21
22
23
24
25
26
27
28
29

39
40
41
42
43
44

46
47
48

49

A Neural Question Answering System for Subroutines

Author One, Author Two, Author Three, and Author Four
{one,two,three,four}@anonymous
Anonymous
Anonymous
Anonymous, Anon, Anon

ABSTRACT

A question answering (QA) system if a type of conversational Al
that generates natural language answers to questions posed by
human users. QA systems often form the backbone of interactive
dialogue systems, and have been studied extensively for a wide va-
riety of tasks ranging from restaurant recommendations to medical
diagnostics. Dramatic progress has been made in recent years, espe-
cially from the use of encoder-decoder neural architectures trained
with big data input. In this paper, we take initial steps to bringing
state-of-the-art neural QA technologies to Software Engineering
applications. We target the problem of QA about subroutines in
source code, a common information need for SE tasks such as API
learning and program comprehension. We curate a training dataset
of 10.9 million question/context/answer tuples based on rules we
extract from recent empirical studies. Then, we train a custom neu-
ral QA model with this dataset and evaluate the model in a study
with professional programmers. We demonstrate the strengths and
weaknesses of the system, and lay the groundwork for its use in
eventual dialogue systems for software engineering.

CCS CONCEPTS

« Software and its engineering — Software maintenance tools;

KEYWORDS

neural networks, question/answer dialogue, artificial intelligence

ACM Reference Format:

Author One, Author Two, Author Three, and Author Four. 2020. A Neural
Question Answering System for Subroutines. In ICPC’20, May 23-24, 2020,
Seoul, South Korea. ACM, New York, NY, USA, 12 pages. https://doi.org/00.
0000/0000000.0000000

1 INTRODUCTION

A question answering (QA) system is a type of conversational Al
that focuses on generating natural language answers to questions
posed by human users. QA is defined as single-turn dialogue, in
that there are only two participants in the conversation (the human
and the machine) and each participant speaks for only one turn (the
human asks a question which the machine answers). In practice,
a complete conversational machine agent would discuss several

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPC’20, May 23-24, 2020, Seoul, South Korea

© 2020 Association for Computing Machinery.

ACM ISBN 000-0-0000-0000-0/00/00...$15.00
https://doi.org/00.0000/0000000.0000000

topics over an arbitrary number of turns, detect when a question
has been asked, and the use a QA system to generate an answer to
the question. Thus, QA systems are key components necessary for
building usable conversational agents.

In general, QA systems generate an answer given a context
about which the question is being asked. For example, a Yin et
al. [60] describe an approach that parses a knowledge base of facts
about famous people to generate English answers about birthdates,
political offices held, awards received, etc. Malinowski et al. [38]
present a system that answers questions about images, such as
which objects are red or green in the image. Weston et al. [56]
provide a dataset of twenty tasks for training QA systems (the so-
called bAbI tasks) ranging from positional reasoning to path finding,
for which the context is a knowledge base of facts about objects
and how they relate to each other (e.g. Context: 1. Lily handed the
baby to Philip. 2. Philip walked outside. Question: Where is the
baby? Answer: Outside with Philip.).

As the above examples show and as chronicled in several survey
papers [11, 18, 34], scientific literature from the areas of Natural
Language Processing (NLP) and Al is replete with QA systems de-
signed to answer questions about a context. The overall structure
of these approaches is fairly consistent: A large dataset is collected
including question, answers, and related contexts. Then a model
is trained and tested using the dataset. Typically, a neural model
of the encoder-decoder design is employed, in which the model
learns to connect features in the questions to features in the context
via an attention mechanism. However, there are always numerous
domain-specific customizations required to model the context (as a
general rule, the question and answer can be modeled using lan-
guage features such as from a recurrent neural net). For example,
Malinowski’s work connecting words in questions to features in
images uses a typical RNN-based model of questions and answers,
but depends on a custom model for extracting those features from
the images [38]. In short, the key difficulty in implementing QA sys-
tems boils down to: 1) obtaining a proper dataset, and 2) designing
a suitable domain-specific model of the context.

In this paper, we present a QA system for answering programmer
questions about subroutines in programs (the subroutines are the
context about which questions are asked). We construct a dataset
of programmer questions based on recent experimental results re-
leased by Eberhart et al. [17] — that paper isolated five types of
questions that programmers asked about Java methods during ac-
tual programming tasks. For example, “what are the parameters
to the method convertWavIToMp3?” We built question and answer
templates and paraphrases based on these question types, to con-
struct a dataset of questions and answers for 1.56m Java methods.
We then designed a custom QA system based on a neural encoder-
decoder model. We model the subroutine context as an Abstract

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICPC’20, May 23-24, 2020, Seoul, South Korea

Syntax Tree (AST), motivated by recent models of source code [2, 3]
and using an AST flattening encoding described at ICSE’19 [28].
We evaluated our work in two ways. First, we used automated
metrics over a large testing set of around 67k Java methods, to
estimate how our approach would generalize. Second, we performed
an experiment with 20 human experts, to determine how well our
model responds to actual human input for a subset of 100 methods
out of the 67k test set. We explore evidence of how our model learns
to recognize pertinent facts in source code and generate readable
English responses (in the spirit of explainable Al [44, 49]).

2 PROBLEM, SIGNIFICANCE, SCOPE

The problem definition of this paper is fairly straightforward: given
a natural language question from a programmer about a program
subroutine, we seek to provide a natural language answer to that
question. This is referred to as a “question answering system” or
QA system in the relevant NLP and Al literature [11, 18, 34, 38, 60].
A QA system involves single turn dialogue: one question from a
user and one answer from the machine. This is distinct from other
conversational Al such as task-oriented or open-ended dialogue.

A predictable critique of this paper is that programmers probably
would not use a QA system alone for basic informational questions
about source code. After all, the return type, parameter list, etc.,
of a function is readily available from reading the source code or
summarizing documentation. However, it is important to recog-
nize that a QA system is usually not intended to be used on its
own. Instead, a QA system for these questions is a key component
in the big picture of conversational Al systems for programmers.
Robillard, with thirteen co-authors leading in the area of program
comprehension, make the case clearly in a paper summarizing the
outcomes of a relevant workshop in 2017 [48]: they “advocate for
a new vision for satisfying the information needs of developers”
which they call on-demand developer documentation. The idea is
that we as a research field should move towards machine responses
to programmer information needs that are customized to that pro-
grammers’ software context and individual questions. But to get
to that point, we (the research community) need to solve a few
smaller problems that are currently barriers to continued progress.
This argument mirrors those made repeatedly in the Al research
community generally [24, 55], that smaller problems must be solved
and used as a wedge against larger ones, towards the long-term
goal of a meaningful conversational AL

A QA system for basic programming information about subrou-
tines is one of those wedge problems in program comprehension.
A successful system would not only answer the narrow problem at
hand, but offer insights into issues of how to model and extract fea-
tures from source code, how to interpret programmer information
needs, and how to understand the vocabulary that programmers
use that is different from general word use. In the long run, our
plan is to include this work as part of a larger interactive dialogue
system for helping programmers read and understand source code!.

3 BACKGROUND & RELATED WORK

This section covers background technologies and closely-related
work in both NLP/AI and SE research venues.

1Some citations omitted to comply with double-blind review policy.

Anonymous, et al.

3.1 Interactive Dialogue Systems

The anatomy of an interactive dialogue system is neatly articu-
lated in a recent book by Rieser and Lemon [46] and summarized
in Figure 1 below. There are essentially four components. First, a
knowledge base is created to hold information relevant to the con-
versation, such as images about which questions are asked [38], or
maps about which directions may be obtained [19, 31, 59], or restau-
rants which may be recommended [30]. Second, a natural language
understanding component is responsible for converting incoming
text into an internal representation of what was said. Often this
starts with labeling the text with a dialogue act type [7, 9, 13, 26, 58]
(e.g., as a question, a followup statement, a positive or negative
comment). But it also includes extracting relevant information nec-
essary to form a response. For example, whether a user wants to
know about the return type or parameter list of a subroutine.

The third component is dialogue strategy management. This
component decides how to respond as well as how to extract infor-
mation necessary to make the response. It uses the knowledge base
to help make this decision and searches the knowledge base for
information relevant to the response. Note that the notion of “strat-
egy” refers to the decision-making process that the machine follows,
and is distinct from the natural language in the conversation [21].
For example, if presented with a comment about the weather, some
agents would respond with a summary of the predicted weather,
some would respond with a suggestion to take an umbrella, while
still others would ask a question about the user’s preference for
surnmer or fall. But the decision about how to respond is not related
to the words actually used to render a response.

Fourth, natural language generation techniques lie along a spec-
trum, one extreme of which is a templated, rule-based approach [45]
while the other extreme is a purely data-driven (usually deep learning-
based) approach [15]. An example of a hybrid system is one in which
canned responses are used to train a neural net (which allows more
flexible combinations of the responses), or data-driven selection
from a set of candidate template responses. For a time, there was a
belief that language understanding, strategy, and generation could
be combined into a single module based on deep learning, but that
belief is in strong decline for most applications [19, 21, 55].

QA systems fit into this anatomy of interactive dialogue systems
in two ways. First, as mentioned above, a conversational system
providing ongoing discussion with a user may include several sub-
systems to handle different situations, and pass control to a QA

Figure 1: Stereotyped dialogue system described by Rieser
and Lemon [46]. In this paper, the knowledge base consists
of the source code of subroutines, while the understanding
and generation components are learned via a neural net
from a dataset we create. We pre-define the strategy based
on experimental findings reported by Eberhart et al. [17].

Dialogue Strategy
Management

Natural Language o
Understanding i

Natural Language
Generation

Knowledge
Base

175
176
177
178

193

210
21
212
213
214
215
216
217
218

221

225

252

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

312

A Neural Question Answering System for Subroutines

subsystem from time to time. Second, a QA system itself generally
follows the same design. The strategy component tends to be sim-
pler than most systems because of the assumption that a single
question from a user will be provided a single answer. However, a
QA system may need to cope with different types of questions and
extract information from different types of artifacts — both deci-
sions that fall into the category of strategy. In practice, the strategy
tends to be encoded into the model based on dataset design, rather
than manual modification of the model.

Research into dialogue systems for software engineering is gen-
erally either foundational / dataset generation and analysis, or im-
plementations of experimental dialogue systems. Key foundational
and dataset analysis work includes Maalej et. al [36], Eberhart et
al. [17], and several others [1, 22, 37, 40, 41, 47, 58]. A recent sur-
vey discusses dialogue systems in SE [4], which includes several
experimental systems [8, 25, 43, 53]. These systems are related to
this paper in the sense that they are prototypes of dialogue sys-
tems for SE problems, but are not directly comparable because they
solve very specific problems and are based on scrutiny of highly-
specialized domain knowledge. While one may perform quite well
in one situation, it is almost guaranteed to fail for other situations.
This specialization is typical of dialogue systems in all domains [46],
so the way to evaluate an approach is to compare implementation
alternatives rather than different dialogue systems [6, 54].

3.2 Neural Encoder-Decoder

Our approach is based on the neural encoder-decoder model. This
model is the current standard for QA systems, as described in several
surveys [11, 15, 18]. To pick one very recent and related paper that
exemplifies how dialogue systems based on the encoder-decoder
model work, consider Lin et al. [32]. The paper presents a new
memory model to augment the encoder of a typical encoder-decoder
design, then compares it to alternative encoder-decoder models
over publicly-available datasets. This paper is similar, except that
rather than a model tuned for general conversations, we propose an
encoder model specific to this SE problem, and focus on SE domain
knowledge gained via our evaluation.

The encoder-decoder design itself has been clearly described
in many papers, and we discuss details in our approach section.
In general, the design includes an encoder, which receives as in-
put the natural language from the user plus the knowledge base.
The encoder outputs a vector representation of the input natural
language, usually via a recurrent net (RNN). The decoder receives
the example desired output during training. It generates a vector
representation of this desired output. During inference, the model
outputs one word at a time of the language to be sent to the user.
The decoder receives the output predicted “so far” and uses it to
help the model predict the next word.

The encoder-decoder design ballooned in popularity after Bah-
danau et al. [5] introduced an “attentional” variant that allows
the decoder’s vector representation to focus on sections of the en-
coder’s representation during training, i.e. to create a dictionary of
words in one language in the decoder to another language in the
encoder. Specific designs such as the famed seq2seq model have
motivated thousands of papers, well beyond what we can describe
in this section. Thus we direct readers to several surveys [42, 50, 61].
Within software engineering literature, the encoder-decoder design

ICPC’20, May 23-24, 2020, Seoul, South Korea

is seeing increased use for tasks such as code completion [20], code
summarization [28], and automated repair [12].

4 APPROACH

Our approach aligns with the related work described in the previous
section: the overall architecture is based on the dialogue system
design in Figure 1, and the implementation is based on a neural
encoder-decoder model. The key novelty in the model is the rep-
resentation of the knowledge base. The key novelty in the overall
architecture is the crafting of our dataset to train the neural model.
These set up the novelty of the evaluation, which is showing how
these models work in a QA system for program comprehension
of functions. In the long run, we plan for this QA system to be
a component of a much larger dialogue agent, but that agent is
beyond the scope of this paper. An overview of the components of
our dialogue system follows:

Dialogue Strategy Management Recall that dialogue strategy
management involves decisions both on 1) how to respond, and
2) how to extract the information necessary to make a response.
For (1), we craft a dataset that includes either types of questions
that we found in recently-released simulation experiments with
programmers. While those experiments were performed by others,
we completed the analysis of the eight questions for this paper.
The dataset design represents our manual effort in designing the
strategy the system should follow, but the strategy itself will be
learned during training and encoded in a neural model. For (2), we
use an attention mechanism in our neural model between the input
question and the knowledge base, to learn during training which
components of the knowledge base pertain to which questions. De-
tails of our dataset design are in Section 4.1. Details of the attention
mechanism are intertwined with the neural model in Section 4.3.

Knowledge Base The knowledge base consists of the source
code of the subroutines. We use a collection of Java methods pro-
vided by Linstead et al. [33] and further processed by LeClair et
al. [29]. In total, the knowledge base includes 2.1m Java methods
from over 10k projects. We represent each subroutine as an abstract
syntax tree (AST). Then, we use a graph neural network to model
each subroutine’s AST and provide a vectorized representation of
the subroutine. We train this GNN while we train the other com-
ponents of the neural model (i.e. it is supervised by the dataset we
create, we do not pretrain it using an unsupervised procedure). We
were inspired to use an AST representation by recent work in code
summarization [3, 23] and we use a flattened tree approach inspired
by LeClair et al. [28], though our application in this paper is novel.
Details of the model of the knowledge base are in Section 4.3.

Natural Language Understanding / Generation We use re-
current neural networks with word embedding vector spaces to
implement the encoder and decoder. The encoder is essentially the
component that implements the natural language understanding,
and the decoder implements the language generation. This struc-
ture is closely in line with a vast majority of recent data-driven QA
systems (see Section 3.2). We describe details of these components
as part of the code implementation in Section 4.3.

4.1 Dataset Preparation
We prepare a dataset that we use to train the neural model described
in the next section. This section describes how we structure our

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

ICPC’20, May 23-24, 2020, Seoul, South Korea

dataset so that it represents knowledge about how programmers
ask questions and how to respond. Note that while we do not
explicitly write rules into our dialogue strategy management, this
dataset contains those rules implicitly from which the neural model
learns later. We mention this in order to be clear that we do not
merely feed the network all data collected during empirical studies
and expect the model to learn proper behavior, and to justify our
overall posture towards dataset design: the decisions we make
in creating the dataset are the decisions that will be encoded as
dialogue strategy management.

We build the rules for generating our dataset based on empir-
ical data made available to us on pre-release. Eberhart et al. [17]
conducted an experiment in which 30 programmers solved program-
ming challenges with the help of a simulated interactive dialogue
agent (a so-called “Wizard of Oz” study design). The authors of
that paper then annotated each question asked by programmers
with one of twelve types of API information needs (these twelve
types of API info needs were determined in an earlier TSE paper by
Maalej and Robillard [36]). Eberhart et al. found that over 90% of
questions fell into one of three information needs: functionality,
patterns, or basic. In the long run, a dialogue agent will need to
handle all three types of question. But the scope of that challenge
is far too much for one paper. Since this is an early attempt at the
problem, we focus on basic questions which tend to be more self-
contained, have concrete single-turn answers, and overall likelier
to be answerable with current technology than other categories.

A basic question is one in which a programmer asks for key
information about the components of code. The “components” were
almost always subroutines rather than classes etc. The “key informa-
tion” included things like the return type, the function parameters,
or a high level description (such as a summary comment from
JavaDocs). Approximately 20% of the questions asked by program-
mers in the study by Eberhart et al. [17] were basic questions.

We (independent of the analysis by Eberhart et al.) examined all
questions that were labeled basic. The first and second authors of
this paper created eight categories of basic question. The proce-
dure was an open coding process in which the authors labeled each
question with a specific information need from a subroutine (since
practically all questions were related to subroutines). The authors
worked together to resolve disagreements, rather than work inde-
pendently and compute an agreement metric, in order to ensure
maximum reliability of the data?®.

In the end we had eight types of basic question. An important
distinction is that six of the questions involved known subroutines
i.e. the programmer already knew he had the correct method for
his task. For example, asking what the return type of method X is.
Three of the questions involved unknown subroutines i.e. the pro-
grammer did not know if she had the correct method. For example,
asking which method takes an int as a parameter and returns a
string. We call questions with a known subroutine “type K” and
questions with an unknown subroutine “type U’

Type K questions (subroutine known):

(1) What is the return type of method?

2 Agreement metrics quantify reliability, but do not resolve disagreements. Because we
ultimately had to make decisions to create a dataset, we elected to resolve disagree-
ments at the cost of a reliability metric, as suggested by Craggs and McGee [14].

Anonymous, et al.

(2) What are the parameters of method?
(3) Give me the definition of method.
(4) What is the signature of method.

(5) What does method do?

(6) Can method, short task description?

Type U questions (subroutine unknown):

(7) How do I short task description?
(8) What method takes parameter type P and returns type R?

The scope of our QA system only includes type K ques-
tions. Type K questions involve a question, answer, and known
context, which is in line with what QA models in NLP are equipped
to solve (though, those models have not been adapted to source
code). Type U questions involve a search process for the correct
subroutine, which would include code search and even dialogue
between machine and programmer to decide on the correct subrou-
tine. These search tasks are research problems of their own and are
too much to include in one paper. Therefore, we confine ourselves
to the problem of answering basic questions about known subrou-
tines. Integrating code search, grounding dialogue, etc., is an area
of our future work to build on this paper.

4.2 Dataset Generation

The next step is to generate a dataset, now knowing the question
types. At a high level, what we do is obtain a large repository of Java
methods, then generate example questions and answers for each
question type using heuristics to automatically extract information
from the methods. The repository of Java methods is a set of 2.1m
methods already filtered for duplicates and other errors, and paired
with summary descriptions, provided at NAACL’19 [29]. We further
filtered this dataset for methods with duplicate and non descriptive
comments to 1563197 methods.

Generating text for questions (1-4) is straightforward: just extract
information from each method e.g. the return type. For question
(5), we used the summary description as the answer.

We used the summary description and method name in the
question for question type (6), and the answer was simply “yes”
or “no.” However, for every positive example for each method, we
added a negative example to maintain a balanced dataset. This
negative example consisted of a random summary description from
another method (of a different name, to avoid picking an overloaded
method name) in the same project paired with the method. So for
each of the 1.56m methods, we had one positive example and one
negative example for question type (6).

To limit the vocabulary size, we replaced some information with
tokens that direct the output interface to copy the information from
the context directly, rather than learn to predict the information as
part of the model. We have a token for < funcode> for the answer
of question type (3) that is essentially the whole context and is
unnecessary for the model to learn to retrieve. So when the model
predicts this token, it can simply copy this from the interface. This
allows the user to have the same experience while reducing the
vocabulary that the model has to learn.

The last step in our dataset generation was to paraphrase each
question and answer. The example questions above are the primary
form we used based on the underlying empirical data. However,

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

525
526
527
528
529
530

580

A Neural Question Answering System for Subroutines

there is no guarantee that a programmer will use exactly that lan-
guage when asking a question, otherwise we could just use a tem-
plated QA system and avoid the complexity of a neural model. So
we wrote 15-25 paraphrases of each question, and randomly chose
one of them when generating questions and answer for each ques-
tion. The number of details behind the vocabulary replacements
and paraphrases would exceed space limitations to print in this
paper, but all are available via our online appendix (see Section 7).
To summarize, our procedure is:

for each of the 1.56m methods M do

for each question type T do

1. randomly select paraphrase template for T

2. generate question and answer using template

3. preprocess code of M to serve as context

4. create 3-tuple: (question, answer, context)

if T == 6 then
5. randomly select summary of different method
6. create 3-tuple: (question, “no”, context)

The result of our dataset generation is a set of 10.88 million 3-
tuples. Each 3-tuple contains a question, an answer, and a context
Java method. For each of the 1.56m Java methods, we generated 7
type K questions and answers (one for question types 1-5, two for
question 6). To ensure maximum reproducibility, we maintained
the training/validation/test splits provided by LeClair et al. [29].

4.3 Neural Model

Rationale The rationale for using a neural model is, essentially,
that neural models enable more flexible natural language under-

standing and generation in fewer steps, without the need for manually-

written rule to extract information from context. A traditional alter-
native to a neural model is a simple approach based on classification
of incoming questions and rules to extract information. However,
it is important to realize that this seemingly-obvious alternative
is not in line with recent work from the NLP research area for
context-based Q/A systems. As Wiese et al. [57] point out, recent
advances in neural models have led to “impressive performance
gains over more traditional systems”

In contrast, our model falls clearly in line with related work
from the NLP research area on context-based Q/A systems (see
Section 3.2): there is an encoder with question and context inputs,
and a decoder with the answer input. From an ML perspective, one
novel aspect to this paper is that we show how the neural model
can learn features in the source code when given only that code as a
context, and questions/answers about the context. This is important
novelty, along the lines of Wiese et al. [57] when they showed how
neural Q/A models can learn from biomedical text data versus other
highly specific areas e.g. technical support conversations [10] or
even religious texts [62]. The point is that domain adaptions are
considered important contributions and are not merely applying
technology X to data Y.

Overview Our neural model is, at a high level, similar to context-
based Q/A systems described in related work and summarized in
Section 3.2. The structure of these systems is basically a question
and context as “encoder” input and an answer as “decoder” input
(during training). The model is trained so that during inference, the
model will output one word of the predicted answer at a time. Our

ICPC’20, May 23-24, 2020, Seoul, South Korea

model follows this same basic structure. The question and answer
are generated for each function as described in the previous section.
The context is the source code of the function.

At a technical level, our approach is based on the encoder-
decoder model released by LeClair et al. [28] at ICSE 2019. We chose
that model because: 1) it was designed to accommodate source code
as input instead of only text, and 2) a thorough reproducibility
package is available. That model was designed to generate natural
language descriptions of source code (so-called “source code sum-
marization”). The inputs to the model’s encoder were preprocessed
source code, a flattened abstract syntax tree. The input for training
for the decoder was the example summary.

Our modifications, in a nutshell, are to make the model’s encoder
inputs the raw source code (not preprocessed), to add an input for
the user query/question to the encoder, and to change the decoder’s
training input to example answers to the questions. We used raw
source code instead of preprocessed source code because we are
interested in the model’s ability to learn where code features are
such as the return type, parameters, etc., unlike LeClair et al. who
were more interested in extracting text features such as identifier
names. Their preprocessing steps removed information that we
found to be critical in helping the model learn features about code.

Details We explain our model as a walkthrough of our actual
Keras implementation to maximize clarity and reproducibility, fol-
lowing the successful example of LeClair et al. [28]. The code in
this section is in file gamodel. py in our online appendix (Section 7.
ge = Embedding(output_dim=self.embdims,
input_dim=self.quesvocabsize) (ques_input)
ce = Embedding(output_dim=self.embdims,
input_dim=self.codevocabsize) (code_input)

The first step is to create a word embedding space for the question
and code encoder inputs. The question vocabulary size we used
was 20K, which is typical for text inputs, but we used a much larger
vocab size of 100K for the source code context. Programmers tend
to use domain specific words that expand the vocabulary.
ques_enc = CuDNNGRU(self.rnndims,
return_state=True, return_sequences=False)
quesout, gs = ques_enc(ge)
code_enc = CuDNNGRU(self.rnndims,
return_state=True, return_sequences=True)
codeout, cs = enc(ce, initial_state=qgs)

We use a GRU to encode the question and source code, with
the question and source code embedding spaces serving as input.
We set the initial state of the code encoder to the end state of the
question encoder, in line with other neural QA model designs in
which the question state is used to start the state of the context
encoding.
ae = Embedding(output_dim=self.embdims,
input_dim=self.ansvocabsize) (ans_input)
aec = CuDNNGRU(self.rnndims,
return_sequences=True)
aout = aec(ae, initial_state=cs)

The decoder follows the same basic structure: an embedding
space as input to a GRU. The decoder input is the answer. The
answer vocab size is 20K.
ques_attn = dot([aout, quesout], axes=[2, 2])
ques_attn = Activation('softmax')(ques_attn)

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710

711

715
716
717
718
719
720
721
722
723
724
725
726

ICPC’20, May 23-24, 2020, Seoul, South Korea

ques_context=dot([ques_attn, quesout],axes=[2, 1])
code_attn = dot([aout, codeout], axes=[2, 2])
code_attn = Activation('softmax')(code_attn)
code_context=dot([code_attn, codeout], axes=[2, 1])

Our attention mechanism consists of attention applied from the
decoder (aout) to both the question and source code context. The
attention to code context is especially important because this is how
the model emphasizes context features - this is chiefly what papers
mean when they say that the model “learns to comprehend” the
context. We will show in our experimental results how the model
learns different code features relevant to different questions.
context = concatenate(

[ques_context, code_context, aout])
out = TimeDistributed(Dense(self.rnndims,
activation="relu")) (context)

The next step is to create a context matrix by combining the
attended question and context matrices with the answer context
from the decoder. After this step, the models uses the combined
context matrix to predict the next word in the answer.

4.4 Training Procedures

Our training procedure is based on the “teacher forcing” tech-
nique [16, 27, 35] in which the model receives only correct ex-
amples from the training set and is not exposed to its own errors
(the technique helps keep the model reinforcing mistakes). To un-
derstand how the procedure works for our approach, recall that an
encoder-decoder architecture typically (as in our approach and oth-
ers related to a seq2seq model) predicts output sequences one item
at a time. For example, given a question “what is the return type of
function X?”, the model would generate an answer by predicting
the first word of the answer:

[question] + [code]

= ["the"]

Then it would use the first word prediction as a new input to
the decoder, to predict the second word:
[question] + [code] + ["the"]

=> ["method"]

And the process would continue to predict the entire response:
[question] + [code 1 + ["the method"]

=> ["returns"]
[question] + [code] + ["the method returns"]
= ["a"]
[question] + [code] + ["the method returns an"]
=> ["unsigned"]
[question 1 + [code] + ["the method returns an unsigned"]
=> ["long"]

Yet this is how the model behaves during inference. To train the
model, following the teacher forcing procedure, we provide the
model each example one word at a time. So, in the above example,
we would provide the model with “the” followed by the reference
output “method”, then “the method” with the reference output
“returns”, and so on. If the model makes an incorrect prediction,
we use back propagation to correct the model, and then substitute
the correct reference output for the next step — the model is not
permitted to use its own erroneous prediction as the next input.
However, a caveat is that the procedure slows training because each
example must pass through the model for every word in the output.

Anonymous, et al.

5 EVALUATION

We conduct an experiment with human users to evaluate our QA
system. Note that our ultimate intent for this QA system is to serve
as a component of a much larger conversational Al (see Sections 2
and 3.1). Therefore, our experimental setup is a controlled environ-
ment in which we test specific inputs and outputs generated by
human users. We are not attempting to evaluate the system “in the
wild” because the system is not intended to be used standalone, and
because the larger conversational Al system does not yet exist.

5.1 Research Questions

Our research objective is to determine the degree to which our QA
system is able to answer the eight questions about subroutines we
determined in Section 4.1. We ask the following Research Questions
(RQs) towards this objective:

RQ; What is the performance of our QA system in terms of
relevance, accuracy, completeness, and conciseness?

RQ, How does the performance vary across the six question
types for which we designed the system?

RQ3 What features in the context are the most important for
the model to use when answering a question?

The rationale behind RQ; is that good responses by any QA
system should score well across at least three degrees: relevance,
accuracy, completeness, and conciseness. Accuracy, because inde-
pendent of any other factors the response should not contain false
information. Completeness, because responses should contain all
information needed to answer the question. Conciseness, because
responses should contain only the information necessary to answer
a question. We derived these four degrees of text generation quality
from related SE literature on code description generation [39, 52].
The rationale behind RQj is that the system may perform well for
some questions but not others. In particular, it may perform well
at extracting information such as the return type of a subroutine,
but struggle for other questions such as returning a description of
a subroutine. RQs relates to the explainability of the neural model.
Neural models tend to be highly effective for text comprehension
and generation tasks, but are notorious for producing black box
responses that are difficult to understand. We ask RQ3 to provide a
few insights into the model’s behavior, within the constraints of a
single conference paper.

5.2 Methodology

Our methodology for answering RQ; and RQ3 is to conduct a user
study in which human programmers evaluate the output of the QA
system for questions that they generate. To limit the scope of the
experiment, we control the study conditions so that the program-
mers only ask questions related to information needs we highlight
in the six questions in Section 4.1. We recruited professional pro-
grammers from around the United States via an online job platform
(demographics of study population are in the next section). We
also created a web interface with which the programmers could
communicate with the QA system. A screenshot of this interface is
in Figure 2. The interface also provided a space for the program-
mers to rate the responses on a 1-4 scale ranging from Strongly
Agree, Agree, Neutral, Disagree, or Strongly Disagree for the quality
prompts shown in Table 1.

727
728
729
730
731
732
733

735

765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
8

803
804
805
806

814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

846

859
860
861
862
863

864

A Neural Question Answering System for Subroutines

Function: i

Probiem 1: Provi

Figure 2: The interface that programmers used to communi-
cate with the QA system during our experiment.

Rationale Our study design is similar to previous experiments
by Sridhara et al. [52] and McBurney et al. [39]. We used similar
wording of our prompts to study participants and the same four
options. The only difference we made was to add another option for
Neutral in case the model returns a nonsensical reply (which can
happen for our neural model but was very unlikely in the templated
systems of code comment generation in those previous studies).
We added the Neutral option as a middle ground between the four
main choices, to avoid forcing participants to make decisions on
possible nonsensical responses.

Another similarity is that we find ourselves in the same situation
as Sridhara et al. [51] in their ASE paper: no baseline exists for
comparison. To our knowledge, no QA system has been designed
to answer these specific questions in a natural language format.
Different tools do exist for some questions. For example, question
(5) could be thought of as a code summarization question, while
questions (1-4) could be answered by just reading the subroutine
itself. Yet recall that we are not seeking an “in the wild” evaluation
- we need to evaluate the input and output of the model in situ with
the natural language understanding and generation components
of the approach. Therefore, we follow the example of these earlier
papers and focus on a deeper analysis of the responses across multi-
ple quality criteria, instead of comparing metrics across competing
approaches (since they do not yet exist).

Table 1: Quality prompts (P1-5) in the user study. These cor-

respond to the quality criteria (relevance, accuracy, com-

pleteness, and conciseness) discussed in Section 5.2. The first
»

four prompts are answerable as “Strongly Agree”, “Agree”,
“Neutral”, “Disagree”, or “Strongly Disagree.”

Independent of other factors, the response is relevant
P; | to my question, even if the information it contains is
inaccurate.

The response is accurate, even if it is not relevant to my

P question.

The response is missing important information, and

P3| that can hinder my understanding.

P4 | The response contains a lot of unnecessary information.

P5 | Do you have any general comments about the response?

ICPC’20, May 23-24, 2020, Seoul, South Korea

Note also that we do not use BLEU scores or other automated
metrics. A human study is vital for two reasons. First, we need to
evaluate specific subjective qualities rather than an overall simi-
larity metric to a ground truth (like BLEU would do). Second, the
ground truth in our dataset (i.e. the answer component of the ques-
tion, context, answer tuples, see Section 4.1) is generated by us. We
use it as training data, but it would not be appropriate to use as
testing data since it would include our own biases.

Experiment Procedure In the experiment, we gave each pro-
grammer a “quiz” to fill out with the assistance of the QA system
(see Figure 2). Each page of the quiz gave the name of a particular
Java method. Only the method name was shown, not the method
body. For each method, three Type K questions (see Section 4.1)
were chosen randomly. Below the method name, there were three
prompts, derived from the chosen Type K questions. We phrased
the prompts as imperative statements (e.g. “Provide the return type
of this function”) to avoid priming the programmers with a par-
ticular question format. We instructed programmers to use their
own words to ask for information from the QA system. We asked
programmers not to copy questions, but we allowed them to copy
answers from the QA system for the quiz. A programmer could ask
the QA system as many queries as he or she wanted.

After answering the question prompts for a particular method,
programmers were brought to a new page that asked them to rate
each of their interactions with the QA system for that method. For
each interaction (consisting of a user query and the QA system’s
response), we asked the programmers to answer the five quality
prompts listed in Table 1. When they were done, they could press a
button to bring up the next method, and a new set of prompts.

In short, we used a quiz format to encourage programmers to
ask the QA system certain types of questions, but in their own
words. Then they rated the responses using the quality prompts.
They also completed the quiz, so we could determine whether they
obtained the correct information in the end, independent of how
what ratings they chose for the quality prompts. Space constraints
prevent us from including the quiz and other materials, but we
provide these via our online appendix (Section 7).

For clarity in the experimental results section, we use the fol-
lowing vocabulary to refer to the various parts of our study: 1) a
“question”, Q1-6, is one of the six Type K question types we use
in our experiment and described in Section 4.1, 2) a “query” is
text typed by the user into the experiment interface separated by
striking the return key, since hitting the return key triggers the
interface to send the text to the prediction model and receive an
answer back, and 3) a “quality prompt”, P1-5, is one of the requests
we make of users to rate the model’s answer. The users see three
questions per function. They may write as many queries as they
wish to help them answer each question. Then they respond to five
quality prompts for each answer they see to a query.

5.3 Participants

We recruited 30 participants for our experiment. These participants
had professional experience ranging from three to 15 years. We
compensated programmers at a flat rate of US$60/hr, market rate
in our region, regardless of performance speed. Each programmer
worked for a total of 40 minutes to answer as many quiz pages as
possible in that time.

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

%61

962

963

964

965

966

967

968

%69

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

ICPC’20, May 23-24, 2020, Seoul, South Korea

5.4 Subject Java Methods

We used a total of 100 Java methods in our experiment. We sourced
these methods from the test set of the dataset split — the model had
not seen them during training. We rotated these at random so that
no programmer saw the same method more than once, but that
each method was shown to at least three programmers. But given
the vicissitudes of any study with humans (fatigue, differing speeds,
skipped pages), not all methods ended with three ratings.

5.5 Threats to Validity

Like any paper, this experiment carries threats to the validity of
its conclusions. One threat is the dataset we use. One of the disad-
vantages of human studies is that the number of functions that we
could ask any one person to evaluate is quite limited — we cannot
merely calculate a metric over thousands of examples. We chose
a random selection from a large, curated dataset, and we ensured
that each function was seen by more than one person, but it is
still possible that a different selection would result in a different re-
sult. Likewise, another threat is that a different set of programmers
might give different answers. We attempted to mitigate this risk
by asking over 20 participants. Also, we attempted to mitigate a
risk of varying results from the model itself by ensuring consistent
random seeds and experimental conditions (all available via our
online appendix), though it is always a risk that random factors in
GPU hardware or software could lead to slightly different results.

6 EXPERIMENTAL RESULTS

This section describes the results of the experiment: our answers
to our RQs and supporting evidence.

6.1 RQ;: Overall Performance

In general, we found the model’s overall performance to be good.
Figure 3 gives an overview. The figure is a histogram of all user an-
swers to the quality prompts from Table 1. Recall that 1="Strongly

mP1 Relevant @mP2 Accurate
BmP3 Complete mP4 Concise

1000 -

800 -

600 -
400 -

200 ~

1 2 3 4 5

Figure 3: Histograms of the user responses to the quality
prompts in Table 1. Recall that P1 and P2 are asked in a pos-
itive tone (so 1-2 scores are better) while P3 and P4 are in a
negative tone (so 4-5 are better). Participants tended to find
the model’s responses to be of good quality.

Anonymous, et al.

Table 2: Performance statistics of participants in the exper-
iment. Each participant worked for 40 minutes. We asked
three questions for each method. However, participants
worked at their own speeds and were allowed to ask any

ber of ies th ted.
number of queries they wante Mean Min Max

Methods Evaluated per Participant 19 7 38
Queries per Participant 70 37 117
Queries per Method 3.8 2 10
Queries until “Correct” Response 1.2 1 8

Agree”, 2="Agree”, 3="Neutral”, 4="Disagree”, and 5="Strongly Dis-
agree” to the prompt text. Prompts 1 and 2 are worded positively
(so agreement is better) while prompts 3 and 4 are worded nega-
tively (so disagreement is better). For example, for P; about how
relevant the response is, a vast majority of responses received a
score of Strongly Agree or Agree. Likewise, for P3, a vast majority
of responses received a score indicated disagreement to a prompt
about missing important information. Also note that only a small
percent of responses were rated as neutral, meaning that, in general,
responses were clear enough for participants to form an opinion -
upon inspection a vast majority of responses rated as neutral were
gibberish output from the neural model. Still, in terms of overall
performance, the model does tend to generate reasonable responses.

Two caveats should be understood. First, different participants
worked at different rates, so some participants are represented more
in the data than others. Table 2 quantifies these differences. Almost
all participants evaluated between 15 and 20 methods, but there
were a few outliers as is natural in samples of human populations
(mean speed of 19 methods per 40 minute study is about 2 min-
utes per method, while 38 is a rate of about 1 minute/method).
Nonetheless we found the number of queries required to answer
each question to be quite stable, with one query usually sufficing
and two or more queries being quite rare. In other words, the time
required by each participant seemed to have more to do with time
required by the participant to read and understand the questions,
than with the number of queries required per participant.

Second, the responses to each quality prompt are independent
of other prompts. So it is possible that a response receives a good
score for P2 and a poor score for Py, i.e. the response is accurate
but not relevant. To study this caveat, we derived a metric we call
“correctness” by combining P; and Py scores. The metric is binary.
A response receives a 1 if and only if both P1 and P; scores are
one or two — that is, a response is only “correct” if the participant
strongly agrees or agrees that it is both relevant and accurate. We
found that 79% of responses were “correct” and that it usually took
only one query to receive a correct response.

We found that a key factor in the 21% of incorrect responses to
be the vocabulary size. As mentioned in Section 4.3, GPU memory
limitations restrict both the input and output vocab size, despite our
attempts to extend these by using GPUs with 16gb VRAM and low
training batch sizes. This limit affected our results. A vast majority
of the responses that were relevant but not accurate were ones with
UNK tokens in the answer. Likewise, responses that were accurate
byt not relevant almost always had UNK tokens in the question (i.e.
the participant wrote a query with out-of-vocab words in it) - these
UNK tokens likely caused the model to misunderstand the question
and give an accurate response that was nonetheless irrelevant.

1003
1004
1005
1006
1007
1008
1009
1010
101
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

A Neural Question Answering System for Subroutines

1 Lo— S —
(a) P| Relevance

Q1 Q2 Q3 Q4 Q5 Q6

(c) P; Completeness

ICPC’20, May 23-24, 2020, Seoul, South Korea

-5 0-=-0

(b) P, Accuracy

(d) P4 Concision

Figure 4: Boxplots of answers to quality prompts (relevance, accuracy, completeness, and concision) for each of the question
types from Section 4.1. The model performs differently for different question types. Performance is highest for Q1 and Q4 and
worst for Q5: ratings of relevance and completeness tend to be worse for Q5 than for other question types.

6.2 RQ;: Variation among Question Types

We observe a small degree of variation among the question types
in our experiment. Recall from Section 4.1 that we have a variety of
question templates that we derived from six different question types
corresponding to six key information needs programmers have.
(In the experiment, we confined participants to these information
needs, but we had no restriction on the language that they could
use to render a question.) Recall that the rationale of this RQ is that
the model may be better at understanding some information needs
than others. For the convenience of understanding the results in
this section and Figure 4, we reprint the question types below:

Q1 What is the return type of method?
Q2 What are the parameters of method?
Q3 Give me the definition of method.
Q4 What is the signature of method.

Q5 What does method do?

Q6 Can method, short task description?

Figure 4 contains boxplots of the answers for each quality prompt,
divided across each question type. For example, column Q2 of Fig-
ure 4(a) shows that for Question 2, the mean of all responses to
queries is about 2 (the red line), the interquartile range is 1 to 2.
The way to interpret this is that, among all queries written for Q2,
participants either Strongly Agreed or Agreed that the query was
relevant about half of the time. Note that outliers are excluded for
readability, but we did have at least one instance of each score.

In general, the model performs very well for Q1 and Q4. For both
question types, the responses are dominated by optimal scores (1
for relevance and completeness, 5 for accuracy and concision). This
result implies that the model is successfully learning to recognize

when participants were asking for those information needs, and
also learns how to extract that information from the source code
and place it in a natural language response. Q1 and Q4 correspond
to the return type and signature of the source code. We will show
in the next section how the model learns to find this information
in source code quite reliably.

The model performed slightly less well for Q2 and Q3, for which
the model learns to find the method parameters and definition.
These information needs are slightly more difficult to learn because
they vary more in size and vocabulary. The return type (Q1) can al-
ways be found in the same place at the start of the method signature,
it is always exactly one word long, and the vocabulary is limited
to type names. The parameter list can also always be found in the
same place, but it varies in length and includes identifier names that
may be specific to that method. Thus the model struggles slightly
more to learn to find it.

The model performs the least well on Q5, especially in terms of
relevance and completeness. This result may be expected, however,
since the model is expected to provide a short description of the
method’s behavior. We do give the model a short description in
the context (see an example in the next section), and the model
does learn to use this description in its response. But the size and
vocabulary of the description vary considerably, and the model
is prone to use incorrect words not in the actual description. In
addition, the description we provide originates in the JavaDocs,
which could have varying quality.

The responses to Q6 are a bit of a special case since they are
always either “yes” or “no.” Therefore it is relatively easy for the
model to score well in terms of e.g. relevance. Still, the model is
sometimes wrong, which is reflected in column Q6 of Figure 4(b).

141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
mn7
172
173
174
1178
176
177
1178
179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1198
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
121
1212
1213
1214
1218
1216
1217
1218
1219
1220

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278

ICPC’20, May 23-24, 2020, Seoul, South Korea

6.3 RQs: Effects of Context Features

We provide evidence of the effects of the features in the context via
an example of the model’s behavior. “Explainable AI” is a highly
controversial topic, which much agreement that it is necessary but
practically no consensus on the best strategies — neural networks in
particular have a reputation for producing results that are difficult
to explain [44, 49]. However, one source of evidence is the atten-
tion network. The attention mechanisms in most encoder-decoder
models, include ours, are responsible for connecting pieces of the
decoder inputs to pieces of the encoder inputs. Frequently attention
provides clues on why the model makes a particular decision. For
example in NMT the word “hund” in a German sentence will receive
high attention to the English word “dog”, while in computer vision
the word “dog” may receive high attention to the area in an image
where a dog appears.

In our approach, the attention mechanism connects output words
to words in the input context sequence. Consider Example 1 below.
The user study participant writes a query requesting the return type.
The heatmap shows the state of the attention network just prior
to predicting the word “vertex” (layer code_attn from Section 4.3,
recall from Section 4.4 that the model predicts output one word at a

user query
model output

Give me the return type

the return type for this method is vertex

<st> returns the next vertex of a polygon nl
public vertex nextvertex (vertex v) {
int ind = vertices . indexof (v) ;

context return (vertex) (ind == -1 ?
null : vertices . get ((ind + 1)
% vertices . size ())) ; } <et>
<st> 1
the 2
return 3
type 4
for 5
this 6
method 7
is 8
9
10
jpredicting 1
next word
12
13
14

I e e T
S © ® 9 »

123 45 6 7 89

10 11 12 13 14 15 16

Example 1: User study participant asking for the return type
of the method. The model creates a response based on the
query and the source code sequence (including summary).
A heatmap of the attention network shows how the model
attends heavily to the word “vertex” in the context (position
11) just prior to predicting the last word in the output.

10

Anonymous, et al.

time). This example is typical of almost all queries about the return
type: the model has learned where to find the return type in code.
Of course, it is not always in position 11, but the model “knows” to
look for the signature, and where to look in the signature for the
return type. Note that the model is not attending to earlier uses of
the word vertex in the method description, since that wording may
change. Likewise, it is not attending to the word vertex in after the
actual return in the code, since that is a variable name which may
not be the actual return type. The model has learned these patterns
from the training set.

While space restrictions prevent us from printing numerous ex-
amples, we include several more in our online appendix cited below.
The behavior is quite consistent: for queries about e.g. parameters,
the model attends to the parameters area of the signature, and
outputs the relevant information.

7 CONCLUSION

We have presented a QA system for programmer questions about
subroutines. We design a neural model based on the encoder-decoder
structure that can extract information about Java methods directly
from the source code of those methods. We designed our system to
distinguish between and answer questions for six different informa-
tion needs, which we derived from recent related work on dialogue
systems for programmers. In an experiment with 20 professional
programmers, we show that our approach is able to reliably answer
these six questions.

Throughout our paper, we note that this QA system is not in-
tended for use on its own. Instead, it would serve as a component
of a hypothetical much larger interactive dialogue system. Virtual
agents are anticipated for many tasks including as assistants for
software engineering. However, it is unreasonable to expect to
create such a system in one step — research into subsystems and
supporting components is required first. This paper fills that role
towards virtual agents for SE tasks. Important next steps include
both designing other subsystems and expanding the number of
question types that this QA system is able to handle.

To promote continued research, we release all our data, approach
source code, and a working interactive demonstration via our online
appendix:

https://github.com/paqs2020/paqs2020

8 ACKNOWLEDGMENTS

Redacted to comply with double-blind review process.

REFERENCES

[1] Emad Aghajani, Csaba Nagy, Gabriele Bavota, and Michele Lanza. 2018. A

large-scale empirical study on linguistic antipatterns affecting apis. In 2018 IEEE

International Conference on Software Maintenance and Evolution (ICSME). IEEE,

25-35.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learn-

ing to represent programs with graphs. International Conference on Learning

Representations (2018).

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating

sequences from structured representations of code. International Conference on

Learning Representations (2019).

[4] Venera Arnaoudova, Sonia Haiduc, Andrian Marcus, and Giuliano Antoniol. 2015.
The use of text retrieval and natural language processing in software engineering.
In Proceedings of the 37th International Conference on Software Engineering-Volume
2. IEEE Press, 949-950.

[2

3

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358

1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415

1416

[9

=

[10

(11

[12]

[13]

[14]
[15]
[16]

[17]

A Neural Question Answering System for Subroutines

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

Nicole Beringer, Ute Kartal, Katerina Louka, Florian Schiel, Uli Tirk, et al. 2002.
PROMISE: A procedure for multimodal interactive system evaluation. In Proceed-
ings of the WorkshopaAZMultimodal Resources and Multimodal Systems Evaluation.
Citeseer, 90-95.

Phil Blunsom, Nal Kalchbrenner, and Nal Kalchbrenner. 2013. Recurrent convo-
lutional neural networks for discourse compositionality. In Proceedings of the
2013 Workshop on Continuous Vector Space Models and their Compositionality.
Proceedings of the 2013 Workshop on Continuous Vector Space Models and their
Compositionality.

Nick C Bradley, Thomas Fritz, and Reid Holmes. 2018. Context-aware conversa-
tional developer assistants. In Proceedings of the 40th International Conference on
Software Engineering. ACM, 993-1003.

Susanne Burger, Karl Weilhammer, Florian Schiel, and Hans G Tillmann. 2000.
Verbmobil data collection and annotation. In Verbmobil: Foundations of speech-to-
speech translation. Springer, 537-549.

Vittorio Castelli, Rishav Chakravarti, Saswati Dana, Anthony Ferritto, Radu
Florian, Martin Franz, Dinesh Garg, Dinesh Khandelwal, Scott McCarley, Mike
McCawley, et al. 2019. The TechQA Dataset. arXiv preprint arXiv:1911.02984
(2019).

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang Tang. 2017. A survey on
dialogue systems: Recent advances and new frontiers. Acm Sigkdd Explorations
Newsletter 19, 2 (2017), 25-35.

Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis-Noél Pouchet,
Denys Poshyvanyk, and Martin Monperrus. 2019. Sequencer: Sequence-to-
sequence learning for end-to-end program repair. IEEE Transactions on Software
Engineering (2019).

Zhegian Chen, Rongqin Yang, Zhou Zhao, Deng Cai, and Xiaofei He. 2018. Dia-
logue Act Recognition via CRF-Attentive Structured Network. In The 41st Interna-
tional ACM SIGIR Conference on Research & Development in Information Retrieval.
ACM, 225-234.

Richard Craggs and Mary McGee Wood. 2005. Evaluating discourse and dialogue
coding schemes. Computational Linguistics 31, 3 (2005), 289-296.

Li Deng and Yang Liu. 2018. Deep Learning in Natural Language Processing.
Springer.

Kenji Doya. 2003. Recurrent networks: learning algorithms. The Handbook of
Brain Theory and Neural Networks, (2003), 955-960.

Zachary Eberhart, Aakash Bansal, and Collin McMillan. 2020. The Apiza Corpus:
API Usage Dialogues with a Simulated Virtual Assistant. arXiv:cs.SE/2001.09925

[18] Jianfeng Gao, Michel Galley, Lihong Li, et al. 2019. Neural approaches to con-

[19]

[20]

[21]

[22]

[23]

[24]

oo
A}

[26]

[27]

[28

versational Al. Foundations and Trends® in Information Retrieval 13, 2-3 (2019),
127-298.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Ag-
nieszka Grabska-Barwinska, Sergio Gémez Colmenarejo, Edward Grefenstette,
Tiago Ramalho, John Agapiou, et al. 2016. Hybrid computing using a neural
network with dynamic external memory. Nature 538, 7626 (2016), 471.

Shirley Anugrah Hayati, Raphael Olivier, Pravalika Avvaru, Pengcheng Yin,
Anthony Tomasic, and Graham Neubig. 2018. Retrieval-Based Neural Code
Generation. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing. 925-930.

He He, Derek Chen, Anusha Balakrishnan, and Percy Liang. 2018. Decoupling
Strategy and Generation in Negotiation Dialogues. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. 2333-2343.
Andrew Head, Caitlin Sadowski, Emerson Murphy-Hill, and Andrea Knight.
2018. When not to comment: questions and tradeoffs with API documentation
for C++ projects. In Proceedings of the 40th International Conference on Software
Engineering. ACM, 643-653.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment genera-
tion. In Proceedings of the 26th International Conference on Program Comprehension.
ACM, 200-210.

Matthew Johnson and Alonso Vera. 2019. No Al Is an Island: The Case for
Teaming Intelligence. AI Magazine 40, 1 (2019), 16-28.

Andrew] Ko and Brad A Myers. 2004. Designing the whyline: a debugging
interface for asking questions about program behavior. In Proceedings of the
SIGCHI conference on Human factors in computing systems. ACM, 151-158.
Harshit Kumar, Arvind Agarwal, Riddhiman Dasgupta, Sachindra Joshi, and
Arun Kumar. 2018. Dialogue Act Sequence Labeling using Hierarchical encoder
with CRF. AAAI (2018).

Alex M Lamb, Anirudh Goyal Alias Parth Goyal, Ying Zhang, Saizheng Zhang,
Aaron C Courville, and Yoshua Bengio. 2016. Professor forcing: A new algorithm
for training recurrent networks. In Advances In Neural Information Processing
Systems. 4601-4609.

Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model for
generating natural language summaries of program subroutines. In Proceedings
of the 41st International Conference on Software Engineering. IEEE Press, 795-806.

ICPC’20, May 23-24, 2020, Seoul, South Korea

Alexander LeClair and Collin McMillan. 2019. Recommendations for Datasets
for Source Code Summarization. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers). 3931-3937.

Oliver Lemon. 2011. Learning what to say and how to say it: Joint optimisation
of spoken dialogue management and natural language generation. Computer
Speech & Language 25, 2 (2011), 210-221.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated
graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015).

Zehao Lin, Xinjing Huang, Feng Ji, Haiqing Chen, and Ying Zhang. 2019. Task-
Oriented Conversation Generation Using Heterogeneous Memory Networks. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing.

Erik Linstead, Sushil Bajracharya, Trung Ngo, Paul Rigor, Cristina Lopes, and
Pierre Baldi. 2009. Sourcerer: mining and searching internet-scale software
repositories. Data Mining and Knowledge Discovery 18 (2009), 300-336.

Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E Al-
saadi. 2017. A survey of deep neural network architectures and their applications.
Neurocomputing 234 (2017), 11-26.

Antonette M Logar, Edward M Corwin, and William JB Oldham. 1993. A com-
parison of recurrent neural network learning algorithms. In IEEE International
Conference on Neural Networks. IEEE, 1129-1134.

Walid Maalej and Martin P Robillard. 2013. Patterns of knowledge in APIreference
documentation. IEEE Transactions on Software Engineering 39, 9 (2013), 1264—
1282.

Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. 2014. On
the comprehension of program comprehension. ACM Transactions on Software
Engineering and Methodology (TOSEM) 23, 4 (2014), 31.

Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz. 2015. Ask your neurons:
A neural-based approach to answering questions about images. In Proceedings of
the IEEE international conference on computer vision. 1-9.

Paul W McBurney and Collin McMillan. 2016. Automatic source code summa-
rization of context for java methods. IEEE Transactions on Software Engineering
42, 2 (2016), 103-119.

Michael Meng, Stephanie Steinhardt, and Andreas Schubert. 2018. Application
programming interface documentation: what do software developers want?
Journal of Technical Writing and Communication 48, 3 (2018), 295-330.

Martin Monperrus, Michael Eichberg, Elif Tekes, and Mira Mezini. 2012. What
should developers be aware of? An empirical study on the directives of API
documentation. Empirical Software Engineering 17, 6 (2012), 703-737.

Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa
Reyes, Mei-Ling Shyu, Shu-Ching Chen, and SS Iyengar. 2018. A survey on deep
learning: Algorithms, techniques, and applications. ACM Computing Surveys
(CSUR) 51, 5 (2018), 92.

Piotr Pruski, Sugandha Lohar, William Goss, Alexander Rasin, and Jane Cleland-
Huang. 2015. TiQi: answering unstructured natural language trace queries.
Requirements Engineering 20, 3 (2015), 215-232.

Gabriélle Ras, Marcel van Gerven, and Pim Haselager. 2018. Explanation methods
in deep learning: Users, values, concerns and challenges. In Explainable and
Interpretable Models in Computer Vision and Machine Learning. Springer, 19-36.
Ehud Reiter and Robert Dale. 2000. Building natural language generation systems.
Cambridge University Press, New York, NY, USA.

Verena Rieser and Oliver Lemon. 2011. Reinforcement learning for adaptive
dialogue systems: a data-driven methodology for dialogue management and natural
language generation. Springer Science & Business Media.

Martin P Robillard and Robert Deline. 2011. A field study of APIlearning obstacles.
Empirical Software Engineering 16, 6 (2011), 703-732.

Martin P Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar
Chaparro, Neil Ernst, Marco Aurélio Gerosa, Michael Godfrey, Michele Lanza,
Mario Linares-Vasquez, et al. 2017. On-demand developer documentation. In 2017
IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 479-483.

Wojciech Samek, Thomas Wiegand, and Klaus-Robert Miiller. 2017. Explainable
artificial intelligence: Understanding, visualizing and interpreting deep learning
models. arXiv preprint arXiv:1708.08296 (2017).

Ajay Shrestha and Ausif Mahmood. 2019. Review of Deep Learning Algorithms
and Architectures. IEEE Access 7 (2019), 53040-53065.

Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-
Shanker. 2010. Towards automatically generating summary comments for java
methods. In Proceedings of the IEEE/ACM international conference on Automated
software engineering. ACM, 43-52.

Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker. 2011. Automatically
detecting and describing high level actions within methods. In Proceedings of the
33rd International Conference on Software Engineering. ACM, 101-110.

Yuan Tian, Ferdian Thung, Abhishek Sharma, and David Lo. 2017. APIBot: Ques-
tion answering bot for API documentation. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 153-158.

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496

1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554

ICPC’20, May 23-24, 2020, Seoul, South Korea

[54] Marilyn A Walker, Diane J Litman, Candace A Kamm, and Alicia Abella. 1997.
Evaluating interactive dialogue systems: Extending component evaluation to
integrated system evaluation. In Interactive Spoken Dialog Systems: Bringing
Speech and NLP Together in Real Applications.

[55] Nigel G Ward and David DeVault. 2016. Challenges in building highly-interactive
dialog systems. AI Magazine 37, 4 (2016), 7-18.

[56] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van Mer-
riénboer, Armand Joulin, and Tomas Mikolov. 2015. Towards ai-complete question
answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698 (2015).

[57] Georg Wiese, Dirk Weissenborn, and Mariana Neves. 2017. Neural domain
adaptation for biomedical question answering. arXiv preprint arXiv:1706.03610
(2017).

[58] Andrew Wood, Paige Rodeghero, Ameer Armaly, and Collin McMillan. 2018.
Detecting speech act types in developer question/answer conversations during
bug repair. In Proceedings of the 2018 26th ACM Joint Meeting on European Software

Anonymous, et al.

Engineering Conference and Symposium on the Foundations of Software Engineering.
ACM, 491-502.

Caiming Xiong, Stephen Merity, and Richard Socher. 2016. Dynamic memory
networks for visual and textual question answering. In International conference
on machine learning. 2397-2406.

[60] Jun Yin, Xin Jiang, Zhengdong Lu, Lifeng Shang, Hang Li, and Xiaoming Li.

2016. Neural generative question answering. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence. AAAI Press, 2972-2978.
Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. 2018.
Recent trends in deep learning based natural language processing. ieee Computa-
tional intelligenCe magazine 13, 3 (2018), 55-75.

Helen Jiahe Zhao and Jiamou Liu. 2018. Finding Answers from the Word of God:
Domain Adaptation for Neural Networks in Biblical Question Answering. In 2018
International Joint Conference on Neural Networks (IJCNN). IEEE, 1-8.

1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634

