes
the chunks to the first nodes to accept the reservation. The
reservation step is similar to hedging [22], but it avoids data
transfers to nodes that would reject the request because of
lack of resources or because the requester has exceeded its
resource share on that node (§4).

As an example, to write a RS(9,6)-encoded block, the Client
Library sends a reservation request to 19 storage nodes in
different failure domains, four more than required for the
write. The Client Library writes the data and parity chunks
to the first 15 storage nodes that respond to the reservation
request. It acknowledges the write to the client as soon as a
quorum of 14 out of 15 nodes return success. If the 15th write
fails, the corresponding chunk is repaired offline.

The hedging step is more effective when the cluster is
highly loaded. Figure 3a shows ~20% improvement in 99th
percentile latency for RS(9,6) encoded, 72 MB full-block
writes, in a test cluster with 80% throughput utilization.

5.2 Blob Storage Optimizations

Blob storage is challenging for filesystems because of the
quantity of objects that need to be indexed. Facebook stores
tens of trillions of blobs. Tectonic manages the size of blob

storage metadata by storing many blobs together into log-
structured files, where new blobs are appended at the end of a
file. Blobs are located with a map from blob ID to the location
of the blob in the file.

Blob storage is also on path for many user requests, so low
latency is desirable. Blobs are usually much smaller than Tec-
tonic blocks (§2.1). Blob storage therefore writes new blobs
as small, replicated partial block appends for low latency. The
partial block appends need to be read-after-write consistent
so blobs can be read immediately after successful upload.
However, replicated data uses more disk space than full-block
RS-encoded data.

Consistent partial block appends for low latency. Tec-
tonic uses partial block quorum appends to enable durable,
low-latency, consistent blob writes. In a quorum append, the
Client Library acknowledges a write after a subset of storage
nodes has successfully written the data to disk, e.g., two nodes
for three-way replication. The temporary decrease of durabil-
ity from a quorum write is acceptable because the block will
soon be reencoded and because blob storage writes a second
copy to another datacenter.

The challenge with partial block quorum appends is that
straggler appends could leave replica chunks at different sizes.
Tectonic maintains consistency by carefully controlling who
can append to a block and when appends are made visible.
Blocks can only be appended to by the writer that created
the block. Once an append completes, Tectonic commits the
post-append block size and checksum to the block metadata
before acknowledging the partial block quorum append.

This ordering of operations with a single appender provides
consistency. If block metadata reports a block size of S, then
all preceeding bytes in the block were written to at least two
storage nodes. Readers will be able to access data in the block
up to offset S. Similarly, any writes acknowledged to the ap-
plication will have been updated in the block metadata and so
will be visible to future reads. Figures 3b and 3¢ demonstrate
that Tectonic’s blob storage read and write latency is compa-
rable to Haystack, validating that Tectonic’s generality does



Capacity Used bytes  Files Blocks Storage Nodes Warehouse Blob storage Combined
1590 PB 1250 PB 10.7B 15B 4208 Supply 0.51 0.49 1.00
Table 2: Statistics from a multitenant Tectonic produc- Peak 1 0.60 0.12 0.72
tion cluster. File and block counts are in billions. Peak 2 0.54 0.14 0.68
Peak 3 0.57 0.11 0.68

not have a significant performance cost.

Reencoding blocks for storage efficiency. Directly RS-
encoding small partial-block appends would be IO-inefficient.
Small disk writes are IOPS-bound and RS-encoding results
in many more IOs (e.g, 14 I0s with RS(10, 4) instead of 3).
Instead of RS-encoding after each append, the Client Library
reencodes the block from replicated form to RS(10,4) en-
coding once the block is sealed. Reencoding is IO-efficient
compared to RS-encoding at append time, requiring only a
single large IO on each of the 14 target storage nodes. This
optimization, enabled by Tectonic’s Client Library-driven de-
sign, provides nearly the best of both worlds with fast and
10-efficient replication for small appends that are quickly
transitioned to the more space-efficient RS-encoding.

6 Tectonic in Production

This section shows Tectonic operating at exabyte scale,
demonstrates benefits of storage consolidation, and discusses
how Tectonic handles metadata hotspots. It also discusses
tradeoffs and lessons from designing Tectonic.

6.1 Exabyte-Scale Multitenant Clusters

Production Tectonic clusters run at exabyte scale. Table 2
gives statistics on a representative multitenant cluster. All
results in this section are for this cluster. The 1250 PB of stor-
age, ~70% of the cluster capacity at the time of the snapshot,
consists of 10.7 billion files and 15 billion blocks.

6.2 Efficiency from Storage Consolidation

The cluster in Table 2 hosts two tenants, blob storage and
data warehouse. Blob storage uses ~49% of the used space in
this cluster and data warehouse uses ~51%. Figures 4a and 4b
show the cluster handling storage load over a three-day period.
Figure 4a shows the cluster’s aggregate IOPS during that time,
and Figure 4b shows its aggregate disk bandwidth. The data
warehouse workload has large, regular load spikes triggered
by very large jobs. Compared to the spiky data warehouse
workload, blob storage traffic is smooth and predictable.

Sharing surplus IOPS capacity. The cluster handles
spikes in storage load from data warehouse using the surplus
IOPS capacity unlocked by consolidation with blob storage.
Blob storage requests are typically small and bound by IOPS
while data warehouse requests are typically large and bound
by bandwidth. As a result, neither IOPS nor bandwidth can
fairly account for disk IO usage. The bottleneck resource in
serving storage operations is disk time, which measures how
often a given disk is busy. Handling a storage load spike re-
quires Tectonic to have enough free disk time to serve the

Table 3: Consolidating data warehouse and blob storage
in Tectonic allows data warehouse to use what would oth-
erwise be stranded surplus disk time for blob storage to
handle large load spikes. This figure shows the normal-
ized disk time demand vs. supply in three daily peaks in
the representative cluster.

spike. For example, if a disk does 101Os in one second with
each taking 50 ms (seek and fetch), then the disk was busy for
500 out of 1000 ms. We use disk time to fairly account for
usage by different types of requests.

For the representative production cluster, Table 3 shows
normalized disk time demand for data warehouse and blob
storage for three daily peaks and the supply of disk time each
would have if running on its own cluster. We normalize by
total disktime corresponding to used space in the cluster. The
daily peaks correspond to the same three days of traffic as
in Figures 4a and 4b. Data warehouse’s demand exceeds its
supply in all three peaks and handling it on its own would
require disk overprovisioning. To handle peak data warehouse
demand over the three day period, the cluster would have
needed ~17% overprovisioning. Blob storage, on the other
hand, has surplus disk time that would be stranded if it ran
in its own cluster. Consolidating these tenants into a single
Tectonic cluster allows the blob storage’s surplus disk time to
be used for data warehouse’s storage load spikes.

6.3 Metadata Hotspots

Load spikes to the Metadata Store may result in hotspots in
metadata shards. The bottleneck resource in serving meta-
data operations is queries per second (QPS). Handling load
spikes requires the Metadata Store to keep up with the QPS
demand on every shard. In production, each shard can serve a
maximum of 10 KQPS. This limit is imposed by the current
isolation mechanism on the resources of the metadata nodes.
Figure 4c shows the QPS across metadata shards in the cluster
for the Name, File, and Block layers. All shards in the File
and Block layers are below this limit.

Over this three-day period, around 1% of Name layer shards
hit the QPS limit because they hold very hot directories. The
small unhandled fraction of metadata requests are retried
after a backoff. The backoff allows the metadata nodes to
clear most of the initial spike and successfully serve retried
requests. This mechanism, combined with all other shards
being below their maximum, enables Tectonic to successfully
handle the large spikes in metadata load from data warehouse.

The distribution of load across shards varies between the
Name, File, and Block layers. Each higher layer has a larger
distribution of QPS per shard because it colocates more of a



2000

Warehouse Warehouse
:288 Blob storage 4 Blob storage 100 |-
—~35
1400 2 Tl
21200 S 27"
Z|ooo e 25 % max load >
9 2 5 o 50
O 800 2 s =
c .
600 K] | § 25 L Block =—¥#—
;gg 05 & Name —+—
0 1 1 1 1 1 1 1 ‘0 0 I File
0O 10 20 30 40 50 60 70 0O 10 20 30 40 50 60 70 0 2 4 6 8 10
Time (hours) Time (hours) KQPS

(a) Aggregate cluster IOPS

(b) Aggregate cluster bandwidth

(c) Peak metadata load (CDF)

Figure 4: 10 and metadata load on the representative production cluster over three days. (a) and (b) show the difference
in blob storage and data warehouse traffic patterns and show Tectonic successfully handling spikes in storage IOPS and
bandwidth over 3 days. Both tenants occupy nearly the same space in this cluster. (c) is a CDF of peak metadata load
over three days on this cluster’s metadata shards. The maximum load each shard can handle is 10 KQPS (grey line).
Tectonic can handle all metadata operations at the File and Block layers. It can immediately handle almost all Name
layer operations; the remaining operations are handled on retry.

tenant’s operations. For instance, all directory-to-file lookups
for a given directory are handled by one shard. An alternative
design that used range partitioning like ADLS [42] would
colocate many more of a tenant’s operations together and
result in much larger load spikes. Data warehouse jobs often
read many similarly-named directories, which would lead to
extreme load spikes if the directories were range-partitioned.
Data warehouse jobs also read many files in a directory, which
causes load spikes in the Name layer. Range-partitioning the
File layer would colocate files in a directory on the same shard,
resulting in a much larger load spike because each job does
many more File layer operations than Name layer operations.
Tectonic’s hash partitioning reduces this colocation, allowing
Tectonic to handle metadata load spikes using fewer nodes
than would be necessary with range partitioning.

Tectonic also codesigns with data warehouse to reduce
metadata hotspots. For example, compute engines commonly
use an orchestrator to list files in a directory and distribute
the files to workers. The workers open and process the files
in parallel. In Tectonic, this pattern sends a large number of
nearly-simultaneous file open requests to a single directory
shard (§3.3), causing a hotspot. To avoid this anti-pattern,
Tectonic’s list-files API returns the file IDs along with the file
names in a directory. The compute engine orchestrator sends
the file IDs and names to its workers, which can open the files
directly by file ID without querying the directory shard again.

6.4 The simplicity-performance tradeoffs

Tectonic’s design generally prioritizes simplicity over effi-
ciency. We discuss two instances where we opted for addi-
tional complexity in exchange for performance gains.

Managing reconstruction load. RS-encoded data may be
stored contiguously, where a data block is divided into chunks
that are each written contiguously to storage nodes, or striped,
where a data block is divided into much smaller chunks that

are distributed round-robin across storage nodes [51]. Be-
cause Tectonic uses contiguous RS encoding and the majority
of reads are smaller than a chunk size, reads are usually di-
rect: they do not require RS reconstruction and so consist
of a single disk IO. Reconstruction reads require 10x more
10s than direct reads (for RS(10,4) encoding). Though com-
mon, it is difficult to predict the fraction of reads that will
be reconstructed, since reconstruction is triggered by hard-
ware failures as well as node overload. We learned that such
a wide variability in resource requirements, if not controlled,
can cause cascading failures that affect system availability
and performance.

If some storage nodes are overloaded, direct reads fail and
trigger reconstructed reads. This increases load to the rest
of the system and triggers yet more reconstructed reads, and
so forth. The cascade of reconstructions is called a recon-
struction storm. A simple solution would be to use striped
RS encoding where all reads are reconstructed. This avoids
reconstruction storms because the number of 1O0s for reads
does not change when there are failures. However, it makes
normal-case reads much more expensive. We instead prevent
reconstruction storms by restricting reconstructed reads to
10% of all reads. This fraction of reconstructed reads is typ-
ically enough to handle disk, host, and rack failures in our
production clusters. In exchange for some tuning complexity,
we avoid over-provisioning disk resources.

Efficiently accessing data within and across datacenters.
Tectonic allows clients to directly access storage nodes; an
alternative design might use front-end proxies to mediate all
client access to storage. Making the Client Library accessible
to clients introduces complexity because bugs in the library
become bugs in the application binary. However, direct client
access to storage nodes is vastly more network- and hard-
ware resource efficient than a proxy design, avoiding an extra
network hop for terabytes of data per second.



Unfortunately, direct storage node access is a poor fit for re-
mote requests, where the client is geographically distant from
the Tectonic cluster. The additional network overhead makes
the orchestration round trips prohibitively inefficient. To solve
this problem, Tectonic handles remote data access differently
from local data access: remote requests get forwarded to a
stateless proxy in the same datacenter as the storage nodes.

6.5 Tradeoffs and Compromises

Migrating to Tectonic was not without tradeoffs and compro-
mises. This subsection describes a few areas where Tectonic
is either less flexible or less performant than Facebook’s pre-
vious infrastructure. We also describe the impact of using a
hash-partitioned metadata store.

The impact of higher metadata latency. Migrating to Tec-
tonic meant data warehouse applications saw higher metadata
latency. HDFS metadata operations are in-memory and all
metadata for a namespace is stored on a single node. In con-
trast, Tectonic stores its metadata in a sharded key-value store
instance and disaggregates metadata layers (§3.3). This means
Tectonic metadata operations may require one or more net-
work calls (e.g., a file open operation will interact with the
Name and File layers). Data warehouse had to adjust how
it handled certain metadata operations given the additional
metadata latency. For instance, compute engines rename a set
of files one by one, in sequence, after computation is done.
In HDFS each rename was fast, but with Tectonic, compute
engines parallelize this step to hide the extra latency of indi-
vidual Tectonic rename operations.

Working around hash-partitioned metadata. Because
Tectonic directories are hash sharded, listing directories re-
cursively involves querying many shards. In fact, Tectonic
does not provide a recursive list API; tenants need to build it
as a client-side wrapper over individual lisz calls. As a result,
unlike HDFS, Tectonic does not have du (directory utilization)
functionality to query aggregate space usage of a directory.
Instead, Tectonic periodically aggregates per-directory usage
statistics, which can be stale.

6.6 Design and Deployment Lessons

Achieving high scalability is an iterative process enabled
by a microservice architecture. Several Tectonic compo-
nents have been through multiple iterations to meet increasing
scalability requirements. For example, the first version of the
Chunk Store grouped blocks to reduce metadata. A number of
blocks with the same redundancy scheme were grouped and
RS-encoded as one unit to store their chunks together. Each
block group mapped to a set of storage nodes. This is a com-
mon technique since it significantly reduces metadata [37, 53],
but it was too inflexible for our production environment. For
example, with only 5% of storage nodes unavailable, 80% of
the block groups became unavailable for writes. This design
also precluded optimizations like hedged quorum writes and

quorum appends (§5).

Additionally, our initial Metadata Store architecture did not
separate the Name and File layers; clients consulted the same
shards for directory lookups and for listing blocks in a file.
This design resulted in unavailability from metadata hotspots,
prompting us to further disaggregate metadata.

Tectonic’s evolution shows the importance of trying new
designs to get closer to performance goals. Our development
experience also shows the value of a microservices-based
architecture for experimentation: we could iterate on compo-
nents transparently to the rest of the system.

Memory corruption is common at scale. At Tectonic’s
scale, with thousands of machines reading and writing a large
amount of data every day, in-memory data corruption is a reg-
ular occurrence, a phenomenon observed in other large-scale
systems [12, 27]. We address this by enforcing checksum
checks within and between process boundaries.

For data D and checksum Cp, if we want to perform an in-
memory transformation F such that D' = F (D), we generate
checksum Cyy for D'. To check D', we must convert D’ back to
D with G, the inverse function of F', and compare Cg () with
Cp. The inverse function, G, may be expensive to compute
(e.g., for RS encoding or encryption), but it is an acceptable
cost for Tectonic to preserve data integrity.

All API boundaries involving moving, copying, or trans-
forming data had to be retrofitted to include checksum infor-
mation. Clients pass a checksum with data to the Client Li-
brary when writing, and Tectonic needs to pass the checksum
not just across process boundaries (e.g., between the client
library and the storage node) but also within the process (e.g.,
after transformations). Checking the integrity of transforma-
tions prevents corruptions from propagating to reconstructed
chunks after storage node failure.

6.7 Services that do not use Tectonic

Some services within Facebook do not use Tectonic for stor-
age. Bootstrap services, e.g., the software binary package
deployment system, which must have no dependencies, can-
not use Tectonic because it depends on many other services
(e.g., the key-value store, configuration management system,
deployment management system). Graph storage [16] also
does not use Tectonic, as Tectonic is not yet optimized for
key-value store workloads which often need the low latencies
provided by SSD storage.

Many other services do not use Tectonic directly. They in-
stead use Tectonic through a major tenant like blob storage or
data warehouse. This is because a core design philosophy of
Tectonic is separation of concerns. Internally, Tectonic aims
for independent software layers which each focus on a narrow
set of a storage system’s core responsibilities (e.g., storage
nodes only know about chunks but not blocks or files). This
philosophy extends to how Tectonic fits in with the rest of
the storage infrastructure. For example, Tectonic focuses on
providing fault tolerance within a datacenter; it does not pro-



tect against datacenter failures. Geo-replication is a separate
problem that Tectonic delegates to its large tenants, who solve
it to provide transparent and easy-to-use shared storage for
applications. Tenants are also expected to know details of
capacity management and storage deployments and rebalanc-
ing across different datacenters. For smaller applications, the
complexity and implementation needed to interface directly
with Tectonic in a way that meets their storage needs would
amount to re-implementing features that tenants have already
implemented. Individual applications therefore use Tectonic
via tenants.

7 Related Work

Tectonic adapts techniques from existing systems and the
literature, demonstrating how they can be combined into a
novel system that realizes exabyte-scale single clusters which
support a diversity of workloads on a shared storage fabric.

Distributed filesystems with a single metadata node.
HDFS [15], GFS [24], and others [38, 40, 44] are limited
by the metadata node to tens of petabytes of storage per in-
stance or cluster, compared to Tectonic’s exabytes per cluster.

Federating namespaces for increased capacity. Feder-
ated HDFS [8] and Windows Azure Storage (WAS) [17] com-
bine multiple smaller storage clusters (with a single metadata
node) into larger clusters. For instance, a federated HDFS [§]
cluster has multiple independent single-namenode names-
paces, even though the storage nodes are shared between
namespaces. Federated systems still have the operational
complexity of bin-packing datasets (§2). Also, migrating or
sharing data between instances, e.g., to load-balance or add
storage capacity, requires resource-heavy data copying among
namespaces [33, 46, 54]

Hash-based data location for metadata scalability.
Ceph [53] and FDS [36] eliminate centralized metadata, in-
stead locating data by hashing on object ID. Handling failures
in such systems is a scalability bottleneck. Failures are more
frequent with larger clusters, requiring frequent updates to
the hash-to-location map that must propagate to all nodes.
Yahoo’s Cloud Object Store [41] federates Ceph instances to
isolate the effects of failures. Furthermore, adding hardware
and draining is complicated, as Ceph lacks support for con-
trolled data migration [52]. Tectonic explicitly maps chunks
to storage nodes, allowing controlled migration.

Disaggregated or sharded metadata for scalability. Like
Tectonic, ADLS [42] and HopsFS [35] increase filesystem
capacity by disaggregating metadata into layers in separate
sharded data stores. Tectonic hash-partitions directories, while
ADLS and HopsFS store some related directory metadata on
the same shards, causing metadata for related parts of the
directory tree to be colocated. Hash partitioning helps Tec-
tonic avoid hotspots local to part of the directory tree. ADLS
uses WAS’s federated architecture [17] for block storage. In
contrast, Tectonic’s block storage is flat.

Like Tectonic, Colossus [28, 32] provides cluster-wide
multi-exabyte storage where client libraries directly access
storage nodes. Colossus uses Spanner [21], a globally consis-
tent database to store filesystem metadata. Tectonic metadata
is built on a sharded key-value store, which only provides
within-shard strong consistency and no cross-shard opera-
tions. These limitations have not been a problem in practice.

Blob and object stores. Compared to distributed filesys-
tems, blob and object stores [14, 18, 36, 37] are easier to
scale, as they do not have a hierarchical directory tree or
namespace to keep consistent. Hierarchical namespaces are
required for most warehouse workloads.

Other large-scale storage systems. Lustre [1] and
GPFS [45] are tuned for high-throughput parallel access. Lus-
tre limits the number of metadata nodes, limiting scalability.
GPFS is POSIX-compliant, introducing unnecessary meta-
data management overhead for our setting. HBase [9] is a
key-value store based on HDFS, but its HDFS clusters are
not shared with a warehouse workload. We could not compare
with AWS [2] as its design is not public.

Multitenancy techniques. Tectonic’s multitenancy tech-
niques were co-designed with the filesystem as well as the
tenants, and does not aim to achieve optimal fair sharing.
It is thus easier to provide performance isolation compared
to other systems in the literature. Other systems use more
complex resource management techniques to accommodate
changes in tenancy and resource use policies, or to provide
optimal fair resource sharing among tenants [25, 48, 49].
Some details of Tectonic have previously been described
in talks [39, 47] where the system is called Warm Storage.

8 Conclusion

This paper presents Tectonic, Facebook’s distributed filesys-
tem. A single Tectonic instance can support all Facebook’s
major storage tenants in a datacenter, enabling better resource
utilization and less operational complexity. Tectonic’s hash-
sharded disaggregated metadata and flat data chunk storage
allow it to address and store exabytes. Its cardinality-reduced
resource management allows it to efficiently and fairly share
resources and distribute surplus resources for high utiliza-
tion. Tectonic’s client-driven tenant-specific optimizations
allow it to match or exceed the performance of the previous
specialized storage systems.

Acknowledgements. We are grateful to our shepherd, Pe-
ter Macko, and the anonymous reviewers of the FAST pro-
gram committee whose extensive comments substantially im-
proved this work. We are also grateful to Nar Ganapathy, Mi-
hir Gorecha, Morteza Ghandehari, Bertan Ari, John Doty, and
other colleagues at Facebook who contributed to the project.
We also thank Jason Flinn and Qi Huang for suggestions for
improving the paper. Theano Stavrinos was supported by the
National Science Foundation grant CNS-1910390 while at
Princeton University.



References

(1]

(2]

(3]
(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

Lustre Wiki. https://wiki.lustre.org/images/6/
64/LustreArchitecture-v4.pdf, 2017.

AWS Documentation.
docs.aws.amazon.com/, 2020.

https://

Presto. https://prestodb.io/, 2020.

Aditya Kalro. Facebook’s FBLearner Platform with
Aditya Kalro. https://twimlai.com/twiml-talk-
197-facebooks-fblearner-platform-with-
aditya-kalro/, 2018.

J. Adrian. Introducing Bryce Canyon: Our next-
generation storage platform. https://tinyurl.com/
ycex2xTv, 2017.

M. Annamalai. ZippyDB - A Distributed key
value store. https://www.youtube.com/embed/
ZRP7z0HnClc, 2015.

Apache Software Foundation. HDFS Erasure
Coding. https://hadoop.apache.org/docs/
r3.1.1/hadoop-project-dist/hadoop-hdfs/
HDFSErasureCoding.html, 2018.

Apache Software Foundation. HDFS Fed-
eration. https://hadoop.apache.org/docs/
current/hadoop-project-dist/hadoop-hdfs/
Federation.html, 2019.

Apache Software Foundation. Apache HBase. https:
//hbase.apache.org/, 2020.

Apache Software Foundation. Apache Spark. https:
//spark.apache.org/, 2020.

D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Va-
jeel. Finding a Needle in Haystack: Facebook’s Photo
Storage. In Proceedings of the 9th USENIX Sympo-
sium on Operating Systems Design and Implementation
(0OSDI’10), Vancouver, BC, Canada, 2010. USENIX As-
sociation.

D. Behrens, M. Serafini, F. P. Junqueira, S. Arnautov,
and C. Fetzer. Scalable error isolation for distributed
systems. In Proceedings of the 12th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI’15), Oakland, CA, USA, 2015. USENIX Associ-
ation.

B. Berg, D. S. Berger, S. McAllister, I. Grosof, J. Gu-
nasekar, Sathya Lu, M. Uhlar, J. Carrig, N. Beckmann,
M. Harchol-Balter, and G. R. Ganger. The CacheLib
Caching Engine: Design and Experiences at Scale. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’20), Online, 2020. USENIX
Association.

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

A. Bigian. Blobstore: Twitter’s in-house photo storage
system. https://blog.twitter.com/engineering/
en_us/a/2012/blobstore-twitter-s-in-house-
photo-storage-system.html, 2012.

D. Borthakur. HDFS  Architecture
https://hadoop.apache.org/docs/r1.2.1/
hdfs_design.html, 2019.

Guide.

N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-
mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li,
M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and
V. Venkataramani. TAO: Facebook’s Distributed Data
Store for the Social Graph. In Proceedings of the 2013
USENIX Annual Technical Conference. USENIX, 2013.

B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,
J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri,
A. Edwards, V. Bedekar, S. Mainali, R. Abbasi,
A. Agarwal, M. F. u. Haq, M. L. u. Haq, D. Bhardwaj,
S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran,
K. Manivannan, and L. Rigas. @ Windows Azure
Storage: A Highly Available Cloud Storage Service
with Strong Consistency. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles
(SOSP’11), Cascais, Portugal, 2011. Association for
Computing Machinery (ACM).

J. Chen, C. Douglas, M. Mutsuzaki, P. Quaid, R. Ra-
makrishnan, S. Rao, and R. Sears. Walnut: a unified
cloud object store. 2012.

P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and
D. A. Patterson. RAID: High-performance, reliable
secondary storage. ACM Computing Surveys (CSUR),
26(2):145-185, 1994.

A. Cidon, S. Rumble, R. Stutsman, S. Katti, J. Ouster-
hout, and M. Rosenblum. Copysets: Reducing the Fre-
quency of Data Loss in Cloud Storage. In Proceed-
ings of the 2013 USENIX Annual Technical Conference
(USENIX ATC’13), San Jose, CA, USA, 2013. USENIX
Association.

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s globally
distributed database. ACM Trans. Comput. Syst., 31(3),
Aug. 2013. ISSN 0734-2071. doi: 10.1145/2491245.
URL https://doi.org/10.1145/2491245.

J. Dean and L. A. Barroso. The tail at scale. Com-
mun. ACM, 56(2):74-80, Feb. 2013. ISSN 0001-



[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

0782. doi: 10.1145/2408776.2408794. URL http:
//doi.acm.org/10.1145/2408776.2408794.

Facebook Open Source.  RocksDB.

rocksdb.org/, 2020.

https://

S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
File System. In Proceedings of the 19th ACM Sym-
posium on Operating Systems Principles (SOSP’03),
Bolton Landing, NY, USA, 2003. Association for Com-
puting Machinery (ACM).

R. Gracia-Tinedo, J. Sampé, E. Zamora, M. Sanchez-
Artigas, P. Garcfa-Lépez, Y. Moatti, and E. Rom. Crystal:
Software-defined storage for multi-tenant object stores.
In Proceedings of the 15th USENIX Conference on File
and Storage Technologies (FAST’17), Santa Clara, CA,
USA, 2017. USENIX Association.

X. F. Group. The XFS Linux wiki.
xfs.wiki.kernel.org/, 2018.

https://

A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai,
S. Wu, S. Dhoot, A. Kumar, A. Agiwal, S. Bhansali,
M. Hong, J. Cameron, M. Siddiqi, D. Jones, J. Shute,
A. Gubareyv, S. Venkataraman, and D. Agrawal. Mesa:
Geo-replicated, near real-time, scalable data warehous-
ing. In Proceedings of the 40th International Confer-
ence on Very Large Data Bases (VLDB’14), Hangzhou,
China, 2014. VLDB Endowment.

D. Hildebrand and D. Serenyi. A peek behind the
VM at the Google Storage infrastructure. https:
/ /www.youtube.com/watch?v=q4WC_6SzBz4, 2020.

Q. Huang, P. Ang, P. Knowles, T. Nykiel, I. Tverdokhlib,
A. Yajurvedi, P. Dapolito IV, X. Yan, M. Bykov, C. Liang,
M. Talwar, A. Mathur, S. Kulkarni, M. Burke, and
W. Lloyd. SVE: Distributed video processing at Face-
book scale. In Proceedings of the 26th ACM Symposium
on Operating Systems Principles (SOSP’17), Shang-
hai, China, 2017. Association for Computing Machinery
(ACM).

L. Leslie. The part-time parliament. ACM Transactions
on Computer Systems, 16(2):133-169, 1998.

K. Lewi, C. Rain, S. A. Weis, Y. Lee, H. Xiong, and
B. Yang. Scaling backend authentication at facebook.
IACR Cryptol. ePrint Arch., 2018:413, 2018. URL
https://eprint.iacr.org/2018/413.

M. K. McKusick and S. Quinlan. GFS: Evolution on
Fast-forward. Queue, 7(7):10:10-10:20, Aug. 2009.
ISSN 1542-7730. doi: 10.1145/1594204.1594206. URL
http://doi.acm.org/10.1145/1594204.1594206.

(33]

[34]

[35]

(36]

[37]

(38]

(39]

[40]

(41]

P. A. Misra, I. n. Goiri, J. Kace, and R. Bianchini. Scal-
ing Distributed File Systems in Resource-Harvesting
Datacenters. In Proceedings of the 2017 USENIX An-
nual Technical Conference (USENIX ATC’17), Santa
Clara, CA, USA, 2017. USENIX Association.

S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu,
S. Pan, S. Shankar, V. Sivakumar, L. Tang, and S. Ku-
mar. f4: Facebook’s Warm BLOB Storage System. In
Proceedings of the 11th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI’ 14),
Broomfield, CO, USA, 2014. USENIX Association.

S. Niazi, M. Ismail, S. Haridi, J. Dowling, S. Grohss-
chmiedt, and M. Ronstrom. HopsFS: Scaling hierarchi-
cal file system metadata using NewSQL databases. In
Proceedings of the 15th USENIX Conference on File
and Storage Technologies (FAST’17), Santa Clara, CA,
USA, 2017. USENIX Association.

E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. How-
ell, and Y. Suzue. Flat Datacenter Storage. In Pro-
ceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’12), Holly-
wood, CA, USA, 2012. USENIX Association.

S. A. Noghabi, S. Subramanian, P. Narayanan,
S. Narayanan, G. Holla, M. Zadeh, T. Li, I. Gupta, and
R. H. Campbell. Ambry: Linkedin’s scalable geo-
distributed object store. In Proceedings of the 2016
International Conference on Management of Data (SIG-
MOD’16), San Francisco, California, USA, 2016. Asso-
ciation for Computing Machinery (ACM).

M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao,
and J. Kelly. The Quantcast File System. In Proceedings
of the 39th International Conference on Very Large Data
Bases (VLDB’13), Riva del Garda, Italy, 2013. VLDB
Endowment.

K. Patiejunas and A. Jaiswal. Facebook’s disag-
gregated storage and compute for Map/Reduce.
https://atscaleconference.com/videos/
facebooks-disaggregated-storage-and-
compute-for-mapreduce/, 2016.

A. J. Peters and L. Janyst. Exabyte scale storage at
CERN. Journal of Physics: Conference Series, 331
(5):052015, dec 2011. doi: 10.1088/1742-6596/331/
5/052015. URL https://doi.org/10.1088/1742~
6596/331/5/052015.

N. PPS, S. Samal, and S. Nanniyur. Yahoo Cloud
Object Store - Object Storage at Exabyte Scale. https:
//yahooeng.tumblr.com/post/116391291701/
yahoo-cloud-object-store-object-storage-at,
2015.



[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

R. Ramakrishnan, B. Sridharan, J. R. Douceur, P. Kas-
turi, B. Krishnamachari-Sampath, K. Krishnamoorthy,
P. Li, M. Manu, S. Michaylov, R. Ramos, N. Sharman,
Z. Xu, Y. Barakat, C. Douglas, R. Draves, S. S. Naidu,
S. Shastry, A. Sikaria, S. Sun, and R. Venkatesan. Azure
Data Lake Store: a hyperscale distributed file service
for big data analytics. In Proceedings of the 2017 In-
ternational Conference on Management of Data (SIG-
MOD’17), Chicago, IL, USA, 2017. Association for
Computing Machinery (ACM).

I. S. Reed and G. Solomon. Polynomial codes over
certain finite fields. Journal of the Society for Industrial
and Applied Mathematics, 8(2):300-304, 1960.

Rousseau, Hervé, Chan Kwok Cheong, Belinda, Con-
tescu, Cristian, Espinal Curull, Xavier, Iven, Jan, Gon-
zalez Labrador, Hugo, Lamanna, Massimo, Lo Presti,
Giuseppe, Mascetti, Luca, Moscicki, Jakub, and van der
Ster, Dan. Providing large-scale disk storage at cern.
EPJ Web Conf., 214:04033, 2019. doi: 10.1051/epjconf/
201921404033. URL https://doi.org/10.1051/
epjconf/201921404033.

F. Schmuck and R. Haskin. GPFS: A Shared-Disk File
System for Large Computing Clusters. In Proceed-
ings of the 1st USENIX Conference on File and Stor-
age Technologies (FAST 02), Monterey, CA, USA, 2002.
USENIX Association.

R. Shah. Enabling HDFS Federation Having 1B File
System Objects. https://tech.ebayinc.com/
engineering/enabling-hdfs-federation-
having-1lb-file-system-objects/, 2020.

S. Shamasunder. Hybrid XFS—Using SSDs
to Supercharge HDDs at Facebook. https:
//www.usenix.org/conference/sreconl9%asia/
presentation/shamasunder, 2019.

D. Shue, M. J. Freedman, and A. Shaikh. Performance
isolation and fairness for multi-tenant cloud storage. In
Proceedings of the 10th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI’12),
Hollywood, CA, USA, 2012. USENIX Association.

A. K. Singh, X. Cui, B. Cassell, B. Wong, and K. Daud-
jee. Microfuge: A middleware approach to providing
performance isolation in cloud storage systems. In Pro-
ceedings of the 34th IEEE International Conference on
Distributed Computing Systems (ICDCS’14), Madrid,
Spain, 2014. IEEE Computer Society.

A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain,
J. Sarma, R. Murthy, and H. Liu. Data warehousing
and analytics infrastructure at facebook. In Proceedings
of the 2010 ACM SIGMOD International Conference

[51]

(52]

(53]

[54]

on Management of Data (SIGMOD’10), Indianapolis,
IN, USA, 2010. Association for Computing Machinery
(ACM).

A. Wang. Introduction to HDFS Erasure Coding
in Apache Hadoop. https://blog.cloudera.com/
introduction-to-hdfs-erasure-coding-in-
apache-hadoop/, 2015.

L. Wang, Y. Zhang, J. Xu, and G. Xue. MAPX: Con-
trolled Data Migration in the Expansion of Decentral-
ized Object-Based Storage Systems. In Proceedings
of the 18th USENIX Conference on File and Storage
Technologies (FAST’20), Santa Clara, CA, USA, 2020.
USENIX Association.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In Proceedings of the 7th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI’06), Seattle, WA, USA, 2006.
USENIX Association.

A. Zhang and W. Yan. Scaling Uber’s Apache
Hadoop Distributed File System for Growth. https:
//eng.uber.com/scaling-hdfs/, 2018.



