
Facebook’s Tectonic Filesystem: Efficiency from Exascale

Satadru Pan1, Theano Stavrinos1,2, Yunqiao Zhang1, Atul Sikaria1, Pavel Zakharov1, Abhinav Sharma1,

Shiva Shankar P1, Mike Shuey1, Richard Wareing1, Monika Gangapuram1, Guanglei Cao1, Christian

Preseau1, Pratap Singh1, Kestutis Patiejunas1, JR Tipton1, Ethan Katz-Bassett3, and Wyatt Lloyd2

1Facebook, Inc., 2Princeton University, 3Columbia University

Abstract

Tectonic is Facebook’s exabyte-scale distributed filesystem.

Tectonic consolidates large tenants that previously used

service-specific systems into general multitenant filesystem

instances that achieve performance comparable to the spe-

cialized systems. The exabyte-scale consolidated instances

enable better resource utilization, simpler services, and less

operational complexity than our previous approach. This pa-

per describes Tectonic’s design, explaining how it achieves

scalability, supports multitenancy, and allows tenants to spe-

cialize operations to optimize for diverse workloads. The

paper also presents insights from designing, deploying, and

operating Tectonic.

1 Introduction

Tectonic is Facebook’s distributed filesystem. It currently

serves around ten tenants, including blob storage and data

warehouse, both of which store exabytes of data. Prior to

Tectonic, Facebook’s storage infrastructure consisted of a

constellation of smaller, specialized storage systems. Blob

storage was spread across Haystack [11] and f4 [34]. Data

warehouse was spread across many HDFS instances [15].

The constellation approach was operationally complex, re-

quiring many different systems to be developed, optimized,

and managed. It was also inefficient, stranding resources in

the specialized storage systems that could have been reallo-

cated for other parts of the storage workload.

A Tectonic cluster scales to exabytes such that a single

cluster can span an entire datacenter. The multi-exabyte ca-

pacity of a Tectonic cluster makes it possible to host several

large tenants like blob storage and data warehouse on the

same cluster, with each supporting hundreds of applications

in turn. As an exabyte-scale multitenant filesystem, Tectonic

provides operational simplicity and resource efficiency com-

pared to federation-based storage architectures [8, 17], which

assemble smaller petabyte-scale clusters.

Tectonic simplifies operations because it is a single system

to develop, optimize, and manage for diverse storage needs. It

is resource-efficient because it allows resource sharing among

all cluster tenants. For instance, Haystack was the storage

system specialized for new blobs; it bottlenecked on hard disk

IO per second (IOPS) but had spare disk capacity. f4, which

stored older blobs, bottlenecked on disk capacity but had spare

IO capacity. Tectonic requires fewer disks to support the same

workloads through consolidation and resource sharing.

In building Tectonic, we confronted three high-level chal-

lenges: scaling to exabyte-scale, providing performance isola-

tion between tenants, and enabling tenant-specific optimiza-

tions. Exabyte-scale clusters are important for operational

simplicity and resource sharing. Performance isolation and

tenant-specific optimizations help Tectonic match the perfor-

mance of specialized storage systems.

To scale metadata, Tectonic disaggregates the filesys-

tem metadata into independently-scalable layers, similar to

ADLS [42]. Unlike ADLS, Tectonic hash-partitions each

metadata layer rather than using range partitioning. Hash

partitioning effectively avoids hotspots in the metadata layer.

Combined with Tectonic’s highly scalable chunk storage layer,

disaggregated metadata allows Tectonic to scale to exabytes

of storage and billions of files.

Tectonic simplifies performance isolation by solving the

isolation problem for groups of applications in each tenant

with similar traffic patterns and latency requirements. Instead

of managing resources among hundreds of applications, Tec-

tonic only manages resources among tens of traffic groups.

Tectonic uses tenant-specific optimizations to match the

performance of specialized storage systems. These optimiza-

tions are enabled by a client-driven microservice architecture

that includes a rich set of client-side configurations for con-

trolling how tenants interact with Tectonic. Data warehouse,

for instance, uses Reed-Solomon (RS)-encoded writes to im-

prove space, IO, and networking efficiency for its large writes.

Blob storage, in contrast, uses a replicated quorum append

protocol to minimize latency for its small writes and later

RS-encodes them for space efficiency.

Tectonic has been hosting blob storage and data warehouse

in single-tenant clusters for several years, completely replac-

ing Haystack, f4, and HDFS. Multitenant clusters are being

methodically rolled out to ensure reliability and avoid perfor-

mance regressions.

Adopting Tectonic has yielded many operational and effi-

ciency improvements. Moving data warehouse from HDFS

onto Tectonic reduced the number of data warehouse clusters

by 10⇥, simplifying operations from managing fewer clusters.

Consolidating blob storage and data warehouse into multi-

tenant clusters helped data warehouse handle traffic spikes

with spare blob storage IO capacity. Tectonic manages these

efficiency improvements while providing comparable or better

performance than the previous specialized storage systems.



2 Facebook’s Previous Storage Infrastructure

Before Tectonic, each major storage tenant stored its data

in one or more specialized storage systems. We focus here

on two large tenants, blob storage and data warehouse. We

discuss each tenant’s performance requirements, their prior

storage systems, and why they were inefficient.

2.1 Blob Storage

Blob storage stores and serves binary large objects. These

may be media from Facebook apps (photos, videos, or mes-

sage attachments) or data from internal applications (core

dumps, bug reports). Blobs are immutable and opaque. They

vary in size from several kilobytes for small photos to several

megabytes for high-definition video chunks [34]. Blob stor-

age expects low-latency reads and writes as blobs are often

on path for interactive Facebook applications [29].

Haystack and f4. Before Tectonic, blob storage consisted

of two specialized systems, Haystack and f4. Haystack han-

dled “hot” blobs with a high access frequency [11]. It stored

data in replicated form for durability and fast reads and writes.

As Haystack blobs aged and were accessed less frequently,

they were moved to f4, the “warm” blob storage [34]. f4 stored

data in RS-encoded form [43], which is more space-efficient

but has lower throughput because each blob is directly acces-

sible from two disks instead of three in Haystack. f4’s lower

throughput was acceptable because of its lower request rate.

However, separating hot and warm blobs resulted in poor

resource utilization, a problem exacerbated by hardware and

blob storage usage trends. Haystack’s ideal effective replica-

tion factor was 3.6⇥ (i.e., each logical byte is replicated 3⇥,

with an additional 1.2⇥ overhead for RAID-6 storage [19]).

However, because IOPS per hard drive has remained steady

as drive density has increased, IOPS per terabyte of storage

capacity has declined over time.

As a result, Haystack became IOPS-bound; extra hard

drives had to be provisioned to handle the high IOPS load

of hot blobs. The spare disk capacity resulted in Haystack’s

effective replication factor increasing to 5.3⇥. In contrast, f4

had an effective replication factor of 2.8⇥ (using RS(10,4)

encoding in two different datacenters). Furthermore, blob stor-

age usage shifted to more ephemeral media that was stored in

Haystack but deleted before moving to f4. As a result, an in-

creasing share of the total blob data was stored at Haystack’s

high effective replication factor.

Finally, since Haystack and f4 were separate systems, each

stranded resources that could not be shared with other sys-

tems. Haystack overprovisioned storage to accommodate peak

IOPS, whereas f4 had an abundance of IOPS from storing a

large volume of less frequently-accessed data. Moving blob

storage to Tectonic harvested these stranded resources and

resulted in an effective replication factor of ~2.8⇥.

Chunk 

Store

Metadata 

Store

dc1:blobstore

appA appZ
…

dc1:warehouse

Chunk 

Store

Metadata 

Store

dc2:blobstore

appZ

dc2:warehouse

geo-replication

Tectonic cluster

… … … …… … …

Tectonic cluster

Datacenter 1 Datacenter 2

Figure 1: Tectonic provides durable, fault-tolerant stor-

age inside a datacenter. Each tenant has one or more sep-

arate namespaces. Tenants implement geo-replication.

2.2 Data Warehouse

Data warehouse provides storage for data analytics. Data

warehouse applications store objects like massive map-reduce

tables, snapshots of the social graph, and AI training data

and models. Multiple compute engines, including Presto [3],

Spark [10], and AI training pipelines [4] access this data,

process it, and store derived data. Warehouse data is parti-

tioned into datasets that store related data for different product

groups like Search, Newsfeed, and Ads.

Data warehouse storage prioritizes read and write through-

put over latency, since data warehouse applications often

batch-process data. Data warehouse workloads tend to issue

larger reads and writes than blob storage, with reads averaging

multiple megabytes and writes averaging tens of megabytes.

HDFS for data warehouse storage. Before Tectonic,

data warehouse used the Hadoop Distributed File System

(HDFS) [15, 50]. However, HDFS clusters are limited in size

because they use a single machine to store and serve metadata.

As a result, we needed tens of HDFS clusters per datacenter

to store analytics data. This was operationally inefficient; ev-

ery service had to be aware of data placement and movement

among clusters. Single data warehouse datasets are often large

enough to exceed a single HDFS cluster’s capacity. This com-

plicated compute engine logic, since related data was often

split among separate clusters.

Finally, distributing datasets among the HDFS clusters cre-

ated a two-dimensional bin-packing problem. The packing

of datasets into clusters had to respect each cluster’s capacity

constraints and available throughput. Tectonic’s exabyte scale

eliminated the bin-packing and dataset-splitting problems.

3 Architecture and Implementation

This section describes the Tectonic architecture and imple-

mentation, focusing on how Tectonic achieves exabyte-scale

single clusters with its scalable chunk and metadata stores.

3.1 Tectonic: A Bird’s-Eye View

A cluster is the top-level Tectonic deployment unit. Tectonic

clusters are datacenter-local, providing durable storage that is

resilient to host, rack, and power domain failures. Tenants can

build geo-replication on top of Tectonic for protection against

datacenter failures (Figure 1).



Chunk Store

Client 

Library

Background 

Services 

(stateless)

Garbage collectors

Rebalancer

Stat service

Disk inventory

Block repair/scan

Storage node health 

checker

Metadata Store

Key-value 

Store

Name layer

Block layer

File layer

Figure 2: Tectonic architecture. Arrows indicate network

calls. Tectonic stores filesystem metadata in a key-value

store. Apart from the Chunk and Metadata Stores, all

components are stateless.

A Tectonic cluster is made up of storage nodes, metadata

nodes, and stateless nodes for background operations. The

Client Library orchestrates remote procedure calls to the meta-

data and storage nodes. Tectonic clusters can be very large: a

single cluster can serve the storage needs of all tenants in a

single datacenter.

Tectonic clusters are multitenant, supporting around ten

tenants on the same storage fabric (§4). Tenants are distributed

systems that will never share data with one another; tenants

include blob storage and data warehouse. These tenants in turn

serve hundreds of applications, including Newsfeed, Search,

Ads, and internal services, each with varying traffic patterns

and performance requirements.

Tectonic clusters support any number of arbitrarily-sized

namespaces, or filesystem directory hierarchies, on the same

storage and metadata components. Each tenant in a cluster

typically owns one namespace. Namespace sizes are limited

only by the size of the cluster.

Applications interact with Tectonic through a hierarchi-

cal filesystem API with append-only semantics, similar to

HDFS [15]. Unlike HDFS, Tectonic APIs are configurable at

runtime, rather than being pre-configured on a per-cluster or

per-tenant basis. Tectonic tenants leverage this flexibility to

match the performance of specialized storage systems (§4).

Tectonic components. Figure 2 shows the major compo-

nents of Tectonic. The foundation of a Tectonic cluster is the

Chunk Store (§3.2), a fleet of storage nodes which store and

access data chunks on hard drives.

On top of the Chunk Store is the Metadata Store (§3.3),

which consists of a scalable key-value store and stateless

metadata services that construct the filesystem logic over the

key-value store. Their scalability enables Tectonic to store

exabytes of data.

Tectonic is a client-driven microservices-based system, a

design that enables tenant-specific optimizations. The Chunk

and Metadata Stores each run independent services to handle

read and write requests for data and metadata. These services

are orchestrated by the Client Library (§3.4); the library con-

verts clients’ filesystem API calls into RPCs to Chunk and

Metadata Store services.

Finally, each cluster runs stateless background services to

maintain cluster consistency and fault tolerance (§3.5).

3.2 Chunk Store: Exabyte-Scale Storage

The Chunk Store is a flat, distributed object store for chunks,

the unit of data storage in Tectonic. Chunks make up blocks,

which in turn make up Tectonic files.

The Chunk Store has two features that contribute to Tec-

tonic’s scalability and ability to support multiple tenants. First,

the Chunk Store is flat; the number of chunks stored grows

linearly with the number of storage nodes. As a result, the

Chunk Store can scale to store exabytes of data. Second, it

is oblivious to higher-level abstractions like blocks or files;

these abstractions are constructed by the Client Library using

the Metadata Store. Separating data storage from filesystem

abstractions simplifies the problem of supporting good per-

formance for a diversity of tenants on one storage cluster

(§5). This separation means reading to and writing from stor-

age nodes can be specialized to tenants’ performance needs

without changing filesystem management.

Storing chunks efficiently. Individual chunks are stored

as files on a cluster’s storage nodes, which each run a local

instance of XFS [26]. Storage nodes expose core IO APIs

to get, put, append to, and delete chunks, along with APIs

for listing chunks and scanning chunks. Storage nodes are

responsible for ensuring that their own local resources are

shared fairly among Tectonic tenants (§4).

Each storage node has 36 hard drives for storing chunks [5].

Each node also has a 1 TB SSD, used for storing XFS meta-

data and caching hot chunks. Storage nodes run a version

of XFS that stores local XFS metadata on flash [47]. This

is particularly helpful for blob storage, where new blobs are

written as appends, updating the chunk size. The SSD hot

chunk cache is managed by a cache library which is flash

endurance-aware [13].

Blocks as the unit of durable storage. In Tectonic, blocks

are a logical unit that hides the complexity of raw data storage

and durability from the upper layers of the filesystem. To the

upper layers, a block is an array of bytes. In reality, blocks are

composed of chunks which together provide block durability.

Tectonic provides per-block durability to allow tenants to

tune the tradeoff between storage capacity, fault tolerance, and

performance. Blocks are either Reed-Solomon encoded [43]

or replicated for durability. For RS(r,k) encoding, the block

data is split into r equal chunks (potentially by padding the

data), and k parity chunks are generated from the data chunks.

For replication, data chunks are the same size as the block

and multiple copies are created. Chunks in a block are stored

in different fault domains (e.g., different racks) for fault toler-

ance. Background services repair damaged or lost chunks to

maintain durability (§3.5).



Layer Key Value Sharded by Mapping

Name (dir_id, subdirname) subdir_info, subdir_id dir_id dir ! list of subdirs (expanded)

(dir_id, filename) file_info, file_id dir_id dir ! list of files (expanded)

File (file_id, blk_id) blk_info file_id file ! list of blocks (expanded)

Block blk_id list<disk_id> blk_id block ! list of disks (i.e., chunks)

(disk_id, blk_id) chunk_info blk_id disk ! list of blocks (expanded)

Table 1: Tectonic’s layered metadata schema. dirname and filename are application-exposed strings. dir_id, file_id,

and block_id are internal object references. Most mappings are expanded for efficient updating.

3.3 Metadata Store: Naming Exabytes of Data

Tectonic’s Metadata Store stores the filesystem hierarchy and

the mapping of blocks to chunks. The Metadata Store uses

a fine-grained partitioning of filesystem metadata for opera-

tional simplicity and scalability. Filesystem metadata is first

disaggregated, meaning the naming, file, and block layers

are logically separated. Each layer is then hash partitioned

(Table 1). As we describe in this section, scalability and load

balancing come for free with this design. Careful handling of

metadata operations preserves filesystem consistency despite

the fine-grained metadata partitioning.

Storing metadata in a key-value store for scalability and

operational simplicity. Tectonic delegates filesystem meta-

data storage to ZippyDB [6], a linearizable, fault-tolerant,

sharded key-value store. The key-value store manages data at

the shard granularity: all operations are scoped to a shard, and

shards are the unit of replication. The key-value store nodes

internally run RocksDB [23], a SSD-based single-node key-

value store, to store shard replicas. Shards are replicated with

Paxos [30] for fault tolerance. Any replica can serve reads,

though reads that must be strongly consistent are served by

the primary. The key-value store does not provide cross-shard

transactions, limiting certain filesystem metadata operations.

Shards are sized so that each metadata node can host several

shards. This allows shards to be redistributed in parallel to

new nodes in case a node fails, reducing recovery time. It

also allows granular load balancing; the key-value store will

transparently move shards to control load on each node.

Filesystem metadata layers. Table 1 shows the filesystem

metadata layers, what they map, and how they are sharded.

The Name layer maps each directory to its sub-directories

and/or files. The File layer maps file objects to a list of blocks.

The Block layer maps each block to a list of disk (i.e., chunk)

locations. The Block layer also contains the reverse index of

disks to the blocks whose chunks are stored on that disk, used

for maintenance operations. Name, File, and Block layers are

hash-partitioned by directory, file, and block IDs, respectively.

As shown in Table 1, the Name and File layer and disk

to block list maps are expanded. A key mapped to a list is

expanded by storing each item in the list as a key, prefixed

by the true key. For example, if directory d1 contains files

foo and bar, we store two keys (d1, foo) and (d1, bar) in d1’s

Name shard. Expanding allows the contents of a key to be

modified without reading and then writing the entire list. In a

filesystem where mappings can be very large, e.g., directories

may contain millions of files, expanding significantly reduces

the overhead of some metadata operations such as file creation

and deletion. The contents of a expanded key are listed by

doing a prefix scan over keys.

Fine-grained metadata partitioning to avoid hotspots.

In a filesystem, directory operations often cause hotspots

in metadata stores. This is particularly true for data ware-

house workloads where related data is grouped into directo-

ries; many files from the same directory may be read in a

short time, resulting in repeated accesses to the directory.

Tectonic’s layered metadata approach naturally avoids

hotspots in directories and other layers by separating search-

ing and listing directory contents (Name layer) from reading

file data (File and Block layers). This is similar to ADLS’s

separation of metadata layers [42]. However, ADLS range-

partitions metadata layers whereas Tectonic hash-partitions

layers. Range partitioning tends to place related data on the

same shard, e.g., subtrees of the directory hierarchy, making

the metadata layer prone to hotspots if not carefully sharded.

We found that hash partitioning effectively load-balances

metadata operations. For example, in the Name layer, the

immediate directory listing of a single directory is always

stored in a single shard. But listings of two subdirectories

of the same directory will likely be on separate shards. In

the Block layer, block locator information is hashed among

shards, independent of the blocks’ directory or file. Around

two-thirds of metadata operations in Tectonic are served by

the Block layer, but hash partitioning ensures this traffic is

evenly distributed among Block layer shards.

Caching sealed object metadata to reduce read load.

Metadata shards have limited available throughput, so to re-

duce read load, Tectonic allows blocks, files, and directories

to be sealed. Directory sealing does not apply recursively, it

only prevents adding objects in the immediate level of the

directory. The contents of sealed filesystem objects cannot

change; their metadata can be cached at metadata nodes and

at clients without compromising consistency. The exception

is the block-to-chunk mapping; chunks can migrate among

disks, invalidating the Block layer cache. A stale Block layer

cache can be detected during reads, triggering a cache refresh.



Providing consistent metadata operations. Tectonic re-

lies on the key-value store’s strongly-consistent opera-

tions and atomic read-modify-write in-shard transactions for

strongly-consistent same-directory operations. More specif-

ically, Tectonic guarantees read-after-write consistency for

data operations (e.g., appends, reads), file and directory oper-

ations involving a single object (e.g., create, list), and move

operations where the source and destination are in the same

parent directory. Files in a directory reside in the directory’s

shard (Table 1), so metadata operations like file create, delete,

and moves within a parent directory are consistent.

The key-value store does not support consistent cross-shard

transactions, so Tectonic provides non-atomic cross-directory

move operations. Moving a directory to another parent di-

rectory on a different shard is a two-phase process. First, we

create a link from the new parent directory, and then delete

the link from the previous parent. The moved directory keeps

a backpointer to its parent directory to detect pending moves.

This ensures only one move operation is active for a direc-

tory at a time. Similarly, cross directory file moves involve

copying the file and deleting it from the source directory. The

copy step creates a new file object with the underlying blocks

of the source file, avoiding data movement.

In the absence of cross-shard transactions, multi-shard

metadata operations on the same file must be carefully imple-

mented to avoid race conditions. An example of such a race

condition is when a file named f1 in directory d is renamed

to f2. Concurrently, a new file with the same name is created,

where creates overwrite existing files with the same name.

The metadata layer and shard lookup key (shard(x)) are listed

for each step in parentheses.

A file rename has the following steps:

R1: get file ID fid for f1 (Name, shard(d))

R2: add f2 as an owner of fid (File, shard(fid))

R3: create the mapping f2 ! fid and delete f1 ! fid in

an atomic transaction (Name, shard(d))

A file create with overwriting has the following steps:

C1: create new file ID fid_new (File, shard(fid_new))

C2: map f1 ! fid_new; delete f1 ! fid (Name, shard(d))

Interleaving the steps in these transactions may leave the

filesystem in an inconsistent state. If steps C1 and C2 are

executed after R1 but before R3, then R3 will erase the newly-

created mapping from the create operation. Rename step R3

uses a within-shard transaction to ensure that the file object

pointed to by f1 has not been modified since R1.

3.4 Client Library

The Tectonic Client Library orchestrates the Chunk and Meta-

data Store services to expose a filesystem abstraction to appli-

cations, which gives applications per-operation control over

how to configure reads and writes. Moreover, the Client Li-

brary executes reads and writes at the chunk granularity, the

finest granularity possible in Tectonic. This gives the Client

Library nearly free reign to execute operations in the most

performant way possible for applications, which might have

different workloads or prefer different tradeoffs (§5).

The Client Library replicates or RS-encodes data and writes

chunks directly to the Chunk Store. It reads and reconstructs

chunks from the Chunk Store for the application. The Client

Library consults the Metadata Store to locate chunks, and

updates the Metadata Store for filesystem operations.

Single-writer semantics for simple, optimizable writes.

Tectonic simplifies the Client Library’s orchestration by allow-

ing a single writer per file. Single-writer semantics avoids the

complexity of serializing writes to a file from multiple writers.

The Client Library can instead write directly to storage nodes

in parallel, allowing it to replicate chunks in parallel and to

hedge writes (§5). Tenants needing multiple-writer semantics

can build serialization semantics on top of Tectonic.

Tectonic enforces single-writer semantics with a write to-

ken for every file. Any time a writer wants to add a block to a

file, it must include a matching token for the metadata write

to succeed. A token is added in the file metadata when a pro-

cess opens a file for appending, which subsequent writes must

include to update file metadata. If a second process attempts

to open the file, it will generate a new token and overwrite the

first process’s token, becoming the new, and only, writer for

the file. The new writer’s Client Library will seal any blocks

opened by the previous writer in the open file call.

3.5 Background Services

Background services maintain consistency between metadata

layers, maintain durability by repairing lost data, rebalance

data across storage nodes, handle rack drains, and publish

statistics about filesystem usage. Background services are

layered similar to the Metadata Store, and they operate on one

shard at a time. Figure 2 lists important background services.

A garbage collector between each metadata layer cleans

up (acceptable) metadata inconsistencies. Metadata incon-

sistencies can result from failed multi-step Client Library

operations. Lazy object deletion, a real-time latency optimiza-

tion that marks deleted objects at delete time without actually

removing them, also causes inconsistencies.

A rebalancer and a repair service work in tandem to relocate

or delete chunks. The rebalancer identifies chunks that need

to be moved in response to events like hardware failure, added

storage capacity, and rack drains. The repair service handles

the actual data movement by reconciling the chunk list to

the disk-to-block map for every disk in the system. To scale

horizontally, the repair service works on a per-Block layer

shard, per-disk basis, enabled by the reverse index mapping

disks to blocks (Table 1).

Copysets at scale. Copysets are combinations of disks that

provide redundancy for the same block (e.g., a copyset for an

RS(10,4)-encoded block consists of 14 disks) [20]. Having

too many copysets risks data unavailability if there is an un-

expected spike in disk failures. On the other hand, having too



few copysets results in high reconstruction load to peer disks

when one disk fails, since they share many chunks.

The Block Layer and the rebalancer service together at-

tempt to maintain a fixed copyset count that balances unavail-

ability and reconstruction load. They each keep in memory

about one hundred consistent shuffles of all the disks in the

cluster. The Block Layer forms copysets from contiguous

disks in a shuffle. On a write, the Block Layer gives the Client

Library a copyset from the shuffle corresponding to that block

ID. The rebalancer service tries to keep the block’s chunks

in the copyset specified by that block’s shuffle. Copysets are

best-effort, since disk membership in the cluster changes con-

stantly.

4 Multitenancy

Providing comparable performance for tenants as they move

from individual, specialized storage systems to a consolidated

filesystem presents two challenges. First, tenants must share

resources while giving each tenant its fair share, i.e., at least

the same resources it would have in a single-tenant system.

Second, tenants should be able to optimize performance as

in specialized systems. This section describes how Tectonic

supports resource sharing with a clean design that maintains

operational simplicity. Section 5 describes how Tectonic’s

tenant-specific optimizations allow tenants to get performance

comparable to specialized storage systems.

4.1 Sharing Resources Effectively

As a shared filesystem for diverse tenants across Facebook,

Tectonic needs to manage resources effectively. In particular,

Tectonic needs to provide approximate (weighted) fair shar-

ing of resources among tenants and performance isolation

between tenants, while elastically shifting resources among

applications to maintain high resource utilization. Tectonic

also needs to distinguish latency-sensitive requests to avoid

blocking them behind large requests.

Types of resources. Tectonic distinguishes two types of

resources: non-ephemeral and ephemeral. Storage capacity

is the non-ephemeral resource. It changes slowly and pre-

dictably. Most importantly, once allocated to a tenant, it can-

not be given to another tenant. Storage capacity is managed

at the tenant granularity. Each tenant gets a predefined ca-

pacity quota with strict isolation, i.e., there is no automatic

elasticity in the space allocated to different tenants. Recon-

figuring storage capacity between tenants is done manually.

Reconfiguration does not cause downtime, so in case of an

urgent capacity crunch, it can be done immediately. Tenants

are responsible for distributing and tracking storage capacity

among their applications.

Ephemeral resources are those where demand changes

from moment to moment, and allocation of these resources

can change in real time. Storage IOPS capacity and meta-

data query capacity are two ephemeral resources. Because

ephemeral resource demand changes quickly, these resources

need finer-grained real-time automated management to ensure

they are shared fairly, tenants are isolated from one another,

and resource utilization is high. For the rest of this section, we

describe how Tectonic shares ephemeral resources effectively.

Distributing ephemeral resources among and within ten-

ants. Ephemeral resource sharing is challenging in Tectonic

because not only are tenants diverse, but each tenant serves

many applications with varied traffic patterns and perfor-

mance requirements. For example, blob storage includes pro-

duction traffic from Facebook users and background garbage

collection traffic. Managing ephemeral resources at the tenant

granularity would be too coarse to account for the varied work-

loads and performance requirements within a tenant. On the

other hand, because Tectonic serves hundreds of applications,

managing resources at the application granularity would be

too complex and resource-intensive.

Ephemeral resources are therefore managed within each

tenant at the granularity of groups of applications. These appli-

cation groups, called TrafficGroups, reduce the cardinality of

the resource sharing problem, reducing the overhead of man-

aging multitenancy. Applications in the same TrafficGroup

have similar resource and latency requirements. For example,

one TrafficGroup may be for applications generating back-

ground traffic while another is for applications generating

production traffic. Tectonic supports around 50 TrafficGroups

per cluster. Each tenant may have a different number of Traffic-

Groups. Tenants are responsible for choosing the appropriate

TrafficGroup for each of their applications. Each TrafficGroup

is in turn assigned a TrafficClass. A TrafficGroup’s Traffic-

Class indicates its latency requirements and decides which

requests should get spare resources. The TrafficClasses are

Gold, Silver, and Bronze, corresponding to latency-sensitive,

normal, and background applications. Spare resources are

distributed according to TrafficClass priority within a tenant.

Tectonic uses tenants and TrafficGroups along with the

notion of TrafficClass to ensure isolation and high resource

utilization. That is, tenants are allocated their fair share of

resources; within each tenant, resources are distributed by

TrafficGroup and TrafficClass. Each tenant gets a guaranteed

quota of the cluster’s ephemeral resources, which is subdi-

vided between a tenant’s TrafficGroups. Each TrafficGroup

gets its guaranteed resource quota, which provides isolation

between tenants as well as isolation between TrafficGroups.

Any ephemeral resource surplus within a tenant is shared

with its own TrafficGroups by descending TrafficClass. Any

remaining surplus is given to TrafficGroups in other tenants

by descending TrafficClass. This ensures spare resources are

used by TrafficGroups of the same tenant first before being

distributed to other tenants. When one TrafficGroup uses

resources from another TrafficGroup, the resulting traffic gets

the minimum TrafficClass of the two TrafficGroups. This

ensures the overall ratio of traffic of different classes does not

change based on resource allocation, which ensures the node

can meet the latency profile of the TrafficClass.



Enforcing global resource sharing. The Client Library

uses a rate limiter to achieve the aforementioned elastic-

ity. The rate limiter uses high-performance, near-realtime

distributed counters to track the demand for each tracked

resource in each tenant and TrafficGroup in the last small

time window. The rate limiter implements a modified leaky

bucket algorithm. An incoming request increments the de-

mand counter for the bucket. The Client Library then checks

for spare capacity in its own TrafficGroup, then other Traffic-

Groups in the same tenant, and finally other tenants, adhering

to TrafficClass priority. If the client finds spare capacity, the re-

quest is sent to the backend. Otherwise, the request is delayed

or rejected depending on the request’s timeout. Throttling

requests at clients puts backpressure on clients before they

make a potentially wasted request.

Enforcing local resource sharing. The client rate limiter

ensures approximate global fair sharing and isolation. Meta-

data and storage nodes also need to manage resources to

avoid local hotspots. Nodes provide fair sharing and isolation

with a weighted round-robin (WRR) scheduler that provision-

ally skips a TrafficGroup’s turn if it will exceed its resource

quota. In addition, storage nodes need to ensure that small IO

requests (e.g., blob storage operations) do not see higher la-

tency from colocation with large, spiky IO requests (e.g., data

warehouse operations). Gold TrafficClass requests can miss

their latency targets if they are blocked behind lower-priority

requests on storage nodes.

Storage nodes use three optimizations to ensure low latency

for Gold TrafficClass requests. First, the WRR scheduler pro-

vides a greedy optimization where a request from a lower

TrafficClass may cede its turn to a higher TrafficClass if the

request will have enough time to complete after the higher-

TrafficClass request. This helps prevent higher-TrafficClass

requests from getting stuck behind a lower-priority request.

Second, we limit how many non-Gold IOs may be in flight

for every disk. Incoming non-Gold traffic is blocked from

scheduling if there are any pending Gold requests and the non-

Gold in-flight limit has been reached. This ensures the disk is

not busy serving large data warehouse IOs while blob storage

requests are waiting. Third, the disk itself may re-arrange the

IO requests, i.e., serve a non-Gold request before an earlier

Gold request. To manage this, Tectonic stops scheduling non-

Gold requests to a disk if a Gold request has been pending

on that disk for a threshold amount of time. These three tech-

niques combined effectively maintain the latency profile of

smaller IOs, even when outnumbered by larger IOs.

4.2 Multitenant Access Control

Tectonic follows common security principles to ensure that

all communications and dependencies are secure. Tectonic

additionally provides coarse access control between tenants

(to prevent one tenant from accessing another’s data) and fine-

grained access control within a tenant. Access control must

be enforced at each layer of Tectonic, since the Client Library

talks to each layer directly. Since access control is on path for

every read and write, it must also be lightweight.

Tectonic uses a token-based authorization mechanism that

includes which resources can be accessed with the token [31].

An authorization service authorizes top-level client requests

(e.g., opening a file), generating an authorization token for the

next layer in the filesystem; each subsequent layer likewise

authorizes the next layer. The token’s payload describes the re-

source to which access is given, enabling granular access con-

trol. Each layer verifies the token and the resource indicated

in the payload entirely in memory; verification can be per-

formed in tens of microseconds. Piggybacking token-passing

on existing protocols reduces the access control overhead.

5 Tenant-Specific Optimizations

Tectonic supports around ten tenants in the same shared

filesystem, each with specific performance needs and work-

load characteristics. Two mechanisms permit tenant-specific

optimizations. First, clients have nearly full control over how

to configure an application’s interactions with Tectonic; the

Client Library manipulates data at the chunk level, the finest

possible granularity (§3.4). This Client Library-driven de-

sign enables Tectonic to execute operations according to the

application’s performance needs.

Second, clients enforce configurations on a per-call basis.

Many other filesystems bake configurations into the system or

apply them to entire files or namespaces. For example, HDFS

configures durability per directory [7], whereas Tectonic con-

figures durability per block write. Per-call configuration is

enabled by the scalability of the Metadata Store: the Meta-

data Store can easily handle the increased metadata for this

approach. We next describe how data warehouse and blob

storage leverage per-call configurations for efficient writes.

5.1 Data Warehouse Write Optimizations

A common pattern in data warehouse workloads is to write

data once that will be read many times later. For these work-

loads, the file is visible to readers only once the creator closes

the file. The file is then immutable for its lifetime. Because

the file is only read after it is written completely, applications

prioritize lower file write time over lower append latency.

Full-block, RS-encoded asynchronous writes for space,

IO, and network efficiency. Tectonic uses the write-once-

read-many pattern to improve IO and network efficiency,

while minimizing total file write time. The absence of partial

file reads in this pattern allows applications to buffer writes

up to the block size. Applications then RS-encode blocks in

memory and write the data chunks to storage nodes. Long-

lived data is typically RS(9,6) encoded; short-lived data, e.g.,

map-reduce shuffles, is typically RS(3,3)-encoded.

Writing RS-encoded full blocks saves storage space, net-

work bandwidth, and disk IO over replication. Storage and

bandwidth are lower because less total data is written. Disk

IO is lower because disks are more efficiently used. More



75

80

85

90

95

800 1000 1200 1400 1600 1800 2000

P
e
r
c
e
n
ti
le

72MB block write latency (ms)

Hedging
No Hedging

(a) Data warehouse full block writes

0

25

50

75

100

0 50 100 150 200

P
e
r
c
e
n
ti
le

Write Latency (ms)

Haystack
Quorum append
Standard append

(b) Blob storage write latency

0

25

50

75

100

0 20 40 60 80 100

P
e
r
c
e
n
ti
le

Read Latency (ms)

Tectonic
Haystack

(c) Blob storage read latency

Figure 3: Tail latency optimizations in Tectonic. (a) shows the improvement in data warehouse tail latency from hedged

quorum writes (72MB blocks) in a test cluster with ~80% load. (b) and (c) show Tectonic blob storage write latency

(with and without quorum appends) and read latency compared to Haystack.

IOPS are needed to write chunks to 15 disks in RS(9,6), but

each write is small and the total amount of data written is

much smaller than with replication. This results in more effi-

cient disk IO because block sizes are large enough that disk

bandwidth, not IOPS, is the bottleneck for full-block writes.

The write-once-read-many pattern also allows applications

to write the blocks of a file asynchronously in parallel, which

decreases the file write latency significantly. Once the blocks

of the file are written, the file metadata is updated all together.

There is no risk of inconsistency with this strategy because a

file is only visible once it is completely written.

Hedged quorum writes to improve tail latency. For full-

block writes, Tectonic uses a variant of quorum writing which

reduces tail latency without any additional IO. Instead of

sending the chunk write payload to extra nodes, Tectonic first

sends reservation requests ahead of the data and then writes

the chunks to the first nodes to accept the reservation. The

reservation step is similar to hedging [22], but it avoids data

transfers to nodes that would reject the request because of

lack of resources or because the requester has exceeded its

resource share on that node (§4).

As an example, to write a RS(9,6)-encoded block, the Client

Library sends a reservation request to 19 storage nodes in

different failure domains, four more than required for the

write. The Client Library writes the data and parity chunks

to the first 15 storage nodes that respond to the reservation

request. It acknowledges the write to the client as soon as a

quorum of 14 out of 15 nodes return success. If the 15th write

fails, the corresponding chunk is repaired offline.

The hedging step is more effective when the cluster is

highly loaded. Figure 3a shows ~20% improvement in 99th

percentile latency for RS(9,6) encoded, 72 MB full-block

writes, in a test cluster with 80% throughput utilization.

5.2 Blob Storage Optimizations

Blob storage is challenging for filesystems because of the

quantity of objects that need to be indexed. Facebook stores

tens of trillions of blobs. Tectonic manages the size of blob

storage metadata by storing many blobs together into log-

structured files, where new blobs are appended at the end of a

file. Blobs are located with a map from blob ID to the location

of the blob in the file.

Blob storage is also on path for many user requests, so low

latency is desirable. Blobs are usually much smaller than Tec-

tonic blocks (§2.1). Blob storage therefore writes new blobs

as small, replicated partial block appends for low latency. The

partial block appends need to be read-after-write consistent

so blobs can be read immediately after successful upload.

However, replicated data uses more disk space than full-block

RS-encoded data.

Consistent partial block appends for low latency. Tec-

tonic uses partial block quorum appends to enable durable,

low-latency, consistent blob writes. In a quorum append, the

Client Library acknowledges a write after a subset of storage

nodes has successfully written the data to disk, e.g., two nodes

for three-way replication. The temporary decrease of durabil-

ity from a quorum write is acceptable because the block will

soon be reencoded and because blob storage writes a second

copy to another datacenter.

The challenge with partial block quorum appends is that

straggler appends could leave replica chunks at different sizes.

Tectonic maintains consistency by carefully controlling who

can append to a block and when appends are made visible.

Blocks can only be appended to by the writer that created

the block. Once an append completes, Tectonic commits the

post-append block size and checksum to the block metadata

before acknowledging the partial block quorum append.

This ordering of operations with a single appender provides

consistency. If block metadata reports a block size of S, then

all preceeding bytes in the block were written to at least two

storage nodes. Readers will be able to access data in the block

up to offset S. Similarly, any writes acknowledged to the ap-

plication will have been updated in the block metadata and so

will be visible to future reads. Figures 3b and 3c demonstrate

that Tectonic’s blob storage read and write latency is compa-

rable to Haystack, validating that Tectonic’s generality does



Capacity Used bytes Files Blocks Storage Nodes

1590 PB 1250 PB 10.7 B 15 B 4208

Table 2: Statistics from a multitenant Tectonic produc-

tion cluster. File and block counts are in billions.

not have a significant performance cost.

Reencoding blocks for storage efficiency. Directly RS-

encoding small partial-block appends would be IO-inefficient.

Small disk writes are IOPS-bound and RS-encoding results

in many more IOs (e.g, 14 IOs with RS(10, 4) instead of 3).

Instead of RS-encoding after each append, the Client Library

reencodes the block from replicated form to RS(10,4) en-

coding once the block is sealed. Reencoding is IO-efficient

compared to RS-encoding at append time, requiring only a

single large IO on each of the 14 target storage nodes. This

optimization, enabled by Tectonic’s Client Library-driven de-

sign, provides nearly the best of both worlds with fast and

IO-efficient replication for small appends that are quickly

transitioned to the more space-efficient RS-encoding.

6 Tectonic in Production

This section shows Tectonic operating at exabyte scale,

demonstrates benefits of storage consolidation, and discusses

how Tectonic handles metadata hotspots. It also discusses

tradeoffs and lessons from designing Tectonic.

6.1 Exabyte-Scale Multitenant Clusters

Production Tectonic clusters run at exabyte scale. Table 2

gives statistics on a representative multitenant cluster. All

results in this section are for this cluster. The 1250 PB of stor-

age, ~70% of the cluster capacity at the time of the snapshot,

consists of 10.7 billion files and 15 billion blocks.

6.2 Efficiency from Storage Consolidation

The cluster in Table 2 hosts two tenants, blob storage and

data warehouse. Blob storage uses ~49% of the used space in

this cluster and data warehouse uses ~51%. Figures 4a and 4b

show the cluster handling storage load over a three-day period.

Figure 4a shows the cluster’s aggregate IOPS during that time,

and Figure 4b shows its aggregate disk bandwidth. The data

warehouse workload has large, regular load spikes triggered

by very large jobs. Compared to the spiky data warehouse

workload, blob storage traffic is smooth and predictable.

Sharing surplus IOPS capacity. The cluster handles

spikes in storage load from data warehouse using the surplus

IOPS capacity unlocked by consolidation with blob storage.

Blob storage requests are typically small and bound by IOPS

while data warehouse requests are typically large and bound

by bandwidth. As a result, neither IOPS nor bandwidth can

fairly account for disk IO usage. The bottleneck resource in

serving storage operations is disk time, which measures how

often a given disk is busy. Handling a storage load spike re-

quires Tectonic to have enough free disk time to serve the

Warehouse Blob storage Combined

Supply 0.51 0.49 1.00

Peak 1 0.60 0.12 0.72

Peak 2 0.54 0.14 0.68

Peak 3 0.57 0.11 0.68

Table 3: Consolidating data warehouse and blob storage

in Tectonic allows data warehouse to use what would oth-

erwise be stranded surplus disk time for blob storage to

handle large load spikes. This figure shows the normal-

ized disk time demand vs. supply in three daily peaks in

the representative cluster.

spike. For example, if a disk does 10 IOs in one second with

each taking 50 ms (seek and fetch), then the disk was busy for

500 out of 1000 ms. We use disk time to fairly account for

usage by different types of requests.

For the representative production cluster, Table 3 shows

normalized disk time demand for data warehouse and blob

storage for three daily peaks and the supply of disk time each

would have if running on its own cluster. We normalize by

total disktime corresponding to used space in the cluster. The

daily peaks correspond to the same three days of traffic as

in Figures 4a and 4b. Data warehouse’s demand exceeds its

supply in all three peaks and handling it on its own would

require disk overprovisioning. To handle peak data warehouse

demand over the three day period, the cluster would have

needed ~17% overprovisioning. Blob storage, on the other

hand, has surplus disk time that would be stranded if it ran

in its own cluster. Consolidating these tenants into a single

Tectonic cluster allows the blob storage’s surplus disk time to

be used for data warehouse’s storage load spikes.

6.3 Metadata Hotspots

Load spikes to the Metadata Store may result in hotspots in

metadata shards. The bottleneck resource in serving meta-

data operations is queries per second (QPS). Handling load

spikes requires the Metadata Store to keep up with the QPS

demand on every shard. In production, each shard can serve a

maximum of 10 KQPS. This limit is imposed by the current

isolation mechanism on the resources of the metadata nodes.

Figure 4c shows the QPS across metadata shards in the cluster

for the Name, File, and Block layers. All shards in the File

and Block layers are below this limit.

Over this three-day period, around 1% of Name layer shards

hit the QPS limit because they hold very hot directories. The

small unhandled fraction of metadata requests are retried

after a backoff. The backoff allows the metadata nodes to

clear most of the initial spike and successfully serve retried

requests. This mechanism, combined with all other shards

being below their maximum, enables Tectonic to successfully

handle the large spikes in metadata load from data warehouse.

The distribution of load across shards varies between the

Name, File, and Block layers. Each higher layer has a larger

distribution of QPS per shard because it colocates more of a



0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60 70

IO
P
S
(K
)

Time (hours)

Warehouse
Blob storage

(a) Aggregate cluster IOPS

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60 70

B
an
d
w
id
th
(T
B
/s
)

Time (hours)

Warehouse
Blob storage

(b) Aggregate cluster bandwidth

0

25

50

75

100

0 2 4 6 8 10

max load >

P
e
r
c
e
n
ti
le
o
f
s
h
a
r
d
s

KQPS

Block

Name

File

(c) Peak metadata load (CDF)

Figure 4: IO and metadata load on the representative production cluster over three days. (a) and (b) show the difference

in blob storage and data warehouse traffic patterns and show Tectonic successfully handling spikes in storage IOPS and

bandwidth over 3 days. Both tenants occupy nearly the same space in this cluster. (c) is a CDF of peak metadata load

over three days on this cluster’s metadata shards. The maximum load each shard can handle is 10 KQPS (grey line).

Tectonic can handle all metadata operations at the File and Block layers. It can immediately handle almost all Name

layer operations; the remaining operations are handled on retry.

tenant’s operations. For instance, all directory-to-file lookups

for a given directory are handled by one shard. An alternative

design that used range partitioning like ADLS [42] would

colocate many more of a tenant’s operations together and

result in much larger load spikes. Data warehouse jobs often

read many similarly-named directories, which would lead to

extreme load spikes if the directories were range-partitioned.

Data warehouse jobs also read many files in a directory, which

causes load spikes in the Name layer. Range-partitioning the

File layer would colocate files in a directory on the same shard,

resulting in a much larger load spike because each job does

many more File layer operations than Name layer operations.

Tectonic’s hash partitioning reduces this colocation, allowing

Tectonic to handle metadata load spikes using fewer nodes

than would be necessary with range partitioning.

Tectonic also codesigns with data warehouse to reduce

metadata hotspots. For example, compute engines commonly

use an orchestrator to list files in a directory and distribute

the files to workers. The workers open and process the files

in parallel. In Tectonic, this pattern sends a large number of

nearly-simultaneous file open requests to a single directory

shard (§3.3), causing a hotspot. To avoid this anti-pattern,

Tectonic’s list-files API returns the file IDs along with the file

names in a directory. The compute engine orchestrator sends

the file IDs and names to its workers, which can open the files

directly by file ID without querying the directory shard again.

6.4 The simplicity-performance tradeoffs

Tectonic’s design generally prioritizes simplicity over effi-

ciency. We discuss two instances where we opted for addi-

tional complexity in exchange for performance gains.

Managing reconstruction load. RS-encoded data may be

stored contiguously, where a data block is divided into chunks

that are each written contiguously to storage nodes, or striped,

where a data block is divided into much smaller chunks that

are distributed round-robin across storage nodes [51]. Be-

cause Tectonic uses contiguous RS encoding and the majority

of reads are smaller than a chunk size, reads are usually di-

rect: they do not require RS reconstruction and so consist

of a single disk IO. Reconstruction reads require 10⇥ more

IOs than direct reads (for RS(10,4) encoding). Though com-

mon, it is difficult to predict the fraction of reads that will

be reconstructed, since reconstruction is triggered by hard-

ware failures as well as node overload. We learned that such

a wide variability in resource requirements, if not controlled,

can cause cascading failures that affect system availability

and performance.

If some storage nodes are overloaded, direct reads fail and

trigger reconstructed reads. This increases load to the rest

of the system and triggers yet more reconstructed reads, and

so forth. The cascade of reconstructions is called a recon-

struction storm. A simple solution would be to use striped

RS encoding where all reads are reconstructed. This avoids

reconstruction storms because the number of IOs for reads

does not change when there are failures. However, it makes

normal-case reads much more expensive. We instead prevent

reconstruction storms by restricting reconstructed reads to

10% of all reads. This fraction of reconstructed reads is typ-

ically enough to handle disk, host, and rack failures in our

production clusters. In exchange for some tuning complexity,

we avoid over-provisioning disk resources.

Efficiently accessing data within and across datacenters.

Tectonic allows clients to directly access storage nodes; an

alternative design might use front-end proxies to mediate all

client access to storage. Making the Client Library accessible

to clients introduces complexity because bugs in the library

become bugs in the application binary. However, direct client

access to storage nodes is vastly more network- and hard-

ware resource efficient than a proxy design, avoiding an extra

network hop for terabytes of data per second.



Unfortunately, direct storage node access is a poor fit for re-

mote requests, where the client is geographically distant from

the Tectonic cluster. The additional network overhead makes

the orchestration round trips prohibitively inefficient. To solve

this problem, Tectonic handles remote data access differently

from local data access: remote requests get forwarded to a

stateless proxy in the same datacenter as the storage nodes.

6.5 Tradeoffs and Compromises

Migrating to Tectonic was not without tradeoffs and compro-

mises. This subsection describes a few areas where Tectonic

is either less flexible or less performant than Facebook’s pre-

vious infrastructure. We also describe the impact of using a

hash-partitioned metadata store.

The impact of higher metadata latency. Migrating to Tec-

tonic meant data warehouse applications saw higher metadata

latency. HDFS metadata operations are in-memory and all

metadata for a namespace is stored on a single node. In con-

trast, Tectonic stores its metadata in a sharded key-value store

instance and disaggregates metadata layers (§3.3). This means

Tectonic metadata operations may require one or more net-

work calls (e.g., a file open operation will interact with the

Name and File layers). Data warehouse had to adjust how

it handled certain metadata operations given the additional

metadata latency. For instance, compute engines rename a set

of files one by one, in sequence, after computation is done.

In HDFS each rename was fast, but with Tectonic, compute

engines parallelize this step to hide the extra latency of indi-

vidual Tectonic rename operations.

Working around hash-partitioned metadata. Because

Tectonic directories are hash sharded, listing directories re-

cursively involves querying many shards. In fact, Tectonic

does not provide a recursive list API; tenants need to build it

as a client-side wrapper over individual list calls. As a result,

unlike HDFS, Tectonic does not have du (directory utilization)

functionality to query aggregate space usage of a directory.

Instead, Tectonic periodically aggregates per-directory usage

statistics, which can be stale.

6.6 Design and Deployment Lessons

Achieving high scalability is an iterative process enabled

by a microservice architecture. Several Tectonic compo-

nents have been through multiple iterations to meet increasing

scalability requirements. For example, the first version of the

Chunk Store grouped blocks to reduce metadata. A number of

blocks with the same redundancy scheme were grouped and

RS-encoded as one unit to store their chunks together. Each

block group mapped to a set of storage nodes. This is a com-

mon technique since it significantly reduces metadata [37, 53],

but it was too inflexible for our production environment. For

example, with only 5% of storage nodes unavailable, 80% of

the block groups became unavailable for writes. This design

also precluded optimizations like hedged quorum writes and

quorum appends (§5).

Additionally, our initial Metadata Store architecture did not

separate the Name and File layers; clients consulted the same

shards for directory lookups and for listing blocks in a file.

This design resulted in unavailability from metadata hotspots,

prompting us to further disaggregate metadata.

Tectonic’s evolution shows the importance of trying new

designs to get closer to performance goals. Our development

experience also shows the value of a microservices-based

architecture for experimentation: we could iterate on compo-

nents transparently to the rest of the system.

Memory corruption is common at scale. At Tectonic’s

scale, with thousands of machines reading and writing a large

amount of data every day, in-memory data corruption is a reg-

ular occurrence, a phenomenon observed in other large-scale

systems [12, 27]. We address this by enforcing checksum

checks within and between process boundaries.

For data D and checksum CD, if we want to perform an in-

memory transformation F such that D0 = F(D), we generate

checksum CD0 for D0. To check D0, we must convert D0 back to

D with G, the inverse function of F , and compare CG(D0) with

CD. The inverse function, G, may be expensive to compute

(e.g., for RS encoding or encryption), but it is an acceptable

cost for Tectonic to preserve data integrity.

All API boundaries involving moving, copying, or trans-

forming data had to be retrofitted to include checksum infor-

mation. Clients pass a checksum with data to the Client Li-

brary when writing, and Tectonic needs to pass the checksum

not just across process boundaries (e.g., between the client

library and the storage node) but also within the process (e.g.,

after transformations). Checking the integrity of transforma-

tions prevents corruptions from propagating to reconstructed

chunks after storage node failure.

6.7 Services that do not use Tectonic

Some services within Facebook do not use Tectonic for stor-

age. Bootstrap services, e.g., the software binary package

deployment system, which must have no dependencies, can-

not use Tectonic because it depends on many other services

(e.g., the key-value store, configuration management system,

deployment management system). Graph storage [16] also

does not use Tectonic, as Tectonic is not yet optimized for

key-value store workloads which often need the low latencies

provided by SSD storage.

Many other services do not use Tectonic directly. They in-

stead use Tectonic through a major tenant like blob storage or

data warehouse. This is because a core design philosophy of

Tectonic is separation of concerns. Internally, Tectonic aims

for independent software layers which each focus on a narrow

set of a storage system’s core responsibilities (e.g., storage

nodes only know about chunks but not blocks or files). This

philosophy extends to how Tectonic fits in with the rest of

the storage infrastructure. For example, Tectonic focuses on

providing fault tolerance within a datacenter; it does not pro-



tect against datacenter failures. Geo-replication is a separate

problem that Tectonic delegates to its large tenants, who solve

it to provide transparent and easy-to-use shared storage for

applications. Tenants are also expected to know details of

capacity management and storage deployments and rebalanc-

ing across different datacenters. For smaller applications, the

complexity and implementation needed to interface directly

with Tectonic in a way that meets their storage needs would

amount to re-implementing features that tenants have already

implemented. Individual applications therefore use Tectonic

via tenants.

7 Related Work

Tectonic adapts techniques from existing systems and the

literature, demonstrating how they can be combined into a

novel system that realizes exabyte-scale single clusters which

support a diversity of workloads on a shared storage fabric.

Distributed filesystems with a single metadata node.

HDFS [15], GFS [24], and others [38, 40, 44] are limited

by the metadata node to tens of petabytes of storage per in-

stance or cluster, compared to Tectonic’s exabytes per cluster.

Federating namespaces for increased capacity. Feder-

ated HDFS [8] and Windows Azure Storage (WAS) [17] com-

bine multiple smaller storage clusters (with a single metadata

node) into larger clusters. For instance, a federated HDFS [8]

cluster has multiple independent single-namenode names-

paces, even though the storage nodes are shared between

namespaces. Federated systems still have the operational

complexity of bin-packing datasets (§2). Also, migrating or

sharing data between instances, e.g., to load-balance or add

storage capacity, requires resource-heavy data copying among

namespaces [33, 46, 54]

Hash-based data location for metadata scalability.

Ceph [53] and FDS [36] eliminate centralized metadata, in-

stead locating data by hashing on object ID. Handling failures

in such systems is a scalability bottleneck. Failures are more

frequent with larger clusters, requiring frequent updates to

the hash-to-location map that must propagate to all nodes.

Yahoo’s Cloud Object Store [41] federates Ceph instances to

isolate the effects of failures. Furthermore, adding hardware

and draining is complicated, as Ceph lacks support for con-

trolled data migration [52]. Tectonic explicitly maps chunks

to storage nodes, allowing controlled migration.

Disaggregated or sharded metadata for scalability. Like

Tectonic, ADLS [42] and HopsFS [35] increase filesystem

capacity by disaggregating metadata into layers in separate

sharded data stores. Tectonic hash-partitions directories, while

ADLS and HopsFS store some related directory metadata on

the same shards, causing metadata for related parts of the

directory tree to be colocated. Hash partitioning helps Tec-

tonic avoid hotspots local to part of the directory tree. ADLS

uses WAS’s federated architecture [17] for block storage. In

contrast, Tectonic’s block storage is flat.

Like Tectonic, Colossus [28, 32] provides cluster-wide

multi-exabyte storage where client libraries directly access

storage nodes. Colossus uses Spanner [21], a globally consis-

tent database to store filesystem metadata. Tectonic metadata

is built on a sharded key-value store, which only provides

within-shard strong consistency and no cross-shard opera-

tions. These limitations have not been a problem in practice.

Blob and object stores. Compared to distributed filesys-

tems, blob and object stores [14, 18, 36, 37] are easier to

scale, as they do not have a hierarchical directory tree or

namespace to keep consistent. Hierarchical namespaces are

required for most warehouse workloads.

Other large-scale storage systems. Lustre [1] and

GPFS [45] are tuned for high-throughput parallel access. Lus-

tre limits the number of metadata nodes, limiting scalability.

GPFS is POSIX-compliant, introducing unnecessary meta-

data management overhead for our setting. HBase [9] is a

key-value store based on HDFS, but its HDFS clusters are

not shared with a warehouse workload. We could not compare

with AWS [2] as its design is not public.

Multitenancy techniques. Tectonic’s multitenancy tech-

niques were co-designed with the filesystem as well as the

tenants, and does not aim to achieve optimal fair sharing.

It is thus easier to provide performance isolation compared

to other systems in the literature. Other systems use more

complex resource management techniques to accommodate

changes in tenancy and resource use policies, or to provide

optimal fair resource sharing among tenants [25, 48, 49].

Some details of Tectonic have previously been described

in talks [39, 47] where the system is called Warm Storage.

8 Conclusion

This paper presents Tectonic, Facebook’s distributed filesys-

tem. A single Tectonic instance can support all Facebook’s

major storage tenants in a datacenter, enabling better resource

utilization and less operational complexity. Tectonic’s hash-

sharded disaggregated metadata and flat data chunk storage

allow it to address and store exabytes. Its cardinality-reduced

resource management allows it to efficiently and fairly share

resources and distribute surplus resources for high utiliza-

tion. Tectonic’s client-driven tenant-specific optimizations

allow it to match or exceed the performance of the previous

specialized storage systems.

Acknowledgements. We are grateful to our shepherd, Pe-

ter Macko, and the anonymous reviewers of the FAST pro-

gram committee whose extensive comments substantially im-

proved this work. We are also grateful to Nar Ganapathy, Mi-

hir Gorecha, Morteza Ghandehari, Bertan Ari, John Doty, and

other colleagues at Facebook who contributed to the project.

We also thank Jason Flinn and Qi Huang for suggestions for

improving the paper. Theano Stavrinos was supported by the

National Science Foundation grant CNS-1910390 while at

Princeton University.



References

[1] Lustre Wiki. https://wiki.lustre.org/images/6/

64/LustreArchitecture-v4.pdf, 2017.

[2] AWS Documentation. https://

docs.aws.amazon.com/, 2020.

[3] Presto. https://prestodb.io/, 2020.

[4] Aditya Kalro. Facebook’s FBLearner Platform with

Aditya Kalro. https://twimlai.com/twiml-talk-

197-facebooks-fblearner-platform-with-

aditya-kalro/, 2018.

[5] J. Adrian. Introducing Bryce Canyon: Our next-

generation storage platform. https://tinyurl.com/

yccx2x7v, 2017.

[6] M. Annamalai. ZippyDB - A Distributed key

value store. https://www.youtube.com/embed/

ZRP7z0HnClc, 2015.

[7] Apache Software Foundation. HDFS Erasure

Coding. https://hadoop.apache.org/docs/

r3.1.1/hadoop-project-dist/hadoop-hdfs/

HDFSErasureCoding.html, 2018.

[8] Apache Software Foundation. HDFS Fed-

eration. https://hadoop.apache.org/docs/

current/hadoop-project-dist/hadoop-hdfs/

Federation.html, 2019.

[9] Apache Software Foundation. Apache HBase. https:

//hbase.apache.org/, 2020.

[10] Apache Software Foundation. Apache Spark. https:

//spark.apache.org/, 2020.

[11] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Va-

jgel. Finding a Needle in Haystack: Facebook’s Photo

Storage. In Proceedings of the 9th USENIX Sympo-

sium on Operating Systems Design and Implementation

(OSDI’10), Vancouver, BC, Canada, 2010. USENIX As-

sociation.

[12] D. Behrens, M. Serafini, F. P. Junqueira, S. Arnautov,

and C. Fetzer. Scalable error isolation for distributed

systems. In Proceedings of the 12th USENIX Sympo-

sium on Networked Systems Design and Implementation

(NSDI’15), Oakland, CA, USA, 2015. USENIX Associ-

ation.

[13] B. Berg, D. S. Berger, S. McAllister, I. Grosof, J. Gu-

nasekar, Sathya Lu, M. Uhlar, J. Carrig, N. Beckmann,

M. Harchol-Balter, and G. R. Ganger. The CacheLib

Caching Engine: Design and Experiences at Scale. In

14th USENIX Symposium on Operating Systems Design

and Implementation (OSDI’20), Online, 2020. USENIX

Association.

[14] A. Bigian. Blobstore: Twitter’s in-house photo storage

system. https://blog.twitter.com/engineering/

en_us/a/2012/blobstore-twitter-s-in-house-

photo-storage-system.html, 2012.

[15] D. Borthakur. HDFS Architecture Guide.

https://hadoop.apache.org/docs/r1.2.1/

hdfs_design.html, 2019.

[16] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-

mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li,

M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and

V. Venkataramani. TAO: Facebook’s Distributed Data

Store for the Social Graph. In Proceedings of the 2013

USENIX Annual Technical Conference. USENIX, 2013.

[17] B. Calder, J. Wang, A. Ogus, N. Nilakantan,

A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,

J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri,

A. Edwards, V. Bedekar, S. Mainali, R. Abbasi,

A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhardwaj,

S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran,

K. Manivannan, and L. Rigas. Windows Azure

Storage: A Highly Available Cloud Storage Service

with Strong Consistency. In Proceedings of the 23rd

ACM Symposium on Operating Systems Principles

(SOSP’11), Cascais, Portugal, 2011. Association for

Computing Machinery (ACM).

[18] J. Chen, C. Douglas, M. Mutsuzaki, P. Quaid, R. Ra-

makrishnan, S. Rao, and R. Sears. Walnut: a unified

cloud object store. 2012.

[19] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and

D. A. Patterson. RAID: High-performance, reliable

secondary storage. ACM Computing Surveys (CSUR),

26(2):145–185, 1994.

[20] A. Cidon, S. Rumble, R. Stutsman, S. Katti, J. Ouster-

hout, and M. Rosenblum. Copysets: Reducing the Fre-

quency of Data Loss in Cloud Storage. In Proceed-

ings of the 2013 USENIX Annual Technical Conference

(USENIX ATC’13), San Jose, CA, USA, 2013. USENIX

Association.

[21] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,

J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,

P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,

A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,

R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,

R. Wang, and D. Woodford. Spanner: Google’s globally

distributed database. ACM Trans. Comput. Syst., 31(3),

Aug. 2013. ISSN 0734-2071. doi: 10.1145/2491245.

URL https://doi.org/10.1145/2491245.

[22] J. Dean and L. A. Barroso. The tail at scale. Com-

mun. ACM, 56(2):74–80, Feb. 2013. ISSN 0001-



0782. doi: 10.1145/2408776.2408794. URL http:

//doi.acm.org/10.1145/2408776.2408794.

[23] Facebook Open Source. RocksDB. https://

rocksdb.org/, 2020.

[24] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google

File System. In Proceedings of the 19th ACM Sym-

posium on Operating Systems Principles (SOSP’03),

Bolton Landing, NY, USA, 2003. Association for Com-

puting Machinery (ACM).

[25] R. Gracia-Tinedo, J. Sampé, E. Zamora, M. Sánchez-

Artigas, P. García-López, Y. Moatti, and E. Rom. Crystal:

Software-defined storage for multi-tenant object stores.

In Proceedings of the 15th USENIX Conference on File

and Storage Technologies (FAST’17), Santa Clara, CA,

USA, 2017. USENIX Association.

[26] X. F. Group. The XFS Linux wiki. https://

xfs.wiki.kernel.org/, 2018.

[27] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai,

S. Wu, S. Dhoot, A. Kumar, A. Agiwal, S. Bhansali,

M. Hong, J. Cameron, M. Siddiqi, D. Jones, J. Shute,

A. Gubarev, S. Venkataraman, and D. Agrawal. Mesa:

Geo-replicated, near real-time, scalable data warehous-

ing. In Proceedings of the 40th International Confer-

ence on Very Large Data Bases (VLDB’14), Hangzhou,

China, 2014. VLDB Endowment.

[28] D. Hildebrand and D. Serenyi. A peek behind the

VM at the Google Storage infrastructure. https:

//www.youtube.com/watch?v=q4WC_6SzBz4, 2020.

[29] Q. Huang, P. Ang, P. Knowles, T. Nykiel, I. Tverdokhlib,

A. Yajurvedi, P. Dapolito IV, X. Yan, M. Bykov, C. Liang,

M. Talwar, A. Mathur, S. Kulkarni, M. Burke, and

W. Lloyd. SVE: Distributed video processing at Face-

book scale. In Proceedings of the 26th ACM Symposium

on Operating Systems Principles (SOSP’17), Shang-

hai, China, 2017. Association for Computing Machinery

(ACM).

[30] L. Leslie. The part-time parliament. ACM Transactions

on Computer Systems, 16(2):133–169, 1998.

[31] K. Lewi, C. Rain, S. A. Weis, Y. Lee, H. Xiong, and

B. Yang. Scaling backend authentication at facebook.

IACR Cryptol. ePrint Arch., 2018:413, 2018. URL

https://eprint.iacr.org/2018/413.

[32] M. K. McKusick and S. Quinlan. GFS: Evolution on

Fast-forward. Queue, 7(7):10:10–10:20, Aug. 2009.

ISSN 1542-7730. doi: 10.1145/1594204.1594206. URL

http://doi.acm.org/10.1145/1594204.1594206.

[33] P. A. Misra, I. n. Goiri, J. Kace, and R. Bianchini. Scal-

ing Distributed File Systems in Resource-Harvesting

Datacenters. In Proceedings of the 2017 USENIX An-

nual Technical Conference (USENIX ATC’17), Santa

Clara, CA, USA, 2017. USENIX Association.

[34] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu,

S. Pan, S. Shankar, V. Sivakumar, L. Tang, and S. Ku-

mar. f4: Facebook’s Warm BLOB Storage System. In

Proceedings of the 11th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI’14),

Broomfield, CO, USA, 2014. USENIX Association.

[35] S. Niazi, M. Ismail, S. Haridi, J. Dowling, S. Grohss-

chmiedt, and M. Ronström. HopsFS: Scaling hierarchi-

cal file system metadata using NewSQL databases. In

Proceedings of the 15th USENIX Conference on File

and Storage Technologies (FAST’17), Santa Clara, CA,

USA, 2017. USENIX Association.

[36] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. How-

ell, and Y. Suzue. Flat Datacenter Storage. In Pro-

ceedings of the 10th USENIX Symposium on Operating

Systems Design and Implementation (OSDI’12), Holly-

wood, CA, USA, 2012. USENIX Association.

[37] S. A. Noghabi, S. Subramanian, P. Narayanan,

S. Narayanan, G. Holla, M. Zadeh, T. Li, I. Gupta, and

R. H. Campbell. Ambry: Linkedin’s scalable geo-

distributed object store. In Proceedings of the 2016

International Conference on Management of Data (SIG-

MOD’16), San Francisco, California, USA, 2016. Asso-

ciation for Computing Machinery (ACM).

[38] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao,

and J. Kelly. The Quantcast File System. In Proceedings

of the 39th International Conference on Very Large Data

Bases (VLDB’13), Riva del Garda, Italy, 2013. VLDB

Endowment.

[39] K. Patiejunas and A. Jaiswal. Facebook’s disag-

gregated storage and compute for Map/Reduce.

https://atscaleconference.com/videos/

facebooks-disaggregated-storage-and-

compute-for-mapreduce/, 2016.

[40] A. J. Peters and L. Janyst. Exabyte scale storage at

CERN. Journal of Physics: Conference Series, 331

(5):052015, dec 2011. doi: 10.1088/1742-6596/331/

5/052015. URL https://doi.org/10.1088/1742-

6596/331/5/052015.

[41] N. P.P.S, S. Samal, and S. Nanniyur. Yahoo Cloud

Object Store - Object Storage at Exabyte Scale. https:

//yahooeng.tumblr.com/post/116391291701/

yahoo-cloud-object-store-object-storage-at,

2015.



[42] R. Ramakrishnan, B. Sridharan, J. R. Douceur, P. Kas-

turi, B. Krishnamachari-Sampath, K. Krishnamoorthy,

P. Li, M. Manu, S. Michaylov, R. Ramos, N. Sharman,

Z. Xu, Y. Barakat, C. Douglas, R. Draves, S. S. Naidu,

S. Shastry, A. Sikaria, S. Sun, and R. Venkatesan. Azure

Data Lake Store: a hyperscale distributed file service

for big data analytics. In Proceedings of the 2017 In-

ternational Conference on Management of Data (SIG-

MOD’17), Chicago, IL, USA, 2017. Association for

Computing Machinery (ACM).

[43] I. S. Reed and G. Solomon. Polynomial codes over

certain finite fields. Journal of the Society for Industrial

and Applied Mathematics, 8(2):300–304, 1960.

[44] Rousseau, Hervé, Chan Kwok Cheong, Belinda, Con-

tescu, Cristian, Espinal Curull, Xavier, Iven, Jan, Gon-

zalez Labrador, Hugo, Lamanna, Massimo, Lo Presti,

Giuseppe, Mascetti, Luca, Moscicki, Jakub, and van der

Ster, Dan. Providing large-scale disk storage at cern.

EPJ Web Conf., 214:04033, 2019. doi: 10.1051/epjconf/

201921404033. URL https://doi.org/10.1051/

epjconf/201921404033.

[45] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File

System for Large Computing Clusters. In Proceed-

ings of the 1st USENIX Conference on File and Stor-

age Technologies (FAST’02), Monterey, CA, USA, 2002.

USENIX Association.

[46] R. Shah. Enabling HDFS Federation Having 1B File

System Objects. https://tech.ebayinc.com/

engineering/enabling-hdfs-federation-

having-1b-file-system-objects/, 2020.

[47] S. Shamasunder. Hybrid XFS—Using SSDs

to Supercharge HDDs at Facebook. https:

//www.usenix.org/conference/srecon19asia/

presentation/shamasunder, 2019.

[48] D. Shue, M. J. Freedman, and A. Shaikh. Performance

isolation and fairness for multi-tenant cloud storage. In

Proceedings of the 10th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI’12),

Hollywood, CA, USA, 2012. USENIX Association.

[49] A. K. Singh, X. Cui, B. Cassell, B. Wong, and K. Daud-

jee. Microfuge: A middleware approach to providing

performance isolation in cloud storage systems. In Pro-

ceedings of the 34th IEEE International Conference on

Distributed Computing Systems (ICDCS’14), Madrid,

Spain, 2014. IEEE Computer Society.

[50] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain,

J. Sarma, R. Murthy, and H. Liu. Data warehousing

and analytics infrastructure at facebook. In Proceedings

of the 2010 ACM SIGMOD International Conference

on Management of Data (SIGMOD’10), Indianapolis,

IN, USA, 2010. Association for Computing Machinery

(ACM).

[51] A. Wang. Introduction to HDFS Erasure Coding

in Apache Hadoop. https://blog.cloudera.com/

introduction-to-hdfs-erasure-coding-in-

apache-hadoop/, 2015.

[52] L. Wang, Y. Zhang, J. Xu, and G. Xue. MAPX: Con-

trolled Data Migration in the Expansion of Decentral-

ized Object-Based Storage Systems. In Proceedings

of the 18th USENIX Conference on File and Storage

Technologies (FAST’20), Santa Clara, CA, USA, 2020.

USENIX Association.

[53] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long,

and C. Maltzahn. Ceph: A scalable, high-performance

distributed file system. In Proceedings of the 7th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI’06), Seattle, WA, USA, 2006.

USENIX Association.

[54] A. Zhang and W. Yan. Scaling Uber’s Apache

Hadoop Distributed File System for Growth. https:

//eng.uber.com/scaling-hdfs/, 2018.


