
Action Word Prediction for Neural Source
Code Summarization

Sakib Haque∗, Aakash Bansal∗, Lingfei Wu† and Collin McMillan∗
∗Dept. of Computer Science, University of Notre Dame, Notre Dame, IN, USA

{shaque, abansal1, cmc}@nd.edu
†IBM Research, Yorktown Heights, NY, USA

{wuli}@us.ibm.edu

Abstract—Source code summarization is the task of creat-
ing short, natural language descriptions of source code. Code
summarization is the backbone of much software documentation
such as JavaDocs, in which very brief comments such as “adds
the customer object” help programmers quickly understand a
snippet of code. In recent years, automatic code summarization
has become a high value target of research, with approaches
based on neural networks making rapid progress. However, as
we will show in this paper, the production of good summaries
relies on the production of the action word in those summaries:
the meaning of the example above would be completely changed if
“removes” were substituted for “adds.” In this paper, we advocate
for a special emphasis on action word prediction as an important
stepping stone problem towards better code summarization –
current techniques try to predict the action word along with
the whole summary, and yet action word prediction on its own
is quite difficult. We show the value of the problem for code
summaries, explore the performance of current baselines, and
provide recommendations for future research.

Index Terms—neural networks, source code summarization,
automatic documentation generation, AI in SE

I. INTRODUCTION

The task of creating short, natural language descriptions of

source code has come to be known as “source code summa-

rization.” Code summarization is the backbone of a plethora

of documentation such as JavaDocs [1], in which the natural

language description (the “summary”) provides a quick way

for programmers to understand the software’s components.

Very often, these summaries are written for subroutines, so

that programmers can read that a subroutine e.g. “computes

the dot product of two vectors” rather than interpret the source

code itself. Traditionally, programmers write these summaries

around the time they write the code, to help other programmers

in understanding that code.

Automatic code summarization has been a dream of software

engineering researchers for decades. Forward et al. [2] ob-

served almost 20 years ago that “software professionals value

technologies that improve automation of the documentation

process,” and “that documentation tools should seek to better

extract knowledge from core resources.” Efforts in this direc-

tion have begun to bear fruit, especially in the last five years

with the introduction of neural models for code summarization.

A confluence of work in both the AI and SE communities

has pushed the state-of-the-art to a point where real-world

automatic code summarization seems within reach.

Yet, as we will show in this paper, very often these tech-

niques owe their good performance on their ability to predict

the first word of the summary. Some of the reasons for this are

technical: Existing techniques tend to be based on an encoder-

decoder architecture (e.g. seq2seq, graph2seq) in which the

output summary is predicted one word at a time. The first word

is predicted first, then that first prediction is used to predict

the second word, and so on. If the first word is wrong, the

model can have a hard time recovering. This situation can be

exaggerated by the aggressive use of attention mechanisms (as

in Transformer-based models [3]), which can attend previous

words in the predicted summary to parts of the source code.

Often each subsequent word depends more and more on the

previous predictions.

A more fundamental reason the first word is important is

that the first word tends to be the action word in code sum-

maries. As we will show (and in line with style guides [1], [4]),

summaries usually fall into a pattern where the action word

not only occurs first, but sets the tone for the whole summary.

Consider examples such as “initializes the microphone for the

web conference”, “sets the current speaker’s volume”, and

“sorts the list of connected users.” A lot of information is

communicated just by knowing that the code initializes, sets,

or sorts. The rest of the summary depends on that information,

begging the question: initializes/sets/sorts what?

The importance of early predictions in text generation

models has been recognized in the NLP community for years,

with several proposed technical workarounds e.g. beam search

and alternative training strategies. Meanwhile, the prevalence

of verb-direct object patterns in code summaries has long

been observed in SE literature [5]. What is not yet recognized

is the special importance of the action word in source code

summarization, and how to leverage this importance to create

better summaries overall.

Clues about how to leverage this importance can be ob-

served from the progression of the literature on neural code

summarization. As we show in Section III, one strong con-

sensus is that code structure helps “somehow.” Almost imme-

diately after the first applications of neural models to code

summarization, efforts started focusing on how to combine

structural information such as the abstract syntax tree with

the text from the code (after all, combining structure and text

has a long history in SE literature [6]).

a
rX

iv
:2

1
0
1
.0

2
7
4
2
v
1

[c

s.
S

E
]

 7
 J

a
n
 2

0
2
1

What we observe, in a nutshell, is that neural models

that perform well either 1) extract the action word from

the text such as the function name e.g. “sorts” for function

“sortSpeakers”, or 2) use the structure to help detect what

action word to use. This second case is possible because

there are different types of functions that tend to have similar

structure. A simple example is to compare getters and setters.

Getters tend to have no parameters and return something, while

setters tend to have a parameter and no return. Even without

any text at all, it is possible to detect whether a function is a

getter or a setter just by looking at the code structure. Once

the first word is selected accurately, the model has a much

better chance at writing the rest of the summary.
In this paper, we propose the problem of action word

prediction as a stepping stone towards better neural models

of code summarization. We demonstrate several advantages

to targeting action word prediction in conjunction with code

summarization, namely: 1) good action word prediction leads

to good summary prediction overall, 2) prediction of the

action word is often possible from the code structure alone,

which avoids a dependence on good internal documentation,

and 3) action word prediction is 10-20x faster than code

summarization, which is important in practice because training

times range 10-15 minutes instead of 1-5 hours.
We propose several configurations of action word prediction

which we find to be especially useful. We build several base-

lines inspired by recent literature, create two large datasets,

and demonstrate baseline performance on these datasets. We

make recommendations about good practice for using action

word prediction as part of evaluation of code summarization

techniques. We release all datasets and code to the public via

our online appendix (see Section VIII).

II. PROBLEM SUMMARY

We call the problem we target in this paper “action word

prediction.” An action word is a verb that describes what

changes one actor performs to another [7], [8]. Typically

code summaries have one action word that broadly classifies

what the code does (gets, sets, initializes, sorts). The problem

definition is essentially: given a component of source code,

predict the action word to be used in the summary. Action

word prediction is necessary to code summarization, and

special emphasis on this part of the problem serves as a key

stepping stone towards better code summarization.
This work follows a long tradition of creating smaller aca-

demic problems that lead to progress in bigger problems. The

intellectual heritage of this tradition was neatly summarized

in 1950 in Claude Shannon’s famous paper on the academic

problem of automatically playing chess [9]:
“Although perhaps of no practical importance, the question
is of theoretical interest, and it is hoped that a satisfactory
solution of this problem will act as a wedge in attacking other
problems of a similar nature and of greater significance.”

In other words, even though action word prediction is not

necessarily useful to practitioners today, it is still a useful

problem to address because of its necessity and value in

solving problems that are.

III. BACKGROUND AND RELATED WORK

The related work of this paper includes any work that seeks

to generate natural language descriptions from source code.

While an exhaustive survey of this work is beyond the scope

of this paper, we provide a snapshot of the previous ten years

in Figure 1 below. This list includes only the first appearance

of ideas (i.e. not journal extensions) in peer-reviewed, full-

length technical papers, and is narrowly defined as approaches

in which the input is source code and the output is natural

language (detailed history of code summarization and neural

representations of code for other purposes has been chronicled

by several surveys [45]–[49]). Yet a trend is immediately

clear: A first generation of techniques relied on Information

Retrieval (IR) or manually-defined heuristics to extract words

from source code (for example, by using TF/IDF to pick

the top-n words [10], [50]), and templates to place those

words into readable sentences (exemplars in this category are

presented in [11], [17]). An important strength in this first

IR M T A S
*Haiduc et al. (2010) [10] x
*Sridhara et al. (2011) [11] x x
*Rastkar et al. (2011) [12] x x x
*DeLucia et al. (2012) [13] x
*Panichella et al. (2012) [14] x x
*Moreno et al. (2013) [15] x x
*Rastkar et al. (2013) [16] x
*McBurney et al. (2014) [17] x x
*Rodeghero et al. (2014) [18] x
*Rastkar et al. (2014) [19] x
*Cortés-Coy et al. (2014) [20] x
*Moreno et al. (2014) [21] x
*Oda et al. (2015) [22] x
*Abid et al. (2015) [23] x x
*Iyer et al. (2016) [24] x
*McBurney (2016) [25] x x
*Zhang et al. (2016) [26] x x
*Rodeghero et al. (2017) [27] x
*Fowkes et al. (2017) [28] x
*Badihi et al. (2017) [29] x x
*Loyola et al. (2017) [30] x
*Lu et al. (2017) [31] x
*Jiang et al. (2017) [5] x
*Hu et al. (2018) [32] x
*Hu et al. (2018) [33] x x
*Allamanis et al. (2018) [34] x x
*Wan et al. (2018) [35] x x
*Liang et al. (2018) [36] x x
*Alon et al. (2019) [37], [38] x x
*Gao et al. (2019) [39] x
*LeClair et al. (2019) [40] x x
*Mesbah et al. (2019) [41] x x
*Nie et al. (2019) [42] x x
*Haque et al. (2020) [43] x x
*Haldar et al. (2020) [44] x x
*Ahmad et al. (2020) [3] x x

Fig. 1: Selection of closely-related, peer-reviewed publications in the
previous ten years. Column IR indicates if the approach is based on
Information Retrieval. M indicates manual features/heuristics. T in-
dicates templated natural language. A indicates Artificial Intelligence
(usually Neural Network) solutions. S means structural data such as
the AST is used (for AI-based models).

generation is that they tended to be built on a solid foundation

of empirical evidence of what is important to programmers.

For example, Moreno et al. [15] designed sentence templates

for Java classes based on specific studies of programmers’

needs in documentation. However, a weakness is that it was

infeasible to write manual heuristics capable of considering

the huge range of program behavior. The response was that

between 2015 and 2017, a second generation of approaches

based on AI (specifically, neural networks) rose to prominence.

These approaches were enabled by complementary research in

mining software repositories that provided access to datasets

with millions of examples of code and summaries [51], [52],

as well as evidence that source code is “natural” [53] in that

it follows patterns similar to natural language.

The workhorse of second generation code summarization

approaches is the encoder-decoder neural architecture in which

the source code is the encoded input and the summary is

the decoded output. A majority use this technology off-the-

shelf from the NLP research area for machine translation [54],

albeit with different preprocessing steps intended to highlight

different areas of code such as Iyer et al. [24]. The trend in the

past two years has been to squeeze ever more information from

the source code, with the Abstract Syntax Tree (AST) being

by far the most popular target. Hu et al. [33] and LeClair et

al. [40] explore different configurations of using the AST,

Alon et al. [55] use static paths in the tree, and Allamanis et

al. [34] propose modeling the AST with a graph neural net.

Hints as to why structure helps code summarization were

provided by LeClair et al. [40] in what they called a “chal-

lenge” experiment. The experiment was essentially an extreme

ablation study in which only the AST was available to the

model for training and test – no text from the source code at

all. The study found performance in the range of 9-10 BLEU

points (compared to 19-20 for AST+text configurations),

which is actually quite remarkable considering the extreme

experimental conditions. What they found is that the model

recognizes structural features to determine that a function e.g.

deinitializes data structures, even if no details about what is

deinitialized are available (see Example 2 in [40]).

The same year and working independently, Alon et al. [37]

found additional evidence that structure helps identify a gen-

eral purpose behind functions, even if the model must rely

on text data to understand specific details. In the example in

Figure 1(b) of [37] they demonstrate how a path in the AST

helps the model decide that a function replaces some infor-

mation with some other information. That example is used as

motivation for their path-based AST summarization approach.

While these papers do not say so explicitly, essentially they

are showing how structure helps determine the action word of

the summary (closes a network connection, replaces a string

in a text file), while remaining dependent on the textual data

in a code to write the rest of the summary.

At a high level, the trend in code summarization research

is to leverage more domain-specific knowledge, while moving

away from models designed for text processing. Our goal in

this paper is to help focus this trend.

IV. ACTION WORD PREDICTION

In this section, we provide our definition of action word

prediction and advocate for a focus on this problem towards

better source code summarization. The crux of our argument

is that action words are important parts of code summaries,

so code summarization tools need to predict action words

anyway. Since action words are fundamental to the meaning

of code summaries, it is especially important to predict them

well. We also observe that action words have an outsize

effect on current AI-based models for code summarization,

so future advances are likely to require improved action word

prediction. We build our case in this section based on analysis

of state-of-the-art techniques over a curated dataset of over

2.1m Java method summaries [52] as well as 1.1m C/C++

function summaries that we collected from GitHub for this

paper. We use four recent approaches ([24], [40], [55], [56],

described in more detail in Section V-B1) and BLEU scores

of those approaches over these datasets, to be consistent with

evaluation practice in those papers.

Definitions An “action word” in a source code summary is a

word that broadly classifies what the code does (as mentioned

in Section II). This almost always means a verb. Common

programming parlance separates code functions into e.g. “get-

ters”, “setters”, “initializers”. As we will show, this parlance

is fundamental to how programmers write code summaries:

programmers tend to write summaries that contain only one

action word, that word tends to occur in the first position of

the sentence, and very often it is the only verb in the sentence.

word # R word # R
1. return 296287 0.58 21. insert 8729 0.01
2. set 280213 0.93 22. describe 8611 0.34
3. get 197072 0.45 23. use 8512 0.01
4. add 78769 0.88 24. load 8425 0.01
5. create 65044 0.69 25. delete 8312 0.68
6. initialize 56093 0.86 26. convert 8162 0.75
7. test 52116 0.68 27. start 7854 0.32
8. remove 35416 0.75 28. clear 7828 0.55
9. check 33852 0.01 29. print 7507 0.77

10. is 20669 0.04 30. find 7370 0.68
11. call 19459 0.03 31. reset 7066 0.40
12. retrieve 18035 0.33 32. save 7038 0.73
13. update 15145 0.06 33. send 6950 0.77
14. automate 12778 0.69 34. generate 6936 0.48
15. write 12380 0.91 35. close 6834 0.56
16. determine 12170 0.64 36. compare 6684 0.55
17. read 9774 0.90 37. indicate 6434 0.55
18. handle 9439 0.54 38. perform 6317 0.01
19. to 9356 0.34 39. change 6081 0.01
20. if 8880 0.01 40. show 5955 0.20

Fig. 2: The forty most common first words and number of

occurrences in the training set of the 2.1m Java method dataset

provided by LeClair et al. [40] (these top forty cover 71% of

the training set). Column # is the number of times that word is

the first word of a summary in the training set (post stemming).

Column R is the percent of methods with reference summaries

with that action word, that a recent baseline [40] predicted to

have that word (this is effectively the recall for that word).

Figure 2 shows the top-40 most-common action words

that we extracted from the dataset of 2.1m Java methods

provided by LeClair et al. [52]. Our procedure for extracting

these words was to use an English language parser to locate

the first verb in the sentence, then to stem those verbs to

remove conjugation. (We used the Stanford NLP parser and

the NLTK PorterStemmer, our scripts are available in our

online appendix, see Section VIII.) The only exceptions to this

procedure were for the words “is”, “to”, and “if.” The reason

for this exception is that there is a very common pattern in

code summaries in which those three words broadly classify

what methods do, even if they are not typically used as action

verbs in English. Namely, “is” tends to be used for code that

checks type usage in object oriented programs, “to” often

refers to code that changes objects from one type to another,

and “if” often indicates a method checks a particular condition.

It is important to recognize that action words are broad

classifications of code behavior rather than rigidly-defined

categories. A scholarly view is that action word prediction

is an instance of the concept assignment problem [6] in

which words must be used to describe the high level concepts

encoded in the low level programming details. In other words,

a programmer can have an intuitive idea of the difference

between functions that “add” versus “delete”, and this idea

informs what the content of the natural language summary

should be. This intuition cannot be clearly articulated into

rules defining the difference. And yet, code summarization

techniques must decide which word to use.

A key point we are trying to make in this paper is that

existing code summarization techniques already try to predict

the action word, and yet action word prediction on its own

is extremely difficult. Since almost all code summaries put

the action word first, existing tools end up trying to predict

this word first. If the techniques make a poor prediction, the

entire summary is likely to be difficult to understand correctly.

Therefore, we advocate for a special emphasis on action word

prediction as a stepping stone to code summarization.

Action words are critical to summaries. A common per-

ception about source code summaries is that they should and

most-often do begin with a verb phrase followed by a direct

object. This pattern has been recommended for over 20 years

by Kramer [1], is highlighted by several style guides such as

by Google [57] and Microsoft [4], and has been observed in

consistent use in good quality code change documentation [5].

We make a similar observation in both the Java dataset

from LeClair et al. and the C/C++ dataset we created. In Java,

we found that 94.80% of method summaries have an action

word, of which 56.53% have one and only one action word.

In 80.60% of comments, an action word is the verb in the first

position. In 5.10% of cases, an action word is in the second

position, and in 9.68% of cases, an action word is in the third

position following a simple subject such as “this method.”

Only 5.60% did not have an action word in the first, second

or third position. And overall in Java, of the summaries with

action words, that word is the only verb 54.75% of the time.

So not only are action words perceived as important by style

guides and academic literature, programmers actually follow

these patterns when writing documentation.
Another observation we make is that some action words

are harder to predict than others. As mentioned above, the

decision of which action word to use is a challenge even for

humans, who rely on their own intuition rather than strict rules.

Consider column R in Figure 2. That column is the recall of

ast-attendgru, a baseline published at ICSE’19 [40], when

generating summaries over the Java dataset (we extracted these

predictions directly from their online reproducibility package

and compared them to the reference summaries, after applying

stemming to both predictions and references). While many

factors affect prediction and it is important not to take the

numbers too literally, it is clear that recall varies considerably

for different action words. For example, recall for “convert”

is 75% versus 32% for “start”, even though the number of

samples is comparable. The reason, according to experimental

evidence by LeClair et al. [40], is probably that “convert”

methods tend to have a more similar structure than “start”

methods, which helps the model to recognize those methods.

The point is that many action words are very difficult to

predict, and if a model cannot chose the action word properly,

the entire summary is likely to be incorrect.
In addition, existing models perform far better when they

correctly predict the action word. Consider the table below

of BLEU scores for four recent baselines that we trained

and tested with both datasets under identical model settings

(e.g. vocab size, RNN length, see our online appendix in

Section VIII for the implementation). The column default is

the BLEU score over the whole test set, AW c. is the BLEU

score for just the portion of results when the action word was

correctly predicted, AW i. is when the action word was not

correctly predicted. The column AW i.c. is a unique setting

we created in which we fed the model the correct action word,

then let the model predict the rest of the summary (calculated

only on the set when the model had incorrectly predicted the

action word). Note that all of these BLEU scores only include

the part of the summary without the action word, to avoid

boosting scores just because the action word is corrected.

(Java dataset) default AW c. AW i. AW i.c.
attendgru [24] 14.63 22.21 6.16 9.35
ast-attendgru [40] 15.29 23.15 6.36 9.32
graph2seq [56] 14.54 22.23 6.05 8.93
code2seq [55] 14.73 22.55 6.16 9.08

(C/C++ dataset) default AW c. AW i. AW i.c.
attendgru [24] 30.60 52.35 3.95 8.13
ast-attendgru [40] 30.08 51.69 3.68 7.65
graph2seq [56] 22.72 43.97 2.97 6.83
code2seq [55] 7.33 17.48 1.2 3.03

Performance is roughly 60% higher when the model predicts

the action word correctly. Good performance is associated with

good action word prediction. Also, performance of the AW i.

set improves 60-100% if the model is given the correct action

word. The models tend to do much better when the action

word is correct regardless of the function – it is not only that

some functions are harder to summarize overall. The action

word is a key factor in generating good summaries.

V. EXPERIMENTS

We conduct several experiments exploring action word pre-

diction in the context of existing source code summarization

techniques. We study the effects of different factors on the

performance of several baselines.

A. Research Questions

Our major motivation for this paper is to establish action

word prediction as a stepping stone towards better source code

summarization. In earlier sections, we discussed the motivation

in terms of related literature and evidence that action word

prediction is likely to lead to better code summarization. In

this section, we pose the following three Research Questions

(RQs) towards studying how well current code summarization

approaches perform during action word prediction, and key

factors affecting the performance.

RQ1 What is the performance of the action word predic-

tion of recent code summarization techniques?

RQ2 What is the difference in performance between Java

and C/C++ datasets?

RQ3 What is the difference in performance under standard

and challenge test conditions?

The rationale for RQ1 is that (as we established in the previ-

ous section) existing code summarization tools must do action

word prediction as part of code summarization anyway, and

different approaches are likely to have different performance

characteristics on action word prediction. Since we propose

action word prediction as a stepstone problem towards code

summarization, we study how well current approaches perform

to establish a baseline for further work. Likewise, the rationale

for RQ2 is that different languages tend to have different

“cultures” and standards for documentation, and it is plausible

that these effects are quite large. Most research in code

summarization focuses on one language (usually Java), and

the literature is not yet clear on how well results generalize.

The rationale for RQ3 is to quantify how well existing

approaches can predict the action word of a summary in the

case when only source code structure is available. Source code

summarization, like many program comprehension research

problems, is highly dependent on the words used in the source

code. LeClair et al. found that BLEU scores approximately

halve when words are not available and the tools must rely

solely on code structure [40]. They term the situation when

only code structure is available as a “challenge” experiment,

in contrast to a “standard” experiment when both structure

and words from code are available. However, as pointed

out in Section III, an increasing number of research efforts

are finding that code structure significantly improves code

summarization. Evidence from Alon et al. [37], LeClair et

al. [40], [64], and Haque et al. [43] all point to how code

structure seems to help code summarization tools broadly

classify code behavior, even if good internal documentation

is required to produce detailed summaries. We surmise that a

way structure manifests itself in summaries is via the action

word, and therefore ask RQ3.

B. Methodology

Our methodology for answering our research questions is,

essentially, to train each baseline over each dataset, then use

established quantitative metrics to measure the difference in

performance over the test set for that dataset. This is the typical

evaluation procedure used in a vast majority of source code

summarization papers, except modified slightly to measure the

action word prediction instead of the entire summary.

Note that we use a data-driven experiment design rather than

a human study. While it is tempting to suggest that a human

study is always superior, in fact for comparison in this paper

a data-driven evaluation has several advantages. The situation

is akin to machine translation around the late 1990s: the

introduction of data-driven evaluation procedures and metrics

(such as BLEU [65]) led to a revolution of progress because

it was possible to consistently evaluate tens of thousands

of examples. Human studies certainly have the advantage of

allowing for deep subjective evaluation, but there are also two

major disadvantages: 1) including humans restricts the amount

of output that can be evaluated to perhaps a few hundred

examples, and 2) humans are subject to the vicissitudes of

nature e.g. fatigue and biases, which means that the results are

not reproducible. That is why almost all code summarization

papers also use data-driven evaluations – the ability to quickly

evaluate large datasets and reproduce those findings under

controlled settings is an important benefit to overall progress.

Our training procedure is to train each baseline for a

maximum of 10 epochs or 30 hours, and select the model

that achieved the highest validation accuracy. The code2seq

baseline running on the C/C++ dataset was the only approach

to timeout at 30 hours. All other configurations (including

code2seq for Java) completed 10 epochs within 30 hours.

1) Baselines: While there is a plethora of available code

summarization techniques (see Section III), we choose five

that are broadly representative of different families of ap-

proaches. Namely, seq2seq-like approaches that treat code as

text, approaches that flatten the AST in the encoder, tree and

graph neural network solutions, and path-based approaches. In

all cases, we reimplement the approaches using a framework

provided by Haque et al. [43]. We used their framework in

order to minimize experimental variables – we do not use

individual implementations provided in different reproducibil-

ity packages. The reason is that many factors change such as

RNN length, vocab size, dataset preprocessing, etc. To ensure

veracity of the results, we use a single experimental framework

for implementation to control these factors. See our online

appendix for full implementations (Section VIII).

attendgru This baseline is representative of seq2seq-like

approaches as proposed by Iyer et al. [24]. This is the only

approach that does not explicitly include the AST, so this

baseline is not applicable to the challenge experiments.

ast-attendgru This baseline represents approaches that

flatten the AST into a sequence, then use a seq2seq-like

approach to create the summary. Our implementation is from

LeClair et al. [40] but is closely-related to other flat AST

techniques e.g. Hu et al. [33].

ast-attendgru-fc Haque et al. [43] proposed an exten-

sion to code summarization tools that includes “file context”,

which they define as all the other functions in the same file

as the function being summarized. This baseline is the best-

performing solution from their experiments. It is identical to

ast-attendgru except with their “file context encoder.”

graph2seq Allamanis et al. [34] use a graph neural net-

work (GNN) to model the AST. Their paper focuses on code

generation, but suggest that it is possible to use the GNN

encoder for code summarization as well. Haque et al. [43]

provide an implementation based on graph2seq by Xu et

al. [56], and we use this implementation as a baseline.

code2seq Alon et al. [37], [38] are pursuing path-based

encoding solutions that, in short, randomly select 100-200

paths in the AST and use an attention mechanism to attend to

different paths for different words. We use their approach as

a representative of path-based solution.

This list of baselines is not an exhaustive list of approaches

from all papers. We instead pick one approach representative

of different families of approaches. However, readers may note

that we did not include approaches that focus on novel training

procedures or optimizers (e.g. approaches that use combined

reinforcement and deep learning [35]). There are two reasons

for this decision. First and foremost, those approaches use

RL or other techniques to help train the model on entire

summaries, and since summaries are almost always predicted

one word at a time, the benefit almost entirely appears when

writing the latter parts of the summaries. Second, those ap-

proaches introduce a large number of additional experimental

variables which are difficult to control. We did not use a

Transformer-based approach because Haque et al. [43] report

that low performance from Transformer models (however, just

as this paper was going to review, Ahmad et al. [3] released

a Transformer-based model accepted to ACL’20.).

2) Metrics: We use precision, recall, and F-measure to

evaluate the performance for action word prediction [66]. We

also use confusion matrices to visualize performance across

difference words. Essentially what we do is treat each action

word as a class into which a subroutine can be placed.

So for example, a function may be a “get” subroutine, an

“insert” subroutine, etc. Note that this is different than code

summarization, where typically BLEU or ROUGE scores are

used to evaluate a whole sentence – we only use BLEU when

we have a full sentence to evaluate.

3) Datasets: We create two action word prediction datasets

from two code summarization datasets. First, as mentioned

above, we use a Java dataset of 2.1m method/summary pairs

for code summarization provided by LeClair et al. [52].

Second, we create our own C/C++ dataset of 1.1m func-

tion/summary pairs, by downloading 18,775 C/C++ projects

from GitHub and following LeClair et al.’s recommenda-

tions from NAACL’19 for code summarization datasets (e.g.

splitting by project, removing auto-generated code, mini-

mum/maximum summary lengths, and other quality filters).

We use a model published by Eberhart et al. [67] to extract

the summary from comments for C/C++ functions, since

C/C++ tends not to have the same rules for writing subroutine

summary documentation as Java.

Two steps were necessary to convert the code summarization

datasets to action word prediction datasets. First, we extract the

action word from each summary by using the Stanford NLP

package [68], except for summaries that start with the word

“is”, “to”, or “if”, for reasons discussed in Section IV. Second,

we used the NLTK PorterStemmer on each action word

because of the large number of patterns such as “initializer

for ...” and “initializes ...” Stemming has the effect of reducing

the vocab size by grouping words together, which is different

from code summarization in which stemming is rare.

C. Threats to Validity

Like all experiments, this paper carries threats to the validity

of the results. Three threats loom the largest: One threat is that

the data may not be representative. We attempt to mitigate

this risk by using large datasets in different languages, but

the reality is that different data may lead to different results.

Another threat is that the scripts we use to extract action

words, stem words, etc., do not have perfect accuracy. We use

community best practices to minimize errors, and release all

scripts online vote public vetting, but again, results may differ

under different conditions. The datasets are simply too large

to allow for large-scale manual inspection. Finally, we did not

test if masking another word, for example a noun instead of

the verb, gives the same results. We believe that action words

are very specific and cannot be replaced with generic verbs

to convey the same meaning, but nouns can be replaced with

pronouns.

VI. EXPERIMENTAL RESULTS

We present our experimental results in the form of an-

swers to each research question from the previous section.

To condense results and make the key points understandable

in the paper, we present results using four settings: top-40,

top-10, top-10n, and get/set. The top-40 setting means that

the models attempt to predict the forty most-common action

words, or “other” if predicted ot be a less-common action

word. The forty most-common action words covers over 71%

of the training set and aligns with the discussion in Section IV.

The top-10 setting is similar except that it covers only the ten

most-common action words, and is a convenient setting for

presentation due to paper formatting requirements. The Top-

10n is next ten most-common results without get, set, and

return (examples in this category go into the other category).

Since the dataset is somewhat unbalanced towards these top-3

action words, it is plausible that strong performance in these

categories could outweigh poor performance elsewhere. So,

we present top-10n to show performance on other categories.

The get/set setting is a diagnostic setting focusing on get

and set examples only. There is no large “other” category. The

purpose of this setting is to show the limits of the model in an

“easy” situation: plenty of training data and clear conceptual

difference between the two categories. It is not meant as a

realistic situation. The philosophical intent is to create an

experimental setting that we, the research community, should

be able to solve with extremely high accuracy – if we cannot

even distinguish gets and sets words, then we have little

hope of predicting an entire code summary. On the other

hand, the get/set diagnostic problem can serve as a stepping

stone: models that solve it with high accuracy may serve as

a foundation for better code summarization techniques. The

situation is akin to early computer vision models designed

to distinguish e.g. cat from trucks. The idea is a diagnostic

problem that should not be confused for the real world.

A. RQ1: Baseline Performance

In this section, we answer RQ1 in the context of the baseline

performance over the Java dataset in standard conditions. The

lower area of Table I shows the precision/recall values for

the baselines in the four settings described above. The best

overall performer is ast-attendgru-fc. Yet, the difference

over attendgru and ast-attendgru is not high despite

reports from Haque et al. [43] that significant improvement is

possible in terms of BLEU score over the entire code summary.

Our interpretation is that the benefit that ast-attendgru-fc

provides is concentrated in the later portions of the summary

– the action word prediction is similar in all three models.
A possible explanation for this similar performance is that

all three models rely on a recurrent network (a GRU) encoder

of the function’s text information, moderated by an attention

mechanism. It is likely that the attention mechanism learns to

look at the first word of the function name when predicting

Java / stan.

top-10 re
tu

rn

se
t

g
et

ad
d

cr
ea

te

in
it

ia
li

ze

te
st

re
m

o
v
e

ch
ec

k

is o
th

er

return 7748 25 1144 11 70 11 1 5 78 1 1927

set 18 10356 10 40 12 17 2 1 0 0 583

get 5202 19 2595 6 11 9 3 1 8 0 844

add 4 44 2 2925 14 1 10 2 0 0 321

create 80 21 18 40 1015 14 17 0 2 0 496

initialize 31 21 2 2 23 1528 0 0 0 0 290

test 67 2 2 1 1 1 1025 3 23 0 381

remove 6 2 1 1 0 2 3 1132 0 0 354

check 393 8 5 2 3 0 52 3 343 0 657

is 134 36 6 15 11 5 3 6 21 31 366

other 3444 2123 617 493 625 159 549 172 211 4 22420

Java / stan.
top-40 top-10 top-10n get/set

p r f p r f p r f p r f
attendgru .54 .45 .46 .68 .63 .61 .71 .52 .53 .99 .99 .99
ast-attendgru .59 .44 .46 .67 .62 .62 .70 .53 .53 .99 .99 .99
ast-attendgru-fc .53 .47 .46 .70 .61 .61 .73 .50 .52 .99 .99 .99
graph2seq .53 .47 .47 .68 .62 .62 .70 .53 .54 .99 .99 .99
code2seq .55 .45 .47 .67 .61 .61 .71 .53 .54 .99 .99 .99

TABLE I: (top) Confusion matrix showing results for top-

10 action words for ast-attendgru-fc, the best performer in

terms of f-measure. (bottom) Overall results under standard

conditions in the Java dataset.

the first word of the summary. In fact, in the Java dataset,

we found that 43% of the methods have the summary’s action

word within the first four words in the method’s signature (e.g.

the verb “convert” for the method “convertMp3toWav”) and

67% have the action word somewhere in the method.

In contrast, graph2seq had much lower performance,

despite competitive BLEU scores when creating a whole

summary (see [43], [69], plus Section IV). The reason may

be explained by recent results by LeClair et al. [69]: the

graph neural network design excels at choosing related next

words in a summary by exploiting the graph’s connections,

but can actually perform worse when these connections are

not available – significant configuration is necessary and

competitive performance cannot be expected out of the box.

The confusion matrix at the top of Table I shows

that top-10 results for Java under standard conditions for

ast-attendgru-fc. In general, a clear centerline is visible

as the model correctly predicts a majority of the action

words. One observation is that the model tends to confuse

action words that are conceptually similar more often than

conceptually distinct ones. For example, “get” and “return” are

often interchangeable, so it is unsurprising that a significant

number of the errors are from mistaking just these two words.

Also, words like check/test and create/initialize tend to be

confused. In contrast, the model make very few errors for

words with distinct meanings such as add/remove and get/set.

The model had little trouble distinguishing get and set under

standard conditions in Java.

C/C++ / stan.

top-10 re
tu

rn

g
et

se
t

ch
ec

k

ca
ll

in
it

ia
li

ze

is re
ad

cr
ea

te

ad
d

o
th

er

return 926 79 2 32 6 4 7 18 5 4 912

get 50 529 3 4 4 1 10 9 2 0 381

set 7 5 597 0 7 8 11 0 1 1 506

check 9 2 1 333 0 2 8 0 0 1 253

call 0 2 7 0 472 4 4 0 2 2 228

initialize 6 1 4 0 6 489 2 0 6 0 233

is 21 8 7 9 4 5 469 1 1 1 458

read 7 9 1 0 1 0 0 362 1 0 190

create 6 1 0 0 2 13 2 0 286 1 209

add 3 2 0 0 3 3 2 0 2 211 139

other 479 334 175 177 216 167 146 128 95 112 34759

C/C++ / stan.
top-40 top-10 top-10n get/set

p r f p r f p r f p r f
attendgru .70 .55 .60 .71 .63 .67 .73 .63 .68 .96 .96 .96
ast-attendgru .69 .55 .60 .72 .61 .66 .75 .62 .67 .96 .97 .96
ast-attendgru-fc .65 .55 .58 .68 .60 .63 .74 .55 .63 .96 .96 .96
graph2seq .70 .49 .55 .71 .60 .65 .77 .57 .65 .95 .95 .95
code2seq .64 .41 .47 .66 .50 .56 .67 .56 .60 .96 .96 .96

TABLE II: (top) Confusion matrix showing results for top-

10 action words for ast-attendgru-fc, the best performer in

terms of f-measure. (bottom) Overall results under standard

conditions in the C/C++ dataset.

B. RQ2: Comparing Java and C/C++

In this section, we compare Java and C/C++ results. Note

that our objective is to start to understand the behavior of

the baselines in these datasets related to the data itself. We

do not claim that one dataset is “better” than another from

these results. Instead, we observe that the baselines almost all

achieved higher levels of performance in C/C++, which seems

to be related to two factors. First, the top-n action words are

different in each language, and even words that are the same

have slightly different meanings. The word “initialize”, for

instance, tends to refer to a specific kind of memory allocation

and initialization in C/C++, compared to Java in which it tends

be used more generally, such as to refer to setting up data in

an arbitrary class structure. The composition of the words is

also slightly different. For example, the word “call” appears in

C/C++, and the models make very few errors when detecting

this word because a vast majority of caller functions have the

word call in their name.

Second, errors in the Java dataset are somewhat concen-

trated in the word “return.” One possible explanation is a cul-

tural tendency among Java programmers to write summaries in

the form “returns ...” instead of an action word in some cases.

For example, Java programmers seem to be more likely to

write “returns whether ...” instead of “checks ...”, which seems

to lead to a significant number of errors in confusing “check”

for “return.” Since the training and test sets are derived from

examples of human-written summaries, any model is likely to

learn these errors. Note that we do not recommend a specific

remedy, other than to be aware that these factors do exist

in datasets of source code summarization and may require

adjustments based on the model and use case.

We also note that the differences between Java and C/C++

cannot be explained merely by the different size of the dataset.

In any neural network-based solution, a question will arise as

to how many examples are necessary to train the model. An-

swering this question depends on the diversity of the dataset,

training configuration settings such as learning rate, and details

of the model itself such as the architecture (e.g. RNN, CNN,

Java / stan.
original dataset 1m dataset

p r f p r f

attendgru .68 .63 .61 .68 .61 .60
ast-attendgru .67 .62 .62 .69 .61 .61
ast-attendgru-fc .70 .61 .61 .70 .58 .59
graph2seq .68 .62 .62 .67 .62 .61
code2seq .67 .61 .61 .67 .62 .61

Java / chal.
original dataset 1m dataset

p r f p r f

attendgru .04 .09 .05 .04 .09 .05
ast-attendgru .60 .33 .36 .55 .33 .34
ast-attendgru-fc .54 .43 .45 .50 .51 .43
graph2seq .34 .14 .13 .25 .15 .14
code2seq .24 .12 .11 .17 .12 .10

TABLE III: Overall results of predicting the top-10 action

words under standard (top) and challenge (bottom) conditions

in the original Java dataset vs 1m dataset.

FCN) and number of model parameters. Nevertheless, in

very similar environments, different performance would be

observed with different numbers of training examples. In our

case, we have set the model and training configuration to be

identical for Java and C/C++ experiments. We may surmise

that the Java and C/C++ datasets are different enough to

produce different results due to the content of the datasets (e.g.

word usage, code structure differences, or other factors), but it

is still possible that performance differences can be explained

by the much larger number of examples in the Java dataset

(2m examples) versus the C/C++ dataset (1m examples).

To mitigate dataset size as a factor, we created a subset

of the Java dataset of equal size to the C/C++ dataset. We

created this dataset by randomly selecting examples from the

full Java training set. The test set is identical. We denote this

dataset as the “1m” dataset in Table III. The “original dataset”

in the table are results of the top-10 action word prediction

using the default 2m Java dataset (note these are duplicated

from the top-10 column in Table I for convenience). The “1m

dataset” are the top-10 results for the baselines when training

only on the 1m dataset and testing on the same test set as

the original Java dataset. What we observe is that very few of

the results change on the standard and challenge conditions.

The 1m dataset is about 1% lower in terms of f-score for the

standard set, and 1-2% lower for the challenge set.

We conclude that we did not find evidence that dataset size

alone is the key factor in the difference between Java and

C/C++. The most likely explanation lies in the differences in

code itself, such as a culture of longer identifier names and

more internal documentation in Java [1].

C. RQ3: Challenge Conditions

Recall that challenge conditions are those in which all

textual information in the source code is removed; only the

structure of the code is available to the model for train-

ing and testing [40]. Challenge conditions are something

of a holy grail for code summarization because successful

summarization under challenge conditions would mean that

even totally undocumented code could be described using

automated techniques. Action word prediction under challenge

conditions is a strong starting point because the action word

is very important to the summary overall.

The highest level of performance we observed was for

the get/set condition in both Java and C/C++. In the Java

dataset, the ast-attendgru achieved 96% precision/recall.

It achieved 77% precision and recall for C/C++. We attribute

these high values to predictable structure of getters and setters

in both languages: getters tend to have return data and no

parameters, while setters have parameters and no return data.

Another observation is that context from other functions

seems to have a strong positive impact on results under

challenge conditions – ast-attendgru-fc routinely obtains

the highest performance and is the only baseline to consider

contextual information. The implication for future work is that

if a function is not described well, it may still be possible to

predict the action word for that function’s summary by looking

at the other functions in the same file. The model may be able

to learn, for example, that if a “read” is present, a “write” is

likely, or that if several other functions in the same file include

the word “initialize”, then this function is also likely to use it.

Performance levels in the challenge set are otherwise low.

Another observation we make in the challenge set is that the

top-10 performance is higher for some models than the top-10n

Java / chal.

top-10 re
tu

rn

se
t

g
et

ad
d

cr
ea

te

in
it

ia
li

ze

te
st

re
m

o
v
e

ch
ec

k

is o
th

er

return 2961 23 3340 2 17 59 3 0 11 0 4605

set 11 8107 14 33 3 6 3 0 0 0 2862

get 1914 23 3386 1 35 53 2 0 2 0 3282

add 14 179 0 801 2 4 2 6 0 0 2315

create 68 15 6 1 48 27 11 0 0 1 1526

initialize 12 40 4 0 3 1427 5 0 0 0 406

test 38 1 10 1 0 5 567 0 3 0 881

remove 24 36 2 23 0 0 1 19 0 0 1396

check 206 6 79 1 1 1 21 0 19 0 1132

is 53 30 61 0 0 1 2 0 1 5 481

other 1561 1705 1096 107 79 131 212 12 14 0 25900

C/C++ / chal.

top-10 re
tu

rn

g
et

se
t

ch
ec

k

ca
ll

in
it

ia
li

ze

is re
ad

cr
ea

te

ad
d

o
th

er

return 124 9 0 4 0 0 0 0 0 0 1858

get 25 10 0 1 0 0 0 0 0 0 957

set 1 0 3 0 0 0 0 0 0 0 1139

check 3 1 0 10 0 0 8 0 0 0 592

call 0 0 0 0 1 1 0 0 0 0 719

initialize 0 0 0 0 0 12 0 0 1 0 734

is 1 1 0 1 0 0 4 0 0 0 977

read 1 0 0 2 0 0 0 1 0 0 567

create 0 0 0 0 0 1 0 0 4 0 515

add 0 0 0 0 0 1 0 0 0 0 364

other 76 10 2 11 0 11 0 3 12 0 36663

Java / chal.
top-40 top-10 top-10n get/set

p r f p r f p r f p r f
attendgru .01 .02 .01 .04 .09 .05 .07 .09 .08 .29 .50 .36
ast-attendgru .26 .12 .12 .60 .33 .36 .36 .22 .24 .96 .96 .96
ast-attendgru-fc .35 .20 .23 .54 .43 .45 .43 .27 .30 .97 .97 .97
graph2seq .09 .04 .04 .34 .14 .13 .26 .09 .08 .82 .74 .74
code2seq .04 .03 .03 .24 .12 .11 .18 .09 .08 .79 .78 .78

C/C++ / chal.
top-40 top-10 top-10n get/set

p r f p r f p r f p r f
attendgru .02 .02 .02 .07 .09 .08 .08 .09 .08 .27 .50 .35
ast-attendgru .51 .07 .10 .51 .10 .10 .08 .09 .08 .77 .77 .77
ast-attendgru-fc .47 .14 .20 .49 .20 .26 .66 .12 .15 .82 .81 .81
graph2seq .02 .02 .02 .16 .09 .08 .08 .09 .09 .54 .53 .51
code2seq .02 .02 .02 .07 .09 .08 .08 .09 .09 .56 .56 .56

TABLE IV: (top) Confusion matrices showing results for

top-10 action words for ast-attendgru, which in challenge

conditions uses only the AST. (bottom) Overall results under

challenge conditions in the Java and C/C++ datasets.

performance. This behavior is opposite of the standard set. In

the standard set, many errors were concentrated in confusion

between get and return. In contrast, under challenge conditions

the baselines tend to place many functions into the “other”

category, except for a few return/get/set functions that they

predict correctly (see the top-10 C/C++ challenge confusion

matrix in Table IV). The ast-attendgru-fc model is the

exception, which we attribute to that model’s access to words

in the file context. The same model without access to file

context (ast-attendgru) achieved much lower performance.

The differences between the Java and C/C++ datasets are

evident in the challenge results. Consider the top-10 results

for ast-attendgru and ast-attendgru-fc. In the Java

dataset, the ast-attendgru-fc is about 25% higher in terms

of F-measure (36% to 45%). But in the C/C++ dataset, the

performance is well over double (10% to 26%) in terms of

F-measure. Almost all of this improvement is attributable to

increased recall in the get/set/return functions – that is, the

model does a better job of finding these instead of placing

them in the other category. This difference is borne out in

the top-10n results as well. The difference in Java is about

25%, but is nearly double in C/C++. For the top-10n, most

of the improvement in F-measure is due to greatly increased

precision (8% to 66%). The improved precision is because

ast-attendgru-fc avoids misplacing several functions into

the other category, though recall remains quite low because a

majority of functions still end up in other. The takeaway is

that context helps when it is available, even in the extreme

conditions of the challenge set, but existing models are still

far away from real-world usability.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we introduce “action word prediction” as a

complementary problem to source code summarization. We

argue that action word prediction is a key component of code

summarization, because 1) high quality summaries tend to use

an action word as the first word in the summary, and 2) the

first word of a prediction tends to have a high impact on

the subsequent predictions from a model. A key point is that

source code summarization tools very often need to predict the

action word anyway, so a special emphasis on this problem

is justified due to that word’s importance. We articulate our

problem definition and supporting evidence in Section IV.

During our experiments, we observed many cases in which

incorrect action word prediction led to incorrect source code

summary generation. Consider Figure 3 for one example. The

first 16 tokens in the preprocessed context (and the associated

unpreprocessed code, for comparison) is visible. Each position

in the context is associated with a position in the x-axis of

the heatmaps. Each position in the summary is associated

with a position in the y-axis. The ast-attendgru baseline

from ICSE’19 [40] predicts the action word “return.” The

upper heatmap is the attention network when predicting the

next word: strong attention is visible in the first and second

position, which is the return type (a char pointer). The model

predicts “a pointer to” as a result. On the other hand, if we feed

the model the correct action word (lookup), then the attention

for the next word is on the fifth position, which is the start

of the parameter list. This attention makes sense because a

“lookup” function is likely to look up something that has been

passed in as a parameter.

Because of the impact of action word prediction on code

summarization, we also argue that source code summarization

tools should be evaluated in terms of action word prediction

in addition to the overall prediction accuracy. The traditional

techniques for evaluation include automated scores such as

BLEU and/or human studies. The automated scores are calcu-

lations of overlap to a reference summary and, while helpful

in giving an overall view of performance, do not provide a

detailed view of where problems in a prediction occur. For

example, using the word “an” instead of “a” in a summary

is considered BLEU to be an error of equal weight to using

“add” and “remove.” On the other hand, human studies give

a detailed view of errors, but are extremely expensive and

are not feasible for evaluating small changes to a model or

reference lookup chunk type debug name
model output return a pointer to the chunk of chunk
→֒ given correct a.w. lookup chunk type debug name

context
const char sctp cname const sctp subtype

t cid if cid chunk 0 return illegal chunk <TRUNC>

raw

const char *sctp_cname(const sctp_subtype_t cid)

{

if (cid.chunk < 0)

return "illegal chunk <TRUNC>

<st> 1

return 2









y

predicting

next word

3

4

5

6

7

8

9

10

11

12

13

1 2 3 4 5 6 7 8 9 10111213141516

<st> 1

lookup 2









y

predicting

next word

3

4

5

6

7

8

9

10

11

12

13

1 2 3 4 5 6 7 8 9 10111213141516

Fig. 3: Comparison of attention networks after predicting the

action word in a baseline published at ICSE’19 [40]. The lower

heatmap shows attention correctly applied after the correct

action word is used. The upper heatmap shows how the model

attends to a different area of code, leading the model to

produce incorrect prediction after an incorrect action word.

in providing quick feedback to a researcher. For example, a

grid search during parameter optimization may require dozens

or hundreds of different configurations of the same model. It

is not practical to expect a human study for each of these

configurations. At the same time, using BLEU or similar

scores may not provide a detailed enough picture to select

the optimal configuration.
What we propose is that researchers evaluate the action

word prediction quality of their source code summarization

techniques in addition to, or even in certain cases in lieu

of, the overall summary prediction quality. We demonstrate

in an experiment how this evaluation can be performed using

common, well-understood metrics such as precision and recall.

We show this evaluation over datasets in different languages

(C/C++ and Java) and conditions (standard and challenge).
For some cases such as challenge conditions, the problem

of source code summarization may be too difficult to solve

directly. The situation is analogous to early AI problems

in which chess playing algorithms were used as a wedge

against larger, even more difficult problems [9]. A more recent

example is in computer vision, how image classification started

with simple examples of classifying very different objects

e.g. faces versus furniture, before moving to more difficult

problems [70]. What we recommend is to use action word

prediction as the “wedge” towards source code summarization.

The idea is that in very difficult conditions, a reasonable target

problem is to correctly predict only the action word of a

summary. If the problem of action word prediction can be

solved with high accuracy, then the research community would

be better placed to solve code summarization more generally.

VIII. REPRODUCIBILITY

To encourage reproducibility and aid other research groups,

we have released all data, source code, scripts, and tutorial

information in an online appendix:
https://github.com/actionwords/actionwords

ACKNOWLEDGMENT

This work is supported in part by NSF CCF-1452959

and CCF-1717607. Any opinions, findings, and conclusions

expressed herein are the authors and do not necessarily reflect

those of the sponsors.

REFERENCES

[1] D. Kramer, “Api documentation from source code comments: a case
study of javadoc,” in Proceedings of the 17th annual international

conference on Computer documentation. ACM, 1999, pp. 147–153.
[2] A. Forward and T. C. Lethbridge, “The relevance of software documen-

tation, tools and technologies: a survey,” in Proceedings of the 2002

ACM symposium on Document engineering. ACM, 2002, pp. 26–33.
[3] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A

transformer-based approach for source code summarization,” arXiv

preprint arXiv:2005.00653, 2020.
[4] P. Gruenbaum. (2010) A coder’s guide to

writing api documentation. [Online]. Available: https:
//docs.microsoft.com/en-us/archive/msdn-magazine/2010/november/
msdn-magazine-hello-world-a-coders-guide-to-writing-api-documentation

[5] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating
commit messages from diffs using neural machine translation,” in Pro-

ceedings of the 32nd IEEE/ACM International Conference on Automated

Software Engineering. IEEE Press, 2017, pp. 135–146.

[6] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, “The concept assign-
ment problem in program understanding,” in Proceedings of the 15th

international conference on Software Engineering. IEEE Computer
Society Press, 1993, pp. 482–498.

[7] O. Hauk, Y. Shtyrov, and F. Pulvermüller, “The time course of action
and action-word comprehension in the human brain as revealed by
neurophysiology,” Journal of Physiology-Paris, vol. 102, no. 1-3, pp.
50–58, 2008.

[8] K. Hirsh-Pasek and R. M. Golinkoff, Action meets word: How children

learn verbs. Oxford University Press, 2010.

[9] C. E. Shannon, “Xxii. programming a computer for playing chess,” The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of

Science, vol. 41, no. 314, pp. 256–275, 1950.

[10] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing source code,”
in 2010 17th Working Conference on Reverse Engineering. IEEE, 2010,
pp. 35–44.

[11] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically detecting
and describing high level actions within methods,” in Proceedings of the

33rd International Conference on Software Engineering. ACM, 2011,
pp. 101–110.

[12] S. Rastkar, G. C. Murphy, and A. W. Bradley, “Generating natural
language summaries for crosscutting source code concerns,” in 2011

27th IEEE International Conference on Software Maintenance (ICSM).
IEEE, 2011, pp. 103–112.

[13] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella,
“Using ir methods for labeling source code artifacts: Is it worthwhile?”
in 2012 20th IEEE International Conference on Program Comprehen-

sion (ICPC). IEEE, 2012, pp. 193–202.

[14] S. Panichella, J. Aponte, M. Di Penta, A. Marcus, and G. Canfora,
“Mining source code descriptions from developer communications,” in
2012 20th IEEE International Conference on Program Comprehension

(ICPC). IEEE, 2012, pp. 63–72.

[15] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for java
classes,” in 2013 21st International Conference on Program Compre-

hension (ICPC). IEEE, 2013, pp. 23–32.

[16] S. Rastkar and G. C. Murphy, “Why did this code change?” in Proceed-

ings of the 2013 International Conference on Software Engineering.
IEEE Press, 2013, pp. 1193–1196.

[17] P. W. McBurney and C. McMillan, “Automatic documentation genera-
tion via source code summarization of method context,” in Proceedings

of the 22nd International Conference on Program Comprehension.
ACM, 2014, pp. 279–290.

[18] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. D’Mello,
“Improving automated source code summarization via an eye-tracking
study of programmers,” in Proceedings of the 36th international con-

ference on Software engineering. ACM, 2014, pp. 390–401.

[19] S. Rastkar, G. C. Murphy, and G. Murray, “Automatic summarization
of bug reports,” IEEE Transactions on Software Engineering, vol. 40,
no. 4, pp. 366–380, 2014.

[20] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshyvanyk,
“On automatically generating commit messages via summarization of
source code changes,” in 2014 IEEE 14th International Working Con-

ference on Source Code Analysis and Manipulation. IEEE, 2014, pp.
275–284.

[21] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and
G. Canfora, “Automatic generation of release notes,” in Proceedings

of the 22nd ACM SIGSOFT International Symposium on Foundations of

Software Engineering. ACM, 2014, pp. 484–495.

[22] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, and
S. Nakamura, “Learning to generate pseudo-code from source code using
statistical machine translation (t),” in 2015 30th IEEE/ACM International

Conference on Automated Software Engineering (ASE). IEEE, 2015,
pp. 574–584.

[23] N. J. Abid, N. Dragan, M. L. Collard, and J. I. Maletic, “Using
stereotypes in the automatic generation of natural language summaries
for c++ methods,” in 2015 IEEE International Conference on Software

Maintenance and Evolution (ICSME). IEEE, 2015, pp. 561–565.

[24] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), 2016, pp. 2073–2083.

[25] P. W. McBurney, C. Liu, and C. McMillan, “Automated feature discovery
via sentence selection and source code summarization,” Journal of

Software: Evolution and Process, vol. 28, no. 2, pp. 120–145, 2016.
[26] B. Zhang, E. Hill, and J. Clause, “Towards automatically generating

descriptive names for unit tests,” in Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering. ACM,
2016, pp. 625–636.

[27] P. Rodeghero, S. Jiang, A. Armaly, and C. McMillan, “Detecting user
story information in developer-client conversations to generate extractive
summaries,” in 2017 IEEE/ACM 39th International Conference on

Software Engineering (ICSE). IEEE, 2017, pp. 49–59.
[28] J. Fowkes, P. Chanthirasegaran, R. Ranca, M. Allamanis, M. Lapata,

and C. Sutton, “Autofolding for source code summarization,” IEEE

Transactions on Software Engineering, vol. 43, no. 12, pp. 1095–1109,
2017.

[29] S. Badihi and A. Heydarnoori, “Crowdsummarizer: Automated genera-
tion of code summaries for java programs through crowdsourcing,” IEEE

Software, vol. 34, no. 2, pp. 71–80, 2017.
[30] P. Loyola, E. Marrese-Taylor, and Y. Matsuo, “A neural architecture for

generating natural language descriptions from source code changes,”
in Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers), 2017, pp. 287–
292.

[31] Y. Lu, Z. Zhao, G. Li, and Z. Jin, “Learning to generate comments for
api-based code snippets,” in Software Engineering and Methodology for

Emerging Domains. Springer, 2017, pp. 3–14.
[32] X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, “Summarizing source

code with transferred api knowledge,” in Proceedings of the 27th

International Joint Conference on Artificial Intelligence. AAAI Press,
2018, pp. 2269–2275.

[33] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment
generation,” in Proceedings of the 26th Conference on Program Com-

prehension. ACM, 2018, pp. 200–210.
[34] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to rep-

resent programs with graphs,” International Conference on Learning

Representations, 2018.
[35] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S. Yu,

“Improving automatic source code summarization via deep reinforce-
ment learning,” in Proceedings of the 33rd ACM/IEEE International

Conference on Automated Software Engineering. ACM, 2018, pp. 397–
407.

[36] Y. Liang and K. Q. Zhu, “Automatic generation of text descriptive
comments for code blocks,” in Thirty-Second AAAI Conference on

Artificial Intelligence, 2018.
[37] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating

sequences from structured representations of code,” International Con-

ference on Learning Representations, 2019.
[38] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning

distributed representations of code,” Proceedings of the ACM on Pro-

gramming Languages, vol. 3, no. POPL, pp. 1–29, 2019.
[39] S. Gao, C. Chen, Z. Xing, Y. Ma, W. Song, and S.-W. Lin, “A neural

model for method name generation from functional description,” in 2019

IEEE 26th International Conference on Software Analysis, Evolution and

Reengineering (SANER). IEEE, 2019, pp. 414–421.
[40] A. LeClair, S. Jiang, and C. McMillan, “A neural model for generating

natural language summaries of program subroutines,” in Proceedings

of the 41st International Conference on Software Engineering. IEEE
Press, 2019, pp. 795–806.

[41] A. Mesbah, A. Rice, E. Johnston, N. Glorioso, and E. Aftandilian,
“Deepdelta: learning to repair compilation errors,” in Proceedings of

the 2019 27th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering.
ACM, 2019, pp. 925–936.

[42] P. Nie, R. Rai, J. J. Li, S. Khurshid, R. J. Mooney, and M. Gligoric,
“A framework for writing trigger-action todo comments in executable
format,” in Proceedings of the 2019 27th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the

Foundations of Software Engineering. ACM, 2019, pp. 385–396.
[43] L. W. C. M. Sakib Haque, Alexander LeClair, “Improved automatic

summarization of subroutines via attention to file context,” International

Conference on Mining Software Repositories, 2020.
[44] R. Haldar, L. Wu, J. Xiong, and J. Hockenmaier, “A multi-perspective

architecture for semantic code search,” arXiv preprint arXiv:2005.06980,
2020.

[45] M. X. Chen, O. Firat, A. Bapna, M. Johnson, W. Macherey, G. Foster,
L. Jones, M. Schuster, N. Shazeer, and N. Parmar, “The best of both
worlds: Combining recent advances in neural machine translation,”
in Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), 2018, pp. 76–86.
[46] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey

of machine learning for big code and naturalness,” arXiv preprint

arXiv:1709.06182, 2017.
[47] M. Allamanis. (2019) Machine learning for big code and naturalness.

[Online]. Available: https://ml4code.github.io/papers.html
[48] X. Song, H. Sun, X. Wang, and J. Yan, “A survey of automatic generation

of source code comments: Algorithms and techniques,” IEEE Access,
2019.

[49] N. Nazar, Y. Hu, and H. Jiang, “Summarizing software artifacts: A
literature review,” Journal of Computer Science and Technology, vol. 31,
no. 5, pp. 883–909, 2016.

[50] E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically capturing
source code context of nl-queries for software maintenance and reuse,”
in Proceedings of the 31st International Conference on Software Engi-

neering. IEEE Computer Society, 2009, pp. 232–242.
[51] C. Lopes, S. Bajracharya, J. Ossher, and P. Baldi, “UCI source

code data sets,” 2010. [Online]. Available: http://www.ics.uci.edu/$\
sim$lopes/datasets/

[52] A. LeClair and C. McMillan, “Recommendations for datasets for source
code summarization,” in Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, Volume 1 (Long and Short Papers),
2019, pp. 3931–3937.

[53] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in 2012 34th International Conference on

Software Engineering (ICSE). IEEE, 2012, pp. 837–847.
[54] Y. Belinkov and J. Glass, “Analysis methods in neural language pro-

cessing: A survey,” Transactions of the Association for Computational

Linguistics, vol. 7, pp. 49–72, 2019.
[55] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating

sequences from structured representations of code,” International Con-

ference on Learning Representations, 2019.
[56] K. Xu, L. Wu, Z. Wang, Y. Feng, M. Witbrock, and V. Sheinin,

“Graph2seq: Graph to sequence learning with attention-based neural
networks,” Conference on Empirical Methods in Natural Language

Processing, 2018.
[57] I. Google. (2020) Developer documentation style guide. [Online].

Available: https://developers.google.com/style/reference-verbs
[58] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning

with neural networks,” in Advances in neural information processing

systems, 2014, pp. 3104–3112.
[59] S. Wiseman and A. M. Rush, “Sequence-to-sequence learning as beam-

search optimization,” in Proceedings of the 2016 Conference on Empir-

ical Methods in Natural Language Processing, 2016, pp. 1296–1306.
[60] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by

jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[61] S. Jiang and M. de Rijke, “Why are sequence-to-sequence models so
dull? understanding the low-diversity problem of chatbots,” in Pro-

ceedings of the 2018 EMNLP Workshop SCAI: The 2nd International

Workshop on Search-Oriented Conversational AI, 2018, pp. 81–86.
[62] Y. Zhang and W. Xiao, “Keyphrase generation based on deep seq2seq

model,” IEEE Access, vol. 6, pp. 46 047–46 057, 2018.
[63] N. Weber, L. Shekhar, and N. Balasubramanian, “The fine line between

linguistic generalization and failure in seq2seq-attention models,” in
Proceedings of the Workshop on Generalization in the Age of Deep

Learning, 2018, pp. 24–27.
[64] A. LeClair, Z. Eberhart, and C. McMillan, “Adapting neural text classifi-

cation for improved software categorization,” in 2018 IEEE International

Conference on Software Maintenance and Evolution (ICSME). IEEE,
2018, pp. 461–472.

[65] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method
for automatic evaluation of machine translation,” in Proceedings

of the 40th Annual Meeting on Association for Computational

Linguistics, ser. ACL ’02. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2002, pp. 311–318. [Online]. Available:
http://dx.doi.org/10.3115/1073083.1073135

[66] D. M. Powers, “Evaluation: from precision, recall and f-measure to roc,
informedness, markedness and correlation,” 2011.

[67] Z. Eberhart, A. LeClair, and C. McMillan, “Automatically extracting
subroutine summary descriptions from unstructured comments,” arXiv

preprint arXiv:1912.10198, 2019.
[68] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard,

and D. McClosky, “The stanford corenlp natural language processing
toolkit.” in ACL (System Demonstrations), 2014, pp. 55–60.

[69] A. LeClair, S. Haque, L. Wu, and C. McMillan, “Improved code summa-
rization via a graph neural network,” in 28th ACM/IEEE International

Conference on Program Comprehension (ICPC’20), 2020.
[70] W. Rawat and Z. Wang, “Deep convolutional neural networks for image

classification: A comprehensive review,” Neural computation, vol. 29,
no. 9, pp. 2352–2449, 2017.

