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Abstract—Virtual Assistant technology is rapidly proliferating to improve productivity in a variety of tasks. While several virtual

assistants for everyday tasks are well-known (e.g. Siri, Cortana, Alexa), assistants for specialty tasks such as software engineering are

rarer. One key reason software engineering assistants are rare is that very few experimental datasets are available and suitable for

training the AI that is the bedrock of current virtual assistants. In this paper, we present a set of Wizard of Oz experiments that we

designed to build a dataset for creating a virtual assistant. Our target is a hypothetical virtual assistant for helping programmers use

APIs. In our experiments, we recruited 30 professional programmers to complete programming tasks using two APIs. The

programmers interacted with a simulated virtual assistant for help – the programmers were not aware that the assistant was actually

operated by human experts. We then annotated the dialogue acts in the corpus along four dimensions: illocutionary intent, API

information type(s), backward-facing function, and traceability to specific API components.

Index Terms—Software Agents, Virtual Assistants, Software Engineering, Wizard of Oz (WoZ).

✦

1 INTRODUCTION

Virtual Assistants (VAs) are software systems that interact
with human users via natural language and perform tasks
at the request of those users. VAs for everyday tasks (e.g.,
Cortana, Alexa, Siri) are proliferating after a period of heavy
investment – a confluence of sufficient training data, ad-
vancements in artificial intelligence, and consumer demand
have fed rapid growth [1].

Many of the achievements of VAs for everyday tasks are
beginning to be brought to specialty applications such as
medicine [2] and education [3]. However, a key observa-
tion is that these applications are quite specific: e.g., not
education in general, but a specific type of geography for
a specific age group of students. The reason is that data
collected for one application is difficult to generalize to other
applications – a virtual assistant must master the both the
language and the strategies humans use to move through
conversations, and the complexity is simply “too much” for
existing AI technologies to learn without detailed, specific
training data [4]. A relevant dataset must be collected and
annotated for every type of conversation in which a virtual
assistant needs to converse. For example, a VA for everyday
tasks would require different training data to recommend a
restaurant and to reserve a table at that restaurant [5], [6].

VAs for software engineering tasks suffer from the same
hunger for data. Despite long-recognized demand for vir-
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tual assistants to help programmers [7], [8], working rele-
vant VA technology remains something of a ”holy grail.”
Several research prototypes have made significant advances
(see Section 2), but a major barrier to progress is a lack
of well-understood, annotated datasets that are specific to
software engineering tasks. A survey in 2015 by Serban et
al. [9] found none related to SE tasks, and since that time
only one has been published to our knowledge, targeting
the task of bug repair [10].

One reason for the lack of suitable datasets is the in-
vestment cost necessary for experiments in numerous target
tasks, and a perceived disincentive in terms of publication
versus data and software artifacts [11]. A recent book by
Reiser and Lemon [12] provides clear guidance for how to
build dialogue systems, focusing especially on the design of
experiments for data collection. A major theme of the book
is that, despite a perception that data collection experiments
yield few immediate research outcomes, in fact the exper-
iments provide answers to research questions about how
people seek knowledge to perform tasks. These answers
are critical to later design of virtual assistants, in addition
to the data produced. Towards this end, Reiser and Lemon
establish two first steps towards building a VA: 1) conduct
“Wizard of Oz” (WoZ) experiments to collect simulated
conversation data, and 2) annotate every utterance in the
conversations with Dialogue Act (DA) types.

A WoZ experiment is one in which a virtual agent is
simulated. Participants interact with a virtual assistant to
complete a task, but they are unaware that the VA is actually
operated by a human “wizard”. The deception is neces-
sary because people communicate differently with machines
than they do with other humans [13] and our objective is to
create data for a machine to learn strategies to converse with
humans. The key element of these strategies are “dialogue
acts”: a dialogue act is a spoken or written utterance that
accomplishes a goal in a conversation [14]. A conversation
is composed of a series of utterances taken by different
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speakers, and each utterance functions as a dialogue act. For
example, the utterance “tell me how to find my classroom”
is a dialogue act explicitly requesting information, whereas
“this is the wrong classroom” is a statement that, depending
on context, may imply a request for information. A VA
must learn to recognize when a human is e.g. requesting
information, and to do that it relies on training data in which
humans have annotated the dialogue acts in conversations.

At the same time, in software engineering, one task
that cries out for help from virtual assistants is API usage:
programmers trying to use an unfamiliar API to build a
new software program. As Robillard et al. [8] point out, API
usage is a high value target for VAs due to the high complex-
ity of the task, and a tendency to need the same information
about different APIs [15], [16]. In other words, programmers
often have the similar kinds of questions about different
APIs (e.g. ”Is there an API type that provides a given
functionality?”, or ”How do I determine the outcome of a
method call?”), even if the tasks performed by the APIs are
not similar – the similarity of questions makes API usage a
good target for VAs, since the VAs are likely to be able to
learn what programmers need to know.

There are a wide variety of scenarios in which pro-
grammers may benefit having a VA to assist with API
usage. The authors of APIs are often not available to answer
questions (e.g. for free APIs found online), and web support
(e.g. StackOverflow) is neither a guarantee nor immediately
available, which makes the rapid help a VA can provide
more valuable. In some cases, programmers may have
limited access to traditional documentation. For instance,
blind programmers rely heavily on API documentation to
understand the structure of code [17], but are limited to
existing screen-reading tools. Another example would be
programmers looking to incorporate smartphones or other
devices with limited screen size into their workflows. These
programmers may prefer to query a VA for specific infor-
mation, rather than navigate large documents. Children or
novice programmers may also find a VA more approachable
than traditional documentation.

In this paper, we conduct WoZ experiments designed to
lay a foundation for the creation of virtual assistants for API
usage. We hired 30 professional programmers to complete
programming tasks with the help of a “virtual assistant,”
which was operated by a human wizard. The program-
ming tasks involved building a program that met specified
objectives using an API (see Section 3.2 for details). The
programmers conversed with the virtual assistant, though
they were not aware that it was operated by a human. Each
programming session lasted approximately 90 minutes.

We then annotated the dialogue acts in all 30 con-
versations. First, we labeled the illocutionary dialogue act
types by adapting the DA annotation scheme from the
AMI conversation corpus [18]. The AMI dialogue act labels
are 14 coarse-grained illocutionary types (e.g. INFORM,
ELICIT-SUGGESTION) extracted from simulated business
meetings. The advantage to annotation with these dialogue
act types is that comparison is possible with several other
datasets that use the same types, but the disadvantage is that
they are so coarse-grained that they alone do not capture
the nuances of SE conversations. Therefore, we also anno-
tated the API dialogue act types content of each utterance.

These types, adapted from Mallej and Robillard [19], are a
set of 12 labels (e.g. CONTROL-FLOW, FUNCTIONALITY)
corresponding to domains of API knowledge. Next, we an-
notated the backward-facing function of each dialogue act.
The AMI scheme provides a small set of labels to describe
the relationship of an utterance (e.g. POSITIVE, NEGATIVE,
PARTIAL) to a previous utterance. These relationships allow
us to identify and track conversational threads. Finally, we
annotated specific API components (e.g. specific method or
variable names) that were referenced in each utterance in
order to observe the traceability between specific concepts
and the language used to discuss them.

2 BACKGROUND AND RELATED WORK

This section discusses background on the problem we target,
supporting technologies, and related work.

2.1 Problem, Significance, Scope

The problem we target in this paper is that the composition
and patterns of dialogue acts are not known for conversa-
tions between programmers and virtual assistants during
API usage tasks. This problem is significant because infor-
mation about these dialogue acts must be known in order
to create lifelike virtual assistant systems. The situation is a
“chicken or egg” question because in order to obtain the di-
alogue act structure, one must have conversations between
programmers and VAs, but to have a VA one must know
the dialogue act structure. Software engineering literature
does not describe dialogue acts for API usage conversations,
which impedes development of usable VAs.

Reiser and Lemon provide an excellent summary of the
state-of-the-art in VA development in their recent book [12].
In short, they explain that a highly-effective method to kick
start development of VAs is to conduct Wizard of Oz (WoZ)
experiments to collect conversations between humans and
(simulated) VAs. The data from those experiments can
then be used to design a VA prototype via reinforcement
learning. Later, as more people interact with the VA, real-
world data can be collected. As mentioned in the previous
section, the process boils down to collecting WoZ data and
annotating the dialogue acts in that data.

There is a temptation to jump as soon as possible to train-
ing machine learning algorithms based on whatever data
are available. This temptation should be resisted because
the data collected to train a VA to do one task are generally
not usable for training the VA to do other tasks. While one
hopes that it would be possible to annotate a dataset once
and train a VA for many different tasks, in fact it is neces-
sary to re-annotate data based on task-specific criteria. For
example, in API usage, different tasks could be obtaining
usage code examples, or explaining rationale behind code,
or determining if an API function has changed since last
used; task-specific annotations must be obtained for each of
these tasks. Nevertheless, as Tenbrink et al. [20] point out,
different tasks often share similar high-level dialogue act
types, from which low-level, more detailed dialogue acts
can be derived.

The scope of this paper is to lay groundwork for building
VAs for API usage in the future. To that end, we 1) conduct
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WoZ experiments, 2) annotate the conversations with high-
level dialogue act types, semantic content, and utterance
relationships that are likely to be useful for many tasks, and
3) discuss the key tasks within API usage that occur in our
data to suggest what detailed training should be conducted
in future work, as well as other considerations for future
researchers. This scope is already quite extensive, so we
note that we do not yet attempt automatic classification
of dialogue acts, training of VAs for strategy, or natural
language generation.

2.2 Wizard of Oz Experiments

A “Wizard of Oz” (WoZ) experiment is one in which a
human (the user) interacts with a computer interface that
the human believes is automated, but is in fact operated
by another person (the wizard) [13]. The purpose of a WoZ
experiment is to collect conversation data unbiased by the
niceties of human interaction: people interact with machines
differently than they do with other people [21]. These un-
biased conversation data are invaluable for kickstarting the
process of building an interactive dialogue system. We direct
readers to a comprehensive survey by Riek et al. [22] for
further justification and examples of WoZ experiments.

In a WoZ experiment, researchers must provide the user
and the wizard with some specific scenario. A scenario is
”a task to solve whose solution requires the use of the
system, but where there does not exist one single correct
answer” [13]. A well-designed scenario promotes interac-
tion relevant to the simulated system [23]. To that end, it
is important for the scenario to place constraints on both
the user and the wizard. Such constraints may include
limitations on the resources available to the user, or the
types of responses the wizard can generate. Researchers
often provide the wizard with an interface that simplifies
and expedites the process of generating a response [24].

The WoZ technique enables researchers to rapidly pro-
totype and evaluate different system features or character-
istics. Kelley [25] describes how researchers can use these
simulations in an iterative design process, in which the
wizard is gradually phased out as the simulated function-
ality is added in. Reiser and Lemon [12] examine subjec-
tive feedback solicited from users to determine if different
wizard “strategies” (see Dialogue Acts below) are more or
less effective. This feedback also serves as a baseline against
which future iterations of a system can be compared.

2.3 Dialogue Acts

A “dialogue act” (DA) is a spoken or written act that
accomplishes a specific purpose in a conversation, as in-
troduced above. DAs are typically viewed as classes into
which utterances can be categorized [26], such as greeting
or information-elicitation.

A single dialogue act can perform multiple functions in
a conversation simultaneously: for instance, the utterance “I
have to work tonight” in response to an invitation functions
as an informative act and as a rejection of the previous
utterance. Dialogue act annotators can choose to provide
separate labels for each relevant dimension of a DA, or they
can use a one-dimensional annotation scheme that accounts
for all relevant functional combinations [27]. Most popular

DA annotation schemes provide anywhere from 3 to 10
different functional dimensions [28], [29], [30]. In practice,
researchers typically select or create an annotation scheme
to suit to their particular research problem [31].

A key observation is that there is a difference between
the strategy involved in a conversation and the language used
by people to implement that strategy [4] (even though a
recent trend has been to train ML algorithms to capture
both strategy and language at the same time [32], [33]).
The language is represented as the actual words used to
render an utterance, while the strategy is represented as
the sequence of DAs used. E.g., the language “A: Hello.
B: Hi. A: Where should we eat? B: At Joe’s.” versus the
conversation flow/strategy: greeting, greeting, suggestion-
elicitation, suggestion.

To create a dialogue system, both language and DA types
must be known for utterances in example conversations [12].
A VA must learn to mimic good strategies in terms of
DA flow (e.g. it must recognize that it should respond to
a suggestion-elicitation with a suggestion). Once it knows
that it should respond with a particular DA type (e.g. a
suggestion), it must then collect the information to portray
in an utterance (e.g. a restaurant to recommend) and then
convert the information into an understandable utterance
in natural language. As Serban et. al [9] point out in a
recent survey, several datasets, especially involving WoZ
experiments, have been created for a variety of domains to
serve as starting points for training VAs.

2.4 Reinforcement Learning for Dialogue Agents

Reinforcement learning (RL) is one of three fundamental
machine learning paradigms. Unlike supervised machine
learning, which involves leaning from labeled data, and
unsupervised machine learning, which involves identifying
patterns in unlabeled data, reinforcement learning does not
involve learning from a dataset; rather, it involves learning
by directly interacting with an environment over a discreet
number of time steps. Reinforcement learning is commonly
used to kickstart autonomous agents, as it requires min-
imal pre-existing training data while enabling agents to
learn long-term strategies. We refer readers to Sutton and
Barto [34] for a comprehensive overview of RL theory.

In brief, we note that many RL problems are formulated
as Markov Decision Processes (MDP). An MDP is a math-
ematical framework for decision-making that is defined by
the tuple 〈S,A,T ,R〉. S refers to a state space, which is
the set of all reachable states for an agent in the MDP; this
constitutes an agent’s beliefs and view of its environment. A
refers to an action set, which is the set of all actions that are
available to the agent. T refers to a state transition function,
which defines the likelihood of the agent transitioning to a
new state s′ from a previous state s after performing some
action a. R refers to the reward function, which defines the
agent’s expected reward for transitioning from state s to
state s′ via action a. When implementing any reinforcement
learning solution, the state space, action set, state transition
function, and reward function must be clearly defined.

Reiser and Lemon [12] provide detailed guidance on
training dialogue agents via RL by using WoZ data to select
an action set and state space and determine appropriate
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state transitions and rewards. The first step is to anno-
tate both the wizards’ and the users’ dialogue acts. The
annotations of the wizards’ DAs are used to define the
agent’s action set, while the users’ DAs are used to build
a user simulator that defines the state transitions. The state
space is determined by identifying the dialogue features
(e.g. dialogue length, previous dialogue act, number of
search results relevant to a query) that strongly influence
agent actions. Finally, the reward function can be created
by examining how certain positive and negative dialogue
outcomes (e.g. the system successfully assisting the user
with a task, or the user having to repeat a question several
times) correlate with task outcomes, as measured by task
completion and subjective user feedback scores.

Reiser and Lemon use a modular dialogue system ar-
chitecture, in which dialogue strategy (or dialogue manage-
ment) is trained separately from the other components of a
dialogue agent, such as natural language understanding and
generation. There is a large body of work supporting the use
of reinforcement learning for dialogue strategy in a modular
architecture; early work (e.g. by Singh et al. [35] and Schef-
fler et al. [36]) helped formalize the problem and demon-
strated preliminary results, while more recent work (e.g. by
Dhingra et al. [37] and Peng et al. [38]) have applied deep
reinforcement learning to tackle complex problems with
multiple subtasks and ambiguous states. Recent work (e.g.
[39] and [32]) has also attempted to use end-to-end deep
RL to train multiple dialogue components (e.g. language
understanding and dialogue management) simultaneously;
while these approaches eliminate or reduce the need for
annotated data, they struggle with some task-oriented and
domain-specific applications.

2.5 Related Work in Software Engineering

Related work in the software engineering (SE) literature can
be broadly categorized as either supporting experimenta-
tion or prototype virtual agents. In terms of supporting ex-
perimentation, recent work at FSE’18 [10] is the most similar
to this paper. In that work, the authors conducted WoZ
experiments for debugging tasks and built an automated
classifier for DA types. However, the one-dimensional DA
annotations in that study were rather general, such as
“statement” or “apiQuestion.” This paper is different in that
we have entirely new WoZ experiments for API usage and
provide more thorough analysis by annotating additional
DA dimensions. Work by Maalej et. al [19] is also key
supporting experimentation, in that it explores what types
of information programmers are provided in API documen-
tation. Many studies exploring the use of language in and
the contents of API documentation have been published in
recent years, including [40], [41], [42], [43], [44], [45].

Prototype virtual agents are less common, but include
APIBot [46] (a QA system for API documentation), Why-
Line [47] (a natural language debugging tool), TiQi [48] (a
natural language interface to query software projects), and
Devy [49] (a VA that performs Git operations). A compre-
hensive survey was recently conducted by Arnaoudova et.
al [50]. Our work most closely resembles APIBot [46], in that
our ultimate goal is to build a system to help developers
use APIs. However, there are several key differences: for

TABLE 1
Programmer/wizard pairings in the WoZ experiments. Participants

either worked locally (in an on-campus office) or remotely.

Wizard Programmer Scenario # Sessions

Author Local libssh 2
Author Remote libssh 4
Local Remote libssh 2
Remote Remote libssh 7

Author Local Allegro 0
Author Remote Allegro 4
Local Remote Allegro 1
Remote Remote Allegro 10

instance, APIBot is not designed for multi-turn dialogues,
and can not request additional information from the user
or consider dialogue history. Furthermore, the authors of
APIBot did not investigate what kinds of questions users
would ask a VA in practice. Therefore, we view our work as
complementing and enhancing existing work on VAs in SE.

This work follows a history of empirical studies in
software engineering [51]. In their “roadmap” to empirical
studies in SE, Perry et. al [52] emphasize that “empirical
studies can be used not only retrospectively to validate ideas
after they’ve been created, but also proactively to direct our
research.” Indeed, “exploratory studies” play an important
role in motivating, guiding, and informing future work [53],
such as an exploratory study on feature location processes
by Wang et al. [54] that directly inspired subsequent im-
provements [55]. It is our hope that the present study will
similarly facilitate the development of VA technology for SE.

3 WIZARD OF OZ EXPERIMENTS

This section describes the Wizard of Oz experiments we
designed to simulate the experience of programming with
the help of a virtual assistant. We designed two scenarios
in which programmers were asked to complete program-
ming tasks using an API that was unfamiliar to them.
The first scenario used the libssh networking library, while
the second used the Allegro multimedia library. In lieu
of documentation, we introduced the programmers to an
“experimental virtual assistant,” which we named Apiza.
Unbeknownst to the programmers, Apiza was controlled by
a human “wizard.”

3.1 Participants

We distinguish between two participant roles in the ex-
periments: the ”programmers” and the ”wizards.” No par-
ticipant served as both a wizard and a programmer. All
participants filled out an entry survey describing their
background and programming experience. Each participant
either worked “locally” in a controlled environment or
“remotely” from the location of his or her choice. Table 1
shows the number of experimental sessions conducted with
local or remote participants. It also shows the number of
sessions in which the first author participated. For example,
there were 4 sessions using the libssh scenario in which
the first author served as the Wizard and the Programmer
worked remotely.
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TABLE 2
Summaries of the two experimental scenarios.

API Domain # Participants # Tasks Task Detail Completed in Order API Examples in Starter File

libssh Networking 15 5 Direct instructions True False
Allegro Multimedia 15 7 Open-ended False True

We divided each of the remaining tasks into a series
of subtasks. The third task directed the programmer to
set up the ssh_session created in the previous task by
connecting to a server (the localhost), authenticating the
server, and disconnecting from the server. (e.g. connecting to
the server could be completed using the function ssh_con-

nect). The fourth task directed the programmer to complete
an empty method called show_remote_user by creating
and opening an ssh_channel, executing the who com-
mand on the channel, reading the response, and shutting
down the channel. This task used many methods similar
to those previously used (e.g. ssh_channel_new), as well
as new methods to execute on and read from a channel.
The final task directed users to fill out an empty method
called sftp_operations by creating and initializing an
sftp_session, creating a new file in a new directory,
writing a string to the file, and finally, and closing the file.

3.2.2 Scenario 2: Allegro

The second scenario involved using the Allegro multimedia
library to add features to a simple video game. Additionally,
there were a few key differences between the two scenarios.

Whereas programmers in the libssh scenario were pro-
vided a nearly empty source file to work with, we pro-
vided Allegro programmers a template program with sev-
eral features already implemented (such as the display and
core game loop). These features needed to be correctly
implemented before any other interesting tasks could be
completed, but they were too complicated and used too few
API functions to serve as good tasks themselves.

Because we observed some programmers in the libssh
scenario finish all five tasks with time to spare, we included
seven tasks in this scenario. Additionally, we did not include
the initial compilation and observation of program behavior
as a separate task, as in the libssh scenario. We instructed
the programmer to compile and observe the program before
beginning the session, to allow more time to work on the
tasks that actually involved the API.

Unlike the libssh scenario, we allowed the programmers
to work through tasks in any order to prevent them from
getting stuck on any one problem (in practice, nearly all
programmers worked through them in the order provided).
Also unlike the libssh tasks, these tasks provided only high-
level descriptions of the features that were to be incorpo-
rated and 2-3 details or hints. As such, these problems were
a bit more open-ended than those in the libssh set. This
diversity in tasks was intended to procure a wider range
of programmer-wizard interactions.

The first task directed the programmer to add keyboard
functionality to the game. This required installing the key-
board subsystem, registering it as an event source, and
checking for keyboard events. Though this task required
the use of at least 4 API methods, they were analogous to

methods already implemented in the template program (e.g.
the al_get_display_event_source method may have
hinted at the existence of the al_get_keyboard_event_-
source method).

The remaining tasks directed the programmer to add
a “game over” sound effect, show a score on the display,
draw images on the display, rotate the images appropriately,
pause the game when the player clicked on the display, and
make the display resizable. These tasks generally required
similar steps, such as identifying the correct subsystems and
handling events. The later tasks required the programmer to
understand more complex aspects of the API.

3.3 Methodology

At the start of each session, we instructed the programmer
to open the virtual machine testing environment and login
to a Slack channel for communication. At the same time, we
had the wizard participant login to the same Slack channel
using an account named “Apiza”.

In Slack, we provided the programmer with a full de-
scription of the scenario, consisting of the list of specific
tasks to complete with the unfamiliar API (as described in
the previous section). We asked that all questions relating to
the API be directed via Slack text messages to our “exper-
imental virtual assistant” called Apiza. We explained that
Apiza was an “advanced AI,” able to carry out “organic,
natural-language conversation” and discuss “both high-
level and low-level functionality.”

Once the programmer confirmed that he or she under-
stood the description and the tasks, we started a timer
and instructed the programmer to begin. For the next 90
minutes, the programmer worked through as many of the
tasks as he or she could. Throughout, the programmer sent
messages to the wizard, who answered them as quickly and
correctly as he or she could. We instructed the wizard that
his or her responses didn’t need to seem “robotic,” but at no
point was the wizard to reveal that Apiza was a human.

During the session, we did not allow the programmer
access to the API’s documentation. While this does not
necessarily represent the most-likely use case for a VA for
API usage, it is a constraint necessary in the vast majority of
WoZ experiments to force programmers out of their habits
and into using the experimental tool [22]. However, we did
permit the programmer to search the internet for general
programming questions (e.g. related to C syntax) in order to
narrow the scope of the dialogue.

Unlike the programmer, the wizard had access to the
API documentation and header files via the tool described
in Section 3.1.2. Additionally, we permitted the wizard to
search for API-related information on the internet. The only
factor limiting the wizard’s access to information was the
pressure to generate a timely response.
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When the time ran out or the programmer finished all of
the tasks, we instructed the programmer to stop working.
We then asked the programmer to send us his or her code
and the list of all URLs visited in the course of the study.
We also asked them to complete an exit survey; as recom-
mended by Reiser and Lemon [12], the exit survey included
the PARADISE [58] questions, which rated user satisfaction
on a 5-point Likert scale.

3.4 Data Collection

We collected six key data items for every experimental
session:

1) The programmer’s entry survey.
2) The wizard’s entry survey.
3) The dialogue between the programmer and the wizard.
4) The source code written by the programmer.
5) A record of any websites the programmers visited

during the session for general C syntax questions.
6) The programmer’s exit survey.

Additionally, some programmers elected to provide ad-
ditional feedback about their experience with Apiza.

3.5 Threats to Validity

As in any experimental study, our experimental design
carries a number of threats to validity, including human
factors, the participant selection process, the details of the
experimental scenarios, and the design of the communica-
tion interface. Here, we will briefly address these threats,
and explain the steps we took to mitigate them.

Human factors. Human factors, such as fatigue, distrac-
tion, and failure to follow the task guidelines, had the po-
tential to impact each individual participant’s performance.
These threats were especially present for the majority of
trials that were conducted remotely. To reduce the effects
of fatigue and distraction, we limited each experimental
session to 90 minutes. We also attempted to curb distraction
by providing distraction-free virtual environments to both
the programmers (the virtual machine testing environment)
and the wizards (the custom tool). To encourage program-
mer participants to follow the task guidelines, we included
all pertinent information and restrictions in the document
detailing the experimental tasks. Before beginning sessions,
we asked them to read through the document and gave
them the opportunity to ask any questions. Still, despite our
instructions to direct all API-related questions to Apiza and
only use online resources for general C syntax questions, we
observed a small number or instances in which program-
mers searched for API information on the internet. These
were infrequent occurrences, and they were documented in
the internet history sent at the end of the session.

Participant selection. We invited programmers from
a wide range of backgrounds to participate, in order to
collect a diverse array of programmer dialogue strategies.
However, this leniency means that it is possible that our
results and conclusions may have been different with a
different set of programmers. We attempted to mitigate this
risk by recruiting a fairly large number of programmers
(30) and having them complete entry surveys to document
their backgrounds. Similarly, the wizard strategies that we

observed may have changed had a different set of wizards
participated, or if the same wizards had completed more
or fewer sessions. We recruited a fairly large number of
wizards (6) for a WoZ study, and we had many of them
participate multiple times in order to observe possible learn-
ing effects. We believe that our participant selection process
struck a reasonable balance between experimental control,
generalizability, and practicality.

Experimental Scenarios. The choice of APIs and the
design of the particular tasks we asked participants to
complete in each scenario may have also had an effect on the
types and quantities of interactions that occurred. The do-
main of each API and the quality of its documentation likely
affected the wizard’s ability to find relevant components
and make recommendations, as well as the programmer’s
ability to determine which components were appropriate
and how to use them. Similarly, the specificity and wording
of the tasks may have influenced the types of questions
programmers asked. However, there is no single API or task
set can generalize to all APIs and tasks. Therefore we chose
two APIs from different domains and made one task set
more open-ended than the other in order to broadly gauge
whether there would be any impact on the dialogues. Still,
the many differences between the two scenarios (such as
the different number and quality of tasks) means that any
differences observed between them in the results cannot
clearly be attributed to any individual variable.

Communication interface. Finally, the chosen communi-
cation interface may have impacted the results of the study.
Being limited to text-based communication over Slack may
have affected the amount of information wizards decided
to include in individual messages (e.g. they may have
suggested fewer API components in spoken messages, or
more components if they had been able to link directly
to documentation). At the same time, the interface may
have affected the frequency and wording of programmer
questions. As analyzing the differences between communi-
cation modalities was not in the scope of this study, we felt
that text-based communication via Slack would suffice, as
Slack is a fairly well-known messaging platform with few
restrictions on message length or frequency, and one for
which many developers have created actual bots.

4 EXPERIMENT RESULTS

In this section, we present the key experimental results of
our WoZ experiments. We outline the basic structure and
statistics of the collected dialogues, and briefly examine the
programmers’ task performance and satisfaction with the
simulated system.

4.1 Dialogues

We collected 30 API usage dialogues. In general, the pro-
grammer and the wizard sent messages in turn. Most fre-
quently, these were question-answer pairs, with the pro-
grammer querying some functionality of the API and the
wizard providing the answer. Other types of interactions
occurred as well, such as greetings, assessments, and side-
exchanges – these are explored in greater detail in Sec-
tion 6. The following excerpt typifies the interactions that
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TABLE 3
Comparison of our corpus to other WoZ corpora. The numbers of

words and unique words in each corpus are shown where available.

Task Domain
# of # of # of # Unique

Dialogues Turns Words Words

APIs (this paper) 30 1947 47928 3190

Debugging [10] 30 2243 50514 4162

Design [59] 31 3606 27459 –
General QA [60] 33 2534 125534 –
Audio player [61] 72 1772 17076 –
Tutoring [62] 37 1917 12346 –
Mission planning [63] 22 1738 – –

occurred in the dialogues. Messages are labeled with “PRO”
or “WIZ”, denoting the speaker as a “Programmer” or
“Wizard,” respectively.

PRO: allegro keyboard input

WIZ: You can save the state of the keyboard
specified at the time the function is called into the
structure pointed to by ret_state, using
al_get_keyboard_state

PRO: Whats the function signature for
al_get_keyboard_state

WIZ: void al_get_keyboard_state(

ALLEGRO_KEYBOARD_STATE *ret_state)

Across all dialogues, participants collectively generated
1927 Slack messages (also referred to as “turns”). Wizards
and programmers sent similar quantities of messages, av-
eraging to 31.8 messages/dialogue sent by programmers
and 33.1 messages/dialogue sent by wizards. The frequency
was also similar across the two tasks; participants sent an
average of 68.5 messages in th libssh scenario, compared to
61.3 sent in the Allegro scenario.

The dialogues contain a total of 47928 word tokens1 with
a vocabulary size of 3190 words. Wizards used considerably
more words (41185) and drew from a larger vocabulary
(2988) than programmers, who used 6743 words and 880
unique words. This disparity in word usage is to be ex-
pected; programmers manually wrote the majority of their
messages’ content, and had access to only limited infor-
mation. By contrast, wizards frequently copied and pasted
large chunks of pre-written documentation to send to the
user. This corpus is similar in size to published WoZ corpora
across a broad range of domains, as shown in Table 3.

4.2 Task Completion

Not every programmer completed every task. This fact is
valuable because the task completion rate can be used as a
metric to judge the efficacy of different wizard strategies. Re-
call that we hired 6 wizards, who each completed between
1 and 10 sessions, providing us with a diverse variety of
wizard strategies. As Reiser and Lemon [12] describe, iden-
tifying which strategies lead to better or worse outcomes can

1Word tokens were generated using the word_tokenize method
from Python’s nltk.tokenize.punkt module.

TABLE 4
Programmers’ performance on the tasks. “Attempt rate” refers to the

percentage of all programmers that wrote at least one line code directly
related to the task. “Success rate” refers to the percentage of those

programmers that successfully completed the task.

Scenario Task Attempt Rate (%) Completion Rate (%)

libssh2

A 100.0 100.0

B 100.0 78.6

C 100.0 21.4

D 71.4 40.1

E 51.1 28.0

Allegro

A 100.0 73.3

B 93.3 78.6

C 80.0 33.4

D 40.0 66.8

E 6.7 100.0

F 6.7 100.0

G 0.0 N/A

help enables VA designers to determine which behaviors are
desirable in a VA. While this extensive analysis is beyond
the scope of this paper, we present the programmers’ task
completion rates in order to characterize the corpus.

Specifically, we present two metrics: the task attempt rate
(that is, the proportion of programmers that attempted a
task) and the task completion rate (of the programmers who
attempted a task, the proportion who completed it). We
considered a programmer to have “attempted” a task if
he or she wrote at least one line of code directly related
to the task. If it was ambiguous whether a line of code
related to a task, we referred to the dialogue for additional
context. We considered a programmer to have “completed”
a task if, in our judgment, he or she wrote all of the code to
satisfy all of the task’s requirements, even if the code did not
compile or execute. Table 4 shows programmers’ attempt
and completion rates for each task. For instance, 71.4% of
all programmers attempted Task D of the libssh scenario; of
those programmers, 40.1% completed the task.

Attempt and completion rates for different tasks varied
between 0% and 100%. We generally observed lower at-
tempt and completion rates for the later tasks, which were
more difficult and for which the programmers may have
had less time, depending on their performance on earlier
tasks. Tasks E and F of the Allegro scenario each have
a success rate of 100% because only one programmer at-
tempted and completed those tasks. Programmers generally
finished one task before moving to the next; however, they
occasionally moved on from a task without successfully
completing it.

4.3 User Satisfaction

In addition to observing the programmers’ objective per-
formance on the tasks, we also asked programmers to fill
out surveys subjectively rating their satisfaction with the
“virtual assistant” system on a 5-point Likert scale. These
questions serve as another metric to evaluate different wiz-
ard strategies. The survey questions were taken from the
PARADISE [58] framework for automatic dialogue evalua-
tion. To measure different dimensions of user satisfaction,

2Only 14 sessions are considered here, as one participant in the libssh
scenario did not submit a source code file.
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RQ1 What is the composition of the corpus in terms of
illocutionary dialogue act types?

RQ2 What is the composition of the corpus in terms of API
dialogue act types?

RQ3 What is the composition of the corpus in terms of
backward-facing dialogue act types?

RQ4 What is the traceability of specific API components in
the corpus?

We addressed each of these research questions by anno-
tating the conversation corpus along a different dimension.
The annotation schemes are described in detail in 5.2.

The rationale for RQ1 is to discover the conversational
“flow” of the API dialogues. An “illocutionary” dialogue act
type describes the illocutionary intent behind an utterance
e.g. distinguishing between a statement intend to inform
and a statement intended to suggest future action. Anno-
tating illocutionary DA types enables us to train a VA to
identify the intent behind a user’s utterance and to predict
the appropriate type of response (e.g. whether to respond to
a question with an answer or a follow-up question).

The rationale for RQ2 is to evaluate the domain-specific
content of the API dialogues. Whereas illocutionary dia-
logue act types label utterances as “questions” or “state-
ments,” API dialogue act types describe what types of API
knowledge (such as functionality, usage patterns, or exam-
ples) are addressed in each utterance. As Wood et al. [10]
point out, a virtual assistant must be able to identify the type
of domain-specific knowledge a programmer asks about in
order to respond with a relevant answer.

The rationale for RQ3 is to evaluate relationships among
the utterances in the API dialogues. We observed that
the programmer and the wizard did not always engage
in simple question-answer turn-taking. Rather, dialogues
sometimes became complex, with multiple conversational
“threads” potentially progressing in parallel. A virtual as-
sistant should be able to track separate threads in order to
draft contextually appropriate responses.

The rationale behind RQ4 is to identify and track the
specific API components that are addressed throughout
the dialogues. This identification is related to the concept
assignment problem, as it involves connecting specific soft-
ware components to their relevant, natural-language con-
cepts. We refer to this identification as “traceability,” as it
relates to the concept of traceability in software engineer-
ing [65]. A virtual assistant for APIs must be able to identify
the API elements relevant to a user’s utterance (even when
those elements are not mentioned by name).

5.2 Methodology

This section details the annotation scheme used to investi-
gate the research questions detailed above. See Table 5 for
summaries of each scheme and example labels. The full list
of labels for each dimension can be found can be found in
that dimension’s source.

5.2.1 Segmentation

Before assigning any labels, we first had to segment the
Slack messages into individual segments, or utterances.
McCowan et al. [18] emphasize that dialogue acts reflect

speaker intention, and in their guide, they recommend that
“each time a new intention is expressed, you should mark a
new segment.” The length of an utterance is variable; it may
consist of a single word or entire paragraphs, depending on
the speaker’s intention. In our experiments, programmers
and wizards often expressed multiple intentions, responded
to multiple utterances, or referenced multiple API compo-
nents in the course of a single message. Therefore, it was
important to segment the messages before labeling.

Our corpus presented a unique segmenting challenge:
wizards often shared verbatim chunks of documentation to
the programmer. These chunks could contain several para-
graphs worth of information. To segment each individual
utterance of the verbatim documentation would not quite
be appropriate, as they do not necessarily represent separate
intentions on the part of the wizard. On the other hand,
to group an entire chunk of documentation into a single
segment would be too coarse grained, as wizards had the
ability to purposefully include and exclude certain types
of information using the documentation tool described in
Section 3.1. Given that fact, we chose to segment chunks of
documentation by topic (e.g. discussion of all parameters
was included in a a segment, separate from discussion of
the return values).

5.2.2 Illocutionary Dialogue Act Types

We labeled illocutionary dialogue act types using the so-
called “AMI labels.” The AMI corpus, presented by Mc-
Cowan et al. [18], provides a coarse-grained set of labels
for illocutionary DA types that are applicable to many types
of conversations. As Gangadharaiah et al. [70] point out, a
useful place to start annotation is with a set of 10-20 coarse-
grain labels to provide a common comparison point with
other datasets, even though these annotations alone are not
sufficient for industrial use.

Our methodology for annotation was straightforward:
McCowan et al. [18] provide an annotation guide with
detailed instructions for every DA type. We followed this
guide for every conversation, labeling each utterance with
the most appropriate label. Note that we annotated both
sides of the conversations, wizard and programmer, even
though a virtual assistant would only need to classify the
dialogue acts of the programmer – it would know the wiz-
ard’s dialogue act types because it would have generated
them. However, we annotate both sides anyway, since we
are interested in the wizards’ conversation strategies and
providing guidance to designers of virtual assistants. This
decision is in line with recommendations by Wood et al. in a
study of software engineering VAs [10].

To analyze the distribution of illocutionary DA types,
we compared our corpus to two others: the AMI meet-
ing corpus [18] and the WoZ debugging corpus [10]. The
AMI corpus consists of spoken multi-party discourse in
simulated meetings, while the debugging corpus consists
of written dialogues between programmers and wizards
completing a series of bugfixing tasks. We compared the
frequencies of each illocutionary DA type in our corpus to
each of these corpora. The frequencies didn’t account for
three of the original AMI labels (STALL, FRAGMENT, and
BACKCHANNEL) that were primarily relevant to spoken
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TABLE 5
The four dimensions along which the corpus was annotated.

RQ Dialogue Act Dimension Source Summary Examples

1 Illocutionary Dialogue Act Types [66] 14 labels describing the forward-facing
illocutionary force of an utterance.

INFORM, ELICIT-INFORM,

SUGGEST, ...

2 API Dialogue Act Types [67] 11 labels describing the API informa-
tion referenced in an utterance.

FUNCTIONALITY, PATTERNS,

EXAMPLES, CONTROL FLOW, ...

3 Backward-Facing Dialogue Act Types [66] 7 labels describing the relationship of
an utterance to a previous utterance.

POSITIVE, NEGATIVE, PARTIAL,

...

4 Traceability [68], [69] All relevant components in an API. ssh_session, ALLEGRO_KEY_-

DOWN, ssh_disconnect(ssh_-

session session)...

modalities, to allow for a more direct comparison between
the AMI corpus and the WoZ corpora.

We include this comparison for two reasons. First, we
want to establish some context for the distributions we
observe in our dataset. Qualitatively analyzing whether
certain DA types see particularly high or low usage in
API usage dialogues requires us to know how frequently
they are used in other dialogues in similar and dissimilar
domains. Second, if the distribution of illocutionary DA
types in API usage dialogues is evidently similar to that
in other domains, it may encourage researchers to consider
using certain transfer learning techniques for tasks such as
dialogue act classification.

5.2.3 API Dialogue Act Types

The API dialogue act types in each utterance were labeled
according to the taxonomy proposed by Mallej and Robil-
lard [19]. In their work, they generated a set of 12 broad
categories that may be used to classify the information types
present in API documentation. Tian et al. [46] applied these
label not only to API documentation, but to questions about
documentation as well. By training a model on API ques-
tion/answer pairs associated with these labels, they were
able to achieve high performance on an API information
type retrieval task.

We followed the annotation guide provided by Mallej
and Robillard, which describes in detail every knowledge
type and provides suggestions to resolve uncertainties. We
labeled API DA types in utterances by both the wizards and
the programmers, but we only labeled utterances that actu-
ally contained API information. Unlike the illocutionary DA
annotation scheme, Mallej and Robillard explicitly allowed
for multiple labels to be applied to a single unit.

We found that the knowledge type that Mallej and
Robillard referred to as “NON-INFORMATION” actually
encompassed valuable information in the context of these
dialogues, such as the names of functions, their parameters,
and their return values. As such, we decided to rename the
“NON-INFORMATION” class to “BASIC.”

We compared the distribution of API DA types to
the type distribution found in the documentation for the
JDK 6 Java platform, which was one of two systems that
Maalej and Robillard originally coded with API knowledge
types [19]. There are several substantive differences between
the API usage corpus and the documentation for JDK 6:
they involve different APIs using different programming

languages and communicate information for different pur-
poses. Furthermore, the distribution of API information
types in the JDK documentation is not necessarily represen-
tative of the distribution in all API documentation. As such,
the comparison between these two sources was intended to
identify overall trends, rather than fine-grained distinctions.

5.2.4 Backward-Facing Dialogue Act Types

We used another layer from the AMI annotation scheme [18]
to capture the relationships among utterances. This layer
consists of only four backward-facing dialogue act types:
“POSITIVE,” “NEGATIVE,” “PARTIAL,” and “UNCER-
TAIN.” Each of these covers a wide range of relationship
types; for instance, “POSITIVE” can imply agreement with
a previous utterance, understanding of a previous utterance,
or an attempt to provide something that the previous utter-
ance requested.

We again followed the AMI guidelines, marking relation-
ships among utterances. In the AMI scheme, an utterance
can only relate directly to a single prior utterance, so an an-
notation consisted of a single label and the ID of the related
utterance. Any utterance could relate to any prior utterance
by either speaker. Any utterance without a backward-facing
function (e.g. an utterance starting new lines of questioning)
was given a placeholder “[NONE]” label.

In the course of annotating relationships, we found that
the four backward-facing dialogue act labels did not pro-
vide enough granularity to satisfactorily capture all of the
observed relationships between utterances. We noted that
other dialogue act labeling schemes (such as DAMSL [28])
provide more distinction between different types of re-
lationships (e.g. DAMSL distinguishes among “Accept,”
“Acknowledge,” and “Answer” relationships, all of which
AMI would classify as “POSITIVE”). Therefore, we chose
to add three additional labels to the original AMI set of
backward-facing dialogue act type labels in order to more
meaningfully evaluate the relationships that occur in our
specific corpus.

The three labels that we added were “REPEAT,”
“FOLLOW-UP,” and “CONTINUE.” The “REPEAT” label
was used to mark repetitions, repairs, or rephrasings of
a previous utterance. The “FOLLOW-UP” label was used
to mark acts that followed up on a previous utterance,
either by asking a question predicated on the utterance,
or providing unprompted information or suggestions based
upon the previous utterance. The “CONTINUE” label was
intended to link contiguous utterances by one speaker that
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form a single question or response. For instance, Apiza
often responded to requests for documentation by sending
information about parameters, return values, functionality,
etc. These responses each comprised several utterances –
it would be inaccurate to label each utterance as having a
totally separate relationship to the original query.

5.2.5 Traceability

The “traceability” annotation of specific API components
was inspired by topic- and entity-labeling methodologies
in NLP and SE [71], [72], [73]. This annotation layer did not
have a predefined label set per se – rather, every component
of the API could potentially be used as a label. We went
through every utterance and labeled any API components
that were the “topic” of the utterance. An API component
did not need to be referenced by name to constitute a topic,
and direct references to a component did not necessarily
make them a topic. Rather, the decision was heavily based
on context, the intention of the speaker, and the retroactive
role of the component in the conversation.

For instance, the utterance “How do I ensure a session
was successfully created?” does not explicitly name any
component of the libssh API – however, the “session” is
in reference to an ssh_session struct, and the question is
asked directly after a discussion of the ssh_new() method.
Therefore, both the ssh_session struct and the ssh_-

new() method are labeled for that utterance.

5.2.6 Note on Reliability

In any annotation process, it is important to consider the
reliability of the annotations, or “the extent to which different
methods, research results, or people arrive at the same
interpretations or facts” [74]. Bias, fatigue, and other factors
may cause an individual annotator to produce inconsistent
or unreliable results [75], [76].

It is common for researchers to gauge the reliability of
their annotations by asking multiple, independent annota-
tors to annotate data and then calculating an agreement
score using e.g. Cohen’s kappa or Krippendorff’s alpha [77].
Establishing reliability is especially important in “conven-
tional” qualitative analysis, or “open-coding” processes in
which annotators do not use predetermined sets of labels.
In those cases, agreement among independent annotators
does not just indicate the reliability of a particular set of
annotations, but rather, the reliability of the annotation
scheme as a whole.

However, the act of calculating agreement does not itself
improve reliability. Furthermore, agreement scores are noto-
riously difficult to interpret (e.g. while an agreement score
of .8 is generally considered to indicate high reliability, it is
not sufficient for applications that are “unwilling to rely on
imperfect data” [78]).

By contrast, we performed “directed” qualitative analy-
sis; that is, we annotated the corpus using preexisting sets
of labels. Our priority was not to measure the reliability of
the existing annotation schemes, but to ensure the correct
application of those schemes. To achieve unbiased results
in this sort of analysis, Hsieh and Shannon [75] suggest
using an “auditing” process, in which experts discuss the
application of label sets and resolve any ambiguities. This
type of procedure has frequently been used in the social

sciences [79], [80], and more recently, in software engineer-
ing [10]. This process allows for the creation of a single,
higher-quality set of annotations for use in applications that
are less willing to rely on imperfect data [10].

We followed this procedure: the first author annotated
the corpus following the guidelines for existing annotation
schemes for each relevant dimension. Whenever there was
some ambiguity as to the correct application of an annota-
tion scheme, the first and third authors discussed the situa-
tion and decided on a correct implementation (or, in some
cases, modifications to the scheme). Although this auditing
process does not allow us to calculate an agreement score,
it allowed us to generate a single set of “more accurate”
annotations [75].

Still, our intention is for these high-level annotations
to guide the creation of a API usage VA; as described in
Section 2.3 and Section 2.4, more task-specific annotations
will be needed to enable particular functionalities. We ac-
knowledge that future researchers who wish to apply these
annotations directly may be wary of the fact that a reliability
metric cannot be calculated, and choose to independently
reannotate the corpus to address those concerns.

6 ANNOTATION RESULTS

In this section, we discuss the results of the annotation
process described above. Before assigning any labels, we
segmented the programmers’ and the wizards’ messages
into discreet utterances, as described in Section 5.2.1. We
ultimately segmented the 1947 messages in the corpus into
3183 utterances. Programmers’ messages contained 1.1 ut-
terances on average, with 6% containing more than one
utterance. Wizards’ messages contained 2.2 utterances on
average, with 57% containing more than one utterance.

6.1 RQ1: Illocutionary Dialogue Act Types

Figure 3 shows the composition of the corpus in terms of
illocutionary dialogue act labels. Programmers most fre-
quently used dialogue acts of the ELICIT-INFORM and
ELICIT-OFFER-OR-SUGGESTION illocutionary types, col-
lectively accounting for approximately 80% of all program-
mers’ dialogue acts. Wizards primarily used dialogue acts
of the INFORM type, accounting for nearly 74% of their
dialogue acts. The next most common label for the wizards
was SUGGEST, accounting for 13% of their labels. These
preferences seem to reflect the task goals and the partic-
ipants’ different roles in the API dialogues: programmers
sought to learn how to use the API, and wizards provided
the desired information.

We compared the distribution of AMI labels in our
corpus to two others: the AMI meeting corpus [18] and
the WoZ debugging corpus [10]. As shown in Figure 3,
the three corpora shared a few traits: the relatively high
frequency of INFORM acts and the relative rarity of the BE-
NEGATIVE, COMMENT-ABOUT-UNDERSTANDING, and
ELICIT-COMMENT-ABOUT-UNDERSTANDING acts.

Beyond those similarities, the distributions varied sub-
stantially among the three corpora. The participant role
(wizard or programmer) affected the frequencies of illocu-
tionary types in both of the WoZ corpora. Compared to the
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process was slow, as it involved cross-referencing API doc-
umentation and online resources and manually attempting
each iteration of the task set. We found that official tutorials
published by API authors often provided good frameworks
for tasks; they were generally modularized, with each tuto-
rial introducing new API components to solve a different
problem. Developing a system to automatically or semi-
automatically generate tasks from API tutorials may be an
interesting direction for future researchers.

Second, the process of recruiting and coordinating par-
ticipants was particularly time-consuming. We found that
unexperienced programmers were more eager to inquire
about the study than expert programmers, many of whom
were uninterested in accepting a job with such a short
duration. This required us to spend more time targeting
potential participants and extending them offers. Once a
programmer was interested, we then had to identify a time
when both the programmer and a wizard would be able
to participate, which was often several days in the future.
Future researchers conducting WoZ experiments with ex-
pert programmers may want to investigate other avenues
for recruiting and coordinating participants.

Third, the actual execution of the experiments was a
necessary bottleneck, as each experimental session took 90
minutes to complete, with additional time for the program-
mer to set up the testing environment, read through the
tasks, and complete an exit survey. We only ever conducted
one session at a time, to ensure that the first author could
be available to help with any problems that arose. Future
researchers may want design their experiments in such a
way as to allow sessions to be executed in parallel.

7.2 Potential Role for a VA in a Developer’s Workflow.

Although there are certainly specific use cases in which
a VA may serve as a developer’s only means to access
documentation, our results suggest that a general purpose
VA for API usage should function alongside, rather than in
lieu of, traditional documentation. By and large, the devel-
opers in this study expressed frustration that they were for-
bidden from accessing typical documentation. While some
programmers acknowledged that they were just ”used to”
traditional documentation, they also cited several specific
grievances, including the slow response speed, the inability
to easily follow links to other components or obtain a high-
level view of the API structure, and the fact that responses
were sometimes irrelevant, incorrect, or inadequate.

Still, many programmers identified specific “intelligent”
features that they admired in Apiza. In particular, many
were impressed by Apiza’s ability to provide context-
specific recommendations and synthesize information when
the documentation was incomplete. While the programmers
were frustrated with how Apiza communicated information,
they were impressed by its ability to determine what to
communicate. As one programmer expressed, ”the only
times that I [the programmer] could see myself using it
would be times that I usually try to ask a person.”

Therefore, we propose that a VA for API usage should
help users to navigate and understand, but not necessarily
replace, traditional documentation. The system should be
capable of engaging in dialogue to determine what a user

wants, directing the user to relevant pieces of documenta-
tion, and answering questions about the API that may not
be clear from the documentation alone.

7.3 Considerations for Specific VA Features.

We present four considerations regarding features that API
VA designers may wish to incorporate into their system.

First, our study revealed that programmers interacting
with a VA primarily ask questions about five types of API
information: patterns (e.g. ”what functions should I use to
bring about a specific outcome?”), basic (e.g. ”what is this
function’s return type?”), functionality (e.g. ”what does this
function do?”), structure (”what functions are related to this
one?”), and examples (e.g. ”show me an example invocation
of this function.”). While there may be a temptation to
design a VA capable of answering any arbitrary API-related
question, it may be more efficient to focus on training it to
answer some subset of these question types.

In particular, while the wizards in our study performed
several different API-related tasks, we found that the ma-
jority of the interactions revolved around identifying the
appropriate API components to bring about specific out-
comes. We noted five distinct phases in this process: the
programmer explaining his/her requirements, the wizard
verifying those requirements, the wizard providing one
or more suggestions, the user asking follow-up questions
about those suggestions, and the wizard answering those
questions. The preponderance of this interaction pattern is
due, at least in part, to the type of tasks in this study;
had programmers been performing maintenance tasks, there
may have been fewer questions about implementing new
patterns and more about understanding existing code. Still,
based on our studies, we believe that identifying useful API
components would be a high-value application for a VA.

Another consideration relates to the potential use of
online resources. In our studies, wizards occasionally di-
rected programmers to websites related to the program-
mers’ queries. We also frequently observed wizards struggle
to determine how to help the programmers implement
certain design patterns; in many of those cases, the wizards
could have easily found the answer by searching the inter-
net. A VA could take advantage of the huge amount of API
information available on question-answering websites like
StackOverflow, in projects hosted on sites like GitHub, and
in tutorials around the web.

Finally, many of the programmers in our study shared
a key complaint about the simulated virtual assistant: it
was too slow. A real VA already has an advantage over a
human wizard, in that it can rapidly search through large
amounts of data; however, features that involve accessing
online resources or running neural models may cause se-
vere delays. VA designers will have to balance the desire
to include sophisticated features against the need for the
system to generate a speedy response.

7.4 Implementing a User Interface.

VA designers will have to make a number of important
decisions when implementing a user interface. In partic-
ular, the input and output modalities of a VA for API
usage are likely to have a strong impact on the overall
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usability of the system. The programmers and wizards in
our experiments communicated solely through a text-based
interface, but there are several alternative forms of input
(such as voice and mouse/touchscreen input) and output
(such as computer speech and automatic navigation to
relevant documentation/resources) that we did not explore.
The text-based system was ideal for this study, as it did
not restrict the types of questions or information that either
party could share. However, it did limit the quantity of
information a wizard could reasonably share in a single
turn, and many users found it inconvenient compared to
standard documentation navigation.

We speculate that a speech-based interface may be more
convenient to users, to some extent, as they would not
have to divert their attention from the task at hand to
interact with it. However, it would also introduce a number
of limitations. For starters, although state-of-the-art voice-
recognition technology is quite advanced, an API usage
scenario would present several unique challenges. The VA
would need to recognize vocabulary and syntax specific to
the programming domain (e.g. uncommon tokens like “int”
or “struct” and explicit punctuation) and identifiers specific
to a given API (e.g. it would need to identify function names
consisting of multiple concatenated words). Furthermore, if
the system produced speech as output, it would need to be
limited to certain types of utterances; for instance, it would
be impractical for the VA to audibly recite code examples or
long passages of documentation.

Other possibilities include touchscreen or mouse-based
interfaces. As discussed in Section 2.3, utterances can cate-
gorized into a finite number of dialogue act types; in some
cases, a VA may be able to identify the most-likely options
for a user’s upcoming dialogue act (e.g. a request for more
information about the function, or a request for similar
functions) and allow the user to select one, rather than
require the user to generate an utterance. Of course, there
are many more cases where a user will need to provide the
VA with new information, or specify an API component; in
these cases, the user would need a less limited form of input.

We suggest that VA designers consider all potential UI
options in light of their particular use case. The most user-
friendly interface for a particular application may involve
mixing different modalities; for instance, when a program-
mer asks the VA to suggest a function, it may be appropriate
for the system to say the name of the function out loud and
simultaneously navigate to the function’s documentation.
An example of a multimodal UI integrated with an IDE
could allow a user to highlight a function invocation, and
then verbally ask a question about that function’s behavior.

7.5 Formulating a Reinforcement Learning Problem.

Following the framework laid out in Section 2.4, VA de-
signers may use the data from this study to train the
dialogue management module of a VA for API usage via
reinforcement learning. Here, we discuss the next steps in
this process.

1) Choose the task(s). VA designers must first decide on the
particular task(s) they would like their system to complete.
Recall that four components must be clearly defined in any
reinforcement learning problem: the system’s action set, the

state space, the state transition function, and the reward
function. Defining each of these components requires a
concrete understanding of an agent’s goals. The wizards
in our study performed a number of distinct activities:
they helped users identify relevant API components, they
answered questions about those components, they fetched
code examples from the source code and online resources,
and more. Choosing the particular task(s) a VA should be
able to complete will guide the rest of its development.

2) Structure the knowledge base. Depending on the particular
task(s), a VA for API usage may require different types of
knowledge from different sources: it may use a single API or
multiple APIs; it may or may not access online resources; it
may have access to well-structured documentation or poorly
structured header comments in source files. No matter what
knowledge base(s) the VA needs to access, it needs some
structured way to access and query them in order to make
decisions and provide information to the user.

3) Identify the relevant system and user actions. While we pro-
vide a first round of high-level annotations of annotations
for the dialogues, their granularity will likely not suffice
for many tasks. For instance, to design a VA that suggests
relevant functions, it may be important to differentiate be-
tween actions in which the user elicits all relevant functions
and those in which the user elicits the most relevant function;
in our annotation scheme, both of these would simply be
labeled with the ”ELICIT-OFFER-OR-SUGGESTION” illo-
cutionary DA type. To this end, VA designers may want to
reannotate the dataset with task-specific labels, either fol-
lowing an open-coding process or using another predefined
annotation scheme, to identify the system and user actions
that are relevant to their particular task(s).

4) Identify the state space. Recall that the “state” refers to
an RL agent’s beliefs and view of its environment, and the
“state space” is the set of all possible states. Choosing an ap-
propriate, narrow state space facilitates the learning process.
VA designers can use the labeled dialogues to identify which
task- and dialogue-specific features actually influenced the
wizards’ dialogue strategies, in order to determine which
ones to include in the state space.

Potential features to be included in the state space in-
clude dialogue length, how many questions the user has
asked, whether the user has repeated the current question,
the previous user and system actions, whether a specific
API component has been identified, the number of com-
ponents in the API that appear to be relevant to a user’s
query and how relevant those components appear to be, the
number of web resources that appear to be relevant to a
user’s query and how relevant those appear to be, a belief
about the user’s ongoing programming activity (bugfixing,
refactoring, implementing a new method, etc.), whether the
user’s request has been satisfied, and many more. It is up to
the VA designer to consider all features that may be relevant
to the particular task(s) at hand.

5) Build a “user simulator” and design state transitions. Once
the action sets and state space are established, the next step
is to create the model that represents the simulated envi-
ronment and dictates how different actions lead to different
states. In the context of reinforcement learning for dialogue
strategy, a primary component of this model is referred to
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as a “user simulator.” The user simulator emulates how a
user would react to the system’s action at a given point in
a dialogue. In many ways, the user simulator can be just as
complex as the agent it is used to train; it has its own set
of actions, goals, and constraints that can change over the
course of a dialogue. It is common for the user simulator to
use manually crafted heuristics to update its goals and con-
straints and to use supervised machine learning to choose
an appropriate action. More rules are then needed to define
how the agent’s state changes in response to the simulated
user’s action.

Reiser and Lemon [12] demonstrate a fairly naive user
simulator that keeps track of whether the agent has com-
pleted certain tasks and uses a simple bigram model (trained
on labeled WoZ data) to generate user actions. Once again,
a VA designer must consider the interactions that took place
in the real WoZ dialogues and determine how sophisticated
a user simulator needs to be for a particular application.
For instance, a simple user simulator designed to train a VA
to identify relevant API components may choose a target
function and then ask questions and provide information
related to that function. But the designer may also want the
VA to account for scenarios in which the user asks for a
component that does not exist, or scenarios in which the
user initially wants a certain component, but is satisfied by
a similar component. Any desired functionality in the VA
must be reflected in the user simulator.

6) Determine the reward function. The reward function en-
ables the RL agent to learn optimal strategies by assigning
point values to specific actions and outcomes to encourage
and discourage certain behaviors. For example, agents are
usually penalized a small amount for each turn in a task-
oriented dialogue to encourage them to complete the task
as quickly as possible. They are also generally rewarded
or penalized depending on whether they complete their
task within a specified amount of time steps. However,
in the context of task-oriented dialogues, there are other
behaviors that a VA designer may wish to discourage; for
instance, users may not like it if the VA shares too much
information in a single dialogue turn, even though doing
so might increase the likelihood of the agent completing its
task. Therefore, to determine which actions and behaviors to
include in the reward function and how to weigh the impact
of each individual factor, API VA designers should consider
how those factors correlated with user task completion and
subjective user feedback in the WoZ dialogues.

Once these steps are completed, VA designers can deter-
mine an appropriate RL algorithm and implement it to train
the VA’s dialogue management system. From there, they
will be able to incorporate natural language understanding
and generation, and create a suitable user interface.

8 CONCLUSION

Virtual assistants for programmers have not been widely
researched, despite recent advancements in VA technology
and calls for more intelligent tools in software engineering.
This is largely due to the lack of publicly-available datasets
that can be used to understand which programming tasks
would be high-value targets for VAs and to train task-
specific dialogue systems.

In this paper we laid the groundwork for a VA for API
usage. First, we presented the methodology and results of
Wizard of Oz experiments designed to simulate interactions
between a programmer and a virtual assistant for API usage.
Then, we annotated the dialogue acts in the programmer-
wizard interactions along four dimensions: illocutionary
DA type, API DA type, backward-facing DA type, and
traceability. Finally, we discussed the implications of our
study on future VA development.

In doing so, we have made the following specific contri-
butions to the field of software engineering:

1) A corpus of 30 Wizard-of-Oz dialogues, comprising
44 hours of programming activity and including two
separate APIs.

2) The results of those programming sessions, including
programmers’ comments, ratings of the simulated vir-
tual assistant, and performance on the task sets.

3) Corpus annotations along 4 dimensions.
4) Several recommendations and considerations for future

VA designers.

We have made all data related to the experimental
design, experimental results, and dialogue act annotations
available via an online appendix:

https://github.com/ApizaCorpus/ApizaCorpus
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