

1 A Neural Question Answering System for Subroutines 59

2 Author One, Author Two, Author Three, and Author Four 60

3 {one,two,three,four}@anonymous 61

4 Anonymous 62

5 Anonymous 63

6 Anonymous, Anon, Anon 64

7 65

8 66

9 67

ABSTRACT

A question answering (QA) system is a type of conversational AI that generates natural language answers to questions posed by human users. QA systems often form the backbone of interactive dialogue systems, and have been studied extensively for a wide variety of tasks ranging from restaurant recommendations to medical diagnostics. Dramatic progress has been made in recent years, especially from the use of encoder-decoder neural architectures trained with big data input. In this paper, we take initial steps to bringing state-of-the-art neural QA technologies to Software Engineering applications. We target the problem of QA about subroutines in source code, a common information need for SE tasks such as API learning and program comprehension. We curate a training dataset of 10.9 million question/context/answer tuples based on rules we extract from recent empirical studies. Then, we train a custom neural QA model with this dataset and evaluate the model in a study with professional programmers. We demonstrate the strengths and weaknesses of the system, and lay the groundwork for its use in eventual dialogue systems for software engineering.

CCS CONCEPTS

• Software and its engineering → Software maintenance tools;

KEYWORDS

neural networks, question/answer dialogue, artificial intelligence

ACM Reference Format:

Author One, Author Two, Author Three, and Author Four. 2020. A Neural Question Answering System for Subroutines. In *ICPC'20, May 23-24, 2020, Seoul, South Korea*. ACM, New York, NY, USA, 12 pages. <https://doi.org/00.0000.000000>

1 INTRODUCTION

A question answering (QA) system is a type of conversational AI that focuses on generating natural language answers to questions posed by human users. QA is defined as single-turn dialogue, in that there are only two participants in the conversation (the human and the machine) and each participant speaks for only one turn (the human asks a question which the machine answers). In practice, a complete conversational machine agent would discuss several

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ICPC'20, May 23-24, 2020, Seoul, South Korea

© 2020 Association for Computing Machinery.

ACM ISBN 000-0-0000-0000-0/00/00...\$15.00

<https://doi.org/00.0000.000000.000000>

topics over an arbitrary number of turns, detect when a question has been asked, and use a QA system to generate an answer to the question. Thus, QA systems are key components necessary for building usable conversational agents.

In general, QA systems generate an answer given a context about which the question is being asked. For example, Yin *et al.* [60] describe an approach that parses a knowledge base of facts about famous people to generate English answers about birthdates, political offices held, awards received, etc. Malinowski *et al.* [38] present a system that answers questions about images, such as which objects are red or green in the image. Weston *et al.* [56] provide a dataset of twenty tasks for training QA systems (the so-called bAbI tasks) ranging from positional reasoning to path finding, for which the context is a knowledge base of facts about objects and how they relate to each other (e.g. Context: 1. Lily handed the baby to Philip. 2. Philip walked outside. Question: Where is the baby? Answer: Outside with Philip).

As the above examples show and as chronicled in several survey papers [11, 18, 34], scientific literature from the areas of Natural Language Processing (NLP) and AI is replete with QA systems designed to answer questions about a context. The overall structure of these approaches is fairly consistent: A large dataset is collected including question, answers, and related contexts. Then a model is trained and tested using the dataset. Typically, a neural model of the encoder-decoder design is employed, in which the model learns to connect features in the questions to features in the context via an attention mechanism. However, there are always numerous domain-specific customizations required to model the context (as a general rule, the question and answer can be modeled using language features such as from a recurrent neural net). For example, Malinowski's work connecting words in questions to features in images uses a typical RNN-based model of questions and answers, but depends on a custom model for extracting those features from the images [38]. In short, the key difficulty in implementing QA systems boils down to: 1) obtaining a proper dataset, and 2) designing a suitable domain-specific model of the context.

In this paper, we present a QA system for answering programmer questions about subroutines in programs (the subroutines are the context about which questions are asked). We construct a dataset of programmer questions based on recent experimental results released by Eberhart *et al.* [17] – that paper isolated five types of questions that programmers asked about Java methods during actual programming tasks. For example, “what are the parameters to the method convertWavToMp3?” We built question and answer templates and paraphrases based on these question types, to construct a dataset of questions and answers for 1.56m Java methods. We then designed a custom QA system based on a neural encoder-decoder model. We model the subroutine context as an Abstract

117 Syntax Tree (AST), motivated by recent models of source code [2, 3]
 118 and using an AST flattening encoding described at ICSE'19 [28].

119 We evaluated our work in two ways. First, we used automated
 120 metrics over a large testing set of around 67k Java methods, to
 121 estimate how our approach would generalize. Second, we performed
 122 an experiment with 20 human experts, to determine how well our
 123 model responds to actual human input for a subset of 100 methods
 124 out of the 67k test set. We explore evidence of how our model learns
 125 to recognize pertinent facts in source code and generate readable
 126 English responses (in the spirit of explainable AI [44, 49]).

127 2 PROBLEM, SIGNIFICANCE, SCOPE

128 The problem definition of this paper is fairly straightforward: given
 129 a natural language question from a programmer about a program
 130 subroutine, we seek to provide a natural language answer to that
 131 question. This is referred to as a “question answering system” or
 132 QA system in the relevant NLP and AI literature [11, 18, 34, 38, 60].
 133 A QA system involves single turn dialogue: one question from a
 134 user and one answer from the machine. This is distinct from other
 135 conversational AI such as task-oriented or open-ended dialogue.

136 A predictable critique of this paper is that programmers probably
 137 would not use a QA system alone for basic informational questions
 138 about source code. After all, the return type, parameter list, etc.,
 139 of a function is readily available from reading the source code or
 140 summarizing documentation. However, it is important to recog-
 141 nize that a QA system is usually not intended to be used on its
 142 own. Instead, a QA system for these questions is a key component
 143 in the big picture of conversational AI systems for programmers.
 144 Robillard, with thirteen co-authors leading in the area of program
 145 comprehension, make the case clearly in a paper summarizing the
 146 outcomes of a relevant workshop in 2017 [48]: they “advocate for
 147 a new vision for satisfying the information needs of developers”
 148 which they call on-demand developer documentation. The idea is
 149 that we as a research field should move towards machine responses
 150 to programmer information needs that are customized to that pro-
 151 grammers’ software context and individual questions. But to get
 152 to that point, we (the research community) need to solve a few
 153 smaller problems that are currently barriers to continued progress.
 154 This argument mirrors those made repeatedly in the AI research
 155 community generally [24, 55], that smaller problems must be solved
 156 and used as a wedge against larger ones, towards the long-term
 157 goal of a meaningful conversational AI.

158 A QA system for basic programming information about subrou-
 159 tines is one of those wedge problems in program comprehension.
 160 A successful system would not only answer the narrow problem at
 161 hand, but offer insights into issues of how to model and extract fea-
 162 tures from source code, how to interpret programmer information
 163 needs, and how to understand the vocabulary that programmers
 164 use that is different from general word use. In the long run, our
 165 plan is to include this work as part of a larger interactive dialogue
 166 system for helping programmers read and understand source code¹.

167 3 BACKGROUND & RELATED WORK

168 This section covers background technologies and closely-related
 169 work in both NLP/AI and SE research venues.

170 ¹Some citations omitted to comply with double-blind review policy.

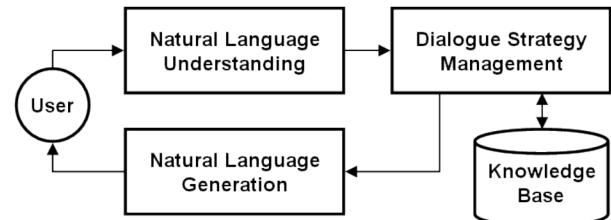
171 3.1 Interactive Dialogue Systems

172 The anatomy of an interactive dialogue system is neatly articu-
 173 lated in a recent book by Rieser and Lemon [46] and summarized
 174 in Figure 1 below. There are essentially four components. First, a
 175 knowledge base is created to hold information relevant to the con-
 176 versation, such as images about which questions are asked [38], or
 177 maps about which directions may be obtained [19, 31, 59], or restau-
 178 rants which may be recommended [30]. Second, a natural language
 179 understanding component is responsible for converting incoming
 180 text into an internal representation of what was said. Often this
 181 starts with labeling the text with a dialogue act type [7, 9, 13, 26, 58]
 182 (e.g., as a question, a followup statement, a positive or negative
 183 comment). But it also includes extracting relevant information nec-
 184 essary to form a response. For example, whether a user wants to
 185 know about the return type or parameter list of a subroutine.

186 The third component is dialogue strategy management. This
 187 component decides how to respond as well as how to extract infor-
 188 mation necessary to make the response. It uses the knowledge base
 189 to help make this decision and searches the knowledge base for
 190 information relevant to the response. Note that the notion of “strat-
 191 egy” refers to the decision-making process that the machine follows,
 192 and is distinct from the natural language in the conversation [21].
 193 For example, if presented with a comment about the weather, some
 194 agents would respond with a summary of the predicted weather,
 195 some would respond with a suggestion to take an umbrella, while
 196 still others would ask a question about the user’s preference for
 197 summer or fall. But the decision about how to respond is not related
 198 to the words actually used to render a response.

199 Fourth, natural language generation techniques lie along a spec-
 200 trum, one extreme of which is a templated, rule-based approach [45]
 201 while the other extreme is a purely data-driven (usually deep learning-
 202 based) approach [15]. An example of a hybrid system is one in which
 203 canned responses are used to train a neural net (which allows more
 204 flexible combinations of the responses), or data-driven selection
 205 from a set of candidate template responses. For a time, there was a
 206 belief that language understanding, strategy, and generation could
 207 be combined into a single module based on deep learning, but that
 208 belief is in strong decline for most applications [19, 21, 55].

209 QA systems fit into this anatomy of interactive dialogue systems
 210 in two ways. First, as mentioned above, a conversational system
 211 providing ongoing discussion with a user may include several sub-
 212 systems to handle different situations, and pass control to a QA



213 **Figure 1: Stereotyped dialogue system described by Rieser**
 214 **and Lemon [46].** In this paper, the knowledge base consists
 215 of the source code of subroutines, while the understand-
 216 ing and generation components are learned via a neural net
 217 from a dataset we create. We pre-define the strategy based
 218 on experimental findings reported by Eberhart *et al.* [17].

219 175
 220 176
 221 177
 222 178
 223 179
 224 180
 225 181
 226 182
 227 183
 228 184
 229 185
 230 186
 231 187
 232 188
 233 189
 234 190
 235 191
 236 192
 237 193
 238 194
 239 195
 240 196
 241 197
 242 198
 243 199
 244 200
 245 201
 246 202
 247 203
 248 204
 249 205
 250 206
 251 207
 252 208
 253 209

255 subsystem from time to time. Second, a QA system itself generally
 256 follows the same design. The strategy component tends to be sim-
 257 pler than most systems because of the assumption that a single
 258 question from a user will be provided a single answer. However, a
 259 QA system may need to cope with different types of questions and
 260 extract information from different types of artifacts – both deci-
 261 sions that fall into the category of strategy. In practice, the strategy
 262 tends to be encoded into the model based on dataset design, rather
 263 than manual modification of the model.

264 Research into dialogue systems for software engineering is gen-
 265 erally either foundational / dataset generation and analysis, or im-
 266 plementations of experimental dialogue systems. Key foundational
 267 and dataset analysis work includes Maalej *et. al* [36], Eberhart *et*
 268 *al.* [17], and several others [1, 22, 37, 40, 41, 47, 58]. A recent sur-
 269 vey discusses dialogue systems in SE [4], which includes several
 270 experimental systems [8, 25, 43, 53]. These systems are related to
 271 this paper in the sense that they are prototypes of dialogue sys-
 272 tems for SE problems, but are not directly comparable because they
 273 solve very specific problems and are based on scrutiny of highly-
 274 specialized domain knowledge. While one may perform quite well
 275 in one situation, it is almost guaranteed to fail for other situations.
 276 This specialization is typical of dialogue systems in all domains [46],
 277 so the way to evaluate an approach is to compare implementation
 278 alternatives rather than different dialogue systems [6, 54].

279 3.2 Neural Encoder-Decoder

280 Our approach is based on the neural encoder-decoder model. This
 281 model is the current standard for QA systems, as described in several
 282 surveys [11, 15, 18]. To pick one very recent and related paper that
 283 exemplifies how dialogue systems based on the encoder-decoder
 284 model work, consider Lin *et al.* [32]. The paper presents a new
 285 memory model to augment the encoder of a typical encoder-decoder
 286 design, then compares it to alternative encoder-decoder models
 287 over publicly-available datasets. This paper is similar, except that
 288 rather than a model tuned for general conversations, we propose an
 289 encoder model specific to this SE problem, and focus on SE domain
 290 knowledge gained via our evaluation.

291 The encoder-decoder design itself has been clearly described
 292 in many papers, and we discuss details in our approach section.
 293 In general, the design includes an encoder, which receives as in-
 294 put the natural language from the user plus the knowledge base.
 295 The encoder outputs a vector representation of the input natural
 296 language, usually via a recurrent net (RNN). The decoder receives
 297 the example desired output during training. It generates a vector
 298 representation of this desired output. During inference, the model
 299 outputs one word at a time of the language to be sent to the user.
 300 The decoder receives the output predicted “so far” and uses it to
 301 help the model predict the next word.

302 The encoder-decoder design ballooned in popularity after Bah-
 303 danau *et al.* [5] introduced an “attentional” variant that allows
 304 the decoder’s vector representation to focus on sections of the en-
 305 coder’s representation during training, i.e. to create a dictionary of
 306 words in one language in the decoder to another language in the
 307 encoder. Specific designs such as the famed seq2seq model have
 308 motivated thousands of papers, well beyond what we can describe
 309 in this section. Thus we direct readers to several surveys [42, 50, 61].
 310 Within software engineering literature, the encoder-decoder design

311 is seeing increased use for tasks such as code completion [20], code
 312 summarization [28], and automated repair [12].

313 4 APPROACH

314 Our approach aligns with the related work described in the previous
 315 section: the overall architecture is based on the dialogue system
 316 design in Figure 1, and the implementation is based on a neural
 317 encoder-decoder model. The key novelty in the model is the rep-
 318 resentation of the knowledge base. The key novelty in the overall
 319 architecture is the crafting of our dataset to train the neural model.
 320 These set up the novelty of the evaluation, which is showing how
 321 these models work in a QA system for program comprehension
 322 of functions. In the long run, we plan for this QA system to be
 323 a component of a much larger dialogue agent, but that agent is
 324 beyond the scope of this paper. An overview of the components of
 325 our dialogue system follows:

326 **Dialogue Strategy Management** Recall that dialogue strategy
 327 management involves decisions both on 1) how to respond, and
 328 2) how to extract the information necessary to make a response.
 329 For (1), we craft a dataset that includes either types of questions
 330 that we found in recently-released simulation experiments with
 331 programmers. While those experiments were performed by others,
 332 we completed the analysis of the eight questions for this paper.
 333 The dataset design represents our manual effort in designing the
 334 strategy the system should follow, but the strategy itself will be
 335 learned during training and encoded in a neural model. For (2), we
 336 use an attention mechanism in our neural model between the input
 337 question and the knowledge base, to learn during training which
 338 components of the knowledge base pertain to which questions. De-
 339 tails of our dataset design are in Section 4.1. Details of the attention
 340 mechanism are intertwined with the neural model in Section 4.3.

341 **Knowledge Base** The knowledge base consists of the source
 342 code of the subroutines. We use a collection of Java methods pro-
 343 vided by Linstead *et al.* [33] and further processed by LeClair *et*
 344 *al.* [29]. In total, the knowledge base includes 2.1m Java methods
 345 from over 10k projects. We represent each subroutine as an abstract
 346 syntax tree (AST). Then, we use a graph neural network to model
 347 each subroutine’s AST and provide a vectorized representation of
 348 the subroutine. We train this GNN while we train the other com-
 349 ponents of the neural model (i.e. it is supervised by the dataset we
 350 create, we do not pretrain it using an unsupervised procedure). We
 351 were inspired to use an AST representation by recent work in code
 352 summarization [3, 23] and we use a flattened tree approach inspired
 353 by LeClair *et al.* [28], though our application in this paper is novel.
 354 Details of the model of the knowledge base are in Section 4.3.

355 **Natural Language Understanding / Generation** We use re-
 356 current neural networks with word embedding vector spaces to
 357 implement the encoder and decoder. The encoder is essentially the
 358 component that implements the natural language understanding,
 359 and the decoder implements the language generation. This struc-
 360 ture is closely in line with a vast majority of recent data-driven QA
 361 systems (see Section 3.2). We describe details of these components
 362 as part of the code implementation in Section 4.3.

363 4.1 Dataset Preparation

364 We prepare a dataset that we use to train the neural model described
 365 in the next section. This section describes how we structure our

393 dataset so that it represents knowledge about how programmers
 394 ask questions and how to respond. Note that while we do not
 395 explicitly write rules into our dialogue strategy management, this
 396 dataset contains those rules implicitly from which the neural model
 397 learns later. We mention this in order to be clear that we do not
 398 merely feed the network all data collected during empirical studies
 399 and expect the model to learn proper behavior, and to justify our
 400 overall posture towards dataset design: the decisions we make
 401 in creating the dataset *are* the decisions that will be encoded as
 402 dialogue strategy management.

403 We build the rules for generating our dataset based on empirical
 404 data made available to us on pre-release. Eberhart *et al.* [17]
 405 conducted an experiment in which 30 programmers solved program-
 406 ming challenges with the help of a simulated interactive dialogue
 407 agent (a so-called “Wizard of Oz” study design). The authors of
 408 that paper then annotated each question asked by programmers
 409 with one of twelve types of API information needs (these twelve
 410 types of API info needs were determined in an earlier TSE paper by
 411 Maalej and Robillard [36]). Eberhart *et al.* found that over 90% of
 412 questions fell into one of three information needs: functionality,
 413 patterns, or basic. In the long run, a dialogue agent will need to
 414 handle all three types of question. But the scope of that challenge
 415 is far too much for one paper. Since this is an early attempt at the
 416 problem, we focus on basic questions which tend to be more self-
 417 contained, have concrete single-turn answers, and overall likelier
 418 to be answerable with current technology than other categories.

419 A basic question is one in which a programmer asks for key
 420 information about the components of code. The “components” were
 421 almost always subroutines rather than classes etc. The “key informa-
 422 tion” included things like the return type, the function parameters,
 423 or a high level description (such as a summary comment from
 424 JavaDocs). Approximately 20% of the questions asked by program-
 425 mers in the study by Eberhart *et al.* [17] were basic questions.

426 We (independent of the analysis by Eberhart *et al.*) examined all
 427 questions that were labeled *basic*. The first and second authors of
 428 this paper created eight categories of basic question. The pro-
 429 cedure was an open coding process in which the authors labeled each
 430 question with a specific information need from a subroutine (since
 431 practically all questions were related to subroutines). The authors
 432 worked together to resolve disagreements, rather than work inde-
 433 pendently and compute an agreement metric, in order to ensure
 434 maximum reliability of the data².

435 In the end we had eight types of basic question. An important
 436 distinction is that six of the questions involved **known** subroutines
 437 i.e. the programmer already knew he had the correct method for
 438 his task. For example, asking what the return type of method X is.
 439 Three of the questions involved **unknown** subroutines i.e. the pro-
 440 grammer did not know if she had the correct method. For example,
 441 asking which method takes an int as a parameter and returns a
 442 string. We call questions with a known subroutine “type K” and
 443 questions with an unknown subroutine “type U.”

444 **Type K questions (subroutine known):**

445 (1) What is the return type of *method*?

447 ²Agreement metrics quantify reliability, but do not resolve disagreements. Because we
 448 ultimately had to make decisions to create a dataset, we elected to resolve disagree-
 449 ments at the cost of a reliability metric, as suggested by Craggs and McGee [14].

450 (2) What are the parameters of *method*?
 451 (3) Give me the definition of *method*.
 452 (4) What is the signature of *method*.
 453 (5) What does *method* do?
 454 (6) Can *method*, *short task description*?

455 **Type U questions (subroutine unknown):**

456 (7) How do I *short task description*?
 457 (8) What method takes parameter type *P* and returns type *R*?

458 **The scope of our QA system only includes type K ques-**
tions. Type K questions involve a question, answer, and known
 459 context, which is in line with what QA models in NLP are equipped
 460 to solve (though, those models have not been adapted to source
 461 code). Type U questions involve a search process for the correct
 462 subroutine, which would include code search and even dialogue
 463 between machine and programmer to decide on the correct subrou-
 464 tine. These search tasks are research problems of their own and are
 465 too much to include in one paper. Therefore, we confine ourselves
 466 to the problem of answering basic questions about known subrou-
 467 tines. Integrating code search, grounding dialogue, etc., is an area
 468 of our future work to build on this paper.

469 **4.2 Dataset Generation**

470 The next step is to generate a dataset, now knowing the question
 471 types. At a high level, what we do is obtain a large repository of Java
 472 methods, then generate example questions and answers for each
 473 question type using heuristics to automatically extract information
 474 from the methods. The repository of Java methods is a set of 2.1m
 475 methods already filtered for duplicates and other errors, and paired
 476 with summary descriptions, provided at NAACL’19 [29]. We further
 477 filtered this dataset for methods with duplicate and non descriptive
 478 comments to 1563197 methods.

479 Generating text for questions (1-4) is straightforward: just extract
 480 information from each method e.g. the return type. For question
 481 (5), we used the summary description as the answer.

482 We used the summary description and method name in the
 483 question for question type (6), and the answer was simply “yes”
 484 or “no.” However, for every positive example for each method, we
 485 added a negative example to maintain a balanced dataset. This
 486 negative example consisted of a random summary description from
 487 another method (of a different name, to avoid picking an overloaded
 488 method name) in the same project paired with the method. So for
 489 each of the 1.56m methods, we had one positive example and one
 490 negative example for question type (6).

491 To limit the vocabulary size, we replaced some information with
 492 tokens that direct the output interface to copy the information from
 493 the context directly, rather than learn to predict the information as
 494 part of the model. We have a token for *<funcode>* for the answer
 495 of question type (3) that is essentially the whole context and is
 496 unnecessary for the model to learn to retrieve. So when the model
 497 predicts this token, it can simply copy this from the interface. This
 498 allows the user to have the same experience while reducing the
 499 vocabulary that the model has to learn.

500 The last step in our dataset generation was to paraphrase each
 501 question and answer. The example questions above are the primary
 502 form we used based on the underlying empirical data. However,

531 there is no guarantee that a programmer will use exactly that language
 532 when asking a question, otherwise we could just use a templated QA system and avoid the complexity of a neural model. So
 533 we wrote 15-25 paraphrases of each question, and randomly chose
 534 one of them when generating questions and answer for each question. The number of details behind the vocabulary replacements
 535 and paraphrases would exceed space limitations to print in this
 536 paper, but all are available via our online appendix (see Section 7).
 537

538 To summarize, our procedure is:
 539

```
540 for each of the 1.56m methods M do
541   for each question type T do
542     1. randomly select paraphrase template for T
543     2. generate question and answer using template
544     3. preprocess code of M to serve as context
545     4. create 3-tuple: (question, answer, context)
546     if T == 6 then
547       5. randomly select summary of different method
548       6. create 3-tuple: (question, "no", context)
549
```

550 The result of our dataset generation is a set of 10.88 million 3-
 551 tuples. Each 3-tuple contains a question, an answer, and a context
 552 Java method. For each of the 1.56m Java methods, we generated 7
 553 type K questions and answers (one for question types 1-5, two for
 554 question 6). To ensure maximum reproducibility, we maintained
 555 the training/validation/test splits provided by LeClair *et al.* [29].
 556

557 4.3 Neural Model

558 **Rationale** The rationale for using a neural model is, essentially,
 559 that neural models enable more flexible natural language under-
 560 standing and generation in fewer steps, without the need for manually-
 561 written rule to extract information from context. A traditional alter-
 562 native to a neural model is a simple approach based on classification
 563 of incoming questions and rules to extract information. However,
 564 it is important to realize that this seemingly-obvious alternative
 565 is not in line with recent work from the NLP research area for
 566 context-based Q/A systems. As Wiese *et al.* [57] point out, recent
 567 advances in neural models have led to “impressive performance
 568 gains over more traditional systems.”

569 In contrast, our model falls clearly in line with related work
 570 from the NLP research area on context-based Q/A systems (see
 571 Section 3.2): there is an encoder with question and context inputs,
 572 and a decoder with the answer input. From an ML perspective, one
 573 novel aspect to this paper is that we show how the neural model
 574 can learn features in the source code when given only that code as a
 575 context, and questions/answers about the context. This is important
 576 novelty, along the lines of Wiese *et al.* [57] when they showed how
 577 neural Q/A models can learn from biomedical text data versus other
 578 highly specific areas e.g. technical support conversations [10] or
 579 even religious texts [62]. The point is that domain adaptions are
 580 considered important contributions and are not merely applying
 581 technology X to data Y.

582 **Overview** Our neural model is, at a high level, similar to context-
 583 based Q/A systems described in related work and summarized in
 584 Section 3.2. The structure of these systems is basically a question
 585 and context as “encoder” input and an answer as “decoder” input
 586 (during training). The model is trained so that during inference, the
 587 model will output one word of the predicted answer at a time. Our
 588

589 model follows this same basic structure. The question and answer
 590 are generated for each function as described in the previous section.
 591 The context is the source code of the function.
 592

593 At a technical level, our approach is based on the encoder-
 594 decoder model released by LeClair *et al.* [28] at ICSE 2019. We chose
 595 that model because: 1) it was designed to accommodate source code
 596 as input instead of only text, and 2) a thorough reproducibility
 597 package is available. That model was designed to generate natural
 598 language descriptions of source code (so-called “source code sum-
 599 marization”). The inputs to the model’s encoder were preprocessed
 600 source code, a flattened abstract syntax tree. The input for training
 601 for the decoder was the example summary.
 602

603 Our modifications, in a nutshell, are to make the model’s encoder
 604 inputs the raw source code (not preprocessed), to add an input for
 605 the user query/question to the encoder, and to change the decoder’s
 606 training input to example answers to the questions. We used raw
 607 source code instead of preprocessed source code because we are
 608 interested in the model’s ability to learn where code features are
 609 such as the return type, parameters, etc., unlike LeClair *et al.* who
 610 were more interested in extracting text features such as identifier
 611 names. Their preprocessing steps removed information that we
 612 found to be critical in helping the model learn features about code.
 613

614 **Details** We explain our model as a walkthrough of our actual
 615 Keras implementation to maximize clarity and reproducibility, fol-
 616 lowing the successful example of LeClair *et al.* [28]. The code in
 617 this section is in file qamodel.py in our online appendix (Section 7).
 618

```
619 qe = Embedding(output_dim=self.embdims,
620                 input_dim=self.quesvocabsize)(ques_input)
621 ce = Embedding(output_dim=self.embdims,
622                 input_dim=self.codevocabsize)(code_input)
623
```

624 The first step is to create a word embedding space for the question
 625 and code encoder inputs. The question vocabulary size we used
 626 was 20K, which is typical for text inputs, but we used a much larger
 627 vocab size of 100K for the source code context. Programmers tend
 628 to use domain specific words that expand the vocabulary.
 629

```
630 ques_enc = CuDNNGRU(self.rnndims,
631                       return_state=True, return_sequences=False)
632 quesout, qs = ques_enc(qe)
633 code_enc = CuDNNGRU(self.rnndims,
634                       return_state=True, return_sequences=True)
635 codeout, cs = enc(ce, initial_state=qs)
636
```

637 We use a GRU to encode the question and source code, with
 638 the question and source code embedding spaces serving as input.
 639 We set the initial state of the code encoder to the end state of the
 640 question encoder, in line with other neural QA model designs in
 641 which the question state is used to start the state of the context
 642 encoding.
 643

```
644 ae = Embedding(output_dim=self.embdims,
645                 input_dim=self.ansvocabsize)(ans_input)
646 aec = CuDNNGRU(self.rnndims,
647                 return_sequences=True)
648 aout = aec(ae, initial_state=cs)
649
```

650 The decoder follows the same basic structure: an embedding
 651 space as input to a GRU. The decoder input is the answer. The
 652 answer vocab size is 20K.
 653

```
654 ques_attn = dot([aout, quesout], axes=[2, 2])
655 ques_attn = Activation('softmax')(ques_attn)
656
```

```

669 ques_context=dot([ques_attn, quesout], axes=[2, 1])
670 code_attn = dot([aout, codeout], axes=[2, 2])
671 code_attn = Activation('softmax')(code_attn)
672 code_context=dot([code_attn, codeout], axes=[2, 1])

```

Our attention mechanism consists of attention applied from the decoder (`aout`) to both the question and source code context. The attention to code context is especially important because this is how the model emphasizes context features – this is chiefly what papers mean when they say that the model “learns to comprehend” the context. We will show in our experimental results how the model learns different code features relevant to different questions.

```

680 context = concatenate(
681     [ques_context, code_context, aout])
682 out = TimeDistributed(Dense(self.rnndims,
683     activation="relu"))(context)

```

The next step is to create a context matrix by combining the attended question and context matrices with the answer context from the decoder. After this step, the models uses the combined context matrix to predict the next word in the answer.

4.4 Training Procedures

Our training procedure is based on the “teacher forcing” technique [16, 27, 35] in which the model receives only correct examples from the training set and is not exposed to its own errors (the technique helps keep the model reinforcing mistakes). To understand how the procedure works for our approach, recall that an encoder-decoder architecture typically (as in our approach and others related to a seq2seq model) predicts output sequences one item at a time. For example, given a question “what is the return type of function X?”, the model would generate an answer by predicting the first word of the answer:

```

700 [ question ] + [ code ]
701     => [ "the" ]

```

Then it would use the first word prediction as a new input to the decoder, to predict the second word:

```

704 [ question ] + [ code ] + [ "the" ]
705     => [ "method" ]

```

And the process would continue to predict the entire response:

```

707 [ question ] + [ code ] + [ "the method" ]
708     => [ "returns" ]
709 [ question ] + [ code ] + [ "the method returns" ]
710     => [ "a" ]
711 [ question ] + [ code ] + [ "the method returns an" ]
712     => [ "unsigned" ]
713 [ question ] + [ code ] + [ "the method returns an unsigned" ]
714     => [ "long" ]

```

Yet this is how the model behaves during inference. To train the model, following the teacher forcing procedure, we provide the model each example one word at a time. So, in the above example, we would provide the model with “the” followed by the reference output “method”, then “the method” with the reference output “returns”, and so on. If the model makes an incorrect prediction, we use back propagation to correct the model, and then substitute the correct reference output for the next step – the model is not permitted to use its own erroneous prediction as the next input. However, a caveat is that the procedure slows training because each example must pass through the model for every word in the output.

5 EVALUATION

We conduct an experiment with human users to evaluate our QA system. Note that our ultimate intent for this QA system is to serve as a component of a much larger conversational AI (see Sections 2 and 3.1). Therefore, our experimental setup is a controlled environment in which we test specific inputs and outputs generated by human users. We are *not* attempting to evaluate the system “in the wild” because the system is not intended to be used standalone, and because the larger conversational AI system does not yet exist.

5.1 Research Questions

Our research objective is to determine the degree to which our QA system is able to answer the eight questions about subroutines we determined in Section 4.1. We ask the following Research Questions (RQs) towards this objective:

RQ₁ What is the performance of our QA system in terms of relevance, accuracy, completeness, and conciseness?

RQ₂ How does the performance vary across the six question types for which we designed the system?

RQ₃ What features in the context are the most important for the model to use when answering a question?

The rationale behind RQ₁ is that good responses by any QA system should score well across at least three degrees: relevance, accuracy, completeness, and conciseness. Accuracy, because independent of any other factors the response should not contain false information. Completeness, because responses should contain *all* information needed to answer the question. Conciseness, because responses should contain only the information necessary to answer a question. We derived these four degrees of text generation quality from related SE literature on code description generation [39, 52]. The rationale behind RQ₂ is that the system may perform well for some questions but not others. In particular, it may perform well at extracting information such as the return type of a subroutine, but struggle for other questions such as returning a description of a subroutine. RQ₃ relates to the explainability of the neural model. Neural models tend to be highly effective for text comprehension and generation tasks, but are notorious for producing black box responses that are difficult to understand. We ask RQ₃ to provide a few insights into the model’s behavior, within the constraints of a single conference paper.

5.2 Methodology

Our methodology for answering RQ₁ and RQ₂ is to conduct a user study in which human programmers evaluate the output of the QA system for questions that they generate. To limit the scope of the experiment, we control the study conditions so that the programmers only ask questions related to information needs we highlight in the six questions in Section 4.1. We recruited professional programmers from around the United States via an online job platform (demographics of study population are in the next section). We also created a web interface with which the programmers could communicate with the QA system. A screenshot of this interface is in Figure 2. The interface also provided a space for the programmers to rate the responses on a 1-4 scale ranging from Strongly Agree, Agree, Neutral, Disagree, or Strongly Disagree for the quality prompts shown in Table 1.

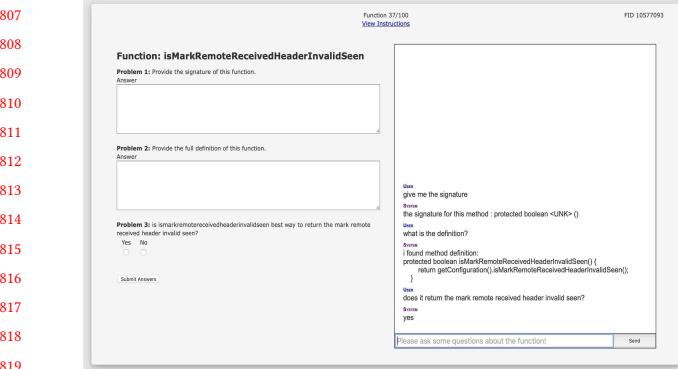


Figure 2: The interface that programmers used to communicate with the QA system during our experiment.

Rationale Our study design is similar to previous experiments by Sridhara *et al.* [52] and McBurney *et al.* [39]. We used similar wording of our prompts to study participants and the same four options. The only difference we made was to add another option for Neutral in case the model returns a nonsensical reply (which can happen for our neural model but was very unlikely in the templated systems of code comment generation in those previous studies). We added the Neutral option as a middle ground between the four main choices, to avoid forcing participants to make decisions on possible nonsensical responses.

Another similarity is that we find ourselves in the same situation as Sridhara *et al.* [51] in their ASE paper: no baseline exists for comparison. To our knowledge, no QA system has been designed to answer these specific questions in a natural language format. Different tools do exist for some questions. For example, question (5) could be thought of as a code summarization question, while questions (1-4) could be answered by just reading the subroutine itself. Yet recall that we are not seeking an “in the wild” evaluation – we need to evaluate the input and output of the model *in situ* with the natural language understanding and generation components of the approach. Therefore, we follow the example of these earlier papers and focus on a deeper analysis of the responses across multiple quality criteria, instead of comparing metrics across competing approaches (since they do not yet exist).

Table 1: Quality prompts (P1-5) in the user study. These correspond to the quality criteria (relevance, accuracy, completeness, and conciseness) discussed in Section 5.2. The first four prompts are answerable as “Strongly Agree”, “Agree”, “Neutral”, “Disagree”, or “Strongly Disagree.”

P_1	Independent of other factors, the response is relevant to my question, even if the information it contains is inaccurate.
P_2	The response is accurate, even if it is not relevant to my question.
P_3	The response is missing important information, and that can hinder my understanding.
P_4	The response contains a lot of unnecessary information.
P_5	Do you have any general comments about the response?

Note also that we do not use BLEU scores or other automated metrics. A human study is vital for two reasons. First, we need to evaluate specific subjective qualities rather than an overall similarity metric to a ground truth (like BLEU would do). Second, the ground truth in our dataset (i.e. the answer component of the question, context, answer tuples, see Section 4.1) is generated by us. We use it as training data, but it would not be appropriate to use as testing data since it would include our own biases.

Experiment Procedure In the experiment, we gave each programmer a “quiz” to fill out with the assistance of the QA system (see Figure 2). Each page of the quiz gave the name of a particular Java method. Only the method name was shown, not the method body. For each method, three Type K questions (see Section 4.1) were chosen randomly. Below the method name, there were three prompts, derived from the chosen Type K questions. We phrased the prompts as imperative statements (e.g. “Provide the return type of this function”) to avoid priming the programmers with a particular question format. We instructed programmers to use their own words to ask for information from the QA system. We asked programmers not to copy questions, but we allowed them to copy answers from the QA system for the quiz. A programmer could ask the QA system as many queries as he or she wanted.

After answering the question prompts for a particular method, programmers were brought to a new page that asked them to rate each of their interactions with the QA system for that method. For each interaction (consisting of a user query and the QA system’s response), we asked the programmers to answer the five quality prompts listed in Table 1. When they were done, they could press a button to bring up the next method, and a new set of prompts.

In short, we used a quiz format to encourage programmers to ask the QA system certain types of questions, but in their own words. Then they rated the responses using the quality prompts. They also completed the quiz, so we could determine whether they obtained the correct information in the end, independent of how what ratings they chose for the quality prompts. Space constraints prevent us from including the quiz and other materials, but we provide these via our online appendix (Section 7).

For clarity in the experimental results section, we use the following vocabulary to refer to the various parts of our study: 1) a “question”, Q1-6, is one of the six Type K question types we use in our experiment and described in Section 4.1, 2) a “query” is text typed by the user into the experiment interface separated by striking the return key, since hitting the return key triggers the interface to send the text to the prediction model and receive an answer back, and 3) a “quality prompt”, P1-5, is one of the requests we make of users to rate the model’s answer. The users see three questions per function. They may write as many queries as they wish to help them answer each question. Then they respond to five quality prompts for each answer they see to a query.

5.3 Participants

We recruited 30 participants for our experiment. These participants had professional experience ranging from three to 15 years. We compensated programmers at a flat rate of US\$60/hr, market rate in our region, regardless of performance speed. Each programmer worked for a total of 40 minutes to answer as many quiz pages as possible in that time.

945 5.4 Subject Java Methods

946 We used a total of 100 Java methods in our experiment. We sourced
 947 these methods from the test set of the dataset split – the model had
 948 not seen them during training. We rotated these at random so that
 949 no programmer saw the same method more than once, but that
 950 each method was shown to at least three programmers. But given
 951 the vicissitudes of any study with humans (fatigue, differing speeds,
 952 skipped pages), not all methods ended with three ratings.
 953

954 5.5 Threats to Validity

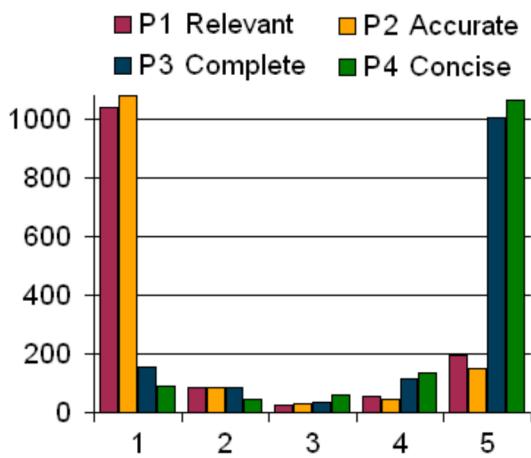
955 Like any paper, this experiment carries threats to the validity of
 956 its conclusions. One threat is the dataset we use. One of the disad-
 957 vantages of human studies is that the number of functions that we
 958 could ask any one person to evaluate is quite limited – we cannot
 959 merely calculate a metric over thousands of examples. We chose
 960 a random selection from a large, curated dataset, and we ensured
 961 that each function was seen by more than one person, but it is
 962 still possible that a different selection would result in a different re-
 963 sult. Likewise, another threat is that a different set of programmers
 964 might give different answers. We attempted to mitigate this risk
 965 by asking over 20 participants. Also, we attempted to mitigate a
 966 risk of varying results from the model itself by ensuring consistent
 967 random seeds and experimental conditions (all available via our
 968 online appendix), though it is always a risk that random factors in
 969 GPU hardware or software could lead to slightly different results.
 970

971 6 EXPERIMENTAL RESULTS

972 This section describes the results of the experiment: our answers
 973 to our RQs and supporting evidence.
 974

975 6.1 RQ₁: Overall Performance

976 In general, we found the model’s overall performance to be good.
 977 Figure 3 gives an overview. The figure is a histogram of all user an-
 978 swers to the quality prompts from Table 1. Recall that 1=“Strongly
 979



977 **Figure 3: Histograms of the user responses to the quality**
 978 **prompts in Table 1. Recall that P1 and P2 are asked in a**
 979 **positive tone (so 1-2 scores are better) while P3 and P4 are in a**
 980 **negative tone (so 4-5 are better). Participants tended to find**
 981 **the model’s responses to be of good quality.**

982 **Table 2: Performance statistics of participants in the exper-
 983 iment. Each participant worked for 40 minutes. We asked
 984 three questions for each method. However, participants
 985 worked at their own speeds and were allowed to ask any
 986 number of queries they wanted.**

	Mean	Min	Max
Methods Evaluated per Participant	19	7	38
Queries per Participant	70	37	117
Queries per Method	3.8	2	10
Queries until “Correct” Response	1.2	1	8

987 Agree”, 2=“Agree”, 3=“Neutral”, 4=“Disagree”, and 5=“Strongly Dis-
 988 agree” to the prompt text. Prompts 1 and 2 are worded positively
 989 (so agreement is better) while prompts 3 and 4 are worded nega-
 990 tively (so disagreement is better). For example, for P₁ about how
 991 relevant the response is, a vast majority of responses received a
 992 score of Strongly Agree or Agree. Likewise, for P₃, a vast majority
 993 of responses received a score indicated disagreement to a prompt
 994 about missing important information. Also note that only a small
 995 percent of responses were rated as neutral, meaning that, in general,
 996 responses were clear enough for participants to form an opinion –
 997 upon inspection a vast majority of responses rated as neutral were
 998 gibberish output from the neural model. Still, in terms of overall
 999 performance, the model does tend to generate reasonable responses.

1000 Two caveats should be understood. First, different participants
 1001 worked at different rates, so some participants are represented more
 1002 in the data than others. Table 2 quantifies these differences. Almost
 1003 all participants evaluated between 15 and 20 methods, but there
 1004 were a few outliers as is natural in samples of human populations
 1005 (mean speed of 19 methods per 40 minute study is about 2 min-
 1006 utes per method, while 38 is a rate of about 1 minute/method).
 1007 Nonetheless we found the number of queries required to answer
 1008 each question to be quite stable, with one query usually sufficing
 1009 and two or more queries being quite rare. In other words, the time
 1010 required by each participant seemed to have more to do with time
 1011 required by the participant to read and understand the questions,
 1012 than with the number of queries required per participant.

1013 Second, the responses to each quality prompt are independent
 1014 of other prompts. So it is possible that a response receives a good
 1015 score for P₂ and a poor score for P₁, i.e. the response is accurate
 1016 but not relevant. To study this caveat, we derived a metric we call
 1017 “correctness” by combining P₁ and P₂ scores. The metric is binary.
 1018 A response receives a 1 if and only if both P₁ and P₂ scores are
 1019 one or two – that is, a response is only “correct” if the participant
 1020 strongly agrees or agrees that it is both relevant and accurate. We
 1021 found that 79% of responses were “correct” and that it usually took
 1022 only one query to receive a correct response.

1023 We found that a key factor in the 21% of incorrect responses to
 1024 be the vocabulary size. As mentioned in Section 4.3, GPU memory
 1025 limitations restrict both the input and output vocab size, despite our
 1026 attempts to extend these by using GPUs with 16gb VRAM and low
 1027 training batch sizes. This limit affected our results. A vast majority
 1028 of the responses that were relevant but not accurate were ones with
 1029 UNK tokens in the answer. Likewise, responses that were accurate
 1030 but not relevant almost always had UNK tokens in the question (i.e.
 1031 the participant wrote a query with out-of-vocab words in it) – these
 1032 UNK tokens likely caused the model to misunderstand the question
 1033 and give an accurate response that was nonetheless irrelevant.

1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082

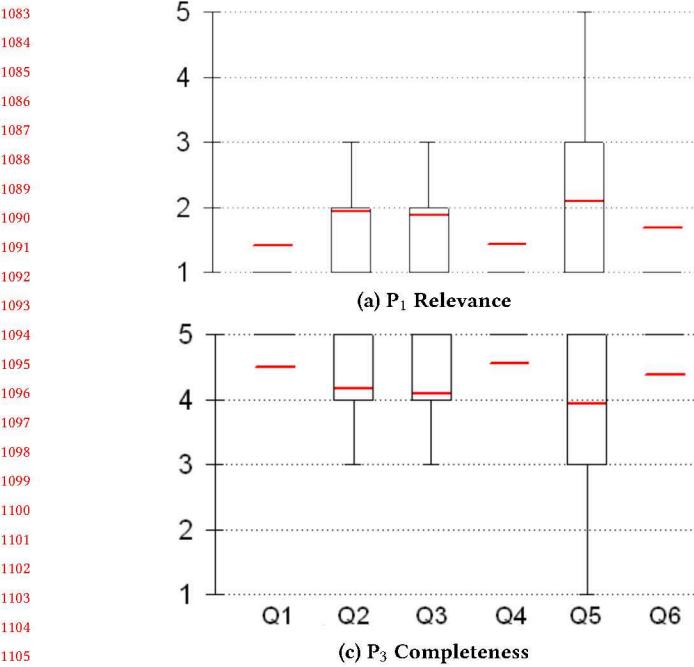
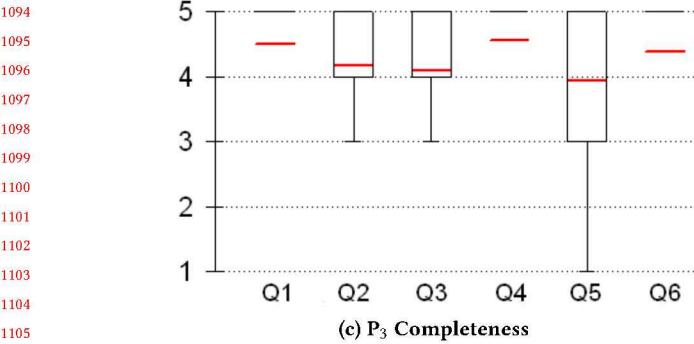
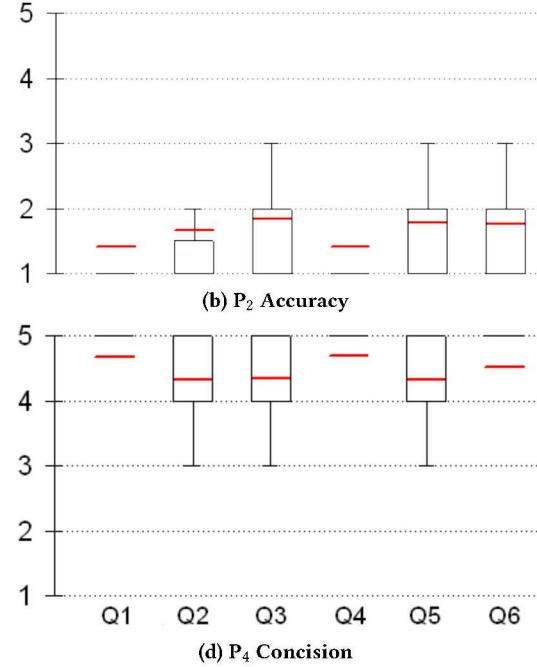
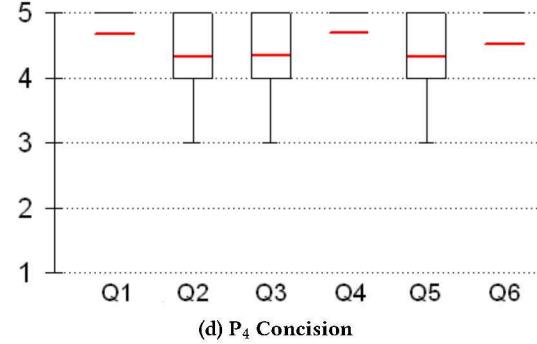
(a) P_1 Relevance(c) P_3 Completeness(b) P_2 Accuracy(d) P_4 Concision

Figure 4: Boxplots of answers to quality prompts (relevance, accuracy, completeness, and concision) for each of the question types from Section 4.1. The model performs differently for different question types. Performance is highest for Q1 and Q4 and worst for Q5: ratings of relevance and completeness tend to be worse for Q5 than for other question types.

6.2 RQ₂: Variation among Question Types

We observe a small degree of variation among the question types in our experiment. Recall from Section 4.1 that we have a variety of question templates that we derived from six different question types corresponding to six key information needs programmers have. (In the experiment, we confined participants to these information needs, but we had no restriction on the language that they could use to render a question.) Recall that the rationale of this RQ is that the model may be better at understanding some information needs than others. For the convenience of understanding the results in this section and Figure 4, we reprint the question types below:

- Q1 What is the return type of *method*?
- Q2 What are the parameters of *method*?
- Q3 Give me the definition of *method*.
- Q4 What is the signature of *method*.
- Q5 What does *method* do?
- Q6 Can *method*, short task description?

Figure 4 contains boxplots of the answers for each quality prompt, divided across each question type. For example, column Q2 of Figure 4(a) shows that for Question 2, the mean of all responses to queries is about 2 (the red line), the interquartile range is 1 to 2. The way to interpret this is that, among all queries written for Q2, participants either Strongly Agreed or Agreed that the query was relevant about half of the time. Note that outliers are excluded for readability, but we did have at least one instance of each score.

In general, the model performs very well for Q1 and Q4. For both question types, the responses are dominated by optimal scores (1 for relevance and completeness, 5 for accuracy and concision). This result implies that the model is successfully learning to recognize

when participants were asking for those information needs, and also learns how to extract that information from the source code and place it in a natural language response. Q1 and Q4 correspond to the return type and signature of the source code. We will show in the next section how the model learns to find this information in source code quite reliably.

The model performed slightly less well for Q2 and Q3, for which the model learns to find the method parameters and definition. These information needs are slightly more difficult to learn because they vary more in size and vocabulary. The return type (Q1) can always be found in the same place at the start of the method signature, it is always exactly one word long, and the vocabulary is limited to type names. The parameter list can also always be found in the same place, but it varies in length and includes identifier names that may be specific to that method. Thus the model struggles slightly more to learn to find it.

The model performs the least well on Q5, especially in terms of relevance and completeness. This result may be expected, however, since the model is expected to provide a short description of the method's behavior. We do give the model a short description in the context (see an example in the next section), and the model does learn to use this description in its response. But the size and vocabulary of the description vary considerably, and the model is prone to use incorrect words not in the actual description. In addition, the description we provide originates in the JavaDocs, which could have varying quality.

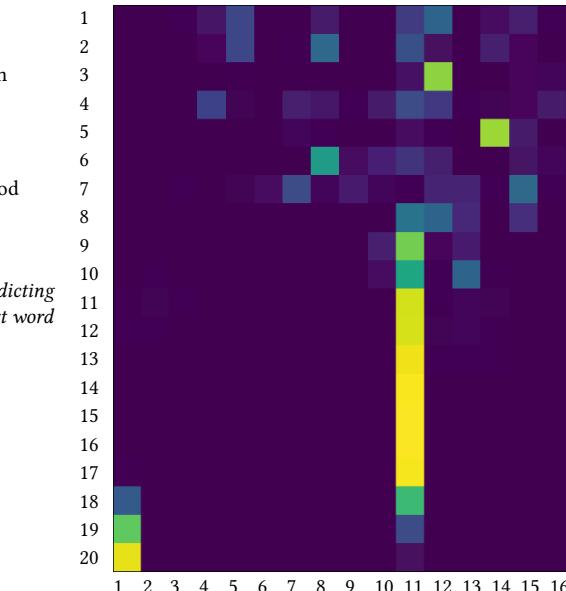
The responses to Q6 are a bit of a special case since they are always either "yes" or "no." Therefore it is relatively easy for the model to score well in terms of e.g. relevance. Still, the model is sometimes wrong, which is reflected in column Q6 of Figure 4(b).

1221 6.3 RQ₃: Effects of Context Features

1222 We provide evidence of the effects of the features in the context via
 1223 an example of the model's behavior. "Explainable AI" is a highly
 1224 controversial topic, which much agreement that it is necessary but
 1225 practically no consensus on the best strategies – neural networks in
 1226 particular have a reputation for producing results that are difficult
 1227 to explain [44, 49]. However, one source of evidence is the attention
 1228 network. The attention mechanisms in most encoder-decoder
 1229 models, include ours, are responsible for connecting pieces of the
 1230 decoder inputs to pieces of the encoder inputs. Frequently attention
 1231 provides clues on why the model makes a particular decision. For
 1232 example in NMT the word "hund" in a German sentence will receive
 1233 high attention to the English word "dog", while in computer vision
 1234 the word "dog" may receive high attention to the area in an image
 1235 where a dog appears.

1236 In our approach, the attention mechanism connects output words
 1237 to words in the input context sequence. Consider Example 1 below.
 1238 The user study participant writes a query requesting the return type.
 1239 The heatmap shows the state of the attention network just prior
 1240 to predicting the word "vertex" (layer code_attn from Section 4.3,
 1241 recall from Section 4.4 that the model predicts output one word at a
 1242

```
1243 user query Give me the return type
1244 model output the return type for this method is vertex
1245 <st> returns the next vertex of a polygon n1
1246 public vertex nextvertex ( vertex v ) {
1247   int ind = vertices . indexof ( v ) ;
1248   return ( vertex ) ( ind == -1 ?
1249     null : vertices . get ( ( ind + 1 )
1250     % vertices . size ( ) ) ; } <et>
```



1251 Example 1: User study participant asking for the return type
 1252 of the method. The model creates a response based on the
 1253 query and the source code sequence (including summary).
 1254 A heatmap of the attention network shows how the model
 1255 attends heavily to the word "vertex" in the context (position
 1256 11) just prior to predicting the last word in the output.
 1257

1258 time). This example is typical of almost all queries about the return
 1259 type: the model has learned where to find the return type in code.
 1260 Of course, it is not always in position 11, but the model "knows" to
 1261 look for the signature, and where to look in the signature for the
 1262 return type. Note that the model is not attending to earlier uses of
 1263 the word vertex in the method description, since that wording may
 1264 change. Likewise, it is not attending to the word vertex in after the
 1265 actual return in the code, since that is a variable name which may
 1266 not be the actual return type. The model has learned these patterns
 1267 from the training set.

1268 While space restrictions prevent us from printing numerous ex-
 1269 amples, we include several more in our online appendix cited below.
 1270 The behavior is quite consistent: for queries about e.g. parameters,
 1271 the model attends to the parameters area of the signature, and
 1272 outputs the relevant information.

7 CONCLUSION

1273 We have presented a QA system for programmer questions about
 1274 subroutines. We design a neural model based on the encoder-decoder
 1275 structure that can extract information about Java methods directly
 1276 from the source code of those methods. We designed our system to
 1277 distinguish between and answer questions for six different informa-
 1278 tion needs, which we derived from recent related work on dialogue
 1279 systems for programmers. In an experiment with 20 professional
 1280 programmers, we show that our approach is able to reliably answer
 1281 these six questions.

1282 Throughout our paper, we note that this QA system is not in-
 1283 tended for use on its own. Instead, it would serve as a component
 1284 of a hypothetical much larger interactive dialogue system. Virtual
 1285 agents are anticipated for many tasks including as assistants for
 1286 software engineering. However, it is unreasonable to expect to
 1287 create such a system in one step – research into subsystems and
 1288 supporting components is required first. This paper fills that role
 1289 towards virtual agents for SE tasks. Important next steps include
 1290 both designing other subsystems and expanding the number of
 1291 question types that this QA system is able to handle.

1292 To promote continued research, we release all our data, approach
 1293 source code, and a working interactive demonstration via our online
 1294 appendix:

1295 <https://github.com/paqs2020/paqs2020>

8 ACKNOWLEDGMENTS

1300 Redacted to comply with double-blind review process.

REFERENCES

- [1] Emad Aghajani, Csaba Nagy, Gabriele Bavota, and Michele Lanza. 2018. A large-scale empirical study on linguistic antipatterns affecting apis. In *2018 IEEE International Conference on Software Maintenance and Evolution (ICSME)*. IEEE, 25–35.
- [2] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning to represent programs with graphs. *International Conference on Learning Representations* (2018).
- [3] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating sequences from structured representations of code. *International Conference on Learning Representations* (2019).
- [4] Venera Arnaoudova, Sonia Haiduc, Andrian Marcus, and Giuliano Antoniol. 2015. The use of text retrieval and natural language processing in software engineering. In *Proceedings of the 37th International Conference on Software Engineering-Volume 2*. IEEE Press, 949–950.

1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357

1359 [5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and translate. *arXiv preprint arXiv:1409.0473* (2014).

1360 [6] Nicole Beringer, Ute Kartal, Katerina Louka, Florian Schiel, Uli Türk, et al. 2002. PROMISE: A procedure for multimodal interactive system evaluation. In *Proceedings of the Workshop on Multimodal Resources and Multimodal Systems Evaluation*. Citeseer, 90–95.

1361 [7] Phil Blunsom, Nal Kalchbrenner, and Nal Kalchbrenner. 2013. Recurrent convolutional neural networks for discourse compositionality. In *Proceedings of the 2013 Workshop on Continuous Vector Space Models and their Compositionality*. Proceedings of the 2013 Workshop on Continuous Vector Space Models and their Compositionality.

1362 [8] Nick C Bradley, Thomas Fritz, and Reid Holmes. 2018. Context-aware conversational developer assistants. In *Proceedings of the 40th International Conference on Software Engineering*. ACM, 993–1003.

1363 [9] Susanne Burger, Karl Weilhammer, Florian Schiel, and Hans G Tillmann. 2000. Verbmobil data collection and annotation. In *Verbmobil: Foundations of speech-to-speech translation*. Springer, 537–549.

1364 [10] Vittorio Castelli, Rishav Chakravarti, Saswati Dana, Anthony Ferritto, Radu Florian, Martin Franz, Dinesh Garg, Dinesh Khandelwal, Scott McCarley, Mike McCawley, et al. 2019. The TechQA Dataset. *arXiv preprint arXiv:1911.02984* (2019).

1365 [11] Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang Tang. 2017. A survey on dialogue systems: Recent advances and new frontiers. *AcM Sigkdd Explorations Newsletter* 19, 2 (2017), 25–35.

1366 [12] Zimin Chen, Steve James Kommuersch, Michele Tufano, Louis-Noël Pouchet, Denys Poshyvanyk, and Martin Monperrus. 2019. Sequencer: Sequence-to-sequence learning for end-to-end program repair. *IEEE Transactions on Software Engineering* (2019).

1367 [13] Zheqian Chen, Rongqin Yang, Zhou Zhao, Deng Cai, and Xiaofei He. 2018. Dialogue Act Recognition via CRF-Attentive Structured Network. In *The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval*. ACM, 225–234.

1368 [14] Richard Craggs and Mary McGee Wood. 2005. Evaluating discourse and dialogue coding schemes. *Computational Linguistics* 31, 3 (2005), 289–296.

1369 [15] Li Deng and Yang Liu. 2018. *Deep Learning in Natural Language Processing*. Springer.

1370 [16] Kenji Doya. 2003. Recurrent networks: learning algorithms. *The Handbook of Brain Theory and Neural Networks*, (2003), 955–960.

1371 [17] Zachary Eberhart, Aakash Bansal, and Collin McMillan. 2020. The Apiza Corpus: API Usage Dialogues with a Simulated Virtual Assistant. *arXiv:cs.SE/2001.09925*

1372 [18] Jianfeng Gao, Michel Galley, Lihong Li, et al. 2019. Neural approaches to conversational AI. *Foundations and Trends® in Information Retrieval* 13, 2-3 (2019), 127–298.

1373 [19] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, et al. 2016. Hybrid computing using a neural network with dynamic external memory. *Nature* 538, 7626 (2016), 471.

1374 [20] Shirley Anugrahayati, Raphael Olivier, Pravalka Avvaru, Pengcheng Yin, Anthony Tomasic, and Graham Neubig. 2018. Retrieval-Based Neural Code Generation. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, 925–930.

1375 [21] He He, Derek Chen, Anusha Balakrishnan, and Percy Liang. 2018. Decoupling Strategy and Generation in Negotiation Dialogues. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, 2333–2343.

1376 [22] Andrew Head, Caitlin Sadowski, Emerson Murphy-Hill, and Andrea Knight. 2018. When not to comment: questions and tradeoffs with API documentation for C++ projects. In *Proceedings of the 40th International Conference on Software Engineering*. ACM, 643–653.

1377 [23] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment generation. In *Proceedings of the 26th International Conference on Program Comprehension*. ACM, 200–210.

1378 [24] Matthew Johnson and Alonso Vera. 2019. No AI Is an Island: The Case for Teaming Intelligence. *AI Magazine* 40, 1 (2019), 16–28.

1379 [25] Andrew J Ko and Brad A Myers. 2004. Designing the whyline: a debugging interface for asking questions about program behavior. In *Proceedings of the SIGCHI conference on Human factors in computing systems*. ACM, 151–158.

1380 [26] Harshit Kumar, Arvind Agarwal, Riddhiman Dasgupta, Sachindra Joshi, and Arun Kumar. 2018. Dialogue Act Sequence Labeling using Hierarchical encoder with CRF. *AAAI* (2018).

1381 [27] Alex M Lamb, Anirudh Goyal Alias Parth Goyal, Ying Zhang, Saizheng Zhang, Aaron C Courville, and Yoshua Bengio. 2016. Professor forcing: A new algorithm for training recurrent networks. In *Advances In Neural Information Processing Systems*. 4601–4609.

1382 [28] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model for generating natural language summaries of program subroutines. In *Proceedings of the 41st International Conference on Software Engineering*. IEEE Press, 795–806.

1383 [29] Alexander LeClair and Collin McMillan. 2019. Recommendations for Datasets for Source Code Summarization. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*. 3931–3937.

1384 [30] Oliver Lemon. 2011. Learning what to say and how to say it: Joint optimisation of spoken dialogue management and natural language generation. *Computer Speech & Language* 25, 2 (2011), 210–221.

1385 [31] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated graph sequence neural networks. *arXiv preprint arXiv:1511.05493* (2015).

1386 [32] Zehao Lin, Xinjing Huang, Feng Ji, Haiqing Chen, and Ying Zhang. 2019. Task-Oriented Conversation Generation Using Heterogeneous Memory Networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing*.

1387 [33] Erik Linstead, Sushil Bajracharya, Trung Ngo, Paul Rigor, Cristina Lopes, and Pierre Baldi. 2009. Sourcerer: mining and searching internet-scale software repositories. *Data Mining and Knowledge Discovery* 18 (2009), 300–336.

1388 [34] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E Alsaadi. 2017. A survey of deep neural network architectures and their applications. *Neurocomputing* 234 (2017), 11–26.

1389 [35] Antoinette M Logar, Edward M Corwin, and William JB Oldham. 1993. A comparison of recurrent neural network learning algorithms. In *IEEE International Conference on Neural Networks*. IEEE, 1129–1134.

1390 [36] Walid Maalej and Martin P Robillard. 2013. Patterns of knowledge in API reference documentation. *IEEE Transactions on Software Engineering* 39, 9 (2013), 1264–1282.

1391 [37] Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. 2014. On the comprehension of program comprehension. *ACM Transactions on Software Engineering and Methodology (TOSEM)* 23, 4 (2014), 31.

1392 [38] Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz. 2015. Ask your neurons: A neural-based approach to answering questions about images. In *Proceedings of the IEEE international conference on computer vision*, 1–9.

1393 [39] Paul W McBurney and Collin McMillan. 2016. Automatic source code summarization of context for java methods. *IEEE Transactions on Software Engineering* 42, 2 (2016), 103–119.

1394 [40] Michael Meng, Stephanie Steinhardt, and Andreas Schubert. 2018. Application programming interface documentation: what do software developers want? *Journal of Technical Writing and Communication* 48, 3 (2018), 295–330.

1395 [41] Martin Monperrus, Michael Eichberg, Elif Tekes, and Mira Mezini. 2012. What should developers be aware of? An empirical study on the directives of API documentation. *Empirical Software Engineering* 17, 6 (2012), 703–737.

1396 [42] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa Reyes, Mei-Ling Shyu, Shu-Ching Chen, and SS Iyengar. 2018. A survey on deep learning: Algorithms, techniques, and applications. *ACM Computing Surveys (CSUR)* 51, 5 (2018), 92.

1397 [43] Piotr Pruski, Sugandha Lohar, William Goss, Alexander Rasin, and Jane Cleland-Huang. 2015. TiQi: answering unstructured natural language trace queries. *Requirements Engineering* 20, 3 (2015), 215–232.

1398 [44] Gabrielle Ras, Marcel van Gerven, and Pim Haselager. 2018. Explanation methods in deep learning: Users, values, concerns and challenges. In *Explainable and Interpretable Models in Computer Vision and Machine Learning*. Springer, 19–36.

1399 [45] Ehud Reiter and Robert Dale. 2000. *Building natural language generation systems*. Cambridge University Press, New York, NY, USA.

1400 [46] Verena Rieser and Oliver Lemon. 2011. *Reinforcement learning for adaptive dialogue systems: a data-driven methodology for dialogue management and natural language generation*. Springer Science & Business Media.

1401 [47] Martin P Robillard and Robert Deline. 2011. A field study of API learning obstacles. *Empirical Software Engineering* 16, 6 (2011), 703–732.

1402 [48] Martin P Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar Chaparro, Neil Ernst, Marco Aurélio Gerosa, Michael Godfrey, Michele Lanza, Mario Linares-Vásquez, et al. 2017. On-demand developer documentation. In *2017 IEEE International Conference on Software Maintenance and Evolution (ICSME)*. IEEE, 479–483.

1403 [49] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. 2017. Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. *arXiv preprint arXiv:1708.08296* (2017).

1404 [50] Ajay Shrestha and Ausif Mahmood. 2019. Review of Deep Learning Algorithms and Architectures. *IEEE Access* 7 (2019), 53040–53065.

1405 [51] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-Shanker. 2010. Towards automatically generating summary comments for java methods. In *Proceedings of the IEEE/ACM international conference on Automated software engineering*. ACM, 43–52.

1406 [52] Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker. 2011. Automatically detecting and describing high level actions within methods. In *Proceedings of the 33rd International Conference on Software Engineering*. ACM, 101–110.

1407 [53] Yuan Tian, Ferdinand Thung, Abhishek Sharma, and David Lo. 2017. APIBot: Question answering bot for API documentation. In *2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)*. IEEE, 153–158.

1497 [54] Marilyn A Walker, Diane J Litman, Candace A Kamm, and Alicia Abella. 1997. 1555
 1498 Evaluating interactive dialogue systems: Extending component evaluation to 1556
 1499 integrated system evaluation. In *Interactive Spoken Dialog Systems: Bringing 1557
 1500 Speech and NLP Together in Real Applications*. 1558
 1501 [55] Nigel G Ward and David DeVault. 2016. Challenges in building highly-interactive 1559
 1502 dialog systems. *AI Magazine* 37, 4 (2016), 7–18. 1560
 1503 [56] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van 1561
 1504 Merriënboer, Armand Joulin, and Tomas Mikolov. 2015. Towards ai-complete question 1562
 1505 answering: A set of prerequisite toy tasks. *arXiv preprint arXiv:1502.05698* (2015). 1563
 1506 [57] Georg Wiese, Dirk Weissenborn, and Mariana Neves. 2017. Neural domain 1564
 1507 adaptation for biomedical question answering. *arXiv preprint arXiv:1706.03610* 1565
 1508 (2017). 1566
 1509 [58] Andrew Wood, Paige Rodeghero, Ameer Armaly, and Collin McMillan. 2018. 1567
 1510 Detecting speech act types in developer question/answer conversations during 1568
 1511 bug repair. In *Proceedings of the 2018 26th ACM Joint Meeting on European Software 1569
 1512* 1570
 1513 1571
 1514 1572
 1515 1573
 1516 1574
 1517 1575
 1518 1576
 1519 1577
 1520 1578
 1521 1579
 1522 1580
 1523 1581
 1524 1582
 1525 1583
 1526 1584
 1527 1585
 1528 1586
 1529 1587
 1530 1588
 1531 1589
 1532 1590
 1533 1591
 1534 1592
 1535 1593
 1536 1594
 1537 1595
 1538 1596
 1539 1597
 1540 1598
 1541 1599
 1542 1600
 1543 1601
 1544 1602
 1545 1603
 1546 1604
 1547 1605
 1548 1606
 1549 1607
 1550 1608
 1551 1609
 1552 1610
 1553 1611
 1554 1612
 1555 1613
 1556 1614
 1557 1615
 1558 1616
 1559 1617
 1560 1618
 1561 1619
 1562 1620
 1563 1621
 1564 1622
 1565 1623
 1566 1624
 1567 1625
 1568 1626
 1569 1627
 1570 1628
 1571 1629
 1572 1630
 1573 1631
 1574 1632
 1575 1633
 1576 1634