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Abstract—Source code summarization of a subroutine is the
task of writing a short, natural language description of that sub-
routine. The description usually serves in documentation aimed at
programmers, where even brief phrase (e.g. “compresses data to a
zip file”) can help readers rapidly comprehend what a subroutine
does without resorting to reading the code itself. Techniques
based on neural networks (and encoder-decoder model designs
in particular) have established themselves as the state-of-the-art.
Yet a problem widely recognized with these models is that they
assume the information needed to create a summary is present
within the code being summarized itself — an assumption which is
at odds with program comprehension literature. Thus a current
research frontier lies in the question of encoding source code
context into neural models of summarization. In this paper, we
present a project-level encoder to improve models of code sum-
marization. By project-level, we mean that we create a vectorized
representation of selected code files in a software project, and
use that representation to augment the encoder of state-of-the-art
neural code summarization techniques. We demonstrate how our
encoder improves several existing models, and provide guidelines
for maximizing improvement while controlling time and resource
costs in model size.

Index Terms—source code summarization, automatic docu-
mentation generation, neural networks

I. INTRODUCTION

Source code summarization is the task of writing short,
natural language descriptions of that code [1], [2]. Typical
targets of summarization are the subroutines of a software
project. The purpose of the descriptions is to provide human
readers with a big picture view of what each subroutine does.
Even a single phrase e.g. “compresses data to a zip file”
can help a person understand code without having to read
every detail of that code [3]. Summaries of subroutines form
the foundation of much documentation aimed at program-
mers such as JavaDocs [4], and the literature is replete with
studies demonstrating how programmers often rely on these
summaries, only turning to reading the code itself as a last
resort [5]. And while a majority of documentation is still
written manually, recent research has made inroads towards
automatic code summarization [6].

The backbone of almost all state-of-the-art approaches to
automatic source code summarization is the neural encoder-
decoder model architecture [7]-[9]. This architecture has its
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roots in machine translation [10], in which the encoder creates
a vectorized representation of a sentence in one language
(e.g. English), while the decoder creates a representation of
that same sentence in a different language (e.g. French).
When trained with enough data (on the order of millions
of examples [11]), these models can learn to associate pat-
terns in the encoder representation to patterns in the decoder
representation. After training, the encoder can be given an
input example, and the model can generate a likely decoder
representation and therefore a likely output example — and
translate French sentences to English. For source code, the
encoder’s job is to represent the source code, while the decoder
represents the source code summary — give the encoder source
code, and the decoder generates a summary.

The obvious problem with these approaches is that they
can only generate a summary based on whatever source
code is passed to the encoder. Thus these approaches make
a tacit assumption that all of the information necessary to
generate that summary is present in that source code. This
assumption is at odds with decades of program comprehension
literature [12]-[14]. This literature is quite clear that high-level
descriptions such as summaries very often contain concepts
that can only be understood in the context of the other code
in the same software project. To paraphrase a classic example,
a subroutine called book () can only be fully understood if it
is also known that it exists in a class called Seats in a project
called AircraftTravel [15].

In this paper, we present a project-level encoder to augment
existing encoder-decoder neural models of source code sum-
marization. Our approach is “project level” in that it creates a
vectorized representation of a subset of code files in a software
project. Our approach augments existing models in that the
output of our approach may be combined with encoder portion
of most existing code summarization models: most models
contain an encoder for the source code itself that produces
some vectorized representation of that code, and our encoder
extends that representation. The advantage to our encoder is
that it provides context to the model about the software project
in which a subroutine exists, so that the model does not rely
only on the information in that subroutine.

We evaluate our project encoder in three ways. First, we
implement our project encoder as an addition to four existing
neural source code summarization techniques. We demonstrate



that our encoder boosts the performance of these techniques
by between 4 and 8% in terms of BLEU scores in a large Java
dataset, and between 9% and 17.5% in ensemble models in
that dataset. Second, we compare our whole-project encoder
with a competitive approach that attempts to summarize the
context surrounding code, and found between 1.5% and 7%
improvement in terms of BLEU score in the Java dataset.
Third, we study the time and resource costs of our project
encoder, to determine the costs associated with the increased
performance of our approach.

We provide all data and implementations via our online
appendix (see Section VII).

II. BACKGROUND & RELATED WORK

This section describes related work and supporting tech-
nologies, namely the neural encoder-decoder architecture.

A. Source Code Summarization

Figure 1 shows key papers related to source code sum-
marization in the last four years. The list is not exhaustive
and only includes peer-reviewed work. Papers are broadly
categorized as based on the encoder-decoder architecture (col-
umn FE), and whether their novelty (and primary means of
improvement over baselines) is based on structural informa-
tion about the source code itself (column S), or contextual
information about surrounding source code (column C'). Two
observations are apparent. First, recent approaches are based
on some variant of an encoder-decoder architecture. Prior to
2017, code summarization research focused on templates or
information retrieval, but these have recently given way to
neural encoder-decoder designs [2], [6], [32], [33].

A second observation is that the strong trend has been to
squeeze ever more information out of the source code being
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Fig. 1. Key peer-reviewed related work from the last four years.
Column F means the approach is an encoder-decoder architecture.
S means that the improvement of the model relies primarily on
structural information about the source code being summarized, such
as a subroutine’s AST. C' means the improvement is primarily due
to contextual information.

summarized itself, in the form of structural information. The
trend began around the time Hu er al. [9] used the abstract
syntax tree to mark up the source code tokens in the encoder’s
input sequence, and was followed up by Allamanis et al. [20],
LeClair et al. [7], among others noted in the table, with differ-
ent AST-based code representations. Advancement continued
as AST path-based encoders [24], [34] were followed by
AST graph neural network-based encoders [35]. While some
research has been dedicated to novel representations of the
text in code (e.g. via Transformer models [29]), the tendency
has been towards more and more complex representations of
the code structure. Very recently, multi-edge and hybrid GNN
structures have been devised [8], [31].

Much more rare is work that attempts to improve per-
formance by integrating contextual information. Code con-
text may be broadly defined as the source code in the
methods, files, and packages surrounding a particular snip-
pet of code [36]. Program comprehension literature is quite
clear that the context surrounding source code is critical to
understanding that code, with work ranging from psycho-
logical/physiological studies [12]-[14] to empirical/technical
solutions [37]-[40] verifying this conclusion. The use of
code context for summarization was mainstream among older
template- and IR-based techniques [2], [32], [41], though it is
currently overlooked among neural network-based solutions.
Haque et al. [30] are a notable exception. They use text from
each function in the same file as part of the encoder portion of
their model, and show improvement over different baselines.

This paper focuses on contextual information. Specifically,
we focus on project context, which is the context provided by
every source code file in the same project as the subroutine
we are summarizing. This context is more broad than the file-
level context proposed by Haque et al. [30], but like that
work, our approach is complementary to most encoder-decoder
approaches rather than competitive. Our approach augments
the solutions based on the structure of the code itself, it does
not replace them.

B. Neural Encoder-Decoder Architecture

The neural encoder-decoder architecture revolves around
two independent vectorized representations of parallel data.
The parallel data may be a sentence in one language and its
translation in another language, an image and a caption of
that image, or a subroutine and a natural language summary
of that subroutine. Since each “side” of the parallel data may
be quite different, the means of generating the vectorized
representation will also be different. Usually the purpose of
an encoder-decoder model is to create one “side” of the data
out of the other (e.g. create a summary out of a subroutine).
The input side is referred to as the encoder, and the output
side is referred to as the decoder. Thus to train a model to
e.g. translate from French to English, the encoder receives
French sentences and the decoder receives the parallel English
sentences. The encoder-decoder architecture has its roots in
work by Sutskever et al. [42] published 2014. Since then



the architecture has blossomed and found an extremely wide
variety of uses, as several survey papers testify [43]-[45].

The vast majority of encoder-decoder architectures work
because of a similarity calculation that links the encoder
and decoder representation, called an attention mechanism.
Essentially what the attention mechanism does is compute the
similarity between the encoder and decoder representations,
which helps the model learn to associate features in those
representations. For example, a single word in a French sen-
tence would be associated with its counterpart in the English
sentence. Attention was proposed by Bahdanau et al. [10] and
has become an integral part of most encoder-decoder models.

This paper follows in the tradition of most encoder-decoder
models, though with a small twist to the attention mechanism.
As the next section will show, we maintain an independent
attention mechanism for our whole-project encoder, so the
model can learn to attend to both the encoder for that subrou-
tine and our whole-project encoder. In effect, the model will
learn from both a local context of the subroutine itself and a
global context of the whole software project. When defined in
these terms, our work is related to “cascade attention” from
image processing [46]-[49]. For example, work by Wang et
al. [50] detects human emotion with a closeup of a person’s
face and also a zoomed out image of the entire room. The
“cascade” is that the model attends to both the closeup and
the zoomed out image. The idea is that it may detect crying
in a face, but then understand it as either sadness or happiness
depending on the context. Likewise, our approach is to learn
from the subroutine’s source code (via any number of existing
encoders), then form a better understanding of it with our
whole-project encoder.

III. OUR APPROACH

Our approach, in a nutshell, is to create an encoder of a
selection of the files in the same project as a subroutine,
then combine this encoder with an arbitrary encoder of the
subroutine itself. This section starts with our definition of
project context. We then provide an overview of the encoder
and guidelines for combining with existing models.

A. Project Context

We define “project context” as all source code files of
the same language in the whole software project in which a
subroutine resides. For example, for a Java method, the project
context would be all other Java files in the same project. The
advantage of this broad definition of project context is that
it allows the model to learn from the high level concepts
that are described in many areas of the project (we illustrate
this advantage with examples in Section VI). A potential
disadvantage is that the project context will often be very
large. A risk is that the model size could become so large
that it is not feasible due to time or resource constraints — at
the time of writing, not every user may be expected to have
a GPU with 16gb VRAM, for instance. While we study this
risk in RQy, controlling these potential costs is a key factor
in our model design. Therefore, even though project context

is defined as all source code files, not all information from all
files will be included in the model.

B. Model Overview

Our model centers around four vector spaces: the word,
subroutine, file, and project embeddings. The input to these is
regulated by five hyperparameters, noted in the figures below:

File Embedding
RNN ———»
RNN ———»
RNN ———»

vector embedding size e
for vocabulary size v

Word Embedding .
| |
first w words in select ffiles
each subroutine in each project

b b

Subroutine Project Embedding
Embedding RNN R
RNN ——»
RNN ——»

RNN ———»

first s subroutines '
in each file *

output is f x e matrix
representing project context

Word Embedding The word embedding is identical to that
presented in many papers on neural NLP topics, including code
summarization. Essentially, each word is represented as an e-
length vector. To control model size, a maximum of the first
v most-common words is included in the embedding space,
others are marked with a default out-of-vocab token, also in
the embedding space. A “word” in source code is defined
by the preprocessing procedure. We use the preprocessor
recommended for code summarization by LeClair et al. [11].

Subroutine Embedding The subroutine embedding results in
a vectorized representation of each subroutine. The input to the
subroutine embedding is the word embedding vector for the
first w words in the subroutine. Then we pass these words as
a sequence through a recurrent neural network. The final state
of that RNN is the vectorized representation of the subroutine.
We chose to use the first w words (as opposed to w random
words, words ranked via tf/idf, etc.) because these words will
include the signature of the method, which has been shown to
be the most important component for summarization [51].

File Embedding The file embedding results in a vectorized
representation of each file. The input is the embedding for
the first s subroutines in a file — an s x e matrix because
each subroutine is represented with an e-length vector. We
then use each row in the matrix as a position in a sequence,
which we send to an RNN. The final state of the RNN is
the file embedding vector. An RNN is a reasonable choice
to combine subroutine vectors because the subroutines occur
in the file in an order defined by the author of that file. The
meaning of this order may be disputed, however, so future
work may consider aggregating these vectors by some other
means such as averaging.

Project Embedding The project embedding output is the
final output of the project encoder, prior to applying attention.



The input is the file embedding for f files in the project. We
chose these files from the project with an operation SELECT. In
our implementation, the SELECT operation randomly chooses
f files from the project for each subroutine — each subroutine
has a new f random selections. The output of the project
embedding is an f x e matrix in which each row is a
file embedding and each column is an index in the vector
representation of those files. Note that we do not aggregate
this matrix into a single vector. The reason is that we use
an attention mechanism (not shown in the figure above) to
attend each position in the decoder to each position in this
project embedding. The design of our attention mechanism is
identical to Luong et al. [52], though in principle another may
be used. The result is that the model will learn to attend to
the most important files in the project embedding. We present
an example of how attention to the project embedding helps
the model in Section VI

C. Implementation Guidelines

Our implementation guidelines fall into two categories:
hyperparameter/setup recommendations, and suggestions for
integration with other encoder-decoder models.

1) Hyperparameters: While a grid search for every param-
eter is not feasible due to high computation costs, we chose
the following based on both related literature and pilot tests:

e 100 vector length

v 10000  vocab size

w 25 words per subroutine
s 10 subroutines per file
f 10 files per project
RNN GRU type of RNN

The values of 100 for e and 10,000 for v are based on suc-
cessful results and recommendations by LeClair et al. [11] for
neural source code summarization. The value for w is based on
findings that the signature of a subroutine typically contains
the most valuable textual information about that subroutine
(since it neatly condenses the return type, name, and parameter
types in a few words) — we chose 25 because that value covers
the entire signature in a majority of subroutines and because
several RNN designs have been shown to lose the ability to
preserve dependencies when the sequence becomes too long.
We chose a GRU as the RNN as a balance between ability to
preserve dependencies and time cost of computation.

The values for s and f are more subjective. On the one hand,
maximizing these numbers means the model can consider
much more of the project context. But on the other hand,
computation and memory cost will rapidly become prohibitive.
Consider that one file is 100kb of memory in the model (s x
w X e X 4 bytes = 10 x 25 x 100 x 4 bytes). Each project
context matrix is then 1mb (f = 10 files). The costs add up
because the datasets may involve millions of subroutines.

2) Integration: Recall that our intent for our whole-project
encoder is to be integrated with the encoder portion of an
existing encoder-decoder model. The simplest means of inte-
gration is to treat the whole-project encoder as independent
of all other parts of the model, and connect its output to the
existing encoder’s output after attention is applied. Consider a

“vanilla” seq2seq-like model like those used in the first neural
code summarization papers [9], [33], that has a single RNN
as an encoder of the words in the subroutines and a single
RNN as the decoder for the words in the summary. This
model would typically have an attention mechanism between
the encoder and decoder which would adjust the emphasis of
the information in the encoder based on the decoder. Then the
attended encoder output would be combined to the decoder
output and connected to a fully-connected output, as below:

Code/Text Summaries
v v

| Encoder | | Decoder |

Attention

Output Prediction

Integrating this model with our whole-project encoder
would involve rewiring the output of the decoder to an
attention mechanism for the whole-project encoder (in addition
to the pre-existing encoder), as mentioned under the Project
Embedding heading in the previous section. Then the output
of the existing encoder, the whole-project encoder, and the
decoder would be combined and connected to the fully-
connected output layer:

Project Context Code/Text Summaries
v v v
| Encoder | | Encoder | | Decoder
| Attention | | Attention |

A

OQutput Prediction

Three key details stand out as questions for this implementa-
tion (for maximum clarity, readers may elect to follow along in
our implementation in file models/attendgru_pc.py in our
online appendix (Section VII)). First, we combine the output
of the encoders and the decoder by concatenating the matrices,
which triples the vector length. We then use a fully-connected
layer to squash these long vectors back to the specified vector
size e (lines 80-85 in the implementation). The effect is that
the model learns how to combine the vectors during training.

Second, we share the word embedding space between the
code/text encoder and the whole-project encoder (around line
64 in the implementation). This is possible because both
models use the same vocabulary, and saves both memory space
and computation time. Separate word embeddings would be
necessary for different vocabularies, or if it is desirable to use
a pretrained embedding, etc.

Third, the project context input is separate from the other
encoder/decoder input, and must be extracted from the dataset
prior to training. This requirement is not likely to be a problem
for models that already use the source code of the subroutines



to generate summaries, but there may exist application do-
mains where this data is not available.

IV. EVALUATION

In this section, we describe our evaluation, including re-
search questions, methodology, datasets, and baselines.

A. Research Questions

Our research objective is to determine the degree of differ-
ence in performance that our whole-project encoder imbues
on other recent neural code summarization techniques. We
explore this difference from several angles by asking the
following Research Questions (RQs):

RQ; What is the difference in performance of recent base-
lines when augmented with our encoder, according
to standard quality metrics over a large dataset?

RQ2> What is the difference in performance when measur-
ing only the action word prediction quality?

RQs What is the difference in performance compared to
a baseline code context encoder?

RQg What is the cost of the performance increase in terms

of model time to train?

The rationale behind RQ; is that the vast majority of neural
code summarization research uses a set of established metrics
(namely, BLEU) to evaluate the quality of the predicted
summaries to a gold set. We follow this practice to compare
the baselines to our augmented versions of those baselines.
Evaluations in many papers stop here. Yet, complaints are
rising that the accepted evaluation practice may not capture
quality to the extent desired [53], so we ask several more
RQs to give a more complete picture.

We ask RQs in light of new recommendations by Haque et
al. [54] on evaluating code summarization techniques. They
observe that an overwhelming majority of code summaries
start with an action word, in keeping with style guide recom-
mendations (e.g. “connects to game server’ or “adds row to
sql table”). They find that this action word is a critical piece of
the prediction quality, and recommend that the quality of the
prediction of these words should be assessed independently
from the assessment of the entire summary output.

The purpose of RQjs is to evaluate our approach against
a baseline for contextual information. Recall that most code
summarization techniques focus on the code within a sub-
routine (or other code snippet) itself. Our approach augments
these techniques. However, at least one other code context
encoder has been proposed, so we evaluate against it.

The rationale behind RQy is that adding our whole-project
encoder will impose some time cost over the baselines, and
recent work from industry reports that training time due to
added model complexity creates engineering difficulties in
practice [55]. We study this cost to guide cost-benefit analysis
to using our approach.

B. Methodology

Our methodology for answering RQ; closely follows the
procedures of almost all neural source code summarization

papers to date. We obtain two datasets of subroutines and
summaries of those subroutines, and divide them into train-
ing/validation/test subsets (our dataset preparation procedures
described in the next section). Then we train each of our
baselines (also described below) with these datasets to a
maximum of 10 epochs. We use the teacher forcing training
procedure, as do most recent code summarization papers [34],
[35]. We chose the trained model from the epoch that achieved
the highest validation accuracy, so each baseline has the
opportunity to find an optimum within a reasonable training
time ceiling (each epoch for most models takes 2-3 hours,
so ten epochs is approximately 24 hours). Then we use each
baseline’s trained model to predict a code summary for the
subroutines in the test set. Finally, we report the BLEU [56]
and ROUGE-LCS [57] scores for each baseline. We repeat
the entire procedure for our versions of the baselines that
we augment with the whole-project encoder. Note that this
procedure for RQ; is not novel — our intent is to adhere to
community standards.

We elected to focus on an in-depth metrics-driven evaluation
rather than a human study. While human studies are often
considered a gold standard for evaluation, Chatzikoumi et
al. [58] point out that reality is more nuanced. Human studies
are very valuable, but have two key problems. First, they are
not reproducible because people are subject to biases, fatigue,
mistakes, and other factors, so people may give very different
results. Second, humans can only be expected to evaluate a few
dozen or hundred samples. In this paper, we have 24 model
configurations to test, and a test set with tens of thousands
of samples. Therefore, we decided to focus on an in-depth
analysis of metrics-driven evaluation.

To answer RQ,, we follow the recommendations of
Haque er al. [54]. The training process is almost identical
to RQ;. The difference is that a filter based on the Stanford
NLP package [59] is used to extract the action word from
the gold set summary (in practice, this is usually the first
word), and the model is trained to predict just that word. Then
during testing, the model is asked to predict the action word
for the subroutines in the test set. Precision and Recall [60] are
used to assess the quality of the predictions for each action
word: precision is the percent of predictions of that action
word which were correct, recall is the percent of instances of
that action word in the gold set that are predicted. The macro
average of these precision and recall values across all action
words is reported. For clarity, we also produce confusion
matrices to the extent possible within page limits.

For brevity, we select only a subset of the best-performing
approaches from RQ; and RQ; as representative examples for
the remaining RQs. However, we provide further results and
details in our online appendix.

Our methodology for RQ3 is to follow the same procedures
as in RQ; and RQ2, except to compare models augmented
with our whole-project encoder to models augmented with a
file context encoder proposed by Haque et al. [30].

For RQy4, we measure the size and training time for each of
the models during training for RQ;. We report these resource



costs alongside performance improvements for those models.

C. Datasets

We use a Java dataset of 2.1m Java methods from 28k
projects created by LeClair et al. [11] under strict quality
guidelines. These guidelines were tested for their effect on
code summarization results, namely that the training and test
sets are split by project, so that data from the test set does not
leak into the test set by virtue of being in the same project.
We do not use datasets from other papers because they tend
to be drawn from the same set of projects on online, open-
source repositories (namely, Github), they tend to be smaller,
and they are not vetted to the degree as this Java dataset.

We made one key change to the dataset in this paper when
compared to previous papers: we improved the filter for code
clones among the subroutines. The original configuration in
the datasets filtered code clones only by exact duplicates.
Since then, a study by Microsoft Research determined that
this filter was insufficient for some ML tasks related to code,
and recommended a new filtration procedure [61]. We applied
that filter to the dataset in this study. The results we report
for baselines in our experiments may have different values
(usually lower values) than reported in the original papers for
those baselines even for the same datasets. The reason for
this difference is our stricter removal of code clones. It was
necessary to rerun all experiments rather than rely on results
reported in earlier papers, though the only difference in data
or configuration was the code clone filtration procedure.

D. Baselines

We use four baseline neural code summarization techniques.
We then augment each with our whole-project encoder. At a
technical level, we build our implementations in a framework
provided by Haque et al. [30] in their reproducibility package
for their paper on file context encoding.

attendgru is a typical seq2seq-like design like those used
in early neural code summarization papers (and mentioned in
Section III-C2). The only input to the encoder is the text from
the source code of the subroutine itself.

ast-attendgru was proposed by LeClair et al. [7] and
built on attendgru as well as work by Hu et al. [9]. It uses
a flattened AST to represent subroutines.

graph2seq is a representative example in a recent class of
graph neural network (GNN)-based techniques. These tech-
niques use information extracted from the AST and other
relationships in code [8], [31], [35].

code2seq is a representative of AST path-based represen-
tations of code. This baseline is a faithful reimplementation
of a model proposed by Alon et al. [34], though with several
hyperparameter changed to match those in other baselines.

We denote the versions of these baselines augmented with
our whole-project encoder with the suffix —pe for “project
context.” For example, attendgru-pc and code2seg-pc.

For RQj3, we use the file context encoder from Haque et
al. [30] as a baseline. Models augmented with the file context
encoder are denoted with the suffix -fec.

E. Software / Hardware Details

Our hardware platform consisted of an HP Z-640 worksta-
tion with a Xeon E-1650v4 CPU, 128GB system memory, and
two Nvidia Quadro P5S000 GPUs with 16GB VRAM each. Key
software included CUDA 10.0 and Tensorflow 2.4.

FE. Threats to Validity

The key threats to validity to this study include the datasets
and the implementation details. We chose a vetted dataset with
millions of examples, but it is possible that results may not
generalize to all datasets or other languages. Likewise, results
may vary given the plethora of implementation decisions, such
as the means of combining the whole-project encoder output
with other encoder output. Caution is advised in drawing
conclusions from these results beyond the scope of large open-
source dataset in Java, or when implementation details differ
significantly from those presented.

V. EVALUATION RESULTS

In this section, we discuss our evaluation results, including
answers to our research questions and supporting analysis.

A. RQ: Effect of Augmenting Baselines

We found improved levels of BLEU and ROUGE scores
across several baselines and configurations, when comparing
default versions of the baselines to versions augmented with
our project encoder. Figure 2 summarizes these results. We
report results under two key conditions: solo and ensemble. A
solo model is a single trained model — it includes the model
weights of the epoch which achieved the highest validation ac-
curacy, under the training procedure described in Section I'V-B.
An ensemble model combines two trained models. For exam-
ple, the models for attendgru and attendgru-pc would
be combined to form an ensemble model denoted “nc+fc” (no
context plus file context, see first column of Ensemble Models
table in Figure 2). The combination procedure is to calculate
the element-wise mean of the output predictions from each
model, as recommended by Garmash et al. [62]. We use this
procedure in light of experimental findings for ensemble neural
code summarization models by LeClair et al. [7].

Two observations stand out for the solo models. First,
for the three baselines attendgru, ast-attendgru, and
graph2seq, aggregate BLEU score improves between 4 and
8% when our project encoder is added to the model. The
greatest improvement occurred for attendgru, which rose
from 15.87 to 17.19 BLEU. Note that this version is the
one described in our Integration example in Section III-C2. It
shows that even a relatively simple baseline can achieve com-
petitive BLEU scores by adding project context (attendgru
is just a vanilla seq2seq-like model with a single unidirectional
GRU in the encoder and decoder).

Higher performance is observed for ast-attendgru and
graph2seq, which is expected based on previous studies [30].
The higher performance is because both model designs use
information from the AST of the subroutine. The graph2seq
model uses a GNN, while ast-attendgru flattens the tree
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Fig. 2. Results summary for RQq and RQgz. The table shows the BLEU and ROUGE-LCS scores for baselines and our augmented versions of those baselines.
Chart depicts relative improvement of our augmented version according to aggregated BLEU score. Column “mix” indicates which models were ensembled:

nc for default/no-context, fc for file context, and pc for project context.

and uses it as input to an RNN. Note that while both models
see an improvement with project context, it is lower in relative
terms than for attendgru. We attribute this lower relative
improvement to the increased amount of information that the
model must learn in the same size vector space close to
the output layer of the model. Recall from Section III-C2
paragraph 3 that two vectors of size e are generated: one for
the original encoder and one for the project context encoder.
Concatenating them results in a vector of length 2xe. To
control model complexity, it is necessary to squash these
vectors back to size e with a dense network. It is likely
that information is lost. This effect probably also explains the
drop in performance for code2seq. That baseline is extremely
complex, and the vector size of e may be too confining.

The ensemble results are, in general, much higher. The
chart at the lower-right of Figure 2 shows the default solo
configuration to the “fc+pc” ensemble test condition. All
models demonstrate considerable improvement, between 9
and 17.5% The reason for this improvement proffered by
Garmash et al. [62] is that different models contribute more to
some predictions than others. Mathematically, it means that the
value of the argmax in the output vector of some models will
be higher than others, because that model recognized a pattern
closely-associated with that prediction. Haque er al. [30]
pointed out that file context-based models contribute more to
some subroutines than others. Project context helps overall,
but there are still subroutines for which other models are more
useful. The best performance is achieved by combining them.

Consider Figure 3. The improvement of different models is
not necessarily distributed equally over all subroutines. The
chart on the left shows that of 73k subroutines in the test
set, attendgru earned the highest score for about 27.5k,
compared to about 30k for attendgru-pc. This means that
the reason attendgru-pc improved is because it created
better predictions for only a portion of the results. In that
light, consider the chart on the right. That chart compares
solo attendgru to the “nc+pc” ensemble. It shows that there
is a substantial subset of subroutines for which attendgru
earns a higher BLEU score, even compared to the “nc+pc”
ensemble of attendgru and attendgru-pc. What changes
is that there is a much higher number of ties. The ensemble
sometimes creates predictions more like attendgru, and
likewise more like attendgru-pc for other subroutines. What
is happening is that the output vector from attendgru has
higher values for the predictions where it finds patterns closely
associated with those predictions — when it does not find those
patterns, the values are lower and attendgru-pc is often
higher. The result is a better overall BLEU score.

30k { 30k 4
20k 20k 1
10k 10k 4
attendlgru  attendgru-pc tie attendgru attendgru tie

nc+pe

Fig. 3. (left) Number of subroutines in the test set for which attendgru
and attendgru-pc each had a higher BLEU score, and the number of ties.
(right) Comparison of solo attendgru to ensemble attendgru nc+pc.
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Fig. 4. (top) Confusion matrix showing results for top-10 action words for
ast-attendgru-pc, the best performer in terms of f-measure. (bottom) Overall
results under standard conditions in the Java dataset.

B. RQs: Action Word Prediction

We found broadly similar performance in terms of precision
and recall for action word prediction. Recall that Haque et
al. [54] recently recommended focusing on the prediction of
the action word in source code summaries, given that word’s
importance in the summary. Following these recommenda-
tions, we report the top-40, top-10, top-10n (which is the top
2-12, skipping get/set), and get/set. The model should be able
to distinguish get from set with very high accuracy, the top-
10 and top-10n results being a more difficult problem, and the
top-40 with even more difficulty. The idea is that if the model
cannot even predict the correct action word, then it may have
little hope of predicting the rest of the summary.

We do not observe a large difference attributable to file
or project context. Our interpretation of this result is that
the subroutine itself tends to provide most of the information
needed to predict the action word — many times the correct
action word is in the name of the function e.g. “book” for
book () in the class Seat in project AircraftTravel. The
higher BLEU and ROUGE scores for project context must
therefore be due to improvements in the prediction of other
parts of the code summary. For example, if the summary is
“book seat on airplane”, the subroutine name will provide the
action word “book”, but code context will help find “seat” and
“airplane.” We explore an example like this in Section VI.

C. RQs3: Comparison to File Context

We observe improvement over the baselines that are en-
hanced with file context. Figure 5 depicts the change in aggre-
gate BLEU score across key model configurations. Figure 5a
shows the default baseline model, followed by the file context
and project context versions of those models. Figure 5b shows
the default baseline model, followed by the nc+fc and nc+pc
ensembles. Recall that the “file context” versions are those
provided by Haque et al. [30] and form the nearest competition
for models that include code context (see Section II-A).

Overall, the project context versions of the baselines achieve
higher aggregate BLEU scores than the file context versions.
However, the gains are not uniform. For example, note in
Figure 5a that graph2seqg-fc is the lowest performing file
context model, while graph2seg-pc is nearly tied for the top
position of solo models. This finding seems to be at odds with
scores reported by Haque et al. [30] for graph2seq-fc. We
attribute the difference to the enhanced removal of code clones
we performed for experiments in this paper (see Section I'V-C).
The file context contains many subroutines that are considered
clones by the recommend clone removal technique [61], be-
cause these subroutines may be overloaded or only slightly
modified. Future researchers using file context may consider
leaving clones in the file context, and only remove them from
the list of subroutines in the test set to ensure fairness.

The ensemble models also show that project context helps
achieve higher BLEU scores than file context. Figure 5b shows
marked improvement from nc+fc ensembles (no context com-
bined with file context) to nc+pc ensembles, then again from
nc+pc to fc+pc ensembles. The exception is code2seq, which
we believe is due to the same vector size restriction described
in Section V-A. The gain of fc+pc over other ensembles
implies that file context and project context contributes to
model predictions in orthogonal ways, in the same vein as
the ensemble results for RQ;, above.

ast-attendgru
17.5 graph2seq
17 attendgru
code2seq
165 —3 —
16 ¥
155 - T T )
default file context  project context
(a) Solo
19.5
19 ast-attendgru
— 4 graph2seq
attendgru
18.5 ’ d
’ i code2seq
Ry s
17.5
4
v/
16.5 /
16 r's
15.5 T T T |
default nc+fc nc+pc fe+pe

(b) Ensemble

Fig. 5. Comparison of aggregate BLEU scores for —fc and —pc models.
This figure is a depiction of values in Figure 2.



D. RQy: Effects on Model Size

Adding project context to a baseline increases the com-
plexity of the model, and this complexity comes at a cost
in terms of time to train. While it may be tempting to write
off training time as a “one time sunk cost”, in fact this added
time imposes engineering challenges that affect cost-benefit
decisions [55]. We report training time per epoch as a proxy
for this complexity cost. All data points were collected on the
hardware platform described in Section I'V-E.

600

/ code2seq
500 graph2seq
400
/./ ast-attendgru
300 L / attendgru
—1
200
100
1
0 !
default file context  project context

Fig. 6. Training time in minutes per epoch.

We observe about a 3x time cost for attendgru and
ast-attendgru, and about a 2x cost for graph2seq and
code2seq, when comapring default configurations to the
versions with project context. While the number of min-
utes is subject to hardware and software settings, we report
these numbers to assist practitioners in deciding how to
deploy these technologies. For instance, time required for
ast-attendgru-pc is roughly equal to code2seg-fc even
though ast-attendgru-pc achieves a higher BLEU score.
At that time limit ast-attendgru-pc may be the best choice
even if code2seq is a better baseline than ast-attendgru.

An implication of this finding is that the costs of including
project context can be very high. We find improvement in
terms of overall BLEU score, especially for ensemble models,
the training difficulty is 2x to 3x even for a modest setting of
f=10. Future researchers may note the potential of even a por-
tion of project context for improving prediction performance,
and may consider guiding effort into reducing the costs so that
more context may be considered.

VI. DISCUSSION & CONCLUSION

This paper advances the state of the art in two ways:

1) We propose an encoder that creates a vectorized repre-
sentation of project context for use in neural models of
software source code.

2) We demonstrate the benefit of this encoder for the
specific problem of source code summarization.

The first advancement is important because of its potential
impact on many areas of software engineering research. Alla-
manis et al. [63] present a survey of neural models for various
software engineering tasks, and separate these tasks into two
categories: code generational and code representational. A
code generational task is like code completion or automatic
repair, in which the model is expected to create new source

code. A code representation task is like code summarization or
bug localization, in which the model must create some internal
representation of the program, and use it to predict something
about the software, such as a code summary or if a subroutine
contains a particular kind of bug.

The project context encoder we propose has potential in
many code representational tasks. Essentially what the encoder
does is create a vectorized representation of the files surround-
ing a particular area of code in a project. This representation
could be used in many ways. For example, a neural model for
predicting bugs based on the code in a subroutine could append
our project context encoder. It may help the model learn that a
particular pattern in the code may be associated with bugs for
some types of projects, but not others. This benefit is only a
hypothetical discussion — the point is that this paper may have
benefits beyond the specific problem of code summarization.

The implementation and experiment in this paper focus
on code summarization, and demonstrate how project context
improves predictions in terms of BLEU and ROUGE scores
for several baselines (RQ;). We show that our model seems to
be providing orthogonal information by improving predictions
for a subset of subroutines, and that by using an ensemble
procedure, the benefits of project context can be combined
with file context and default models. We also show that
these improvements seem to be focused on areas outside the
action word (RQ2), and that project context tends to result
in overall better scores that file context alone (RQgz), even
if an ensemble has the highest observed performance (fc+pc
ensemble models, RQ1). Our project context encoder leads to
an advancement of the state of the art for code summarization.

The reason that project context helps is that many methods
are very difficult to understand from only the source code
of a single subroutine. Code summarization techniques that
consider only the subroutine itself make the tacit assumption
that that subroutine contains all the information necessary to
summarize it. Consider Example 1 (method #29987000 in the
dataset [11], we list ID numbers for reproducibility). This
method is from a GUI program for managing config files. Its
purpose is to stop and cleanup a plugin. However, this purpose
is hard to ascertain without seeing the project context.

Compare the predicted summary for Example 1 by
attendgru versus attendgru-pc. The model attendgru
predicts “stops the bundle”, which seems a reasonable guess
considering that it has access only to the source code of that
subroutine. The method is called stop (), which begs the
question “stops what?” The word “plugin” is in the source
code, but so is the word “translator”, “messages”, ‘“bundle”,
etc. Many methods in the training set have a pattern in which
the action word is followed by a word from the parameter
list [54], and a simple seq2seq-like model such as attendgru
can learn this pattern effectively [7], [9]. So attendgru
guesses “stops the bundle.”

The project context helps the model learn what the method
really means. The method in Example 1 appears in the file
ConfexPlugin. java, which is in the project with five other
files. While there is far too much data in these files to reprint



Method #29987000: (from test set)

this method is called when the plug in is stopped
stops the bundle
this method is called when the plug in is stopped

reference
attendgru
attendgru-pc

public void stop (BundleContext context)
throws Exception {
super.stop (context);
plugin = null;
Translator.removeAllMessages () ;
Translator.removeAllTranslatables();

}

files in net.confex.application:
ApplicationWorkbenchAdvisor.java
ApplicationWorkbenchWindowAdvisor.java
ConfexApplication.java

—  ConfexPlugin.java
Perspective.java
ToolbarLayout.java

Example 1. A method from the test set for which attendgru-pc wrote

the correct summary, while attendgru did not. Method is in the project
net.confex.application, which contains the six listed files.

Method #805539: (from training set)

reference  this method is called when the plug in is stopped

public void stop (BundleContext context)

throws Exception {

super.stop (context);

if (this.logManager != null) {
this.logManager.shutdown () ;
this.logManager = null;

}

if (searchProviderManager != null) {
searchProviderManager.dispose () ;
searchProviderManager = null;

}

plugin = null;

}

files in net.bioclipse:
ApplicationWorkbenchAdvisor.java
ApplicationWorkbenchWindowAdvisor.java
ApplicationWorkbenchActionBarAdvisor.java
BioclipsePerspective.java

—  BioclipsePlugin.java
PerspectiveOpenPreferencePage.java

Example 2. Method in the training set seen by both approaches. Note list
of files is similar to Example 1 because both are built with the same GUI
platform. Project context helps attendgru-pc detect this similarity.

here, one may note the similarity between these files and the
files in Example 2 (method ID numbers may be used to recover
these files in the dataset). Example 2 is from the training
set. The content of the method itself is quite different from
Example 1 (aside from the method signature), so attendgru
has difficulty seeing the two methods as similar — there are
many methods named stop () that have nothing to do with
plugins. But attendgru-pc has access to the project context
and can identify the similarity of the files in this context.
As a result, attendgru-pc predicts the summary that it has
learned during training, which is correct.

We caution that we selected these examples as a demon-
stration of what project context can offer, and may not be

representative of how the model always behaves. The model
can make incorrect predictions — recall from Section V-A
that there is a subset of methods for which project context
outperforms the baseline, and a subset where it does not.
However, when the project context models go astray, it tends
to be because they are recognizing patterns in the context, and
we found that ensemble models can generate better summaries.

Our intent in this paper is to propose a technique for
encoding the project context of source code. While project
context is quite expansive, our technique can capture enough
of this context to be useful for the task of source code
summarization. Essentially what have shown is that even a
small amount of this project context — just f=10 in this
paper — can lead to significant improvements in the aggregate
BLEU scores of several baselines. In ensemble models, the
benefit increases further. However, as we observe in RQs,
the costs of including even limited project context mushroom
rapidly. Future work aims to capture more of this context and
interactions among the code components such as dependency
relationships, and to demonstrate the benefit of context to other
areas using neural models of source code.

VII. REPRODUCIBILITY

We strongly encourage reproducibility. We provide the fol-
lowing online appendix to facilitate reuse of this technology by
practitioners and other researchers. Our code, dataset scripts,
and operating instructions may be found at:

https://github.com/aakashba/projcon
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