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ABSTRACT

A question answering (QA) system if a type of conversational AI

that generates natural language answers to questions posed by

human users. QA systems often form the backbone of interactive

dialogue systems, and have been studied extensively for a wide va-

riety of tasks ranging from restaurant recommendations to medical

diagnostics. Dramatic progress has been made in recent years, espe-

cially from the use of encoder-decoder neural architectures trained

with big data input. In this paper, we take initial steps to bringing

state-of-the-art neural QA technologies to Software Engineering

applications. We target the problem of QA about subroutines in

source code, a common information need for SE tasks such as API

learning and program comprehension. We curate a training dataset

of 10.9 million question/context/answer tuples based on rules we

extract from recent empirical studies. Then, we train a custom neu-

ral QA model with this dataset and evaluate the model in a study

with professional programmers. We demonstrate the strengths and

weaknesses of the system, and lay the groundwork for its use in

eventual dialogue systems for software engineering.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools;
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1 INTRODUCTION

A question answering (QA) system is a type of conversational AI

that focuses on generating natural language answers to questions

posed by human users. QA is defined as single-turn dialogue, in

that there are only two participants in the conversation (the human

and the machine) and each participant speaks for only one turn (the

human asks a question which the machine answers). In practice,

a complete conversational machine agent would discuss several
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topics over an arbitrary number of turns, detect when a question

has been asked, and the use a QA system to generate an answer to

the question. Thus, QA systems are key components necessary for

building usable conversational agents.

In general, QA systems generate an answer given a context

about which the question is being asked. For example, a Yin et
al. [60] describe an approach that parses a knowledge base of facts

about famous people to generate English answers about birthdates,

political offices held, awards received, etc. Malinowski et al. [38]
present a system that answers questions about images, such as

which objects are red or green in the image. Weston et al. [56]
provide a dataset of twenty tasks for training QA systems (the so-

called bAbI tasks) ranging from positional reasoning to path finding,

for which the context is a knowledge base of facts about objects

and how they relate to each other (e.g. Context: 1. Lily handed the

baby to Philip. 2. Philip walked outside. Question: Where is the

baby? Answer: Outside with Philip.).

As the above examples show and as chronicled in several survey

papers [11, 18, 34], scientific literature from the areas of Natural

Language Processing (NLP) and AI is replete with QA systems de-

signed to answer questions about a context. The overall structure

of these approaches is fairly consistent: A large dataset is collected

including question, answers, and related contexts. Then a model

is trained and tested using the dataset. Typically, a neural model

of the encoder-decoder design is employed, in which the model

learns to connect features in the questions to features in the context

via an attention mechanism. However, there are always numerous

domain-specific customizations required to model the context (as a

general rule, the question and answer can be modeled using lan-

guage features such as from a recurrent neural net). For example,

Malinowski’s work connecting words in questions to features in

images uses a typical RNN-based model of questions and answers,

but depends on a custom model for extracting those features from

the images [38]. In short, the key difficulty in implementing QA sys-

tems boils down to: 1) obtaining a proper dataset, and 2) designing

a suitable domain-specific model of the context.

In this paper, we present a QA system for answering programmer

questions about subroutines in programs (the subroutines are the

context about which questions are asked). We construct a dataset

of programmer questions based on recent experimental results re-

leased by Eberhart et al. [17] – that paper isolated five types of

questions that programmers asked about Java methods during ac-

tual programming tasks. For example, “what are the parameters

to the method convertWavToMp3?” We built question and answer

templates and paraphrases based on these question types, to con-

struct a dataset of questions and answers for 1.56m Java methods.

We then designed a custom QA system based on a neural encoder-

decoder model. We model the subroutine context as an Abstract
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subsystem from time to time. Second, a QA system itself generally

follows the same design. The strategy component tends to be sim-

pler than most systems because of the assumption that a single

question from a user will be provided a single answer. However, a

QA system may need to cope with different types of questions and

extract information from different types of artifacts – both deci-

sions that fall into the category of strategy. In practice, the strategy

tends to be encoded into the model based on dataset design, rather

than manual modification of the model.

Research into dialogue systems for software engineering is gen-

erally either foundational / dataset generation and analysis, or im-

plementations of experimental dialogue systems. Key foundational

and dataset analysis work includes Maalej et. al [36], Eberhart et
al. [17], and several others [1, 22, 37, 40, 41, 47, 58]. A recent sur-

vey discusses dialogue systems in SE [4], which includes several

experimental systems [8, 25, 43, 53]. These systems are related to

this paper in the sense that they are prototypes of dialogue sys-

tems for SE problems, but are not directly comparable because they

solve very specific problems and are based on scrutiny of highly-

specialized domain knowledge. While one may perform quite well

in one situation, it is almost guaranteed to fail for other situations.

This specialization is typical of dialogue systems in all domains [46],

so the way to evaluate an approach is to compare implementation

alternatives rather than different dialogue systems [6, 54].

3.2 Neural Encoder-Decoder

Our approach is based on the neural encoder-decoder model. This

model is the current standard for QA systems, as described in several

surveys [11, 15, 18]. To pick one very recent and related paper that

exemplifies how dialogue systems based on the encoder-decoder

model work, consider Lin et al. [32]. The paper presents a new

memorymodel to augment the encoder of a typical encoder-decoder

design, then compares it to alternative encoder-decoder models

over publicly-available datasets. This paper is similar, except that

rather than a model tuned for general conversations, we propose an

encoder model specific to this SE problem, and focus on SE domain

knowledge gained via our evaluation.

The encoder-decoder design itself has been clearly described

in many papers, and we discuss details in our approach section.

In general, the design includes an encoder, which receives as in-

put the natural language from the user plus the knowledge base.

The encoder outputs a vector representation of the input natural

language, usually via a recurrent net (RNN). The decoder receives

the example desired output during training. It generates a vector

representation of this desired output. During inference, the model

outputs one word at a time of the language to be sent to the user.

The decoder receives the output predicted “so far” and uses it to

help the model predict the next word.

The encoder-decoder design ballooned in popularity after Bah-

danau et al. [5] introduced an “attentional” variant that allows

the decoder’s vector representation to focus on sections of the en-

coder’s representation during training, i.e. to create a dictionary of

words in one language in the decoder to another language in the

encoder. Specific designs such as the famed seq2seq model have

motivated thousands of papers, well beyond what we can describe

in this section. Thus we direct readers to several surveys [42, 50, 61].

Within software engineering literature, the encoder-decoder design

is seeing increased use for tasks such as code completion [20], code

summarization [28], and automated repair [12].

4 APPROACH

Our approach aligns with the related work described in the previous

section: the overall architecture is based on the dialogue system

design in Figure 1, and the implementation is based on a neural

encoder-decoder model. The key novelty in the model is the rep-

resentation of the knowledge base. The key novelty in the overall

architecture is the crafting of our dataset to train the neural model.

These set up the novelty of the evaluation, which is showing how

these models work in a QA system for program comprehension

of functions. In the long run, we plan for this QA system to be

a component of a much larger dialogue agent, but that agent is

beyond the scope of this paper. An overview of the components of

our dialogue system follows:

Dialogue Strategy Management Recall that dialogue strategy

management involves decisions both on 1) how to respond, and

2) how to extract the information necessary to make a response.

For (1), we craft a dataset that includes either types of questions

that we found in recently-released simulation experiments with

programmers. While those experiments were performed by others,

we completed the analysis of the eight questions for this paper.

The dataset design represents our manual effort in designing the

strategy the system should follow, but the strategy itself will be

learned during training and encoded in a neural model. For (2), we

use an attention mechanism in our neural model between the input

question and the knowledge base, to learn during training which

components of the knowledge base pertain to which questions. De-

tails of our dataset design are in Section 4.1. Details of the attention

mechanism are intertwined with the neural model in Section 4.3.

Knowledge Base The knowledge base consists of the source

code of the subroutines. We use a collection of Java methods pro-

vided by Linstead et al. [33] and further processed by LeClair et
al. [29]. In total, the knowledge base includes 2.1m Java methods

from over 10k projects. We represent each subroutine as an abstract

syntax tree (AST). Then, we use a graph neural network to model

each subroutine’s AST and provide a vectorized representation of

the subroutine. We train this GNN while we train the other com-

ponents of the neural model (i.e. it is supervised by the dataset we

create, we do not pretrain it using an unsupervised procedure). We

were inspired to use an AST representation by recent work in code

summarization [3, 23] and we use a flattened tree approach inspired

by LeClair et al. [28], though our application in this paper is novel.

Details of the model of the knowledge base are in Section 4.3.

Natural Language Understanding / Generation We use re-

current neural networks with word embedding vector spaces to

implement the encoder and decoder. The encoder is essentially the

component that implements the natural language understanding,

and the decoder implements the language generation. This struc-

ture is closely in line with a vast majority of recent data-driven QA

systems (see Section 3.2). We describe details of these components

as part of the code implementation in Section 4.3.

4.1 Dataset Preparation
We prepare a dataset that we use to train the neural model described

in the next section. This section describes how we structure our
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dataset so that it represents knowledge about how programmers

ask questions and how to respond. Note that while we do not

explicitly write rules into our dialogue strategy management, this

dataset contains those rules implicitly from which the neural model

learns later. We mention this in order to be clear that we do not

merely feed the network all data collected during empirical studies

and expect the model to learn proper behavior, and to justify our

overall posture towards dataset design: the decisions we make

in creating the dataset are the decisions that will be encoded as

dialogue strategy management.

We build the rules for generating our dataset based on empir-

ical data made available to us on pre-release. Eberhart et al. [17]
conducted an experiment in which 30 programmers solved program-

ming challenges with the help of a simulated interactive dialogue

agent (a so-called “Wizard of Oz” study design). The authors of

that paper then annotated each question asked by programmers

with one of twelve types of API information needs (these twelve

types of API info needs were determined in an earlier TSE paper by

Maalej and Robillard [36]). Eberhart et al. found that over 90% of

questions fell into one of three information needs: functionality,

patterns, or basic. In the long run, a dialogue agent will need to

handle all three types of question. But the scope of that challenge

is far too much for one paper. Since this is an early attempt at the

problem, we focus on basic questions which tend to be more self-

contained, have concrete single-turn answers, and overall likelier

to be answerable with current technology than other categories.

A basic question is one in which a programmer asks for key

information about the components of code. The “components” were

almost always subroutines rather than classes etc. The “key informa-

tion” included things like the return type, the function parameters,

or a high level description (such as a summary comment from

JavaDocs). Approximately 20% of the questions asked by program-

mers in the study by Eberhart et al. [17] were basic questions.

We (independent of the analysis by Eberhart et al.) examined all

questions that were labeled basic. The first and second authors of

this paper created eight categories of basic question. The proce-

dure was an open coding process in which the authors labeled each

question with a specific information need from a subroutine (since

practically all questions were related to subroutines). The authors

worked together to resolve disagreements, rather than work inde-

pendently and compute an agreement metric, in order to ensure

maximum reliability of the data2.

In the end we had eight types of basic question. An important

distinction is that six of the questions involved known subroutines

i.e. the programmer already knew he had the correct method for

his task. For example, asking what the return type of method X is.

Three of the questions involved unknown subroutines i.e. the pro-

grammer did not know if she had the correct method. For example,

asking which method takes an int as a parameter and returns a

string. We call questions with a known subroutine “type K” and

questions with an unknown subroutine “type U.”

Type K questions (subroutine known):

(1) What is the return type of method?

2Agreement metrics quantify reliability, but do not resolve disagreements. Because we
ultimately had to make decisions to create a dataset, we elected to resolve disagree-
ments at the cost of a reliability metric, as suggested by Craggs and McGee [14].

(2) What are the parameters of method?
(3) Give me the definition of method.
(4) What is the signature of method.
(5) What does method do?

(6) Can method, short task description?

Type U questions (subroutine unknown):

(7) How do I short task description?
(8) What method takes parameter type P and returns type R?

The scope of our QA system only includes type K ques-

tions. Type K questions involve a question, answer, and known

context, which is in line with what QA models in NLP are equipped

to solve (though, those models have not been adapted to source

code). Type U questions involve a search process for the correct

subroutine, which would include code search and even dialogue

between machine and programmer to decide on the correct subrou-

tine. These search tasks are research problems of their own and are

too much to include in one paper. Therefore, we confine ourselves

to the problem of answering basic questions about known subrou-

tines. Integrating code search, grounding dialogue, etc., is an area

of our future work to build on this paper.

4.2 Dataset Generation

The next step is to generate a dataset, now knowing the question

types. At a high level, what we do is obtain a large repository of Java

methods, then generate example questions and answers for each

question type using heuristics to automatically extract information

from the methods. The repository of Java methods is a set of 2.1m

methods already filtered for duplicates and other errors, and paired

with summary descriptions, provided at NAACL’19 [29]. We further

filtered this dataset for methods with duplicate and non descriptive

comments to 1563197 methods.

Generating text for questions (1-4) is straightforward: just extract

information from each method e.g. the return type. For question

(5), we used the summary description as the answer.

We used the summary description and method name in the

question for question type (6), and the answer was simply “yes”

or “no.” However, for every positive example for each method, we

added a negative example to maintain a balanced dataset. This

negative example consisted of a random summary description from

another method (of a different name, to avoid picking an overloaded

method name) in the same project paired with the method. So for

each of the 1.56m methods, we had one positive example and one

negative example for question type (6).

To limit the vocabulary size, we replaced some information with

tokens that direct the output interface to copy the information from

the context directly, rather than learn to predict the information as

part of the model. We have a token for < f uncode> for the answer

of question type (3) that is essentially the whole context and is

unnecessary for the model to learn to retrieve. So when the model

predicts this token, it can simply copy this from the interface. This

allows the user to have the same experience while reducing the

vocabulary that the model has to learn.

The last step in our dataset generation was to paraphrase each

question and answer. The example questions above are the primary

form we used based on the underlying empirical data. However,

4
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there is no guarantee that a programmer will use exactly that lan-

guage when asking a question, otherwise we could just use a tem-

plated QA system and avoid the complexity of a neural model. So

we wrote 15-25 paraphrases of each question, and randomly chose

one of them when generating questions and answer for each ques-

tion. The number of details behind the vocabulary replacements

and paraphrases would exceed space limitations to print in this

paper, but all are available via our online appendix (see Section 7).

To summarize, our procedure is:

for each of the 1.56m methods M do

for each question type T do
1. randomly select paraphrase template for T

2. generate question and answer using template

3. preprocess code of M to serve as context

4. create 3-tuple: (question, answer, context)

if T == 6 then
5. randomly select summary of different method

6. create 3-tuple: (question, “no”, context)

The result of our dataset generation is a set of 10.88 million 3-

tuples. Each 3-tuple contains a question, an answer, and a context

Java method. For each of the 1.56m Java methods, we generated 7

type K questions and answers (one for question types 1-5, two for

question 6). To ensure maximum reproducibility, we maintained

the training/validation/test splits provided by LeClair et al. [29].

4.3 Neural Model

Rationale The rationale for using a neural model is, essentially,

that neural models enable more flexible natural language under-

standing and generation in fewer steps, without the need formanually-

written rule to extract information from context. A traditional alter-

native to a neural model is a simple approach based on classification

of incoming questions and rules to extract information. However,

it is important to realize that this seemingly-obvious alternative

is not in line with recent work from the NLP research area for

context-based Q/A systems. As Wiese et al. [57] point out, recent
advances in neural models have led to “impressive performance

gains over more traditional systems.”

In contrast, our model falls clearly in line with related work

from the NLP research area on context-based Q/A systems (see

Section 3.2): there is an encoder with question and context inputs,

and a decoder with the answer input. From an ML perspective, one

novel aspect to this paper is that we show how the neural model

can learn features in the source code when given only that code as a

context, and questions/answers about the context. This is important

novelty, along the lines of Wiese et al. [57] when they showed how

neural Q/A models can learn from biomedical text data versus other

highly specific areas e.g. technical support conversations [10] or

even religious texts [62]. The point is that domain adaptions are

considered important contributions and are not merely applying

technology X to data Y.

OverviewOur neural model is, at a high level, similar to context-

based Q/A systems described in related work and summarized in

Section 3.2. The structure of these systems is basically a question

and context as “encoder” input and an answer as “decoder” input

(during training). The model is trained so that during inference, the

model will output one word of the predicted answer at a time. Our

model follows this same basic structure. The question and answer

are generated for each function as described in the previous section.

The context is the source code of the function.

At a technical level, our approach is based on the encoder-

decoder model released by LeClair et al. [28] at ICSE 2019. We chose

that model because: 1) it was designed to accommodate source code

as input instead of only text, and 2) a thorough reproducibility

package is available. That model was designed to generate natural

language descriptions of source code (so-called “source code sum-

marization”). The inputs to the model’s encoder were preprocessed

source code, a flattened abstract syntax tree. The input for training

for the decoder was the example summary.

Our modifications, in a nutshell, are to make the model’s encoder

inputs the raw source code (not preprocessed), to add an input for

the user query/question to the encoder, and to change the decoder’s

training input to example answers to the questions. We used raw

source code instead of preprocessed source code because we are

interested in the model’s ability to learn where code features are

such as the return type, parameters, etc., unlike LeClair et al. who
were more interested in extracting text features such as identifier

names. Their preprocessing steps removed information that we

found to be critical in helping the model learn features about code.

Details We explain our model as a walkthrough of our actual

Keras implementation to maximize clarity and reproducibility, fol-

lowing the successful example of LeClair et al. [28]. The code in
this section is in file qamodel.py in our online appendix (Section 7.

qe = Embedding(output_dim=self.embdims,

input_dim=self.quesvocabsize)(ques_input)

ce = Embedding(output_dim=self.embdims,

input_dim=self.codevocabsize)(code_input)

The first step is to create aword embedding space for the question

and code encoder inputs. The question vocabulary size we used

was 20K, which is typical for text inputs, but we used a much larger

vocab size of 100K for the source code context. Programmers tend

to use domain specific words that expand the vocabulary.

ques_enc = CuDNNGRU(self.rnndims,

return_state=True, return_sequences=False)

quesout, qs = ques_enc(qe)

code_enc = CuDNNGRU(self.rnndims,

return_state=True, return_sequences=True)

codeout, cs = enc(ce, initial_state=qs)

We use a GRU to encode the question and source code, with

the question and source code embedding spaces serving as input.

We set the initial state of the code encoder to the end state of the

question encoder, in line with other neural QA model designs in

which the question state is used to start the state of the context

encoding.

ae = Embedding(output_dim=self.embdims,

input_dim=self.ansvocabsize)(ans_input)

aec = CuDNNGRU(self.rnndims,

return_sequences=True)

aout = aec(ae, initial_state=cs)

The decoder follows the same basic structure: an embedding

space as input to a GRU. The decoder input is the answer. The

answer vocab size is 20K.

ques_attn = dot([aout, quesout], axes=[2, 2])

ques_attn = Activation('softmax')(ques_attn)
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ques_context=dot([ques_attn, quesout],axes=[2, 1])

code_attn = dot([aout, codeout], axes=[2, 2])

code_attn = Activation('softmax')(code_attn)

code_context=dot([code_attn, codeout], axes=[2, 1])

Our attention mechanism consists of attention applied from the

decoder (aout) to both the question and source code context. The

attention to code context is especially important because this is how

the model emphasizes context features – this is chiefly what papers

mean when they say that the model “learns to comprehend” the

context. We will show in our experimental results how the model

learns different code features relevant to different questions.

context = concatenate(

[ques_context, code_context, aout])

out = TimeDistributed(Dense(self.rnndims,

activation="relu"))(context)

The next step is to create a context matrix by combining the

attended question and context matrices with the answer context

from the decoder. After this step, the models uses the combined

context matrix to predict the next word in the answer.

4.4 Training Procedures

Our training procedure is based on the “teacher forcing” tech-

nique [16, 27, 35] in which the model receives only correct ex-

amples from the training set and is not exposed to its own errors

(the technique helps keep the model reinforcing mistakes). To un-

derstand how the procedure works for our approach, recall that an

encoder-decoder architecture typically (as in our approach and oth-

ers related to a seq2seq model) predicts output sequences one item

at a time. For example, given a question “what is the return type of

function X?”, the model would generate an answer by predicting

the first word of the answer:
[ question ] + [ code ]

=> [ "the" ]

Then it would use the first word prediction as a new input to

the decoder, to predict the second word:

[ question ] + [ code ] + [ "the" ]

=> [ "method" ]

And the process would continue to predict the entire response:

[ question ] + [ code ] + [ "the method" ]

=> [ "returns" ]

[ question ] + [ code ] + [ "the method returns" ]

=> [ "a" ]

[ question ] + [ code ] + [ "the method returns an" ]

=> [ "unsigned" ]

[ question ] + [ code ] + [ "the method returns an unsigned" ]

=> [ "long" ]

Yet this is how the model behaves during inference. To train the

model, following the teacher forcing procedure, we provide the

model each example one word at a time. So, in the above example,

we would provide the model with “the” followed by the reference

output “method”, then “the method” with the reference output

“returns”, and so on. If the model makes an incorrect prediction,

we use back propagation to correct the model, and then substitute

the correct reference output for the next step – the model is not

permitted to use its own erroneous prediction as the next input.

However, a caveat is that the procedure slows training because each

example must pass through the model for every word in the output.

5 EVALUATION

We conduct an experiment with human users to evaluate our QA

system. Note that our ultimate intent for this QA system is to serve

as a component of a much larger conversational AI (see Sections 2

and 3.1). Therefore, our experimental setup is a controlled environ-

ment in which we test specific inputs and outputs generated by

human users. We are not attempting to evaluate the system “in the

wild” because the system is not intended to be used standalone, and

because the larger conversational AI system does not yet exist.

5.1 Research Questions

Our research objective is to determine the degree to which our QA

system is able to answer the eight questions about subroutines we

determined in Section 4.1. We ask the following Research Questions

(RQs) towards this objective:

RQ1 What is the performance of our QA system in terms of

relevance, accuracy, completeness, and conciseness?

RQ2 How does the performance vary across the six question

types for which we designed the system?

RQ3 What features in the context are the most important for

the model to use when answering a question?

The rationale behind RQ1 is that good responses by any QA

system should score well across at least three degrees: relevance,

accuracy, completeness, and conciseness. Accuracy, because inde-

pendent of any other factors the response should not contain false

information. Completeness, because responses should contain all
information needed to answer the question. Conciseness, because

responses should contain only the information necessary to answer

a question. We derived these four degrees of text generation quality

from related SE literature on code description generation [39, 52].

The rationale behind RQ2 is that the system may perform well for

some questions but not others. In particular, it may perform well

at extracting information such as the return type of a subroutine,

but struggle for other questions such as returning a description of

a subroutine. RQ3 relates to the explainability of the neural model.

Neural models tend to be highly effective for text comprehension

and generation tasks, but are notorious for producing black box

responses that are difficult to understand. We ask RQ3 to provide a

few insights into the model’s behavior, within the constraints of a

single conference paper.

5.2 Methodology

Our methodology for answering RQ1 and RQ2 is to conduct a user

study in which human programmers evaluate the output of the QA

system for questions that they generate. To limit the scope of the

experiment, we control the study conditions so that the program-

mers only ask questions related to information needs we highlight

in the six questions in Section 4.1. We recruited professional pro-

grammers from around the United States via an online job platform

(demographics of study population are in the next section). We

also created a web interface with which the programmers could

communicate with the QA system. A screenshot of this interface is

in Figure 2. The interface also provided a space for the program-

mers to rate the responses on a 1-4 scale ranging from Strongly

Agree, Agree, Neutral, Disagree, or Strongly Disagree for the quality

prompts shown in Table 1.
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Figure 2: The interface that programmers used to communi-

cate with the QA system during our experiment.

Rationale Our study design is similar to previous experiments

by Sridhara et al. [52] and McBurney et al. [39]. We used similar

wording of our prompts to study participants and the same four

options. The only difference we made was to add another option for

Neutral in case the model returns a nonsensical reply (which can

happen for our neural model but was very unlikely in the templated

systems of code comment generation in those previous studies).

We added the Neutral option as a middle ground between the four

main choices, to avoid forcing participants to make decisions on

possible nonsensical responses.

Another similarity is that we find ourselves in the same situation

as Sridhara et al. [51] in their ASE paper: no baseline exists for

comparison. To our knowledge, no QA system has been designed

to answer these specific questions in a natural language format.

Different tools do exist for some questions. For example, question

(5) could be thought of as a code summarization question, while

questions (1-4) could be answered by just reading the subroutine

itself. Yet recall that we are not seeking an “in the wild” evaluation

– we need to evaluate the input and output of the model in situ with

the natural language understanding and generation components

of the approach. Therefore, we follow the example of these earlier

papers and focus on a deeper analysis of the responses across multi-

ple quality criteria, instead of comparing metrics across competing

approaches (since they do not yet exist).

Table 1: Quality prompts (P1-5) in the user study. These cor-

respond to the quality criteria (relevance, accuracy, com-

pleteness, and conciseness) discussed in Section 5.2. The first

four prompts are answerable as “Strongly Agree”, “Agree”,

“Neutral”, “Disagree”, or “Strongly Disagree.”

P1

Independent of other factors, the response is relevant

to my question, even if the information it contains is

inaccurate.

P2
The response is accurate, even if it is not relevant to my

question.

P3
The response is missing important information, and

that can hinder my understanding.

P4 The response contains a lot of unnecessary information.

P5 Do you have any general comments about the response?

Note also that we do not use BLEU scores or other automated

metrics. A human study is vital for two reasons. First, we need to

evaluate specific subjective qualities rather than an overall simi-

larity metric to a ground truth (like BLEU would do). Second, the

ground truth in our dataset (i.e. the answer component of the ques-

tion, context, answer tuples, see Section 4.1) is generated by us. We

use it as training data, but it would not be appropriate to use as

testing data since it would include our own biases.

Experiment Procedure In the experiment, we gave each pro-

grammer a “quiz” to fill out with the assistance of the QA system

(see Figure 2). Each page of the quiz gave the name of a particular

Java method. Only the method name was shown, not the method

body. For each method, three Type K questions (see Section 4.1)

were chosen randomly. Below the method name, there were three

prompts, derived from the chosen Type K questions. We phrased

the prompts as imperative statements (e.g. “Provide the return type

of this function”) to avoid priming the programmers with a par-

ticular question format. We instructed programmers to use their

own words to ask for information from the QA system. We asked

programmers not to copy questions, but we allowed them to copy

answers from the QA system for the quiz. A programmer could ask

the QA system as many queries as he or she wanted.

After answering the question prompts for a particular method,

programmers were brought to a new page that asked them to rate

each of their interactions with the QA system for that method. For

each interaction (consisting of a user query and the QA system’s

response), we asked the programmers to answer the five quality

prompts listed in Table 1. When they were done, they could press a

button to bring up the next method, and a new set of prompts.

In short, we used a quiz format to encourage programmers to

ask the QA system certain types of questions, but in their own

words. Then they rated the responses using the quality prompts.

They also completed the quiz, so we could determine whether they

obtained the correct information in the end, independent of how

what ratings they chose for the quality prompts. Space constraints

prevent us from including the quiz and other materials, but we

provide these via our online appendix (Section 7).

For clarity in the experimental results section, we use the fol-

lowing vocabulary to refer to the various parts of our study: 1) a

“question”, Q1-6, is one of the six Type K question types we use

in our experiment and described in Section 4.1, 2) a “query” is

text typed by the user into the experiment interface separated by

striking the return key, since hitting the return key triggers the

interface to send the text to the prediction model and receive an

answer back, and 3) a “quality prompt”, P1-5, is one of the requests

we make of users to rate the model’s answer. The users see three

questions per function. They may write as many queries as they

wish to help them answer each question. Then they respond to five

quality prompts for each answer they see to a query.

5.3 Participants

We recruited 30 participants for our experiment. These participants

had professional experience ranging from three to 15 years. We

compensated programmers at a flat rate of US$60/hr, market rate

in our region, regardless of performance speed. Each programmer

worked for a total of 40 minutes to answer as many quiz pages as

possible in that time.
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6.3 RQ3: Effects of Context Features

We provide evidence of the effects of the features in the context via

an example of the model’s behavior. “Explainable AI” is a highly

controversial topic, which much agreement that it is necessary but

practically no consensus on the best strategies – neural networks in

particular have a reputation for producing results that are difficult

to explain [44, 49]. However, one source of evidence is the atten-

tion network. The attention mechanisms in most encoder-decoder

models, include ours, are responsible for connecting pieces of the

decoder inputs to pieces of the encoder inputs. Frequently attention

provides clues on why the model makes a particular decision. For

example in NMT the word “hund” in a German sentence will receive

high attention to the English word “dog”, while in computer vision

the word “dog” may receive high attention to the area in an image

where a dog appears.

In our approach, the attentionmechanism connects output words

to words in the input context sequence. Consider Example 1 below.

The user study participant writes a query requesting the return type.

The heatmap shows the state of the attention network just prior

to predicting the word “vertex” (layer code_attn from Section 4.3,

recall from Section 4.4 that the model predicts output one word at a

user query Give me the return type

model output the return type for this method is vertex

context

<st> returns the next vertex of a polygon nl

public vertex nextvertex ( vertex v ) {

int ind = vertices . indexof ( v ) ;

return ( vertex ) ( ind == -1 ?

null : vertices . get ( ( ind + 1 )

% vertices . size () ) ) ; } <et>

<st> 1

the 2

return 3

type 4

for 5

this 6

method 7

is 8

y
predicting
next word

9

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Example 1: User study participant asking for the return type

of the method. The model creates a response based on the

query and the source code sequence (including summary).

A heatmap of the attention network shows how the model

attends heavily to the word “vertex” in the context (position

11) just prior to predicting the last word in the output.

time). This example is typical of almost all queries about the return

type: the model has learned where to find the return type in code.

Of course, it is not always in position 11, but the model “knows” to

look for the signature, and where to look in the signature for the

return type. Note that the model is not attending to earlier uses of

the word vertex in the method description, since that wording may

change. Likewise, it is not attending to the word vertex in after the

actual return in the code, since that is a variable name which may

not be the actual return type. The model has learned these patterns

from the training set.

While space restrictions prevent us from printing numerous ex-

amples, we include several more in our online appendix cited below.

The behavior is quite consistent: for queries about e.g. parameters,

the model attends to the parameters area of the signature, and

outputs the relevant information.

7 CONCLUSION

We have presented a QA system for programmer questions about

subroutines.We design a neuralmodel based on the encoder-decoder

structure that can extract information about Java methods directly

from the source code of those methods. We designed our system to

distinguish between and answer questions for six different informa-

tion needs, which we derived from recent related work on dialogue

systems for programmers. In an experiment with 20 professional

programmers, we show that our approach is able to reliably answer

these six questions.

Throughout our paper, we note that this QA system is not in-

tended for use on its own. Instead, it would serve as a component

of a hypothetical much larger interactive dialogue system. Virtual

agents are anticipated for many tasks including as assistants for

software engineering. However, it is unreasonable to expect to

create such a system in one step – research into subsystems and

supporting components is required first. This paper fills that role

towards virtual agents for SE tasks. Important next steps include

both designing other subsystems and expanding the number of

question types that this QA system is able to handle.

To promote continued research, we release all our data, approach

source code, and a working interactive demonstration via our online

appendix:

https://github.com/paqs2020/paqs2020
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