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Abstract—Source code summarization is the task of creat-
ing short, natural language descriptions of source code. Code
summarization is the backbone of much software documentation
such as JavaDocs, in which very brief comments such as “adds
the customer object” help programmers quickly understand a
snippet of code. In recent years, automatic code summarization
has become a high value target of research, with approaches
based on neural networks making rapid progress. However, as
we will show in this paper, the production of good summaries
relies on the production of the action word in those summaries:
the meaning of the example above would be completely changed if
“removes” were substituted for ‘‘adds.” In this paper, we advocate
for a special emphasis on action word prediction as an important
stepping stone problem towards better code summarization —
current techniques try to predict the action word along with
the whole summary, and yet action word prediction on its own
is quite difficult. We show the value of the problem for code
summaries, explore the performance of current baselines, and
provide recommendations for future research.

Index Terms—neural networks, source code summarization,
automatic documentation generation, Al in SE

I. INTRODUCTION

The task of creating short, natural language descriptions of
source code has come to be known as “source code summa-
rization.” Code summarization is the backbone of a plethora
of documentation such as JavaDocs [1], in which the natural
language description (the “summary”) provides a quick way
for programmers to understand the software’s components.
Very often, these summaries are written for subroutines, so
that programmers can read that a subroutine e.g. “computes
the dot product of two vectors” rather than interpret the source
code itself. Traditionally, programmers write these summaries
around the time they write the code, to help other programmers
in understanding that code.

Automatic code summarization has been a dream of software
engineering researchers for decades. Forward er al. [2] ob-
served almost 20 years ago that “software professionals value
technologies that improve automation of the documentation
process,” and “that documentation tools should seek to better
extract knowledge from core resources.” Efforts in this direc-
tion have begun to bear fruit, especially in the last five years
with the introduction of neural models for code summarization.
A confluence of work in both the AI and SE communities
has pushed the state-of-the-art to a point where real-world
automatic code summarization seems within reach.

Yet, as we will show in this paper, very often these tech-
niques owe their good performance on their ability to predict
the first word of the summary. Some of the reasons for this are
technical: Existing techniques tend to be based on an encoder-
decoder architecture (e.g. seq2seq, graph2seq) in which the
output summary is predicted one word at a time. The first word
is predicted first, then that first prediction is used to predict
the second word, and so on. If the first word is wrong, the
model can have a hard time recovering. This situation can be
exaggerated by the aggressive use of attention mechanisms (as
in Transformer-based models [3]), which can attend previous
words in the predicted summary to parts of the source code.
Often each subsequent word depends more and more on the
previous predictions.

A more fundamental reason the first word is important is
that the first word tends to be the action word in code sum-
maries. As we will show (and in line with style guides [1], [4]),
summaries usually fall into a pattern where the action word
not only occurs first, but sets the tone for the whole summary.
Consider examples such as “initializes the microphone for the
web conference”, “sets the current speaker’s volume”, and
“sorts the list of connected users.” A lot of information is
communicated just by knowing that the code initializes, sets,
or sorts. The rest of the summary depends on that information,
begging the question: initializes/sets/sorts what?

The importance of early predictions in text generation
models has been recognized in the NLP community for years,
with several proposed technical workarounds e.g. beam search
and alternative training strategies. Meanwhile, the prevalence
of verb-direct object patterns in code summaries has long
been observed in SE literature [5]. What is not yet recognized
is the special importance of the action word in source code
summarization, and how to leverage this importance to create
better summaries overall.

Clues about how to leverage this importance can be ob-
served from the progression of the literature on neural code
summarization. As we show in Section III, one strong con-
sensus is that code structure helps “somehow.” Almost imme-
diately after the first applications of neural models to code
summarization, efforts started focusing on how to combine
structural information such as the abstract syntax tree with
the text from the code (after all, combining structure and text
has a long history in SE literature [6]).



What we observe, in a nutshell, is that neural models
that perform well either 1) extract the action word from
the text such as the function name e.g. “sorts” for function
“sortSpeakers”, or 2) use the structure to help detect what
action word to use. This second case is possible because
there are different types of functions that tend to have similar
structure. A simple example is to compare getters and setters.
Getters tend to have no parameters and return something, while
setters tend to have a parameter and no return. Even without
any text at all, it is possible to detect whether a function is a
getter or a setter just by looking at the code structure. Once
the first word is selected accurately, the model has a much
better chance at writing the rest of the summary.

In this paper, we propose the problem of action word
prediction as a stepping stone towards better neural models
of code summarization. We demonstrate several advantages
to targeting action word prediction in conjunction with code
summarization, namely: 1) good action word prediction leads
to good summary prediction overall, 2) prediction of the
action word is often possible from the code structure alone,
which avoids a dependence on good internal documentation,
and 3) action word prediction is 10-20x faster than code
summarization, which is important in practice because training
times range 10-15 minutes instead of 1-5 hours.

We propose several configurations of action word prediction
which we find to be especially useful. We build several base-
lines inspired by recent literature, create two large datasets,
and demonstrate baseline performance on these datasets. We
make recommendations about good practice for using action
word prediction as part of evaluation of code summarization
techniques. We release all datasets and code to the public via
our online appendix (see Section VIII).

II. PROBLEM SUMMARY

We call the problem we target in this paper “action word
prediction.” An action word is a verb that describes what
changes one actor performs to another [7], [8]. Typically
code summaries have one action word that broadly classifies
what the code does (gets, sets, initializes, sorts). The problem
definition is essentially: given a component of source code,
predict the action word to be used in the summary. Action
word prediction is necessary to code summarization, and
special emphasis on this part of the problem serves as a key
stepping stone towards better code summarization.

This work follows a long tradition of creating smaller aca-
demic problems that lead to progress in bigger problems. The
intellectual heritage of this tradition was neatly summarized
in 1950 in Claude Shannon’s famous paper on the academic
problem of automatically playing chess [9]:

“Although perhaps of no practical importance, the question
is of theoretical interest, and it is hoped that a satisfactory
solution of this problem will act as a wedge in attacking other
problems of a similar nature and of greater significance.”

In other words, even though action word prediction is not
necessarily useful to practitioners today, it is still a useful
problem to address because of its necessity and value in
solving problems that are.

III. BACKGROUND AND RELATED WORK

The related work of this paper includes any work that seeks
to generate natural language descriptions from source code.
While an exhaustive survey of this work is beyond the scope
of this paper, we provide a snapshot of the previous ten years
in Figure 1 below. This list includes only the first appearance
of ideas (i.e. not journal extensions) in peer-reviewed, full-
length technical papers, and is narrowly defined as approaches
in which the input is source code and the output is natural
language (detailed history of code summarization and neural
representations of code for other purposes has been chronicled
by several surveys [45]-[49]). Yet a trend is immediately
clear: A first generation of techniques relied on Information
Retrieval (IR) or manually-defined heuristics to extract words
from source code (for example, by using TF/IDF to pick
the top-n words [10], [50]), and templates to place those
words into readable sentences (exemplars in this category are
presented in [11], [17]). An important strength in this first
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Fig. 1: Selection of closely-related, peer-reviewed publications in the
previous ten years. Column /R indicates if the approach is based on
Information Retrieval. M indicates manual features/heuristics. 1" in-
dicates templated natural language. A indicates Artificial Intelligence
(usually Neural Network) solutions. .S means structural data such as
the AST is used (for Al-based models).



generation is that they tended to be built on a solid foundation
of empirical evidence of what is important to programmers.
For example, Moreno et al. [15] designed sentence templates
for Java classes based on specific studies of programmers’
needs in documentation. However, a weakness is that it was
infeasible to write manual heuristics capable of considering
the huge range of program behavior. The response was that
between 2015 and 2017, a second generation of approaches
based on Al (specifically, neural networks) rose to prominence.
These approaches were enabled by complementary research in
mining software repositories that provided access to datasets
with millions of examples of code and summaries [51], [52],
as well as evidence that source code is “natural” [53] in that
it follows patterns similar to natural language.

The workhorse of second generation code summarization
approaches is the encoder-decoder neural architecture in which
the source code is the encoded input and the summary is
the decoded output. A majority use this technology off-the-
shelf from the NLP research area for machine translation [54],
albeit with different preprocessing steps intended to highlight
different areas of code such as Iyer et al. [24]. The trend in the
past two years has been to squeeze ever more information from
the source code, with the Abstract Syntax Tree (AST) being
by far the most popular target. Hu et al. [33] and LeClair et
al. [40] explore different configurations of using the AST,
Alon et al. [55] use static paths in the tree, and Allamanis et
al. [34] propose modeling the AST with a graph neural net.

Hints as to why structure helps code summarization were
provided by LeClair e al. [40] in what they called a “chal-
lenge” experiment. The experiment was essentially an extreme
ablation study in which only the AST was available to the
model for training and test — no text from the source code at
all. The study found performance in the range of 9-10 BLEU
points (compared to 19-20 for AST+text configurations),
which is actually quite remarkable considering the extreme
experimental conditions. What they found is that the model
recognizes structural features to determine that a function e.g.
deinitializes data structures, even if no details about what is
deinitialized are available (see Example 2 in [40]).

The same year and working independently, Alon et al. [37]
found additional evidence that structure helps identify a gen-
eral purpose behind functions, even if the model must rely
on text data to understand specific details. In the example in
Figure 1(b) of [37] they demonstrate how a path in the AST
helps the model decide that a function replaces some infor-
mation with some other information. That example is used as
motivation for their path-based AST summarization approach.
While these papers do not say so explicitly, essentially they
are showing how structure helps determine the action word of
the summary (closes a network connection, replaces a string
in a text file), while remaining dependent on the textual data
in a code to write the rest of the summary.

At a high level, the trend in code summarization research
is to leverage more domain-specific knowledge, while moving
away from models designed for text processing. Our goal in
this paper is to help focus this trend.

IV. ACTION WORD PREDICTION

In this section, we provide our definition of action word
prediction and advocate for a focus on this problem towards
better source code summarization. The crux of our argument
is that action words are important parts of code summaries,
so code summarization tools need to predict action words
anyway. Since action words are fundamental to the meaning
of code summaries, it is especially important to predict them
well. We also observe that action words have an outsize
effect on current Al-based models for code summarization,
so future advances are likely to require improved action word
prediction. We build our case in this section based on analysis
of state-of-the-art techniques over a curated dataset of over
2.1m Java method summaries [52] as well as 1.1m C/C++
function summaries that we collected from GitHub for this
paper. We use four recent approaches ( [24], [40], [55], [56],
described in more detail in Section V-B1) and BLEU scores
of those approaches over these datasets, to be consistent with
evaluation practice in those papers.

Definitions An “action word” in a source code summary is a
word that broadly classifies what the code does (as mentioned
in Section II). This almost always means a verb. Common
programming parlance separates code functions into e.g. “get-
ters”, “setters”, “initializers”. As we will show, this parlance
is fundamental to how programmers write code summaries:
programmers tend to write summaries that contain only one
action word, that word tends to occur in the first position of
the sentence, and very often it is the only verb in the sentence.

word # R word # R
1. return 296287 0.58 21. insert 8729 0.01
2. set 280213 0.93 22. describe 8611 0.34
3. get 197072 0.45 23. use 8512  0.01
4. add 78769 0.88 24. load 8425 0.01
5. create 65044 0.69 25. delete 8312 0.68
6. initialize 56093 0.86 26. convert 8162 0.75
7. test 52116 0.68 27. start 7854  0.32
8. remove 35416 0.75 28. clear 7828 0.55
9. check 33852 0.01 29. print 7507 0.77
10. is 20669 0.04 30. find 7370  0.68
11. call 19459 0.03 31. reset 7066  0.40
12. retrieve 18035 0.33 32. save 7038 0.73
13. update 15145 0.06 33. send 6950 0.77
14. automate 12778 0.69 34. generate 6936  0.48
15. write 12380 0.91 35. close 6834 0.56
16. determine 12170 0.64 36. compare 6684  0.55
17. read 9774 0.90 37. indicate 6434  0.55
18. handle 9439 0.54 38. perform 6317  0.01
19. to 9356 0.34 39. change 6081 0.01
20. if 8880 0.01 40. show 5955 0.20

Fig. 2: The forty most common first words and number of
occurrences in the training set of the 2.1m Java method dataset
provided by LeClair et al. [40] (these top forty cover 71% of
the training set). Column # is the number of times that word is
the first word of a summary in the training set (post stemming).
Column R is the percent of methods with reference summaries
with that action word, that a recent baseline [40] predicted to
have that word (this is effectively the recall for that word).



Figure 2 shows the top-40 most-common action words
that we extracted from the dataset of 2.Im Java methods
provided by LeClair et al. [52]. Our procedure for extracting
these words was to use an English language parser to locate
the first verb in the sentence, then to stem those verbs to
remove conjugation. (We used the Stanford NLP parser and
the NLTK PorterStemmer, our scripts are available in our
online appendix, see Section VIII.) The only exceptions to this
procedure were for the words “is”, “to”, and “if.” The reason
for this exception is that there is a very common pattern in
code summaries in which those three words broadly classify
what methods do, even if they are not typically used as action
verbs in English. Namely, “is” tends to be used for code that
checks type usage in object oriented programs, “to” often
refers to code that changes objects from one type to another,
and “if” often indicates a method checks a particular condition.

It is important to recognize that action words are broad
classifications of code behavior rather than rigidly-defined
categories. A scholarly view is that action word prediction
is an instance of the concept assignment problem [6] in
which words must be used to describe the high level concepts
encoded in the low level programming details. In other words,
a programmer can have an intuitive idea of the difference
between functions that “add” versus “delete”, and this idea
informs what the content of the natural language summary
should be. This intuition cannot be clearly articulated into
rules defining the difference. And yet, code summarization
techniques must decide which word to use.

A key point we are trying to make in this paper is that
existing code summarization techniques already try to predict
the action word, and yet action word prediction on its own
is extremely difficult. Since almost all code summaries put
the action word first, existing tools end up trying to predict
this word first. If the techniques make a poor prediction, the
entire summary is likely to be difficult to understand correctly.
Therefore, we advocate for a special emphasis on action word
prediction as a stepping stone to code summarization.

Action words are critical to summaries. A common per-
ception about source code summaries is that they should and
most-often do begin with a verb phrase followed by a direct
object. This pattern has been recommended for over 20 years
by Kramer [1], is highlighted by several style guides such as
by Google [57] and Microsoft [4], and has been observed in
consistent use in good quality code change documentation [5].

We make a similar observation in both the Java dataset
from LeClair et al. and the C/C++ dataset we created. In Java,
we found that 94.80% of method summaries have an action
word, of which 56.53% have one and only one action word.
In 80.60% of comments, an action word is the verb in the first
position. In 5.10% of cases, an action word is in the second
position, and in 9.68% of cases, an action word is in the third
position following a simple subject such as “this method.”
Only 5.60% did not have an action word in the first, second
or third position. And overall in Java, of the summaries with
action words, that word is the only verb 54.75% of the time.
So not only are action words perceived as important by style

guides and academic literature, programmers actually follow
these patterns when writing documentation.

Another observation we make is that some action words
are harder to predict than others. As mentioned above, the
decision of which action word to use is a challenge even for
humans, who rely on their own intuition rather than strict rules.
Consider column R in Figure 2. That column is the recall of
ast-attendgru, a baseline published at ICSE’19 [40], when
generating summaries over the Java dataset (we extracted these
predictions directly from their online reproducibility package
and compared them to the reference summaries, after applying
stemming to both predictions and references). While many
factors affect prediction and it is important not to take the
numbers too literally, it is clear that recall varies considerably
for different action words. For example, recall for “convert”
is 75% versus 32% for “start”, even though the number of
samples is comparable. The reason, according to experimental
evidence by LeClair et al. [40], is probably that “convert”
methods tend to have a more similar structure than “start”
methods, which helps the model to recognize those methods.
The point is that many action words are very difficult to
predict, and if a model cannot chose the action word properly,
the entire summary is likely to be incorrect.

In addition, existing models perform far better when they
correctly predict the action word. Consider the table below
of BLEU scores for four recent baselines that we trained
and tested with both datasets under identical model settings
(e.g. vocab size, RNN length, see our online appendix in
Section VIII for the implementation). The column default is
the BLEU score over the whole test set, AW c. is the BLEU
score for just the portion of results when the action word was
correctly predicted, Aw i. is when the action word was not
correctly predicted. The column AW i.c. is a unique setting
we created in which we fed the model the correct action word,
then let the model predict the rest of the summary (calculated
only on the set when the model had incorrectly predicted the
action word). Note that all of these BLEU scores only include
the part of the summary without the action word, to avoid
boosting scores just because the action word is corrected.

(Java dataset) default AWc. AWIi. | AWi.c.
attendgru [24] 14.63 22.21 6.16 9.35
ast-attendgru [40] 15.29 23.15 6.36 9.32
graph2seq [56] 14.54 22.23 6.05 8.93
code2seq [55] 14.73 22.55 6.16 9.08
(C/C++ dataset) default AW c. AWIi. | AWic.
attendgru [24] 30.60 52.35 3.95 8.13
ast-attendgru [40] 30.08 51.69 3.68 7.65
graph2seq [56] 22.72 43.97 2.97 6.83
code2seq [55] 7.33 17.48 1.2 3.03

Performance is roughly 60% higher when the model predicts
the action word correctly. Good performance is associated with
good action word prediction. Also, performance of the Aw 1.
set improves 60-100% if the model is given the correct action
word. The models tend to do much better when the action
word is correct regardless of the function — it is not only that
some functions are harder to summarize overall. The action
word is a key factor in generating good summaries.



V. EXPERIMENTS

We conduct several experiments exploring action word pre-
diction in the context of existing source code summarization
techniques. We study the effects of different factors on the
performance of several baselines.

A. Research Questions

Our major motivation for this paper is to establish action
word prediction as a stepping stone towards better source code
summarization. In earlier sections, we discussed the motivation
in terms of related literature and evidence that action word
prediction is likely to lead to better code summarization. In
this section, we pose the following three Research Questions
(RQs) towards studying how well current code summarization
approaches perform during action word prediction, and key
factors affecting the performance.

RQ; What is the performance of the action word predic-
tion of recent code summarization techniques?

RQ>; What is the difference in performance between Java
and C/C++ datasets?

RQs; What is the difference in performance under standard

and challenge test conditions?

The rationale for RQ); is that (as we established in the previ-
ous section) existing code summarization tools must do action
word prediction as part of code summarization anyway, and
different approaches are likely to have different performance
characteristics on action word prediction. Since we propose
action word prediction as a stepstone problem towards code
summarization, we study how well current approaches perform
to establish a baseline for further work. Likewise, the rationale
for RQs is that different languages tend to have different
“cultures” and standards for documentation, and it is plausible
that these effects are quite large. Most research in code
summarization focuses on one language (usually Java), and
the literature is not yet clear on how well results generalize.

The rationale for RQj3 is to quantify how well existing
approaches can predict the action word of a summary in the
case when only source code structure is available. Source code
summarization, like many program comprehension research
problems, is highly dependent on the words used in the source
code. LeClair er al. found that BLEU scores approximately
halve when words are not available and the tools must rely
solely on code structure [40]. They term the situation when
only code structure is available as a “challenge” experiment,
in contrast to a “standard” experiment when both structure
and words from code are available. However, as pointed
out in Section III, an increasing number of research efforts
are finding that code structure significantly improves code
summarization. Evidence from Alon et al. [37], LeClair et
al. [40], [64], and Haque et al. [43] all point to how code
structure seems to help code summarization tools broadly
classify code behavior, even if good internal documentation
is required to produce detailed summaries. We surmise that a
way structure manifests itself in summaries is via the action
word, and therefore ask RQs.

B. Methodology

Our methodology for answering our research questions is,
essentially, to train each baseline over each dataset, then use
established quantitative metrics to measure the difference in
performance over the test set for that dataset. This is the typical
evaluation procedure used in a vast majority of source code
summarization papers, except modified slightly to measure the
action word prediction instead of the entire summary.

Note that we use a data-driven experiment design rather than
a human study. While it is tempting to suggest that a human
study is always superior, in fact for comparison in this paper
a data-driven evaluation has several advantages. The situation
is akin to machine translation around the late 1990s: the
introduction of data-driven evaluation procedures and metrics
(such as BLEU [65]) led to a revolution of progress because
it was possible to consistently evaluate tens of thousands
of examples. Human studies certainly have the advantage of
allowing for deep subjective evaluation, but there are also two
major disadvantages: 1) including humans restricts the amount
of output that can be evaluated to perhaps a few hundred
examples, and 2) humans are subject to the vicissitudes of
nature e.g. fatigue and biases, which means that the results are
not reproducible. That is why almost all code summarization
papers also use data-driven evaluations — the ability to quickly
evaluate large datasets and reproduce those findings under
controlled settings is an important benefit to overall progress.

Our training procedure is to train each baseline for a
maximum of 10 epochs or 30 hours, and select the model
that achieved the highest validation accuracy. The code2seq
baseline running on the C/C++ dataset was the only approach
to timeout at 30 hours. All other configurations (including
code2seq for Java) completed 10 epochs within 30 hours.

1) Baselines: While there is a plethora of available code
summarization techniques (see Section III), we choose five
that are broadly representative of different families of ap-
proaches. Namely, seq2seq-like approaches that treat code as
text, approaches that flatten the AST in the encoder, tree and
graph neural network solutions, and path-based approaches. In
all cases, we reimplement the approaches using a framework
provided by Haque et al. [43]. We used their framework in
order to minimize experimental variables — we do not use
individual implementations provided in different reproducibil-
ity packages. The reason is that many factors change such as
RNN length, vocab size, dataset preprocessing, etc. To ensure
veracity of the results, we use a single experimental framework
for implementation to control these factors. See our online
appendix for full implementations (Section VIII).

attendgru This baseline is representative of seq2seq-like
approaches as proposed by Iyer er al. [24]. This is the only
approach that does not explicitly include the AST, so this
baseline is not applicable to the challenge experiments.

ast-attendgru This baseline represents approaches that
flatten the AST into a sequence, then use a seq2seq-like
approach to create the summary. Our implementation is from
LeClair et al. [40] but is closely-related to other flat AST
techniques e.g. Hu et al. [33].



ast-attendgru-£fc Haque et al. [43] proposed an exten-
sion to code summarization tools that includes “file context”,
which they define as all the other functions in the same file
as the function being summarized. This baseline is the best-
performing solution from their experiments. It is identical to
ast-attendgru except with their “file context encoder.”

graph2seq Allamanis et al. [34] use a graph neural net-
work (GNN) to model the AST. Their paper focuses on code
generation, but suggest that it is possible to use the GNN
encoder for code summarization as well. Haque er al. [43]
provide an implementation based on graph2seq by Xu et
al. [56], and we use this implementation as a baseline.

code2seq Alon et al. [37], [38] are pursuing path-based
encoding solutions that, in short, randomly select 100-200
paths in the AST and use an attention mechanism to attend to
different paths for different words. We use their approach as
a representative of path-based solution.

This list of baselines is not an exhaustive list of approaches
from all papers. We instead pick one approach representative
of different families of approaches. However, readers may note
that we did not include approaches that focus on novel training
procedures or optimizers (e.g. approaches that use combined
reinforcement and deep learning [35]). There are two reasons
for this decision. First and foremost, those approaches use
RL or other techniques to help train the model on entire
summaries, and since summaries are almost always predicted
one word at a time, the benefit almost entirely appears when
writing the latter parts of the summaries. Second, those ap-
proaches introduce a large number of additional experimental
variables which are difficult to control. We did not use a
Transformer-based approach because Haque er al. [43] report
that low performance from Transformer models (however, just
as this paper was going to review, Ahmad et al. [3] released
a Transformer-based model accepted to ACL’20.).

2) Metrics: We use precision, recall, and F-measure to
evaluate the performance for action word prediction [66]. We
also use confusion matrices to visualize performance across
difference words. Essentially what we do is treat each action
word as a class into which a subroutine can be placed.
So for example, a function may be a “get” subroutine, an
“insert” subroutine, etc. Note that this is different than code
summarization, where typically BLEU or ROUGE scores are
used to evaluate a whole sentence — we only use BLEU when
we have a full sentence to evaluate.

3) Datasets: We create two action word prediction datasets
from two code summarization datasets. First, as mentioned
above, we use a Java dataset of 2.1m method/summary pairs
for code summarization provided by LeClair et al. [52].
Second, we create our own C/C++ dataset of 1.1m func-
tion/summary pairs, by downloading 18,775 C/C++ projects
from GitHub and following LeClair et al.’s recommenda-
tions from NAACL’19 for code summarization datasets (e.g.
splitting by project, removing auto-generated code, mini-
mum/maximum summary lengths, and other quality filters).
We use a model published by Eberhart et al. [67] to extract
the summary from comments for C/C++ functions, since

C/C++ tends not to have the same rules for writing subroutine
summary documentation as Java.

Two steps were necessary to convert the code summarization
datasets to action word prediction datasets. First, we extract the
action word from each summary by using the Stanford NLP
package [68], except for summaries that start with the word
“is”, “to”, or “if”’, for reasons discussed in Section IV. Second,
we used the NLTK PorterStemmer on each action word
because of the large number of patterns such as “initializer
for ...” and “initializes ...” Stemming has the effect of reducing
the vocab size by grouping words together, which is different
from code summarization in which stemming is rare.

C. Threats to Validity

Like all experiments, this paper carries threats to the validity
of the results. Three threats loom the largest: One threat is that
the data may not be representative. We attempt to mitigate
this risk by using large datasets in different languages, but
the reality is that different data may lead to different results.
Another threat is that the scripts we use to extract action
words, stem words, etc., do not have perfect accuracy. We use
community best practices to minimize errors, and release all
scripts online vote public vetting, but again, results may differ
under different conditions. The datasets are simply too large
to allow for large-scale manual inspection. Finally, we did not
test if masking another word, for example a noun instead of
the verb, gives the same results. We believe that action words
are very specific and cannot be replaced with generic verbs
to convey the same meaning, but nouns can be replaced with
pronouns.

VI. EXPERIMENTAL RESULTS

We present our experimental results in the form of an-
swers to each research question from the previous section.
To condense results and make the key points understandable
in the paper, we present results using four settings: top-40,
top-10, top-10n, and get/set. The top-40 setting means that
the models attempt to predict the forty most-common action
words, or “other” if predicted ot be a less-common action
word. The forty most-common action words covers over 71%
of the training set and aligns with the discussion in Section I'V.
The top-10 setting is similar except that it covers only the ten
most-common action words, and is a convenient setting for
presentation due to paper formatting requirements. The Top-
10n is next ten most-common results without get, set, and
return (examples in this category go into the other category).
Since the dataset is somewhat unbalanced towards these top-3
action words, it is plausible that strong performance in these
categories could outweigh poor performance elsewhere. So,
we present top-10n to show performance on other categories.

The get/set setting is a diagnostic setting focusing on get
and set examples only. There is no large “other” category. The
purpose of this setting is to show the limits of the model in an
“easy” situation: plenty of training data and clear conceptual
difference between the two categories. It is not meant as a
realistic situation. The philosophical intent is to create an



experimental setting that we, the research community, should
be able to solve with extremely high accuracy — if we cannot
even distinguish gets and sets words, then we have little
hope of predicting an entire code summary. On the other
hand, the get/set diagnostic problem can serve as a stepping
stone: models that solve it with high accuracy may serve as
a foundation for better code summarization techniques. The
situation is akin to early computer vision models designed
to distinguish e.g. cat from trucks. The idea is a diagnostic
problem that should not be confused for the real world.

A. RQ;: Baseline Performance

In this section, we answer RQ); in the context of the baseline
performance over the Java dataset in standard conditions. The
lower area of Table I shows the precision/recall values for
the baselines in the four settings described above. The best
overall performer is ast-attendgru-fc. Yet, the difference
over attendgru and ast-attendgru is not high despite
reports from Haque et al. [43] that significant improvement is
possible in terms of BLEU score over the entire code summary.
Our interpretation is that the benefit that ast-attendgru-fc
provides is concentrated in the later portions of the summary
— the action word prediction is similar in all three models.

A possible explanation for this similar performance is that
all three models rely on a recurrent network (a GRU) encoder
of the function’s text information, moderated by an attention
mechanism. It is likely that the attention mechanism learns to
look at the first word of the function name when predicting

g
= Q = i
Java / stan. = B =~ - 5 g o g ! §
top-10 e 32 S ¥ 5 E & & 9§ =23
return 7748 25 1144 11 70 11 1 5 78 1 1927
set 18 10356 10 40 12 17 2 1 0 0 583
get 5202 19 2595 6 11 9 1 8 0 844
add 4 44 2 2025 14 1 10 2 0 0 321
create 80 21 18 40 101514 17 O 2 0 49
initialize 31 21 2 2 23 1528 0 0 0 0 29
test 67 2 2 1 1 1 1025 3 23 0 381
remove 6 2 1 1 0 2 3 11320 0 354
check 393 8 5 2 3 0 52 3 343 0 657
is 134 36 6 15 11 5 3 6 21 31 366
other 3444 2123 617 493 625 159 549 172 211 4 22420
top-40 top-10 top-10n get/set
Java / stan. pr f por f por f por f
attendgru S54 45 46].68 .63 .61|.71 52 .53.99 99 .99
ast-attendgru 59 44 46|.67 62 .62|.70 .53 53|1.99 .99 .99
ast-attendgru-fc | .53 .47 46|.70 .61 .61|.73 .50 .52].99 .99 .99
graph2seq 53 47 A4A7].68 .62 .62|.70 .53 .54|.99 99 .99
code2seq S5 45 47|.67 61 61|.71 53 54|1.99 99 .99

TABLE I: (top) Confusion matrix showing results for top-
10 action words for ast-attendgru-fc, the best performer in
terms of f-measure. (bottom) Overall results under standard
conditions in the Java dataset.

the first word of the summary. In fact, in the Java dataset,
we found that 43% of the methods have the summary’s action
word within the first four words in the method’s signature (e.g.
the verb “convert” for the method “convertMp3toWav”) and
67% have the action word somewhere in the method.

In contrast, graph2seq had much lower performance,
despite competitive BLEU scores when creating a whole
summary (see [43], [69], plus Section 1V). The reason may
be explained by recent results by LeClair et al. [69]: the
graph neural network design excels at choosing related next
words in a summary by exploiting the graph’s connections,
but can actually perform worse when these connections are
not available — significant configuration is necessary and
competitive performance cannot be expected out of the box.

The confusion matrix at the top of Table I shows
that top-10 results for Java under standard conditions for
ast-attendgru-fc. In general, a clear centerline is visible
as the model correctly predicts a majority of the action
words. One observation is that the model tends to confuse
action words that are conceptually similar more often than
conceptually distinct ones. For example, “get” and “return” are
often interchangeable, so it is unsurprising that a significant
number of the errors are from mistaking just these two words.
Also, words like check/test and create/initialize tend to be
confused. In contrast, the model make very few errors for
words with distinct meanings such as add/remove and get/set.
The model had little trouble distinguishing get and set under
standard conditions in Java.

5]
N
C/C++ / stan. g . - 3 TEG 3 % .-
top-10 S % 28 § 8 E =2 2 5 B %8
return 926 79 2 32 6 4 7 18 5 4 912
get 50 5293 4 4 1 10 9 2 0 381
set 7 5 5970 7 8 11 0 1 1 506
check9 2 1 3330 2 8 0 0 1 253
calO 2 7 0 4724 4 0 2 2 228
initialize 6 1 4 0 6 482 0 6 0 233
is21 8 7 9 4 5 4691 1 1 458
reed7 9 1 0 1 0 0 3621 0 190
create 6 1 0 O 2 13 2 0 2861 209
add3 2 0 0 3 3 2 0 2 211139
other 479 334 175 177 216 167 146 128 95 112 34759
C/C4+ / stan. top-40 top-10 top-10n get/set
p r f p r f p r f p r f
attendgru 70 55 .60].71 .63 .67|.73 .63 .68|.96 .96 .96
ast-attendgru 69 55 .60(.72 .61 .66|.75 .62 .67|.96 97 .96
ast-attendgru-fc | .65 .55 .58|.68 .60 .63|.74 .55 .63|.96 .96 .96
graph2seq 70 49 551.71 .60 .65|.77 .57 .65|.95 95 .95
code2seq 64 41 47|.66 50 .56|.67 .56 .60|.96 .96 .96

TABLE II: (fop) Confusion matrix showing results for top-
10 action words for ast-attendgru-fc, the best performer in
terms of f-measure. (bottom) Overall results under standard
conditions in the C/C++ dataset.



B. RQ>: Comparing Java and C/C++

In this section, we compare Java and C/C++ results. Note
that our objective is to start to understand the behavior of
the baselines in these datasets related to the data itself. We
do not claim that one dataset is “better” than another from
these results. Instead, we observe that the baselines almost all
achieved higher levels of performance in C/C++, which seems
to be related to two factors. First, the top-n action words are
different in each language, and even words that are the same
have slightly different meanings. The word “initialize”, for
instance, tends to refer to a specific kind of memory allocation
and initialization in C/C++, compared to Java in which it tends
be used more generally, such as to refer to setting up data in
an arbitrary class structure. The composition of the words is
also slightly different. For example, the word “call” appears in
C/C++, and the models make very few errors when detecting
this word because a vast majority of caller functions have the
word call in their name.

Second, errors in the Java dataset are somewhat concen-
trated in the word “return.” One possible explanation is a cul-
tural tendency among Java programmers to write summaries in
the form “returns ...” instead of an action word in some cases.
For example, Java programmers seem to be more likely to
write “returns whether ...” instead of “checks ...”, which seems
to lead to a significant number of errors in confusing “check”
for “return.” Since the training and test sets are derived from
examples of human-written summaries, any model is likely to
learn these errors. Note that we do not recommend a specific
remedy, other than to be aware that these factors do exist
in datasets of source code summarization and may require
adjustments based on the model and use case.

We also note that the differences between Java and C/C++
cannot be explained merely by the different size of the dataset.
In any neural network-based solution, a question will arise as
to how many examples are necessary to train the model. An-
swering this question depends on the diversity of the dataset,
training configuration settings such as learning rate, and details
of the model itself such as the architecture (e.g. RNN, CNN,

original dataset Im dataset
Java / stan. P . f P . ¢
attendgru .68 .63 .61 .68 .61 .60
ast-attendgru .67 .62 .62 .69 .61 .61
ast-attendgru-fc .70 .61 .61 .70 .58 .59
graph2seq .68 .62 .62 .67 .62 .61
code2seq .67 .61 .61 .67 .62 .61

original dataset 1m dataset
Java / chal. P p £ P . £
attendgru .04 .09 .05 .04 .09 .05
ast-attendgru .60 33 .36 .55 33 34
ast-attendgru-fc 54 43 45 .50 51 43
graph2seq 34 .14 13 25 15 .14
code2seq 24 12 A1 17 12 .10

TABLE III: Overall results of predicting the top-10 action
words under standard (fop) and challenge (bottom) conditions
in the original Java dataset vs 1m dataset.

FCN) and number of model parameters. Nevertheless, in
very similar environments, different performance would be
observed with different numbers of training examples. In our
case, we have set the model and training configuration to be
identical for Java and C/C++ experiments. We may surmise
that the Java and C/C++ datasets are different enough to
produce different results due to the content of the datasets (e.g.
word usage, code structure differences, or other factors), but it
is still possible that performance differences can be explained
by the much larger number of examples in the Java dataset
(2m examples) versus the C/C++ dataset (1m examples).

To mitigate dataset size as a factor, we created a subset
of the Java dataset of equal size to the C/C++ dataset. We
created this dataset by randomly selecting examples from the
full Java training set. The test set is identical. We denote this
dataset as the “1m” dataset in Table III. The “original dataset”
in the table are results of the top-10 action word prediction
using the default 2m Java dataset (note these are duplicated
from the top-10 column in Table I for convenience). The “Im
dataset” are the top-10 results for the baselines when training
only on the Im dataset and testing on the same test set as
the original Java dataset. What we observe is that very few of
the results change on the standard and challenge conditions.
The 1m dataset is about 1% lower in terms of f-score for the
standard set, and 1-2% lower for the challenge set.

We conclude that we did not find evidence that dataset size
alone is the key factor in the difference between Java and
C/C++. The most likely explanation lies in the differences in
code itself, such as a culture of longer identifier names and
more internal documentation in Java [1].

C. RQ3: Challenge Conditions

Recall that challenge conditions are those in which all
textual information in the source code is removed; only the
structure of the code is available to the model for train-
ing and testing [40]. Challenge conditions are something
of a holy grail for code summarization because successful
summarization under challenge conditions would mean that
even totally undocumented code could be described using
automated techniques. Action word prediction under challenge
conditions is a strong starting point because the action word
is very important to the summary overall.

The highest level of performance we observed was for
the get/set condition in both Java and C/C++. In the Java
dataset, the ast-attendgru achieved 96% precision/recall.
It achieved 77% precision and recall for C/C++. We attribute
these high values to predictable structure of getters and setters
in both languages: getters tend to have return data and no
parameters, while setters have parameters and no return data.
Another observation is that context from other functions
seems to have a strong positive impact on results under
challenge conditions — ast-attendgru-£fc routinely obtains
the highest performance and is the only baseline to consider
contextual information. The implication for future work is that
if a function is not described well, it may still be possible to
predict the action word for that function’s summary by looking



at the other functions in the same file. The model may be able
to learn, for example, that if a “read” is present, a “write” is
likely, or that if several other functions in the same file include
the word “initialize”, then this function is also likely to use it.
Performance levels in the challenge set are otherwise low.
Another observation we make in the challenge set is that the
top-10 performance is higher for some models than the top-10n

8 °
Java / chal. g oL o % T*:S - é e 3
top-10 & 2 &% B 5 E 2 g § =2 %
return 2961 23 33402 17 59 3 0 11 0 4605
set 11 8107 14 33 3 6 30 0 0 2862
get 1914 23 33861 35 53 2 0 2 0 328
add 14 179 0 8012 4 2 6 0 0 2315
create 68 15 6 1 48 27 11 0 O 1 1526
initialize 12 40 4 0 3 14275 0 0 0 406
test 38 1 o 1 0 5 5670 3 0 881
remove 24 36 2 23 0 0 1 19 0 0 13%
check 206 6 79 1 1 1 21 0 19 0 1132
is53 30 61 0 O 1 2 0 1 5 481
other 1561 1705 1096 107 79 131 212 12 14 0 25900

5]
C/C++ / chal. g L 3 - g 3 % - 8
top-10 2 % 2 5 8 E =2z 2 5 B %
return 124 9 0 4 0 O O O O O 1858
get25 10 0O 1 O O O O O O 957
set 1 o 3 0 o0 o0 0O 0 0 0 1139
check 3 1 0 100 O 8 0O 0 0 59
call 0 o o o0 1 1 0 O O 0 719
initialize 0 0o 0 0 o0 120 0 1 0 734
is 1 1 0 1 0 4 0 0 0 977
read 1 0o o0 2 o0 o 1 0 0 567
create 0 o 0 o o 1 O o0 4 0 5I5
add 0 0O 0 0 0 1 0 0 0 0 3064
other 76 10 2 11 0 11 0 3 12 0 36663
Java / chal. topr—40 - to;i—lo . top;lOnf , getr/set .
attendgru .01 .02 .01].04 .09 .05|.07 .09 .08|.29 .50 .36

ast-attendgru 26 .12 .12].60 33 36|.36 .22 .24|.96 .96 .96
ast-attendgru-fc | .35 .20 .23 |.54 43 45|.43 27 30|.97 97 97

graph2seq 09 .04 .04].34 .14 .13|.26 .09 .08|.82 .74 .74
code2seq .04 03 .03].24 .12 .11|.18 .09 .08|.79 .78 .78
C/C++ / chal. top-40 top-10 top-10n get/set

p r f p r f p r f p r f
attendgru .02 .02 .02].07 .09 .08|.08 .09 .08|.27 .50 .35

ast-attendgru . . . . . . . . . . .
ast-attendgru-fc | .47 .14 20|.49 20 .26|.66 .12 .15|.82 .81 .81
graph2seq 02 .02 .02].16 .09 .08|.08 .09 .09 |.54 .53 .51
code2seq 02 .02 .02].07 .09 .08|.08 .09 .09|.56 .56 .56

TABLE 1V: (fop) Confusion matrices showing results for
top-10 action words for ast-attendgru, which in challenge
conditions uses only the AST. (bottom) Overall results under
challenge conditions in the Java and C/C++ datasets.

performance. This behavior is opposite of the standard set. In
the standard set, many errors were concentrated in confusion
between get and return. In contrast, under challenge conditions
the baselines tend to place many functions into the “other”
category, except for a few return/get/set functions that they
predict correctly (see the top-10 C/C++ challenge confusion
matrix in Table IV). The ast-attendgru-fc model is the
exception, which we attribute to that model’s access to words
in the file context. The same model without access to file
context (ast—attendgru) achieved much lower performance.

The differences between the Java and C/C++ datasets are
evident in the challenge results. Consider the top-10 results
for ast—-attendgru and ast-attendgru—fc. In the Java
dataset, the ast-attendgru-£c is about 25% higher in terms
of F-measure (36% to 45%). But in the C/C++ dataset, the
performance is well over double (10% to 26%) in terms of
F-measure. Almost all of this improvement is attributable to
increased recall in the get/set/return functions — that is, the
model does a better job of finding these instead of placing
them in the other category. This difference is borne out in
the top-10n results as well. The difference in Java is about
25%, but is nearly double in C/C++. For the top-10n, most
of the improvement in F-measure is due to greatly increased
precision (8% to 66%). The improved precision is because
ast-attendgru-fc avoids misplacing several functions into
the other category, though recall remains quite low because a
majority of functions still end up in other. The takeaway is
that context helps when it is available, even in the extreme
conditions of the challenge set, but existing models are still
far away from real-world usability.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we introduce “action word prediction” as a
complementary problem to source code summarization. We
argue that action word prediction is a key component of code
summarization, because 1) high quality summaries tend to use
an action word as the first word in the summary, and 2) the
first word of a prediction tends to have a high impact on
the subsequent predictions from a model. A key point is that
source code summarization tools very often need to predict the
action word anyway, so a special emphasis on this problem
is justified due to that word’s importance. We articulate our
problem definition and supporting evidence in Section IV.

During our experiments, we observed many cases in which
incorrect action word prediction led to incorrect source code
summary generation. Consider Figure 3 for one example. The
first 16 tokens in the preprocessed context (and the associated
unpreprocessed code, for comparison) is visible. Each position
in the context is associated with a position in the x-axis of
the heatmaps. Each position in the summary is associated
with a position in the y-axis. The ast-attendgru baseline
from ICSE’19 [40] predicts the action word “return.” The
upper heatmap is the attention network when predicting the
next word: strong attention is visible in the first and second
position, which is the return type (a char pointer). The model
predicts “a pointer to” as a result. On the other hand, if we feed



the model the correct action word (lookup), then the attention
for the next word is on the fifth position, which is the start
of the parameter list. This attention makes sense because a
“lookup” function is likely to look up something that has been
passed in as a parameter.

Because of the impact of action word prediction on code
summarization, we also argue that source code summarization
tools should be evaluated in terms of action word prediction
in addition to the overall prediction accuracy. The traditional
techniques for evaluation include automated scores such as
BLEU and/or human studies. The automated scores are calcu-
lations of overlap to a reference summary and, while helpful
in giving an overall view of performance, do not provide a
detailed view of where problems in a prediction occur. For
example, using the word “an” instead of “a” in a summary
is considered BLEU to be an error of equal weight to using
“add” and “remove.” On the other hand, human studies give
a detailed view of errors, but are extremely expensive and
are not feasible for evaluating small changes to a model or

reference
model output
— given correct a.w.

lookup chunk type debug name
return a pointer to the chunk of chunk
lookup chunk type debug name

const char sctp cname const sctp subtype

context  t cid if cid chunk 0 return illegal chunk <TRUNC>
const char *sctp_cname (const sctp_subtype_t cid)
{
if (cid.chunk < 0)
raw return "illegal chunk <TRUNC>
<st> 1
return 2
3
predicting 4
Jnext word 5
6
7
8
9
10
11
12
13
123456789 10111213141516
<st> 1
lookup 2
3
predicting 4
Jnext word 5
6
7
8

—_—— e = O
w N = O

123456789 10111213141516

Fig. 3: Comparison of attention networks after predicting the
action word in a baseline published at ICSE’ 19 [40]. The lower
heatmap shows attention correctly applied after the correct
action word is used. The upper heatmap shows how the model
attends to a different area of code, leading the model to
produce incorrect prediction after an incorrect action word.

in providing quick feedback to a researcher. For example, a
grid search during parameter optimization may require dozens
or hundreds of different configurations of the same model. It
is not practical to expect a human study for each of these
configurations. At the same time, using BLEU or similar
scores may not provide a detailed enough picture to select
the optimal configuration.

What we propose is that researchers evaluate the action
word prediction quality of their source code summarization
techniques in addition to, or even in certain cases in lieu
of, the overall summary prediction quality. We demonstrate
in an experiment how this evaluation can be performed using
common, well-understood metrics such as precision and recall.
We show this evaluation over datasets in different languages
(C/C++ and Java) and conditions (standard and challenge).

For some cases such as challenge conditions, the problem
of source code summarization may be too difficult to solve
directly. The situation is analogous to early AI problems
in which chess playing algorithms were used as a wedge
against larger, even more difficult problems [9]. A more recent
example is in computer vision, how image classification started
with simple examples of classifying very different objects
e.g. faces versus furniture, before moving to more difficult
problems [70]. What we recommend is to use action word
prediction as the “wedge” towards source code summarization.
The idea is that in very difficult conditions, a reasonable target
problem is to correctly predict only the action word of a
summary. If the problem of action word prediction can be
solved with high accuracy, then the research community would
be better placed to solve code summarization more generally.

VIII. REPRODUCIBILITY

To encourage reproducibility and aid other research groups,
we have released all data, source code, scripts, and tutorial
information in an online appendix:

https://github.com/actionwords/actionwords
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