
Dialogue Management for Interactive API Search

Zachary Eberhart and Collin McMillan

Department of Computer Science and Engineering

University of Notre Dame

Notre Dame, USA

{zeberhar, cmc}@nd.edu

Abstract—API search involves finding components in an API
that are relevant to a programming task. For example, a
programmer may need a function in a C library that opens a
new network connection, then another function that sends data
across that connection. Unfortunately, programmers often have
trouble finding the API components that they need. A strong
scientific consensus is emerging towards developing interactive
tool support that responds to conversational feedback, emulating
the experience of asking a fellow human programmer for help. A
major barrier to creating these interactive tools is implementing
dialogue management for API search. Dialogue management
involves determining how a system should respond to user input,
such as whether to ask a clarification question or to display
potential results. In this paper, we present a dialogue manager
for interactive API search that considers search results and
dialogue history to select efficient actions. We implement two
dialogue policies: a hand-crafted policy and a policy optimized
via reinforcement learning. We perform a synthetics evaluation
and a human evaluation comparing the policies to a generic
single-turn, top-N policy used by source code search engines.

Index Terms—API search, dialogue policy, interactive dialogue
systems, on-demand documentation, reinforcement learning

I. INTRODUCTION

Application Programming Interface (API) search involves

finding components of an API that are relevant to a program-

ming task. Programmers often find themselves in a situation

in which they know that an API implements a particular

functionality, but they do not know exactly which functions of

the API to use to accomplish that functionality. For example,

a programmer may know that libssh [1] creates and controls

SSH network connections, but he or she may not know exactly

which functions to use to actually open a new connection and

send data to the remote host. This problem is the motivation

behind several rich veins of research including API search [2],

API usage pattern mining [3], API example synthesis [4], and

API documentation generation [5]. The problem has long been

a focus of empirical studies, which conclude that programmers

often struggle to find the components they need when using

APIs, and use a variety of techniques and tool support to find

relevant API functions [6], [7], [8], [9], [10].

A scientific consensus is now emerging around interactive

API search. The idea is that tool support should mimic the

experience of asking for help from a fellow human pro-

grammer – tool support should ask clarification questions,

provide feedback, and engage in other follow-up conversation

to help resolve the programmer’s search task. This consensus is

evident in recent NSF and industry-sponsored workshops [11]

and is articulated by fourteen leading researchers who “ad-

vocate for a new vision for satisfying the information needs

of developers” [12], which they call “on-demand developer

documentation.” The idea is that we as a research field

should move towards enabling intelligent machine responses

to programmer information needs.

One major barrier to interactive API search is dialogue

management. A dialogue manager is the component of an

interactive dialogue system that determines what the system

should say. At a very high level, any dialogue system will

have three parts: natural language understanding (NLU), nat-

ural language generation (NLG), and a dialogue manager

(DM) [13]. The NLU component is responsible for interpreting

the programmer’s information need. The NLG component is

responsible for creating a natural-language reply to that need.

The DM component is responsible for telling the NLG unit

what kind of reply it should generate based on the input

from the NLU component, previous dialogue history, and

other factors. In short, the dialogue manager is what makes

interactive search possible. Significant research in software

engineering has focused on the NLU and NLG components.

At present, dialogue management has tended to be overlooked.

In this paper, we present a dialogue manager for interactive

API search. Our approach is built around a typical API search

engine, which takes in a user query and returns a ranked

list of relevant components. Whereas a basic search engine

invariably presents these results to the user, our dialogue

manager considers its confidence in the search results and

the conversation history to select actions from a set of API

search activities, including API recommendation and query

refinement. The DM’s goal is to respond to user input with

an action that will most efficiently guide the user to an API

function that will satisfy their functionality requirements.

We created two versions of our dialogue manager; one

version follows a dialogue policy we crafted by hand for inter-

active API search, and the other follows a policy we optimized

via reinforcement learning through interactions with a user

simulator. We evaluated both versions in a synthetic evaluation

with the user simulator and found that both outperformed a

baseline designed to mimic a typical code search engine. We

also performed a human evaluation with real programmers and

found that there were advantages and disadvantages to the

learned and baseline policies.

To promote reproducibility, we release our code, dataset,

and other details via an online appendix (see Section VII).

a
rX

iv
:2

1
0
7
.1

2
3
1
7
v
1

[c

s.
S

E
]

 2
6
 J

u
l

2
0
2
1

D. API Search

This paper focuses on dialogue management in the con-

text of API search. API search is the task of finding API

components that fulfill a user’s information need (typically

by implementing some particular functionality). API search

is closely related to the fields of API discovery and recom-

mendation, code search, and software component retrieval,

though we draw several distinctions. Unlike code search [29],

systems for API search do not necessarily have access to

source code repositories, and may rely solely upon API docu-

mentation or specifications. API search also targets resources

and operations with specific properties within APIs, unlike API

discovery/recommendation and software component retrieval,

which may target other software units [30], [31] or base

results on code context rather than queries [32]. Still, there is

significant overlap between the research fields, and concepts

and techniques from one can often be applied in the others.

API search is a well-studied field in SE research. Examples

include concept-based approaches that rely on text or other

code artifacts to locate relevant API components [33], [2],

specification-based techniques that match user-defined con-

straints to clearly-defined properties of API components [34],

[35], and structure-based approaches that rely on relationships

among API components such as function calls [36], [5], [37].

E. Interactive Dialogue in SE

Interactive dialogue is a growing area within SE research.

Implementations of dialogue systems for SE tasks include

WhyLine [38], TiQi [39], Devy [17], and a system for gen-

erating GUIs from natural language requirements [40]. Two

recent conversational tools that are relevant to the problem

of API search are OpenAPI bot and Chatbot4QR. OpenAPI

bot [41] provides a natural language interface for users to

query OpenAPI specifications [42]. It enables users to make

requests like “show me the list of paths in the API.” It relies

on a hand-crafted dialogue policy, though it does not allow

users to search for relevant API components by describing

their desired functionality. In contrast, Chatbot4QR [43] is

a search tool for StackOverflow posts that uses heuristics to

generate clarification questions.

III. APPROACH

Our approach consists of a dialogue manager for conversa-

tional API search. Recall from Section II-C that the dialogue

manager’s job is to help the system navigate through the action

space of dialogue acts, by selecting which dialogue act the

system will use, and extracting information relevant to that

dialogue act. In this section, we 1) define the action space

of dialogue acts, and 2) describe how we extract the relevant

information. Note that we describe how we create different

dialogue policies as a separate section (Section IV). The reason

is that we have two versions of our dialogue manager, and they

are identical except for the dialogue policy. One version uses

a hand-crafted policy and another uses a learned policy. Note

we also use a third, single-turn policy, but only as a baseline

in our evaluation in later sections.

A. Action Space

We created an action space for both system and user dia-

logue acts. This is the action space within which our dialogue

manager can operate. We started with the dataset provided by

Eberhart et al. [44] of API help dialogues, then refined the set

of possible dialogue acts based on other related literature. We

show the action space in Table I. We separate the actions into

six categories describing different search behaviors:

1. Semantic search. These actions enable users to search

for API components by providing unstructured natural lan-

guage queries, as well as specific keywords. Duala-Ekoko and

Robillard [45], Sadowski et al. [46], and Eberhart et al. [15]

have demonstrated that natural language queries play a more

significant role in the API information-seeking process than

e.g., signature-matching and faceted search. Furthermore, a

broad range of techniques have been investigated supporting

semantic search for APIs and source code [47], [48].

2. User critique. These actions enable users to reject sug-

gestions provided by the system, or indicate that they are

unsure of a suggestion’s relevance. The ability for users to

“critique” system suggestions is a pillar of the conversational

search framework outlined by Radlinski and Craswell [49].

3. Query refinement. These actions enable the system to

help users improve their queries by suggesting keywords that

may be relevant or prompting users to reword their queries.

Programmers are not always able to sufficiently articulate their

information needs [45], [50], [43], [51]. Robillard et al. [12]

explain that a system for on-demand developer documentation

should help programmers improve their queries.

4. API Recommendation. These actions enable the system

to recommend individual API components and present cor-

responding documentation. API documentation structured as

fragmented lists without a “coherent, linear” presentation can

be overwhelming [6], and the ability to present a single item

at a time can enable more targeted responses [49], [19].

TABLE I
SYSTEM AND USER ACTION SPACES.

Speaker Search Function Dialogue Act

User

Semantic Search
provideQuery

provideKeyword

User Critique

rejectKeywords

rejectComponents

unsure

Standard Navigation

elicitInfoAPI

elicitInfoAllAPI

elicitSuggAPI

elicitListResults

changePage

General END

System

Query Refinement
requestQuery

suggKeywords

API Recommendation
suggAPI

suggInfoAPI

Standard Navigation

infoAPI

infoAllAPI

listResults

changePage

General START

5. Standard navigation. These actions serve as basic tools

for navigating results and documentation; e.g., the users should

be able to explicitly request that the system present a list of

results, show the next page of a list of results, or present

documentation for particular components, and the system

should be able to perform each of the corresponding actions.

6. General. Finally, the system and the users have actions

to start and end the dialogue, respectively.

We limit the number of components or keywords that the

system can present in a given turn, and we only permit the

user to present one query or keyword or request information

about one function at a time. Furthermore, we identify specific

properties of API components that can be requested or shared;

we discuss these in the following section.

B. Knowledge Management

Knowledge management is the part of the dialogue manager

that extracts information relevant to different dialogue acts,

so that the NLG component can render a text response. We

implement it as a dataset that provides operations for the

system to query and retrieve different types of information.

1) API Dataset: The API dataset consists of reference

documentation for components in an API, indexed by compo-

nents’ fully-qualified names. We narrow our API search task

and increase the generalizibility of our approach by target-

ing only API components and including only documentation

resources that are available for the vast majority of APIs,

regardless of domain, library language, popularity, or other

factors (in other words, the information that would be available

in a typical API definition). To that end, we associate each API

component with 1) its signature, 2) its summary description,

and 3) other documented properties.

A component’s signature comprises its name, return type,

parameter names, and parameter types. Its summary descrip-

tion is the human-written (or in some cases, automatically-

generated) text explanation of the component’s primary pur-

pose/functionality. At minimum, most common documentation

formats call for developers to include a summary description.

Finally, functions can be associated with any number of other

documented properties, including longer descriptions, details

about their parameters and return values, usage examples,

related components, categories, class hierarchies, and more.

These properties are stored as text strings in the dataset. During

dialogues, users can request any or all information associated

with a component, and the dialogue system can retrieve them.

In order to enable simple semantic search, we associate

each API component with a TF-IDF-derived search vector.’

TF-IDF (term frequency-inverse document frequency) vectors

represent how relevant individual terms are to a text document

by considering word frequency within a document and the

number of documents in the dataset that contain each word.

In information retrieval, documents are represented by TF-IDF

vectors to enable a simple form of semantic search. In the API

dataset, each component’s search vector is generated by calcu-

lating TF-IDF vectors for each of its associated properties, and

then averaging the signature vector, the summary description

vector, and a third vector that is itself an average of the TF-

IDF vectors of that component’s other properties. This repre-

sentation is inspired by Yu et al. [52], who similarly weighted

TF-IDF vectors of component properties in order to enhance

the contributions of keywords in the components’ names and

descriptions over those keywords in other properties.

2) Component Search: When users modify their search by

providing a query, providing keywords, or rejecting compo-

nents, a similarity score s between 0 and 1 is calculated

for each component in the dataset. The similarity score is

calculated in two steps: first, if the user has provided a query, it

is transformed into a TF-IDF vector, and each API component

in the dataset is scored by calculating the cosine similarity

between it’s search vector and the query vector. Second,

any provided keywords and rejected components are applied

as binary filters. The components are then ranked by their

similarity scores (with ties decided randomly).

When the system selects the listResults action, it simply

retrieves the first N results from the ranked list (where N is

a predefined parameter of the search environment). When the

system selects the changePage action, it increments a result

index r by N and retrieves the next N results. When it selects

the suggAPI or suggInfoAPI action, it retrieves the result

at index r and then increments r by 1. The dialogue manager

resets r to 0 whenever the system selects the listResults

action or the user’s search is modified.

3) Keyword recommendation: When the system selects the

suggKeywords action, it uses a naive keyword recommenda-

tion approach to retrieve the top K keywords that are poten-

tially relevant to the user’s search (where K is a predefined

parameter of the search environment). First, it averages the

TF-IDF search vectors of the 20 components with the highest

similarity rankings. Then, it sets the indices of all terms that

appear in the provided or rejected keyword lists or the user’s

query to 0. Finally, it returns the keywords corresponding to

the indices of the K largest values in the vector.

C. Dialogue State Tracking

The dialogue manager also keeps track of the dialogue

state, which is just a record of the conversation so far. In

line with Aggarwal et al.[20] and Rieser and Lemon [19], we

define the state to consist of the following information: the

most recent system dialogue act type, the most recent user

dialogue act type, the dialogue length (measured in turns),

and the similarity scores of the API components. The dialogue

manager updates these state values whenever the DM receives

a new user dialogue act or produces a dialogue act response.

IV. DIALOGUE POLICIES

Recall from Section II-C that there are three types of

dialogue policy: 1) single-turn, 2) hand-crafted, and 3) learned.

We explore all three in this paper. We consider the hand-

crafted and learned policies to be novel contributions of this

paper. However, the single-turn policy is a baseline from

source code search and Q/A dialogue, which we use only for

comparison in our evaluations.

The key element to our hand-crafted and learned policies is

the reward function. This function defines how well the system

performed in the conversation. For the hand-crafted policy, we

optimized for this function by manually writing rules to define

how the system behaves in different situations. For the learned

policy, we trained a reinforcement learning model to optimize

for this reward function.

A. Reward Function

We implement a reward function that prioritizes dialogue

length and concise system dialogue acts, in line with reward

functions for conversational search used by Aggarwal et

al. [20] and Rieser and Lemon [19]. Specifically, the system

incurs a penalty of −1 each turn, incentivizing it to help the

user complete his or her search task, and to do so as quickly as

possible. There are also penalties for system acts that present

users with lists of search results or entire pages of documenta-

tion: a −.3 penalty for listResults and changePage acts,

and a −.5 penalty for infoAllAPI and suggInfoAllAPI.

These penalties are not applied when the system is respond-

ing to a corresponding user “’standard navigation” act (e.g.,

listResults in response to elicitListResults). We

refer to these penalties as the “core” reward function, which

we use to evaluate the different dialogue policies:

RCore(turn) = −1− rDialogueActPenalty(turn) (1)

We use a modified version of the reward function to train

the learned policy. The modified reward function is designed

to speed up the training process by rewarding progress toward

the search goal and penalizing certain incorrect behaviors.

Specifically, we define an extrinsic reward that the system

earns when the ranking of the user’s target function improves

in the search results (the reward is proportional to the rank

improvement, with a maximum value of +5). When the system

successfully completes the search task, it earns a reward of

+10. We also harshly penalize the system (−10) when it

does not respond to users’ “standard navigation” acts with the

corresponding system act. Finally, the system incurs a small

penalty (−1) when the user selects the unsure act.

RTraining(turn) = RCore(turn)

+ rTrainingPenalties(turn) + rTrainingRewards(turn) (2)

B. Hand-crafted Policy

Our hand-crafted policy includes several rules and param-

eterized thresholds. First, the hand-crafted policy responds to

all “standard navigation” user actions with the corresponding

system actions, and it responds to the unsure dialogue act by

simply listing the current search results. For all other user

action types, it considers the the similarity score s of the

top-ranked component in the API dataset. If the user has

not recently selected the unsure act, the policy first checks

whether s is below either of two thresholds indicating that

it should attempt to refine the user’s query by requesting

that the user elaborate, or by suggesting potential keywords.

Otherwise, the policy checks if s is above either of two

thresholds indicating that it has confidence to recommend the

function and it’s corresponding documentation, or the function

alone. If the similarity score is lower than these thresholds,

the policy will list the top-N search results. The exact values

for the hard-coded thresholds are chosen by performing a

grid search, evaluating the policies against the reward function

using a user simulator (described in the following section).

The advantage of this policy is that it encodes a domain

expert’s intuition about how the system should behave, so is

likely to be effective in the situations for which it is designed.

The disadvantage is that a hand-crafted policy is expensive to

create, and is limited by the designer’s understanding of the

search task. The policy is also inflexible; if a change to the

action space is desired, new rules must be added.

C. Learned Policy

We use Deep Q-learning to train a dialogue policy. Deep

Q-learning is a reinforcement learning algorithm that is rec-

ommended by Cuayáhuitl [53] for creating dialogue policies.

The algorithm trains a neural network to estimate how effective

different dialogue acts are in different dialogue states by

repeatedly experimenting with policies in a simulated envi-

ronment. Mnih et al. [54], [55] provide further background.

We formulate the learning problem as a partially observable

Markov decision process (POMDP), defining four compo-

nents: an action space, a state space, a reward function, and

an environment. The action space is the space we defined in

Section III-A. The reward function is the function we defined

in Section IV-A. The state space is the state information we

maintain in Section III-C. The environment is provided by

a User Simulator of our own design, which we describe in

the next paragraphs. Note that there are many implementation

details which far exceed the amount of space available in this

paper, so we make our complete implementation and other

data available via our online repository (see Section VII).

1) User Simulation: We created a user simulator to serve as

the environment in which our dialogue manager is trained. The

user simulator is itself a simple dialogue manager, accepting

a dialogue act from the API search dialogue manager and

returning an appropriate dialogue act in response. Note that,

while the API search dialogue policy is optimized for a

particular reward function, the user simulator is not intended to

behave “optimally” – on the contrary, it is intended to simulate

a range of behaviors which may or may not actually comprise

efficient information-seeking strategies. The idea is to simulate

“real” user behavior, rather than “ideal” user behavior.

We adapt an agenda-based approach to user simulation.

Agenda-based user simulation [56] involves modeling a user’s

goals and an “agenda” – the actions the user intends to

take. The goals are subdivided into constraints (i.e., what

information the user can and cannot provide) and requests

(the user’s information need); over the course of a dialogue,

the constraints and requests are updated as the user collects

new information. The agenda is typically structured as a stack;

however, we make modifications for our particular search task

in order to better capture the API browsing process described

by Kelleher and Inchinco [57] and Eberhart et al. [15].

At the start of each dialogue, the user simulator randomly

selects a function from the dataset to serve as the information

target, but the identify of the function itself is hidden. Instead,

the simulator generates a query for the function by extracting

terms from the function’s dataset entry. It uses the function’s

TF-IDF search vector to set the likelihood of selecting different

terms, and it incorporates a query-error parameter (randomly

set at the start of the dialogue) that increases the likelihood of

all terms (allowing for incorrect terms to appear in the query).

The resultant query is the user’s initial “constraint.”

The simulator’s “requests” comprise a list of candidate

functions that the user would like to learn about. Whenever the

search system lists API functions or recommends a function,

each function has a random chance to be added to the candi-

dates list. Candidates are associated with an “evidence” value;

when the system informs the user about any property of a

candidate function, the evidence increases. When a candidate’s

evidence reaches a threshold value, it is removed from the

candidate list; if it was the target function, the user is prompted

to end the conversation. Otherwise, the simulator removes the

function from the pool of potential candidates and decreases

its query-error parameter by a small amount to model the

“learning” process users undergo during search tasks [57].

The simulator also maintains a variable indicating the user’s

ability provide a new query or keywords. Whenever the user

provides this information, the variable decreases; as the user

is exposed to more API functions and documentation, the

variable increases. If the variable is below a corresponding

threshold when the user attempts to provide a query or

keyword, the user instead selects the unsure act.

The user simulator processes incoming system dialogue

acts by first processing new candidates or evidence, and then

identifying the list of available actions by considering whether

the task has been completed and whether there are candidate

functions to inquire about. Finally, the simulator selects an

action from the list using a bigram probability model (i.e.,

one that returns the probability of a user dialogue act type in

response to the most recent system dialogue act type) derived

from the Wizard of Oz data collected by Eberhart et al. [15].

D. Single-turn, top-N Policy

The top-N policy emulates behavior similar to that exhib-

ited by the simple search utilities that are integrated in some

HTML documentation formats, such as Doxygen [58]. Like

the other two policies, this policy responds to user’s standard

navigation requests with the corresponding system action. All

other user actions prompt this policy to list the top-N search

results (by way of the listResults dialogue act). Whereas

the other two are capable of mixed-initiative interaction, this

policy is purely reactive, unable to suggest query refinements

or proactively recommend API functions. This policy is the

most simple to implement, and it should align most closely

with users’ expectations for and past experience with search

utilities. However, the absence of features that are more

characteristic of interactive documentation may increase the

difficulty of the search task relative to the other policies.

V. SYNTHETIC EVALUATION

We perform a synthetic and a human evaluation in this

paper. This section describes the synthetic evaluation. The

purpose is to measure the performance of our dialogue man-

ager in terms of the reward function we defined. We compare

versions of the dialogue manager using the three policies from

the previous section: single-turn, hand-crafted, and learned. To

that end, we ask the following research question (RQ):

RQ1 How well does the dialogue manager perform in sim-

ulated dialogues using the hand-crafted policy, the

learned policy, and the baseline single-turn policy?

The purpose of RQ1 is to discover whether interactive

dialogue policies can improve API search by reducing the

number of turns and the amount of information required to

help users find useful API components. We optimize policies

for the reward function (either via a learned or hand-crafted

process), so we aim to measure how well the policies perform

in terms of this function. Likewise, because the user simulator

can create an arbitrary number of simulated conversations, it

can help provide a wide range of samples for comparison.

Also, because the conversations generated by the user simu-

lator are only dialogue acts and related data (instead of text),

RQ1 allows us to compare the policies without the potentially-

biasing effects of an NLU and NLG interface.

Note that this evaluation does not seek to compare indi-

vidual methods for API retrieval, recommendation, or query

refinement; e.g., a dialogue policy using a state-of-the-art

approach for API retrieval would presumably outperform one

that relies on simpler TFIDF vectors. Instead, the goal is to

quantify how efficiently different dialogue policies leveraging

the same functionality can guide users through their searches.

A. Methodology

Our methodology for answering RQ1 is to generate sample

conversations with the user simulator, and play out those

sample conversations with our dialogue manager using dif-

ferent dialogue policies. For each of the three policies, we

used the dialogue manager to play out 1000 conversations

with the user simulator. Then we calculated two metrics for

each conversation: 1) total reward, and 2) success rate. The

total reward is the sum of the output of the reward function

for each turn in the conversation. The success rate is the

percent of conversations for which the dialogue system was

“successful” within 25 turns. Recall that the user simulator

has a hidden variable representing the function for which

it is lookingl the dialogue system is “successful” if it finds

that function. We leave out metrics that are typically used

to evaluate API search methods (e.g., mean reciprocal rank

and discounted cumulative gain), which would measure the

efficacy of the underlying search functionality rather than the

dialogue policies themselves.

For each policy evaluation, we provided the user simulator

an identical sequence of 1000 random seeds that were used

generate identical conversation staring points (e.g., target func-

tions and queries) and user behavior. In other words, the ith

TABLE II
ACTIONS CHOSEN BY THE LEARNED POLICY (VERTICAL) AND ACTIONS THAT THE HAND-CRAFTED POLICY WOULD HAVE CHOSEN GIVEN THE SAME

DIALOGUE STATE AND SEARCH RESULTS (HORIZONTAL) IN THE LIBSSH EVALUATION.

Hand-Crafted Policy Action

elicit-

Query

sugg-

Keyword

info-

API

infoAll-

API

sugg-

API

suggInfo-

API

list-

Results

change-

Page
Total

Learned Policy

Action

(selected)

elicitQuery 163 0 0 0 0 0 0 0 163

suggKeyword 25 0 0 0 0 0 2 0 27

infoAPI 0 0 847 0 0 0 0 0 847

infoAllAPI 0 0 0 728 0 0 0 0 728

suggAPI 36 190 0 0 963 59 211 0 1459

suggInfoAPI 10 11 0 0 584 30 333 1 969

listResults 5 0 0 0 37 0 611 0 653

changePage 3 0 0 0 1 0 0 249 253

each conversation starting point from the user simulator. In

general, for each conversation starting point, the hand-crafted

and learned policies do markedly better than the single-turn

policy. The evidence for this finding is from a Friedman paired

test, also shown in Figure 3. The learned policy is slightly but

not significantly better than the hand-crafted policy.

This result is important for two reasons. First, it means that

a high-quality policy can be learned from data. The hand-

crafted policy is the result of many hours of manual effort. It

achieves very strong performance, but at very high cost. But

we are able to match, even slightly outperform, this policy

with a relatively inexpensive learning-based procedure. As

Figure 2 shows, slightly superior performance to the hand-

crafted policy is reached after a few million training steps,

which corresponds to around 48 hours of training time on our

hardware (Xeon E5-1650 CPU, 128GB ram). Another reason

this result is important is that both policies clearly outperform

the baseline single-turn policy, which corresponds to typical

search engine-like behavior. Note the narrower shape of the

scattergram in Figure 3 for the single-turn policy. A major

reason for this shape is the larger number of conversations at

the conversation cutoff point of 25 turns, which is visible as the

upside-down T shape. These are unsuccessful conversations.

For the single-turn policy, it indicates cases where the user

simulator kept refining the query over and over without finding

the answer, which is a common failure case for search engines.

The average rewards achieved by the best-performing ver-

sions of the learned policy were only slightly-higher than those

achieved by the hand-crafted policy; however, the two policies

frequently selected different actions; in fact, the learned policy

diverged from the hand-crafted policy in 80.1% of the libssh

dialogues and 92.3% of the Allegro dialogues. Table II

show all actions selected by learned policy (y-axis) in the

libssh evaluation and the actions that the hand-crafted policy

would have selected given the same dialogue states and search

results (x-axis). For example, the learned policy chose the

suggAPI dialogue act 1459 times in the evaluation. In 963

of those instances, the hand-crafted policy would have made

the same decision, but in 211, the hand-crafted policy would

have instead presented a list of results.

Generally speaking, the learned policy differed by choosing

actions that indicated greater confidence in the search result(s),

e.g., selecting the suggInfoAPI act (which presents a recom-

mended function with all corresponding documentation) rather

than the suggAPI act (which presents a function with only a

summary description), as in the following example:

USER: provideKeyword(“knownhost”)

[Turn: 9. Results: 5. Highest similarity score: .206]

LEARNED POLICY:

suggInfoAPI(“ssh write knownhost”)

HC POLICY: suggAPI(“ssh write knownhost”)

In this example, the results’ highest similarity score (.206)

was below the threshold value required by the hand-crafted

policy to select the suggInfoAPI act. And in this case the

learned policy’s decision paid off, as “sh write knownhost”

was the user simulator’s target function. Other times, the

learned policy did the opposite, and chose less-committed

actions despite high similarity scores in the results:

USER: provideKeyword(“knownhost”)

[Turn: 15. Results: 10. Highest similarity score: .597]

LEARNED POLICY: suggAPI(“ssh poll ctx add”)

HC POLICY: suggInfoAPI(“ssh poll ctx add”)

In this case, “ssh poll ctx add” was not the user simulator’s

desired function, and the learned policy may have been able

to avoid an additional penalty by forgoing the more costly

suggInfoAPI act. These examples demonstrate the learned

policy’s ability to learn to interpret potentially obscure dia-

logue/search features to select efficient actions.

C. Threats to Validity

As in any evaluation, ours carries a number of threats to

validity. First, a key threat to internal validity includes the as-

signment of user simulator behavior parameters. It is possible

that different behavior parameters could have led to dialogues

2) API Search Tasks: s We created six API search tasks

using the libssh API. These tasks asked the programmers

to find functions in the API that could be used to implement

some high-level functionality e.g., “Before connecting to an

SSH server, specify a host and port for the ssh session.”

The complete lists of search tasks are available in our online

appendix (see Section VII). We based these questions on

search tasks used in related literature [61], [62], [44]. Each

question targeted a particular function in the API.
3) Participants: We recruited four professional program-

mers as participants. All were native English speakers with

1-5 years relevant industry experience. Each programmer

completed all six search tasks using one of the two policies.

B. Results

We found that the results during our human study broadly

agree with the results from our experiment with synthetic

conversations in terms of reward, though provide a different

view of success rate. Consider the following results summary:

Policy learned single-turn
Reward Function -12.01 -16.69
Success Rate 0.58 0.75

Two observations stand out. First, the learned policy outper-

formed the single-turn strategy in terms of the reward function,

with the average reward in general agreement with the previous

study (-12.01 for learned in this study versus -13.32 in the

previous study, and -16.69 for the single-turn policy versus

-15.02). Second, the success rate for the learned policy is less

than single-turn, and is less for both approaches than it was

in the study with synthetic conversations.

We attribute these observations in part to the ability of the

learned policy to request clarification and recommend individ-

ual functions, indicating the system’s search confidence to the

users and resulting in more concise interactions. Consider the

following summary of the reward function results:

Task learned single-turn difference

1 -8.8 -25.7 16.9

2 -5.8 -20.0 14.2

3 -15.3 -9.3 6.0
4 -10.3 -20.2 9.9

5 -19.1 -13.7 5.4
6 -12.8 -11.4 1.4

avg. diff. 13.7 4.3

The cells in the top table show the average reward function

for each task for each policy e.g., -8.8 for the learned policy on

task one. Bold print in the difference column shows tasks for

which the learned policy outperformed the single-turn policy.

The average difference is much higher for the tasks when the

learned policy is better. What is happening is that the single-

turn policy is just showing a new top-N list each turn, leaving

the user to ask a new query each time. One result is that the

learned policy is usually able to find the correct function in

fewer turns, and with lower-cost dialogue actions. However, a

side-effect is that the single-turn policy tends to have a higher

success rate because it shows a large number of functions (25

turns x 6 functions per turn = 150 potential functions). This

behavior is akin to a brute force search and is likely to achieve

success, though at high time cost.

C. Threats to Validity

Key threats to validity include 1) participant selection,

2) task design and presentation, and 3) situational factors.

Individual differences among programmers and sampling bias

may have impacted the observed results. We recruited pro-

grammers with similar levels of experience, and had them fill

out background surveys to help characterize the participant

pool. The specific API search tasks given to programmers may

have also impacted the results; it is possible that differently-

worded questions or questions targeting different functions

could have been more or less difficult for each of the policies.

Situational factors, such as time of day, evaluation environ-

ment, and distractions may have also impacted individual

users’ performances. We included the survey and the search

tool in the same web interface to help minimize potential

distractions that could occur with multiple tabs or windows.

Key threats to external validity include 1) the size and

scope of the study, 2) the dialogue management parameters

(as discussed in Section V-C), and 3) the formulation of the

API search tasks. Ideally, future studies seeking to demonstrate

the effectiveness of different policies shoud seek to recruit a

larger number of participants and include a broader selection

of APIs and search tasks. Furthermore, users interacting with

interactive API search systems may not have clearly-defined

search tasks as given in this study, and the results here may

not generalize to a broader range of API learning tasks.

Key threats to construct validity include 1) the design

of the reward function and 2) the design of the dialogue

system interface. It is possible that a different reward function

would have better captured dialogue manager performance

for real users. The interface may have also impacted the

users’ perceptions of the dialogue manager. While we chose to

simplify the system’s NLU and NLG to reduce errors irrelevant

to the DM, it is possible that implementing the DM in a more-

conventional dialogue system would have more accurately

mirrored a real-world scenario.

VII. DISCUSSION/CONCLUSION

This paper makes three contributions to the field of software

engineering. First, we presented an architecture for dialogue

management for API search tasks. We demonstrated how

different API search activities can be represented in an action

space, as well as how dialogue features and API search results

can be represented in a dialogue state. Second, we contributed

two dialogue policies for API search that are optimized to

minimize the number of dialogue turns required to complete a

search task, as well as the amount of information contained in

individual messages. Both policies outperformed a baseline

policy emulating typical API search engine behavior (see

Section V), suggesting that our policies may provide benefits

over naive solutions. Finally, we performed a human study to

compare a baseline policy to a dialogue policy derived via

reinforcement learning.

For reproducability and future research, we make all source

code and experimental materials available online:

https://github.com/Zeberhart/dm4api

REFERENCES

[1] (2018) libssh 0.7.3 documentation. [Online]. Available: https://api.
libssh.org/stable/index.html

[2] J. Stylos and B. A. Myers, “Mica: A web-search tool for finding api
components and examples,” in Proceedings of the Visual Languages

and Human-Centric Computing, ser. VLHCC ’06. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 195–202. [Online]. Available:
http://dx.doi.org/10.1109/VLHCC.2006.32

[3] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “Mapo: Mining and
recommending api usage patterns,” in European Conference on Object-

Oriented Programming. Springer, 2009, pp. 318–343.

[4] R. P. Buse and W. Weimer, “Synthesizing api usage examples,” in 2012

34th International Conference on Software Engineering (ICSE). IEEE,
2012, pp. 782–792.

[5] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: finding relevant functions and their usage,” in Proceedings

of the 33rd International Conference on Software Engineering. ACM,
2011, pp. 111–120.

[6] M. P. Robillard and R. Deline, “A field study of api learning obstacles,”
Empirical Software Engineering, vol. 16, no. 6, pp. 703–732, 2011.

[7] G. Uddin and M. P. Robillard, “How api documentation fails,” IEEE

Software, vol. 32, no. 4, pp. 68–75, 2015.

[8] M. Meng, S. Steinhardt, and A. Schubert, “Application programming
interface documentation: what do software developers want?” Journal

of Technical Writing and Communication, vol. 48, no. 3, pp. 295–330,
2018.

[9] ——, “How developers use api documentation: an observation study,”
Communication Design Quarterly Review, vol. 7, no. 2, pp. 40–49, 2019.

[10] G. Gao, F. Voichick, M. Ichinco, and C. Kelleher, “Exploring pro-
grammers’ api learning processes: Collecting web resources as external
memory,” in 2020 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC). IEEE, 2020, pp. 1–10.

[11] https://2019.ase-conferences.org/home/nsf-dl-se-2019.

[12] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst,
M. A. Gerosa, M. Godfrey, M. Lanza, M. Linares-Vásquez et al.,
“On-demand developer documentation,” in 2017 IEEE International

conference on software maintenance and evolution (ICSME). IEEE,
2017, pp. 479–483.

[13] D. Burgan, “Dialogue systems and dialogue management,” DST Group
Edinburgh Edinburgh SA Australia, Tech. Rep., 2016.

[14] A. Wood, P. Rodeghero, A. Armaly, and C. McMillan, “Detecting speech
act types in developer question/answer conversations during bug repair,”
in Proceedings of the 2018 26th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations

of Software Engineering. ACM, 2018, pp. 491–502.

[15] Z. Eberhart, A. Bansal, and C. Mcmillan, “A wizard of oz study simu-
lating api usage dialogues with a virtual assistant,” IEEE Transactions

on Software Engineering, 2020.

[16] H.-Y. Chan and M.-H. Tsai, “Question-answering dialogue system for
emergency operations,” International Journal of Disaster Risk Reduc-

tion, vol. 41, p. 101313, 2019.

[17] N. C. Bradley, T. Fritz, and R. Holmes, “Context-aware conversational
developer assistants,” in Proceedings of the 40th International Confer-

ence on Software Engineering. ACM, 2018, pp. 993–1003.

[18] Y. Zhang, X. Chen, Q. Ai, L. Yang, and W. B. Croft, “Towards
conversational search and recommendation: System ask, user respond,”
in Proceedings of the 27th acm international conference on information

and knowledge management, 2018, pp. 177–186.

[19] V. Rieser and O. Lemon, Reinforcement learning for adaptive dialogue

systems: a data-driven methodology for dialogue management and

natural language generation. Springer Science & Business Media,
2011.

[20] M. Aggarwal, A. Arora, S. Sodhani, and B. Krishnamurthy, “Improving
search through a3c reinforcement learning based conversational agent,”
in International Conference on Computational Science. Springer, 2018,
pp. 273–286.

[21] T.-H. Wen, D. Vandyke, N. Mrksic, M. Gasic, L. M. Rojas-Barahona,
P.-H. Su, S. Ultes, and S. Young, “A network-based end-to-end trainable
task-oriented dialogue system,” arXiv preprint arXiv:1604.04562, 2016.

[22] B. Liu, G. Tur, D. Hakkani-Tur, P. Shah, and L. Heck, “Dialogue learning
with human teaching and feedback in end-to-end trainable task-oriented
dialogue systems,” arXiv preprint arXiv:1804.06512, 2018.

[23] H. Chen, X. Liu, D. Yin, and J. Tang, “A survey on dialogue systems:
Recent advances and new frontiers,” Acm Sigkdd Explorations Newslet-

ter, vol. 19, no. 2, pp. 25–35, 2017.

[24] A. Bansal, Z. Eberhart, L. Wu, and C. McMillan, “A neural question
answering system for basic questions about subroutines,” arXiv preprint

arXiv:2101.03999, 2021.

[25] H. He, D. Chen, A. Balakrishnan, and P. Liang, “Decoupling strategy
and generation in negotiation dialogues,” in Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing,
2018, pp. 2333–2343.

[26] M. Burtsev, A. Seliverstov, R. Airapetyan, M. Arkhipov, D. Baymurzina,
N. Bushkov, O. Gureenkova, T. Khakhulin, Y. Kuratov, D. Kuznetsov
et al., “Deeppavlov: Open-source library for dialogue systems,” in
Proceedings of ACL 2018, System Demonstrations, 2018, pp. 122–127.

[27] A. Papangelis, M. Namazifar, C. Khatri, Y.-C. Wang, P. Molino, and
G. Tur, “Plato dialogue system: A flexible conversational ai research
platform,” arXiv preprint arXiv:2001.06463, 2020.

[28] J. D. Finch and J. D. Choi, “Emora stdm: A versatile framework for inno-
vative dialogue system development,” arXiv preprint arXiv:2006.06143,
2020.

[29] S. P. Reiss, “Semantics-based code search,” in 2009 IEEE 31st Interna-

tional Conference on Software Engineering. IEEE, 2009, pp. 243–253.

[30] R. Bawa and I. Kaur, “Algorithmic approach for efficient retrieval
of component repositories in component based software engineering,”
Indian Journal of Science and Technology, vol. 9, pp. 27–70, 2016.

[31] C. Li, R. Zhang, J. Huai, and H. Sun, “A novel approach for api
recommendation in mashup development,” in 2014 IEEE International

Conference on Web Services. IEEE, 2014, pp. 289–296.

[32] X. Liu, L. Huang, and V. Ng, “Effective api recommendation without
historical software repositories,” in Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering, 2018, pp.
282–292.

[33] B. A. Campbell and C. Treude, “Nlp2code: Code snippet content assist
via natural language tasks,” in 2017 IEEE International Conference on

Software Maintenance and Evolution (ICSME). IEEE, 2017, pp. 628–
632.

[34] A. M. Zaremski and J. M. Wing, “Signature matching: a tool for using
software libraries,” ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 4, no. 2, pp. 146–170, 1995.

[35] C. Treude, M. Sicard, M. Klocke, and M. Robillard, “Tasknav: Task-
based navigation of software documentation,” in 2015 IEEE/ACM 37th

IEEE International Conference on Software Engineering, vol. 2. IEEE,
2015, pp. 649–652.

[36] C. De Roover, R. Lämmel, and E. Pek, “Multi-dimensional exploration
of api usage,” in 2013 21st International Conference on Program

Comprehension (ICPC). IEEE, 2013, pp. 152–161.

[37] D. S. Eisenberg, J. Stylos, and B. A. Myers, “Apatite: A new interface
for exploring apis,” in Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, 2010, pp. 1331–1334.

[38] A. J. Ko and B. A. Myers, “Designing the whyline: a debugging interface
for asking questions about program behavior,” in Proceedings of the

SIGCHI conference on Human factors in computing systems. ACM,
2004, pp. 151–158.

[39] P. Pruski, S. Lohar, W. Goss, A. Rasin, and J. Cleland-Huang, “Tiqi:
answering unstructured natural language trace queries,” Requirements

Engineering, vol. 20, no. 3, pp. 215–232, 2015.

[40] K. Kolthoff, “Automatic generation of graphical user interface proto-
types from unrestricted natural language requirements,” in 2019 34th

IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE). IEEE, 2019, pp. 1234–1237.

[41] H. Ed-douibi, G. Daniel, and J. Cabot, “Openapi bot: A chatbot to help
you understand rest apis.”

[42] D. Miller, J. Whitlock, M. Gardiner, M. Ralphson, R. Ratovsky, and
U. Sarid, “Openapi specification version 3.1.0,” OpenAPI Initiative,
Tech. Rep., 2021.

[43] N. Zhang, Q. Huang, X. Xia, Y. Zou, D. Lo, and Z. Xing, “Chatbot4qr:
Interactive query refinement for technical question retrieval,” IEEE

Transactions on Software Engineering, 2020.

[44] Z. Eberhart, A. LeClair, and C. McMillan, “Automatically extracting
subroutine summary descriptions from unstructured comments,” in 2020

IEEE 27th International Conference on Software Analysis, Evolution and

Reengineering (SANER). IEEE, 2020, pp. 35–46.

[45] E. Duala-Ekoko and M. P. Robillard, “Asking and answering questions
about unfamiliar apis: an exploratory study,” in Proceedings of the

2012 International Conference on Software Engineering, ser. ICSE
2012. Piscataway, NJ, USA: IEEE Press, 2012, pp. 266–276. [Online].
Available: http://dl.acm.org/citation.cfm?id=2337223.2337255

[46] C. Sadowski, K. T. Stolee, and S. Elbaum, “How developers search for
code: a case study,” in Proceedings of the 2015 10th joint meeting on

foundations of software engineering, 2015, pp. 191–201.
[47] S.-P. Ma, H.-J. Lin, H.-M. Chen, Y.-J. Chen, and W.-T. Lee, “Web api

discovery using semantic similarity and hungarian algorithm,” Journal

of Internet Technology, vol. 19, no. 6, pp. 1657–1664, 2018.
[48] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,

“Codesearchnet challenge: Evaluating the state of semantic code search,”
arXiv preprint arXiv:1909.09436, 2019.

[49] F. Radlinski and N. Craswell, “A theoretical framework for conversa-
tional search,” in Proceedings of the 2017 conference on conference

human information interaction and retrieval, 2017, pp. 117–126.
[50] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li, “Query expansion based

on crowd knowledge for code search,” IEEE Transactions on Services

Computing, vol. 9, no. 5, pp. 771–783, 2016.
[51] M. Piccioni, C. A. Furia, and B. Meyer, “An empirical study of api

usability,” in 2013 ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement. IEEE, 2013, pp. 5–14.
[52] H. Yu, W. Song, and T. Mine, “Apibook: an effective approach for

finding apis,” in Proceedings of the 8th Asia-Pacific Symposium on

Internetware, 2016, pp. 45–53.
[53] H. Cuayáhuitl, “Simpleds: A simple deep reinforcement learning dia-

logue system,” in Dialogues with social robots. Springer, 2017, pp.
109–118.

[54] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[55] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[56] J. Schatzmann, B. Thomson, K. Weilhammer, H. Ye, and S. Young,
“Agenda-based user simulation for bootstrapping a pomdp dialogue
system,” in Human Language Technologies 2007: The Conference of the

North American Chapter of the Association for Computational Linguis-

tics; Companion Volume, Short Papers. Association for Computational
Linguistics, 2007, pp. 149–152.

[57] C. Kelleher and M. Ichinco, “Towards a model of api learning,” in 2019

IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC). IEEE, 2019, pp. 163–168.
[58] D. van Heesch. (2013) Doxygen website. [Online]. Available:

http://www.stack.nl/∼dimitri/doxygen/
[59] Y. Kareev, “Seven (indeed, plus or minus two) and the detection of

correlations.” Psychological review, vol. 107, no. 2, p. 397, 2000.
[60] S. Chandramohan, M. Geist, F. Lefevre, and O. Pietquin, “User sim-

ulation in dialogue systems using inverse reinforcement learning,” in
Twelfth Annual Conference of the International Speech Communication

Association, 2011.
[61] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,

“Portfolio: finding relevant functions and their usage,” in Proceedings

of the 33rd International Conference on Software Engineering, ser.
ICSE ’11. New York, NY, USA: ACM, 2011, pp. 111–120. [Online].
Available: http://doi.acm.org/10.1145/1985793.1985809

[62] E. Hill, M. Roldan-Vega, J. A. Fails, and G. Mallet, “Nl-based query
refinement and contextualized code search results: A user study,” in 2014

Software Evolution Week-IEEE Conference on Software Maintenance,

Reengineering, and Reverse Engineering (CSMR-WCRE). IEEE, 2014,
pp. 34–43.

