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ABSTRACT

A question answering (QA) system if a type of conversational Al
that generates natural language answers to questions posed by
human users. QA systems often form the backbone of interactive
dialogue systems, and have been studied extensively for a wide va-
riety of tasks ranging from restaurant recommendations to medical
diagnostics. Dramatic progress has been made in recent years, espe-
cially from the use of encoder-decoder neural architectures trained
with big data input. In this paper, we take initial steps to bringing
state-of-the-art neural QA technologies to Software Engineering
applications. We target the problem of QA about subroutines in
source code, a common information need for SE tasks such as API
learning and program comprehension. We curate a training dataset
of 10.9 million question/context/answer tuples based on rules we
extract from recent empirical studies. Then, we train a custom neu-
ral QA model with this dataset and evaluate the model in a study
with professional programmers. We demonstrate the strengths and
weaknesses of the system, and lay the groundwork for its use in
eventual dialogue systems for software engineering.
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1 INTRODUCTION

A question answering (QA) system is a type of conversational Al
that focuses on generating natural language answers to questions
posed by human users. QA is defined as single-turn dialogue, in
that there are only two participants in the conversation (the human
and the machine) and each participant speaks for only one turn (the
human asks a question which the machine answers). In practice,
a complete conversational machine agent would discuss several
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topics over an arbitrary number of turns, detect when a question
has been asked, and the use a QA system to generate an answer to
the question. Thus, QA systems are key components necessary for
building usable conversational agents.

In general, QA systems generate an answer given a context
about which the question is being asked. For example, a Yin et
al. [60] describe an approach that parses a knowledge base of facts
about famous people to generate English answers about birthdates,
political offices held, awards received, etc. Malinowski et al. [38]
present a system that answers questions about images, such as
which objects are red or green in the image. Weston et al. [56]
provide a dataset of twenty tasks for training QA systems (the so-
called bAbI tasks) ranging from positional reasoning to path finding,
for which the context is a knowledge base of facts about objects
and how they relate to each other (e.g. Context: 1. Lily handed the
baby to Philip. 2. Philip walked outside. Question: Where is the
baby? Answer: Outside with Philip.).

As the above examples show and as chronicled in several survey
papers [11, 18, 34], scientific literature from the areas of Natural
Language Processing (NLP) and Al is replete with QA systems de-
signed to answer questions about a context. The overall structure
of these approaches is fairly consistent: A large dataset is collected
including question, answers, and related contexts. Then a model
is trained and tested using the dataset. Typically, a neural model
of the encoder-decoder design is employed, in which the model
learns to connect features in the questions to features in the context
via an attention mechanism. However, there are always numerous
domain-specific customizations required to model the context (as a
general rule, the question and answer can be modeled using lan-
guage features such as from a recurrent neural net). For example,
Malinowski’s work connecting words in questions to features in
images uses a typical RNN-based model of questions and answers,
but depends on a custom model for extracting those features from
the images [38]. In short, the key difficulty in implementing QA sys-
tems boils down to: 1) obtaining a proper dataset, and 2) designing
a suitable domain-specific model of the context.

In this paper, we present a QA system for answering programmer
questions about subroutines in programs (the subroutines are the
context about which questions are asked). We construct a dataset
of programmer questions based on recent experimental results re-
leased by Eberhart et al. [17] — that paper isolated five types of
questions that programmers asked about Java methods during ac-
tual programming tasks. For example, “what are the parameters
to the method convertWavIToMp3?” We built question and answer
templates and paraphrases based on these question types, to con-
struct a dataset of questions and answers for 1.56m Java methods.
We then designed a custom QA system based on a neural encoder-
decoder model. We model the subroutine context as an Abstract
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Syntax Tree (AST), motivated by recent models of source code [2, 3]
and using an AST flattening encoding described at ICSE’19 [28].
We evaluated our work in two ways. First, we used automated
metrics over a large testing set of around 67k Java methods, to
estimate how our approach would generalize. Second, we performed
an experiment with 20 human experts, to determine how well our
model responds to actual human input for a subset of 100 methods
out of the 67k test set. We explore evidence of how our model learns
to recognize pertinent facts in source code and generate readable
English responses (in the spirit of explainable Al [44, 49]).

2 PROBLEM, SIGNIFICANCE, SCOPE

The problem definition of this paper is fairly straightforward: given
a natural language question from a programmer about a program
subroutine, we seek to provide a natural language answer to that
question. This is referred to as a “question answering system” or
QA system in the relevant NLP and Al literature [11, 18, 34, 38, 60].
A QA system involves single turn dialogue: one question from a
user and one answer from the machine. This is distinct from other
conversational Al such as task-oriented or open-ended dialogue.

A predictable critique of this paper is that programmers probably
would not use a QA system alone for basic informational questions
about source code. After all, the return type, parameter list, etc.,
of a function is readily available from reading the source code or
summarizing documentation. However, it is important to recog-
nize that a QA system is usually not intended to be used on its
own. Instead, a QA system for these questions is a key component
in the big picture of conversational Al systems for programmers.
Robillard, with thirteen co-authors leading in the area of program
comprehension, make the case clearly in a paper summarizing the
outcomes of a relevant workshop in 2017 [48]: they “advocate for
a new vision for satisfying the information needs of developers”
which they call on-demand developer documentation. The idea is
that we as a research field should move towards machine responses
to programmer information needs that are customized to that pro-
grammers’ software context and individual questions. But to get
to that point, we (the research community) need to solve a few
smaller problems that are currently barriers to continued progress.
This argument mirrors those made repeatedly in the Al research
community generally [24, 55], that smaller problems must be solved
and used as a wedge against larger ones, towards the long-term
goal of a meaningful conversational AL

A QA system for basic programming information about subrou-
tines is one of those wedge problems in program comprehension.
A successful system would not only answer the narrow problem at
hand, but offer insights into issues of how to model and extract fea-
tures from source code, how to interpret programmer information
needs, and how to understand the vocabulary that programmers
use that is different from general word use. In the long run, our
plan is to include this work as part of a larger interactive dialogue
system for helping programmers read and understand source code!.

3 BACKGROUND & RELATED WORK

This section covers background technologies and closely-related
work in both NLP/AI and SE research venues.

1Some citations omitted to comply with double-blind review policy.
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3.1 Interactive Dialogue Systems

The anatomy of an interactive dialogue system is neatly articu-
lated in a recent book by Rieser and Lemon [46] and summarized
in Figure 1 below. There are essentially four components. First, a
knowledge base is created to hold information relevant to the con-
versation, such as images about which questions are asked [38], or
maps about which directions may be obtained [19, 31, 59], or restau-
rants which may be recommended [30]. Second, a natural language
understanding component is responsible for converting incoming
text into an internal representation of what was said. Often this
starts with labeling the text with a dialogue act type [7, 9, 13, 26, 58]
(e.g., as a question, a followup statement, a positive or negative
comment). But it also includes extracting relevant information nec-
essary to form a response. For example, whether a user wants to
know about the return type or parameter list of a subroutine.

The third component is dialogue strategy management. This
component decides how to respond as well as how to extract infor-
mation necessary to make the response. It uses the knowledge base
to help make this decision and searches the knowledge base for
information relevant to the response. Note that the notion of “strat-
egy” refers to the decision-making process that the machine follows,
and is distinct from the natural language in the conversation [21].
For example, if presented with a comment about the weather, some
agents would respond with a summary of the predicted weather,
some would respond with a suggestion to take an umbrella, while
still others would ask a question about the user’s preference for
surnmer or fall. But the decision about how to respond is not related
to the words actually used to render a response.

Fourth, natural language generation techniques lie along a spec-
trum, one extreme of which is a templated, rule-based approach [45]
while the other extreme is a purely data-driven (usually deep learning-
based) approach [15]. An example of a hybrid system is one in which
canned responses are used to train a neural net (which allows more
flexible combinations of the responses), or data-driven selection
from a set of candidate template responses. For a time, there was a
belief that language understanding, strategy, and generation could
be combined into a single module based on deep learning, but that
belief is in strong decline for most applications [19, 21, 55].

QA systems fit into this anatomy of interactive dialogue systems
in two ways. First, as mentioned above, a conversational system
providing ongoing discussion with a user may include several sub-
systems to handle different situations, and pass control to a QA

Figure 1: Stereotyped dialogue system described by Rieser
and Lemon [46]. In this paper, the knowledge base consists
of the source code of subroutines, while the understanding
and generation components are learned via a neural net
from a dataset we create. We pre-define the strategy based
on experimental findings reported by Eberhart et al. [17].
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subsystem from time to time. Second, a QA system itself generally
follows the same design. The strategy component tends to be sim-
pler than most systems because of the assumption that a single
question from a user will be provided a single answer. However, a
QA system may need to cope with different types of questions and
extract information from different types of artifacts — both deci-
sions that fall into the category of strategy. In practice, the strategy
tends to be encoded into the model based on dataset design, rather
than manual modification of the model.

Research into dialogue systems for software engineering is gen-
erally either foundational / dataset generation and analysis, or im-
plementations of experimental dialogue systems. Key foundational
and dataset analysis work includes Maalej et. al [36], Eberhart et
al. [17], and several others [1, 22, 37, 40, 41, 47, 58]. A recent sur-
vey discusses dialogue systems in SE [4], which includes several
experimental systems [8, 25, 43, 53]. These systems are related to
this paper in the sense that they are prototypes of dialogue sys-
tems for SE problems, but are not directly comparable because they
solve very specific problems and are based on scrutiny of highly-
specialized domain knowledge. While one may perform quite well
in one situation, it is almost guaranteed to fail for other situations.
This specialization is typical of dialogue systems in all domains [46],
so the way to evaluate an approach is to compare implementation
alternatives rather than different dialogue systems [6, 54].

3.2 Neural Encoder-Decoder

Our approach is based on the neural encoder-decoder model. This
model is the current standard for QA systems, as described in several
surveys [11, 15, 18]. To pick one very recent and related paper that
exemplifies how dialogue systems based on the encoder-decoder
model work, consider Lin et al. [32]. The paper presents a new
memory model to augment the encoder of a typical encoder-decoder
design, then compares it to alternative encoder-decoder models
over publicly-available datasets. This paper is similar, except that
rather than a model tuned for general conversations, we propose an
encoder model specific to this SE problem, and focus on SE domain
knowledge gained via our evaluation.

The encoder-decoder design itself has been clearly described
in many papers, and we discuss details in our approach section.
In general, the design includes an encoder, which receives as in-
put the natural language from the user plus the knowledge base.
The encoder outputs a vector representation of the input natural
language, usually via a recurrent net (RNN). The decoder receives
the example desired output during training. It generates a vector
representation of this desired output. During inference, the model
outputs one word at a time of the language to be sent to the user.
The decoder receives the output predicted “so far” and uses it to
help the model predict the next word.

The encoder-decoder design ballooned in popularity after Bah-
danau et al. [5] introduced an “attentional” variant that allows
the decoder’s vector representation to focus on sections of the en-
coder’s representation during training, i.e. to create a dictionary of
words in one language in the decoder to another language in the
encoder. Specific designs such as the famed seq2seq model have
motivated thousands of papers, well beyond what we can describe
in this section. Thus we direct readers to several surveys [42, 50, 61].
Within software engineering literature, the encoder-decoder design
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is seeing increased use for tasks such as code completion [20], code
summarization [28], and automated repair [12].

4 APPROACH

Our approach aligns with the related work described in the previous
section: the overall architecture is based on the dialogue system
design in Figure 1, and the implementation is based on a neural
encoder-decoder model. The key novelty in the model is the rep-
resentation of the knowledge base. The key novelty in the overall
architecture is the crafting of our dataset to train the neural model.
These set up the novelty of the evaluation, which is showing how
these models work in a QA system for program comprehension
of functions. In the long run, we plan for this QA system to be
a component of a much larger dialogue agent, but that agent is
beyond the scope of this paper. An overview of the components of
our dialogue system follows:

Dialogue Strategy Management Recall that dialogue strategy
management involves decisions both on 1) how to respond, and
2) how to extract the information necessary to make a response.
For (1), we craft a dataset that includes either types of questions
that we found in recently-released simulation experiments with
programmers. While those experiments were performed by others,
we completed the analysis of the eight questions for this paper.
The dataset design represents our manual effort in designing the
strategy the system should follow, but the strategy itself will be
learned during training and encoded in a neural model. For (2), we
use an attention mechanism in our neural model between the input
question and the knowledge base, to learn during training which
components of the knowledge base pertain to which questions. De-
tails of our dataset design are in Section 4.1. Details of the attention
mechanism are intertwined with the neural model in Section 4.3.

Knowledge Base The knowledge base consists of the source
code of the subroutines. We use a collection of Java methods pro-
vided by Linstead et al. [33] and further processed by LeClair et
al. [29]. In total, the knowledge base includes 2.1m Java methods
from over 10k projects. We represent each subroutine as an abstract
syntax tree (AST). Then, we use a graph neural network to model
each subroutine’s AST and provide a vectorized representation of
the subroutine. We train this GNN while we train the other com-
ponents of the neural model (i.e. it is supervised by the dataset we
create, we do not pretrain it using an unsupervised procedure). We
were inspired to use an AST representation by recent work in code
summarization [3, 23] and we use a flattened tree approach inspired
by LeClair et al. [28], though our application in this paper is novel.
Details of the model of the knowledge base are in Section 4.3.

Natural Language Understanding / Generation We use re-
current neural networks with word embedding vector spaces to
implement the encoder and decoder. The encoder is essentially the
component that implements the natural language understanding,
and the decoder implements the language generation. This struc-
ture is closely in line with a vast majority of recent data-driven QA
systems (see Section 3.2). We describe details of these components
as part of the code implementation in Section 4.3.

4.1 Dataset Preparation
We prepare a dataset that we use to train the neural model described
in the next section. This section describes how we structure our
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dataset so that it represents knowledge about how programmers
ask questions and how to respond. Note that while we do not
explicitly write rules into our dialogue strategy management, this
dataset contains those rules implicitly from which the neural model
learns later. We mention this in order to be clear that we do not
merely feed the network all data collected during empirical studies
and expect the model to learn proper behavior, and to justify our
overall posture towards dataset design: the decisions we make
in creating the dataset are the decisions that will be encoded as
dialogue strategy management.

We build the rules for generating our dataset based on empir-
ical data made available to us on pre-release. Eberhart et al. [17]
conducted an experiment in which 30 programmers solved program-
ming challenges with the help of a simulated interactive dialogue
agent (a so-called “Wizard of Oz” study design). The authors of
that paper then annotated each question asked by programmers
with one of twelve types of API information needs (these twelve
types of API info needs were determined in an earlier TSE paper by
Maalej and Robillard [36]). Eberhart et al. found that over 90% of
questions fell into one of three information needs: functionality,
patterns, or basic. In the long run, a dialogue agent will need to
handle all three types of question. But the scope of that challenge
is far too much for one paper. Since this is an early attempt at the
problem, we focus on basic questions which tend to be more self-
contained, have concrete single-turn answers, and overall likelier
to be answerable with current technology than other categories.

A basic question is one in which a programmer asks for key
information about the components of code. The “components” were
almost always subroutines rather than classes etc. The “key informa-
tion” included things like the return type, the function parameters,
or a high level description (such as a summary comment from
JavaDocs). Approximately 20% of the questions asked by program-
mers in the study by Eberhart et al. [17] were basic questions.

We (independent of the analysis by Eberhart et al.) examined all
questions that were labeled basic. The first and second authors of
this paper created eight categories of basic question. The proce-
dure was an open coding process in which the authors labeled each
question with a specific information need from a subroutine (since
practically all questions were related to subroutines). The authors
worked together to resolve disagreements, rather than work inde-
pendently and compute an agreement metric, in order to ensure
maximum reliability of the data?®.

In the end we had eight types of basic question. An important
distinction is that six of the questions involved known subroutines
i.e. the programmer already knew he had the correct method for
his task. For example, asking what the return type of method X is.
Three of the questions involved unknown subroutines i.e. the pro-
grammer did not know if she had the correct method. For example,
asking which method takes an int as a parameter and returns a
string. We call questions with a known subroutine “type K” and
questions with an unknown subroutine “type U’

Type K questions (subroutine known):

(1) What is the return type of method?

2 Agreement metrics quantify reliability, but do not resolve disagreements. Because we
ultimately had to make decisions to create a dataset, we elected to resolve disagree-
ments at the cost of a reliability metric, as suggested by Craggs and McGee [14].
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(2) What are the parameters of method?
(3) Give me the definition of method.
(4) What is the signature of method.

(5) What does method do?

(6) Can method, short task description?

Type U questions (subroutine unknown):

(7) How do I short task description?
(8) What method takes parameter type P and returns type R?

The scope of our QA system only includes type K ques-
tions. Type K questions involve a question, answer, and known
context, which is in line with what QA models in NLP are equipped
to solve (though, those models have not been adapted to source
code). Type U questions involve a search process for the correct
subroutine, which would include code search and even dialogue
between machine and programmer to decide on the correct subrou-
tine. These search tasks are research problems of their own and are
too much to include in one paper. Therefore, we confine ourselves
to the problem of answering basic questions about known subrou-
tines. Integrating code search, grounding dialogue, etc., is an area
of our future work to build on this paper.

4.2 Dataset Generation

The next step is to generate a dataset, now knowing the question
types. At a high level, what we do is obtain a large repository of Java
methods, then generate example questions and answers for each
question type using heuristics to automatically extract information
from the methods. The repository of Java methods is a set of 2.1m
methods already filtered for duplicates and other errors, and paired
with summary descriptions, provided at NAACL’19 [29]. We further
filtered this dataset for methods with duplicate and non descriptive
comments to 1563197 methods.

Generating text for questions (1-4) is straightforward: just extract
information from each method e.g. the return type. For question
(5), we used the summary description as the answer.

We used the summary description and method name in the
question for question type (6), and the answer was simply “yes”
or “no.” However, for every positive example for each method, we
added a negative example to maintain a balanced dataset. This
negative example consisted of a random summary description from
another method (of a different name, to avoid picking an overloaded
method name) in the same project paired with the method. So for
each of the 1.56m methods, we had one positive example and one
negative example for question type (6).

To limit the vocabulary size, we replaced some information with
tokens that direct the output interface to copy the information from
the context directly, rather than learn to predict the information as
part of the model. We have a token for < funcode> for the answer
of question type (3) that is essentially the whole context and is
unnecessary for the model to learn to retrieve. So when the model
predicts this token, it can simply copy this from the interface. This
allows the user to have the same experience while reducing the
vocabulary that the model has to learn.

The last step in our dataset generation was to paraphrase each
question and answer. The example questions above are the primary
form we used based on the underlying empirical data. However,
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there is no guarantee that a programmer will use exactly that lan-
guage when asking a question, otherwise we could just use a tem-
plated QA system and avoid the complexity of a neural model. So
we wrote 15-25 paraphrases of each question, and randomly chose
one of them when generating questions and answer for each ques-
tion. The number of details behind the vocabulary replacements
and paraphrases would exceed space limitations to print in this
paper, but all are available via our online appendix (see Section 7).
To summarize, our procedure is:

for each of the 1.56m methods M do

for each question type T do

1. randomly select paraphrase template for T

2. generate question and answer using template

3. preprocess code of M to serve as context

4. create 3-tuple: (question, answer, context)

if T == 6 then
5. randomly select summary of different method
6. create 3-tuple: (question, “no”, context)

The result of our dataset generation is a set of 10.88 million 3-
tuples. Each 3-tuple contains a question, an answer, and a context
Java method. For each of the 1.56m Java methods, we generated 7
type K questions and answers (one for question types 1-5, two for
question 6). To ensure maximum reproducibility, we maintained
the training/validation/test splits provided by LeClair et al. [29].

4.3 Neural Model

Rationale The rationale for using a neural model is, essentially,
that neural models enable more flexible natural language under-

standing and generation in fewer steps, without the need for manually-

written rule to extract information from context. A traditional alter-
native to a neural model is a simple approach based on classification
of incoming questions and rules to extract information. However,
it is important to realize that this seemingly-obvious alternative
is not in line with recent work from the NLP research area for
context-based Q/A systems. As Wiese et al. [57] point out, recent
advances in neural models have led to “impressive performance
gains over more traditional systems”

In contrast, our model falls clearly in line with related work
from the NLP research area on context-based Q/A systems (see
Section 3.2): there is an encoder with question and context inputs,
and a decoder with the answer input. From an ML perspective, one
novel aspect to this paper is that we show how the neural model
can learn features in the source code when given only that code as a
context, and questions/answers about the context. This is important
novelty, along the lines of Wiese et al. [57] when they showed how
neural Q/A models can learn from biomedical text data versus other
highly specific areas e.g. technical support conversations [10] or
even religious texts [62]. The point is that domain adaptions are
considered important contributions and are not merely applying
technology X to data Y.

Overview Our neural model is, at a high level, similar to context-
based Q/A systems described in related work and summarized in
Section 3.2. The structure of these systems is basically a question
and context as “encoder” input and an answer as “decoder” input
(during training). The model is trained so that during inference, the
model will output one word of the predicted answer at a time. Our
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model follows this same basic structure. The question and answer
are generated for each function as described in the previous section.
The context is the source code of the function.

At a technical level, our approach is based on the encoder-
decoder model released by LeClair et al. [28] at ICSE 2019. We chose
that model because: 1) it was designed to accommodate source code
as input instead of only text, and 2) a thorough reproducibility
package is available. That model was designed to generate natural
language descriptions of source code (so-called “source code sum-
marization”). The inputs to the model’s encoder were preprocessed
source code, a flattened abstract syntax tree. The input for training
for the decoder was the example summary.

Our modifications, in a nutshell, are to make the model’s encoder
inputs the raw source code (not preprocessed), to add an input for
the user query/question to the encoder, and to change the decoder’s
training input to example answers to the questions. We used raw
source code instead of preprocessed source code because we are
interested in the model’s ability to learn where code features are
such as the return type, parameters, etc., unlike LeClair et al. who
were more interested in extracting text features such as identifier
names. Their preprocessing steps removed information that we
found to be critical in helping the model learn features about code.

Details We explain our model as a walkthrough of our actual
Keras implementation to maximize clarity and reproducibility, fol-
lowing the successful example of LeClair et al. [28]. The code in
this section is in file gamodel. py in our online appendix (Section 7.
ge = Embedding(output_dim=self.embdims,
input_dim=self.quesvocabsize) (ques_input)
ce = Embedding(output_dim=self.embdims,
input_dim=self.codevocabsize) (code_input)

The first step is to create a word embedding space for the question
and code encoder inputs. The question vocabulary size we used
was 20K, which is typical for text inputs, but we used a much larger
vocab size of 100K for the source code context. Programmers tend
to use domain specific words that expand the vocabulary.
ques_enc = CuDNNGRU(self.rnndims,
return_state=True, return_sequences=False)
quesout, gs = ques_enc(ge)
code_enc = CuDNNGRU(self.rnndims,
return_state=True, return_sequences=True)
codeout, cs = enc(ce, initial_state=qgs)

We use a GRU to encode the question and source code, with
the question and source code embedding spaces serving as input.
We set the initial state of the code encoder to the end state of the
question encoder, in line with other neural QA model designs in
which the question state is used to start the state of the context
encoding.
ae = Embedding(output_dim=self.embdims,
input_dim=self.ansvocabsize) (ans_input)
aec = CuDNNGRU(self.rnndims,
return_sequences=True)
aout = aec(ae, initial_state=cs)

The decoder follows the same basic structure: an embedding
space as input to a GRU. The decoder input is the answer. The
answer vocab size is 20K.
ques_attn = dot([aout, quesout], axes=[2, 2])
ques_attn = Activation('softmax')(ques_attn)
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ques_context=dot([ques_attn, quesout],axes=[2, 1])
code_attn = dot([aout, codeout], axes=[2, 2])
code_attn = Activation('softmax')(code_attn)
code_context=dot([code_attn, codeout], axes=[2, 1])

Our attention mechanism consists of attention applied from the
decoder (aout) to both the question and source code context. The
attention to code context is especially important because this is how
the model emphasizes context features - this is chiefly what papers
mean when they say that the model “learns to comprehend” the
context. We will show in our experimental results how the model
learns different code features relevant to different questions.
context = concatenate(

[ques_context, code_context, aout])
out = TimeDistributed(Dense(self.rnndims,
activation="relu")) (context)

The next step is to create a context matrix by combining the
attended question and context matrices with the answer context
from the decoder. After this step, the models uses the combined
context matrix to predict the next word in the answer.

4.4 Training Procedures

Our training procedure is based on the “teacher forcing” tech-
nique [16, 27, 35] in which the model receives only correct ex-
amples from the training set and is not exposed to its own errors
(the technique helps keep the model reinforcing mistakes). To un-
derstand how the procedure works for our approach, recall that an
encoder-decoder architecture typically (as in our approach and oth-
ers related to a seq2seq model) predicts output sequences one item
at a time. For example, given a question “what is the return type of
function X?”, the model would generate an answer by predicting
the first word of the answer:

[ question ] + [ code ]

= [ "the" ]

Then it would use the first word prediction as a new input to
the decoder, to predict the second word:
[ question ] + [ code ] + [ "the" ]

=> [ "method" ]

And the process would continue to predict the entire response:
[ question ] + [ code 1 + [ "the method" ]

=> [ "returns" ]
[ question ] + [ code ] + [ "the method returns" ]
= [ "a" ]
[ question ] + [ code ] + [ "the method returns an" ]
=> [ "unsigned" ]
[ question 1 + [ code ] + [ "the method returns an unsigned" ]
=> [ "long" ]

Yet this is how the model behaves during inference. To train the
model, following the teacher forcing procedure, we provide the
model each example one word at a time. So, in the above example,
we would provide the model with “the” followed by the reference
output “method”, then “the method” with the reference output
“returns”, and so on. If the model makes an incorrect prediction,
we use back propagation to correct the model, and then substitute
the correct reference output for the next step — the model is not
permitted to use its own erroneous prediction as the next input.
However, a caveat is that the procedure slows training because each
example must pass through the model for every word in the output.

Anonymous, et al.

5 EVALUATION

We conduct an experiment with human users to evaluate our QA
system. Note that our ultimate intent for this QA system is to serve
as a component of a much larger conversational Al (see Sections 2
and 3.1). Therefore, our experimental setup is a controlled environ-
ment in which we test specific inputs and outputs generated by
human users. We are not attempting to evaluate the system “in the
wild” because the system is not intended to be used standalone, and
because the larger conversational Al system does not yet exist.

5.1 Research Questions

Our research objective is to determine the degree to which our QA
system is able to answer the eight questions about subroutines we
determined in Section 4.1. We ask the following Research Questions
(RQs) towards this objective:

RQ; What is the performance of our QA system in terms of
relevance, accuracy, completeness, and conciseness?

RQ, How does the performance vary across the six question
types for which we designed the system?

RQ3 What features in the context are the most important for
the model to use when answering a question?

The rationale behind RQ; is that good responses by any QA
system should score well across at least three degrees: relevance,
accuracy, completeness, and conciseness. Accuracy, because inde-
pendent of any other factors the response should not contain false
information. Completeness, because responses should contain all
information needed to answer the question. Conciseness, because
responses should contain only the information necessary to answer
a question. We derived these four degrees of text generation quality
from related SE literature on code description generation [39, 52].
The rationale behind RQj is that the system may perform well for
some questions but not others. In particular, it may perform well
at extracting information such as the return type of a subroutine,
but struggle for other questions such as returning a description of
a subroutine. RQs relates to the explainability of the neural model.
Neural models tend to be highly effective for text comprehension
and generation tasks, but are notorious for producing black box
responses that are difficult to understand. We ask RQ3 to provide a
few insights into the model’s behavior, within the constraints of a
single conference paper.

5.2 Methodology

Our methodology for answering RQ; and RQ3 is to conduct a user
study in which human programmers evaluate the output of the QA
system for questions that they generate. To limit the scope of the
experiment, we control the study conditions so that the program-
mers only ask questions related to information needs we highlight
in the six questions in Section 4.1. We recruited professional pro-
grammers from around the United States via an online job platform
(demographics of study population are in the next section). We
also created a web interface with which the programmers could
communicate with the QA system. A screenshot of this interface is
in Figure 2. The interface also provided a space for the program-
mers to rate the responses on a 1-4 scale ranging from Strongly
Agree, Agree, Neutral, Disagree, or Strongly Disagree for the quality
prompts shown in Table 1.
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Figure 2: The interface that programmers used to communi-
cate with the QA system during our experiment.

Rationale Our study design is similar to previous experiments
by Sridhara et al. [52] and McBurney et al. [39]. We used similar
wording of our prompts to study participants and the same four
options. The only difference we made was to add another option for
Neutral in case the model returns a nonsensical reply (which can
happen for our neural model but was very unlikely in the templated
systems of code comment generation in those previous studies).
We added the Neutral option as a middle ground between the four
main choices, to avoid forcing participants to make decisions on
possible nonsensical responses.

Another similarity is that we find ourselves in the same situation
as Sridhara et al. [51] in their ASE paper: no baseline exists for
comparison. To our knowledge, no QA system has been designed
to answer these specific questions in a natural language format.
Different tools do exist for some questions. For example, question
(5) could be thought of as a code summarization question, while
questions (1-4) could be answered by just reading the subroutine
itself. Yet recall that we are not seeking an “in the wild” evaluation
- we need to evaluate the input and output of the model in situ with
the natural language understanding and generation components
of the approach. Therefore, we follow the example of these earlier
papers and focus on a deeper analysis of the responses across multi-
ple quality criteria, instead of comparing metrics across competing
approaches (since they do not yet exist).

Table 1: Quality prompts (P1-5) in the user study. These cor-

respond to the quality criteria (relevance, accuracy, com-

pleteness, and conciseness) discussed in Section 5.2. The first
»

four prompts are answerable as “Strongly Agree”, “Agree”,
“Neutral”, “Disagree”, or “Strongly Disagree.”

Independent of other factors, the response is relevant
P; | to my question, even if the information it contains is
inaccurate.

The response is accurate, even if it is not relevant to my

P question.

The response is missing important information, and

P3| that can hinder my understanding.

P4 | The response contains a lot of unnecessary information.

P5 | Do you have any general comments about the response?

ICPC’20, May 23-24, 2020, Seoul, South Korea

Note also that we do not use BLEU scores or other automated
metrics. A human study is vital for two reasons. First, we need to
evaluate specific subjective qualities rather than an overall simi-
larity metric to a ground truth (like BLEU would do). Second, the
ground truth in our dataset (i.e. the answer component of the ques-
tion, context, answer tuples, see Section 4.1) is generated by us. We
use it as training data, but it would not be appropriate to use as
testing data since it would include our own biases.

Experiment Procedure In the experiment, we gave each pro-
grammer a “quiz” to fill out with the assistance of the QA system
(see Figure 2). Each page of the quiz gave the name of a particular
Java method. Only the method name was shown, not the method
body. For each method, three Type K questions (see Section 4.1)
were chosen randomly. Below the method name, there were three
prompts, derived from the chosen Type K questions. We phrased
the prompts as imperative statements (e.g. “Provide the return type
of this function”) to avoid priming the programmers with a par-
ticular question format. We instructed programmers to use their
own words to ask for information from the QA system. We asked
programmers not to copy questions, but we allowed them to copy
answers from the QA system for the quiz. A programmer could ask
the QA system as many queries as he or she wanted.

After answering the question prompts for a particular method,
programmers were brought to a new page that asked them to rate
each of their interactions with the QA system for that method. For
each interaction (consisting of a user query and the QA system’s
response), we asked the programmers to answer the five quality
prompts listed in Table 1. When they were done, they could press a
button to bring up the next method, and a new set of prompts.

In short, we used a quiz format to encourage programmers to
ask the QA system certain types of questions, but in their own
words. Then they rated the responses using the quality prompts.
They also completed the quiz, so we could determine whether they
obtained the correct information in the end, independent of how
what ratings they chose for the quality prompts. Space constraints
prevent us from including the quiz and other materials, but we
provide these via our online appendix (Section 7).

For clarity in the experimental results section, we use the fol-
lowing vocabulary to refer to the various parts of our study: 1) a
“question”, Q1-6, is one of the six Type K question types we use
in our experiment and described in Section 4.1, 2) a “query” is
text typed by the user into the experiment interface separated by
striking the return key, since hitting the return key triggers the
interface to send the text to the prediction model and receive an
answer back, and 3) a “quality prompt”, P1-5, is one of the requests
we make of users to rate the model’s answer. The users see three
questions per function. They may write as many queries as they
wish to help them answer each question. Then they respond to five
quality prompts for each answer they see to a query.

5.3 Participants

We recruited 30 participants for our experiment. These participants
had professional experience ranging from three to 15 years. We
compensated programmers at a flat rate of US$60/hr, market rate
in our region, regardless of performance speed. Each programmer
worked for a total of 40 minutes to answer as many quiz pages as
possible in that time.
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5.4 Subject Java Methods

We used a total of 100 Java methods in our experiment. We sourced
these methods from the test set of the dataset split — the model had
not seen them during training. We rotated these at random so that
no programmer saw the same method more than once, but that
each method was shown to at least three programmers. But given
the vicissitudes of any study with humans (fatigue, differing speeds,
skipped pages), not all methods ended with three ratings.

5.5 Threats to Validity

Like any paper, this experiment carries threats to the validity of
its conclusions. One threat is the dataset we use. One of the disad-
vantages of human studies is that the number of functions that we
could ask any one person to evaluate is quite limited — we cannot
merely calculate a metric over thousands of examples. We chose
a random selection from a large, curated dataset, and we ensured
that each function was seen by more than one person, but it is
still possible that a different selection would result in a different re-
sult. Likewise, another threat is that a different set of programmers
might give different answers. We attempted to mitigate this risk
by asking over 20 participants. Also, we attempted to mitigate a
risk of varying results from the model itself by ensuring consistent
random seeds and experimental conditions (all available via our
online appendix), though it is always a risk that random factors in
GPU hardware or software could lead to slightly different results.

6 EXPERIMENTAL RESULTS

This section describes the results of the experiment: our answers
to our RQs and supporting evidence.

6.1 RQ;: Overall Performance

In general, we found the model’s overall performance to be good.
Figure 3 gives an overview. The figure is a histogram of all user an-
swers to the quality prompts from Table 1. Recall that 1="Strongly

mP1 Relevant @mP2 Accurate
BmP3 Complete mP4 Concise

1000 -

800 -

600 -
400 -

200 ~

1 2 3 4 5

Figure 3: Histograms of the user responses to the quality
prompts in Table 1. Recall that P1 and P2 are asked in a pos-
itive tone (so 1-2 scores are better) while P3 and P4 are in a
negative tone (so 4-5 are better). Participants tended to find
the model’s responses to be of good quality.

Anonymous, et al.

Table 2: Performance statistics of participants in the exper-
iment. Each participant worked for 40 minutes. We asked
three questions for each method. However, participants
worked at their own speeds and were allowed to ask any

ber of ies th ted.
number of queries they wante Mean Min Max

Methods Evaluated per Participant 19 7 38
Queries per Participant 70 37 117
Queries per Method 3.8 2 10
Queries until “Correct” Response 1.2 1 8

Agree”, 2="Agree”, 3="Neutral”, 4="Disagree”, and 5="Strongly Dis-
agree” to the prompt text. Prompts 1 and 2 are worded positively
(so agreement is better) while prompts 3 and 4 are worded nega-
tively (so disagreement is better). For example, for P; about how
relevant the response is, a vast majority of responses received a
score of Strongly Agree or Agree. Likewise, for P3, a vast majority
of responses received a score indicated disagreement to a prompt
about missing important information. Also note that only a small
percent of responses were rated as neutral, meaning that, in general,
responses were clear enough for participants to form an opinion -
upon inspection a vast majority of responses rated as neutral were
gibberish output from the neural model. Still, in terms of overall
performance, the model does tend to generate reasonable responses.

Two caveats should be understood. First, different participants
worked at different rates, so some participants are represented more
in the data than others. Table 2 quantifies these differences. Almost
all participants evaluated between 15 and 20 methods, but there
were a few outliers as is natural in samples of human populations
(mean speed of 19 methods per 40 minute study is about 2 min-
utes per method, while 38 is a rate of about 1 minute/method).
Nonetheless we found the number of queries required to answer
each question to be quite stable, with one query usually sufficing
and two or more queries being quite rare. In other words, the time
required by each participant seemed to have more to do with time
required by the participant to read and understand the questions,
than with the number of queries required per participant.

Second, the responses to each quality prompt are independent
of other prompts. So it is possible that a response receives a good
score for P2 and a poor score for Py, i.e. the response is accurate
but not relevant. To study this caveat, we derived a metric we call
“correctness” by combining P; and Py scores. The metric is binary.
A response receives a 1 if and only if both P1 and P; scores are
one or two — that is, a response is only “correct” if the participant
strongly agrees or agrees that it is both relevant and accurate. We
found that 79% of responses were “correct” and that it usually took
only one query to receive a correct response.

We found that a key factor in the 21% of incorrect responses to
be the vocabulary size. As mentioned in Section 4.3, GPU memory
limitations restrict both the input and output vocab size, despite our
attempts to extend these by using GPUs with 16gb VRAM and low
training batch sizes. This limit affected our results. A vast majority
of the responses that were relevant but not accurate were ones with
UNK tokens in the answer. Likewise, responses that were accurate
byt not relevant almost always had UNK tokens in the question (i.e.
the participant wrote a query with out-of-vocab words in it) - these
UNK tokens likely caused the model to misunderstand the question
and give an accurate response that was nonetheless irrelevant.
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Figure 4: Boxplots of answers to quality prompts (relevance, accuracy, completeness, and concision) for each of the question
types from Section 4.1. The model performs differently for different question types. Performance is highest for Q1 and Q4 and
worst for Q5: ratings of relevance and completeness tend to be worse for Q5 than for other question types.

6.2 RQ;: Variation among Question Types

We observe a small degree of variation among the question types
in our experiment. Recall from Section 4.1 that we have a variety of
question templates that we derived from six different question types
corresponding to six key information needs programmers have.
(In the experiment, we confined participants to these information
needs, but we had no restriction on the language that they could
use to render a question.) Recall that the rationale of this RQ is that
the model may be better at understanding some information needs
than others. For the convenience of understanding the results in
this section and Figure 4, we reprint the question types below:

Q1 What is the return type of method?
Q2 What are the parameters of method?
Q3 Give me the definition of method.
Q4 What is the signature of method.

Q5 What does method do?

Q6 Can method, short task description?

Figure 4 contains boxplots of the answers for each quality prompt,
divided across each question type. For example, column Q2 of Fig-
ure 4(a) shows that for Question 2, the mean of all responses to
queries is about 2 (the red line), the interquartile range is 1 to 2.
The way to interpret this is that, among all queries written for Q2,
participants either Strongly Agreed or Agreed that the query was
relevant about half of the time. Note that outliers are excluded for
readability, but we did have at least one instance of each score.

In general, the model performs very well for Q1 and Q4. For both
question types, the responses are dominated by optimal scores (1
for relevance and completeness, 5 for accuracy and concision). This
result implies that the model is successfully learning to recognize

when participants were asking for those information needs, and
also learns how to extract that information from the source code
and place it in a natural language response. Q1 and Q4 correspond
to the return type and signature of the source code. We will show
in the next section how the model learns to find this information
in source code quite reliably.

The model performed slightly less well for Q2 and Q3, for which
the model learns to find the method parameters and definition.
These information needs are slightly more difficult to learn because
they vary more in size and vocabulary. The return type (Q1) can al-
ways be found in the same place at the start of the method signature,
it is always exactly one word long, and the vocabulary is limited
to type names. The parameter list can also always be found in the
same place, but it varies in length and includes identifier names that
may be specific to that method. Thus the model struggles slightly
more to learn to find it.

The model performs the least well on Q5, especially in terms of
relevance and completeness. This result may be expected, however,
since the model is expected to provide a short description of the
method’s behavior. We do give the model a short description in
the context (see an example in the next section), and the model
does learn to use this description in its response. But the size and
vocabulary of the description vary considerably, and the model
is prone to use incorrect words not in the actual description. In
addition, the description we provide originates in the JavaDocs,
which could have varying quality.

The responses to Q6 are a bit of a special case since they are
always either “yes” or “no.” Therefore it is relatively easy for the
model to score well in terms of e.g. relevance. Still, the model is
sometimes wrong, which is reflected in column Q6 of Figure 4(b).
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6.3 RQs: Effects of Context Features

We provide evidence of the effects of the features in the context via
an example of the model’s behavior. “Explainable AI” is a highly
controversial topic, which much agreement that it is necessary but
practically no consensus on the best strategies — neural networks in
particular have a reputation for producing results that are difficult
to explain [44, 49]. However, one source of evidence is the atten-
tion network. The attention mechanisms in most encoder-decoder
models, include ours, are responsible for connecting pieces of the
decoder inputs to pieces of the encoder inputs. Frequently attention
provides clues on why the model makes a particular decision. For
example in NMT the word “hund” in a German sentence will receive
high attention to the English word “dog”, while in computer vision
the word “dog” may receive high attention to the area in an image
where a dog appears.

In our approach, the attention mechanism connects output words
to words in the input context sequence. Consider Example 1 below.
The user study participant writes a query requesting the return type.
The heatmap shows the state of the attention network just prior
to predicting the word “vertex” (layer code_attn from Section 4.3,
recall from Section 4.4 that the model predicts output one word at a

user query
model output

Give me the return type

the return type for this method is vertex

<st> returns the next vertex of a polygon nl
public vertex nextvertex ( vertex v ) {
int ind = vertices . indexof (v ) ;

context return ( vertex ) ( ind == -1 ?
null : vertices . get ( ( ind + 1)
% vertices . size () ) ) ; } <et>
<st> 1
the 2
return 3
type 4
for 5
this 6
method 7
is 8
9
10
jpredicting 1
next word
12
13
14

I e e T
S © ® 9 »

123 45 6 7 89

10 11 12 13 14 15 16

Example 1: User study participant asking for the return type
of the method. The model creates a response based on the
query and the source code sequence (including summary).
A heatmap of the attention network shows how the model
attends heavily to the word “vertex” in the context (position
11) just prior to predicting the last word in the output.
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time). This example is typical of almost all queries about the return
type: the model has learned where to find the return type in code.
Of course, it is not always in position 11, but the model “knows” to
look for the signature, and where to look in the signature for the
return type. Note that the model is not attending to earlier uses of
the word vertex in the method description, since that wording may
change. Likewise, it is not attending to the word vertex in after the
actual return in the code, since that is a variable name which may
not be the actual return type. The model has learned these patterns
from the training set.

While space restrictions prevent us from printing numerous ex-
amples, we include several more in our online appendix cited below.
The behavior is quite consistent: for queries about e.g. parameters,
the model attends to the parameters area of the signature, and
outputs the relevant information.

7 CONCLUSION

We have presented a QA system for programmer questions about
subroutines. We design a neural model based on the encoder-decoder
structure that can extract information about Java methods directly
from the source code of those methods. We designed our system to
distinguish between and answer questions for six different informa-
tion needs, which we derived from recent related work on dialogue
systems for programmers. In an experiment with 20 professional
programmers, we show that our approach is able to reliably answer
these six questions.

Throughout our paper, we note that this QA system is not in-
tended for use on its own. Instead, it would serve as a component
of a hypothetical much larger interactive dialogue system. Virtual
agents are anticipated for many tasks including as assistants for
software engineering. However, it is unreasonable to expect to
create such a system in one step — research into subsystems and
supporting components is required first. This paper fills that role
towards virtual agents for SE tasks. Important next steps include
both designing other subsystems and expanding the number of
question types that this QA system is able to handle.

To promote continued research, we release all our data, approach
source code, and a working interactive demonstration via our online
appendix:

https://github.com/paqs2020/paqs2020
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