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Abstract—A source code summary of a subroutine is a brief
description of that subroutine. Summaries underpin a majority of
documentation consumed by programmers, such as the method
summaries in JavaDocs. Source code summarization is the task
of writing these summaries. At present, most state-of-the-art
approaches for code summarization are neural network-based
solutions akin to seq2seq, graph2seq, and other encoder-decoder
architectures. The input to the encoder is source code, while
the decoder helps predict the natural language summary. While
these models tend to be similar in structure, evidence is emerging
that different models make different contributions to prediction
quality — differences in model performance are orthogonal and
complementary rather than uniform over the entire dataset. In
this paper, we explore the orthogonal nature of different neural
code summarization approaches and propose ensemble models
to exploit this orthogonality for better overall performance. We
demonstrate that a simple ensemble strategy boosts performance
by up to 14.8%, and provide an explanation for this boost.
The takeaway from this work is that a relatively small change
to the inference procedure in most neural code summarization
techniques leads to outsized improvements in prediction quality.

Index Terms—source code summarization, automatic docu-
mentation generation, neural networks

I. INTRODUCTION

A source code “summary” of a subroutine is a natural
language description of that subroutine. Summaries are the
foundation of many documentation systems such as JavaDocs,
where the summary is used to help programmers quickly gain
an understanding of the purpose of the subroutine, without
actually reading its source code [1]. The task of writing
these summaries has come to be known as source code
summarization [2], and has been an active research area for
decades because of a mismatch between programmer behavior
and their expectations: Programmers tend to avoid writing
source code summaries due to the time cost and manual
effort [3], [4]. Yet at the same time, programmers rely on good
documentation written by others [S]. The result that automated
solutions to code summarization are a very high value target
in software engineering research.

Intense research interest has lately been focused on neural
source code summarization approaches. These approaches rely
on datasets of millions of examples of code and code sum-
maries (e.g. [6], [7]) to train a neural network model to predict
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a source code summary. Almost all neural approaches to
code summarization are some form of an attentional encoder-
decoder model, in which the encoder creates a vectorized
representation of source code, and the decoder represents the
natural language summary. In the past five years, neural ap-
proaches have almost completely superseded alternatives such
as sentence templates or IR-based keyword extraction [8]-[10].
Current strategies to neural code summarization can be
broadly classified by the type of information they focus on
modeling in the encoder. There are approaches that treat
code as text, focusing on the identifier names and other
natural language content buried in code [11], [12]. There are
approaches that encode the context of other code in the same
source file [13]. Some techniques model the structure of source
code with an RNN by linearizing structural representations
such as the AST [12], [14], [15]. And there is very active
scrutiny of GNN-based encoders to model structures such as
the AST or CPG [16]-[18]. All of these lines of inquiry are
showing promise and continue to advance the state of the art.
Recent work in source code summarization has been focus-
ing on providing models with ever more complex representa-
tions of code with the assumption that it will yield better and
better predictions of code summaries [13], [15], [19], [20],
[20]. This approach mirrors progress in many other fields
such as machine translation or image captioning [21], [22].
However, hints from prior work point to a complementary re-
lationship among neural models of code summarization, rather
than a competitive one. Different types of information modeled
by the encoder seem to provide orthogonal improvements
to the predictions. For example, LeClair ef al. [15] pointed
out at ICSE’19 that their flattened AST approach improved
predictions for some Java methods in their dataset but not
others — while they observed an improvement in aggregate
BLEU scores, this improvement was concentrated in a subset
of methods. They found a mixture of their approach and a text-
only encoder approach to provide the best overall results. The
point is that significant progress may be possible by combining
encodings that provide orthogonal improvements.
Meanwhile, “ensemble” models have a long tradition in
many research areas as a way to combine contributions from
diverse data sources [23], [24]. Examples include improving
cancer diagnosis accuracy [25], weather prediction [26], stock
market classification [27], solar power output efficacy [28],



and many others. Sagi et al. [24] point out that the reason en-
semble models work is that they increase data source diversity,
avoid overfitting, and defray problems related to models stuck
at local minima. Yet the benefits ensemble models may offer
to code summarization have not been thoroughly studied.

In this paper, we combine different, complementary source
code encoders for summarization via ensemble models. Our
paper has two parts: 1) we conduct an empirical study in
which we compare off-the-shelf ensemble technique to com-
bine several baseline code summarization models from related
literature, and 2) we provide a rationale behind the increases
we observe from the ensemble techniques, showing how
different models make different contributions to prediction
performance.

We release all code, datasets, and other scripts to help other
researchers via our online appendix (see Section IX).

II. BACKGROUND & RELATED WORK

This section discusses the key supporting technologies and
related work to this paper, namely source code summarization
in SE research and ensemble models generally.

A. Source Code Summarization

Recent work in source code summarization is overwhelm-
ingly centered around the use neural networks and deep
learning architectures. The work can be broadly categorized
into four research directions:

Text-Based: Text-Based models use the text of the source
code itself as a sequence, relying on the words that appear in
the code to generate a summary. These methods usually use
a sequence-to-sequence-like model design. The input to these
models is the source code being summarized. The intended
output is the summary of that source code. These approaches
were first described around 2016, such as by Iyer er al. [11].
These approaches are still frequently used as baselines against
which to evaluate newer approaches.

Flat-Structure: Flat-Structure models take the structure of
the code, usually in the form of the AST, and flatten it into a
sequence. For example, using a depth-first traversal to generate
a sequence from the tree. After the early successes of text-
based neural approaches, a trend formed in which several
papers described code summarization approaches based on this
flattened AST structure. For example, Hu et al. create a tech-
nique for flattening the AST called structure-based traversal
(SBT). Their technique retains the structural information of
the AST during the flattening process by adding a series of
brackets and braces to group AST nodes. Other, more standard
tree traversal techniques such as pre-order or post-order are
considered lossy, in that the original AST may not be able to be
reconstructed from the flattened output. Alon et al. generated
paths between the nodes of the AST as a way to flatten the
structure. They randomly selected multiple pairs of nodes in
the AST for each method, and use the path between nodes as
a flattened representation.

LeClair et al. observed that the language used in the code
and the structure of the code contains orthogonal information

Text | Context | Flat | GNN
2016 Iyer et al. [11] X
2017 Loyola et al. [29]
2017 Lu et al. [30]
2018 Hu et al. [20]
2018 Liang et al. [31]
2018 Hu et al. [14]
2019 LeClair et al. [15] X
2019 Alon et al. [32]
2019 Fernandes et al. [33] X
2020 LeClair et al. [16]
2020 Haque et al. [13]
2020 Ahmad et al. [34]
2021 Ziigner et al. [18] X
2021 Liu et al. [17] X X

2021 Bansal et al. [35] X X X

Fig. 1: Comparison of recent source code summarization
research categorized into four broad categories: Text-Based,
Structure-Based, Flat-Structure, and GNN-Structure. These
categories reflect the type of input data the models use for
source code summarization.
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and could remain separate inputs to the model. They adapted
the SBT approach to what they call the SBT AST Only (SBT-
AO), which removed all identifiers from the SBT represen-
tation. They then had two inputs, one for the source code
sequence and one for the SBT-AO. This allowed the model
to learn the information from how the source code is written
from one input, while also learning only from the structure
with the other input.

Context-Based: Context-Based models rely on information
outside of the method or snippet such as API calls [20] or
other methods in the project [13]. For example, Haque et
al. [13] show how other methods from the same file can
provide additional needed context for a method summary. In an
example, they show a simple setter method “setIntermediate”
which sets a value to a passed parameter. The comment for
this function is “sets the intermediate value for this flight” but
nowhere in the method does the word “flight” appear. Other
methods in the file do contain the word flight, since the project
in question has to do with getting flight information. Recently,
Bansal et al [35] developed a project-context method that uses
the project context in addition to the method tokens and file
context. They created a set of embeddings for each level in
the project-file-method hierarchy and provided the model with
each representation.

GNN-Structure: GNN-Structure-based models retain struc-
ture information in graph or tree formats. For instance,
LeClair et al. [16] build upon their earlier work with flattened
structure models by using both a source sequence input and a
GNN to learn AST node representations. They found that the
AST was able to learn better structure representations than
a flattened AST. Liu et al. [17] combine a retrieval based
technique and a GNN generated summary to produce sum-
maries. They aggregate summaries from similarly structured
code along side a GNN to generate the summary of a method.



B. Ensemble Models

An ensemble model is one in which several other models
are aggregated to generate a single output. Ensemble models
are used in a variety of applications ranging from neural
machine translation [36] to stock market prediction [37].
Ensemble models have been shown to reach state-of-the-art
results in many different areas [24]. The goal of ensembling
is to get a “best of all worlds” output, in which we can take
advantage of a model’s relative strengths while simultaneously
decreasing the effect of its weaknesses. Ensemble models work
by aggregating a collection of models trained for the same task.

There are a variety of aggregation techniques that are used
to combine model outputs. One commonly used aggregation
technique is to average the outputs of all the models in the
ensemble. When applied to text generation this aggregation
technique averages the softmax output of each model for
every time step in the sequence. More sophisticated aggre-
gation techniques can also be used, such as an SVM, neural
network, or weighted sum. Aggregation techniques that use
a learning algorithm are known as meta-learning techniques.
By aggregating these different models we can take advantage
of orthogonal output. For example, LeClair et al. showed
that their non-AST and AST models learned to summarize
orthogonal subsets of Java methods, leading them to test a
simple ensemble. Their ensemble model outperformed both
their non-AST and AST models and showed the potential
viability of a more sophisticated ensemble approach.

When working with ensemble models there are three high
level design concepts: 1) the data used to train each model,
2) the models used in the ensemble, and 3) the procedure
for aggregating those models. When determining model input
data, ensemble models are considered either dependent or
independent. In a dependent ensemble, each model is depen-
dent on the output from another model. An example of a
dependent ensemble model would be AdaBoost [38], where
subsequent models are trained on previously mis-classified
training data. Independent ensembles use a collection of in-
dependently trained models. Two of the primary techniques
used for independent ensembles is bagging and stacking. In
bagging, each model is trained on a subset of the data, while
in stacking each model is trained on the entire dataset. In
both dependent and independent ensembles the outputs of each
model is aggregated to generate a single prediction. In this
paper we focus on independent ensemble techniques.

C. Metrics

BLEU [39] is an automated metric commonly used to score
the output of text generation and translation models. BLEU
scores are commonly used in source code summarization tasks
to rate the summary quality of a model. The BLEU algorithm
scores the overlap of N-Grams in a predicted and reference
text. To achieve a final single score many researchers use
an aggregate of BLEU-1 to BLEU-4 which will count the
number of overlaps in 1,2,3,4-Grams of the predicted text in
the reference text.

III. RESEARCH QUESTIONS

The research objective of this paper is to study the effects of
ensemble models for neural source code summarization, and to
determine the orthogonality of different models that contribute
to the ensembles. We ask the following two research questions:

RQ; What is the performance difference in terms of
aggregate BLEU scores of existing baselines, when

combined using a simple aggregating procedure?

RQ-> What is the difference in the vector space represen-
tations of the functions in the models contributing to

the ensembles?

The rationale behind RQ; is that many models have been
proposed for source code summarization, yet related literature
does not describe how these models may contribute in an
ensemble with other models. Our goal with this RQ is to
cast a wide net and include many different model types,
with many different source code input features, while keeping
the aggregation procedure simple so that the results may be
explained and more easily reproduced. To further focus on the
model contribution, we use independent ensemble techniques.
We use aggregate BLEU scores because that is by far the
most common way in which neural source code summarization
techniques are evaluated in related work.

The rationale behind RQ- is that each model may make
orthogonal contributions to the predictions, yet some models
may perform best because they provide the most orthogonal
view of the source code. It is useful to know which models
make the most different contributions because ensemble mod-
els work best by combining diverse inputs [24]. We focus on
sets of subroutines for which each model performs the best.

IV. DATASETS

The data used in this work is the Java dataset released by
LeClair et al. on recommendations for datasets for source
code summarization [6]. This dataset contains 2.1 million
code comment pairs in the Java programming language and
is available in two formats, 1) filtered and 2) tokenized.
The filtered version of the dataset has taken the raw data
and filtered it down to 2.1 million code/comment pairs, but
has not applied any additional processing to the text itself.
The tokenized format has had text processing applied and is
available in a vectorized format. We use the tokenized version
of the dataset for this work because it has already been cleaned
and processed based on the procedures outlined in other related
works [13]-[15], [32].

We also utilize the adaptation of the Java dataset as outlined
in the work by Haque et al.. This adaption adds a set of file
context vectors for each method in the dataset. The file context
consists of method vectors for each method that exists within
the same file. This allows the model to learn additional context
from the surrounding methods. We use this set to train the file-
context (FC) versions of the models [13], more details can be
found in Section V.
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Fig. 2: Ensemble architecture diagram for (a) stacking and (b) bagging techniques.

A. Threats to Validity

One threat to validity is the dataset we use. Our dataset
contains only a single programming language (Java) and the
ensemble models may not generalize to other programming
languages. While datasets in other languages are available,
few are as large and complete as the Java dataset provided
by LeClair et al. and Haque er al. [6], [13] which contains
around 2.1 million examples of source code, comments, ASTs
as sequences and trees, and file context vectors. Using this
dataset allowed us to use six model architectures from the
literature as both baselines and component models for our
ensemble techniques.

Ensembling models has a combinatorial explosion affect
on the number of hyper-parameters. To limit this effect, we
keep many of the hyper-parameters constant across runs and
models. We also set our random seed to ensure random
selections across model training instances and to reduce the
impact of random initialization. Another threat to validity is
that we use the BLEU metric to score and compare our models.
The goal of this paper is to show how ensemble models
perform compared to current literature. Because BLEU score
is so common, this allows us to directly compare our models
with most other work in this area.

Beyond the combinatorial explosion of tunable parameters
introduced by ensembling models, there are also many ways
that models can be ensembled and aggregated. For this paper
we chose to focus on stacking and bagging to showcase
how basic ensemble methods perform compared to individual
baseline models. In this paper we constrain our ensemble
models to a maximum of two component models. We do this
for a variety of reasons. Primarily, in this paper we aim to
explore how complementary and orthogonal models contribute
to an ensemble, and as a first step to do this we try to reduce
the number of tunable parameters. There are also many ways
to aggregate models in an ensemble. We chose a simple, easily
explainable aggregation method to help reduce the impact that
the aggregation method may have on our results.

V. RQq: SIMPLE ENSEMBLES

This section describes our methodology for answering RQ4
and our results. Our methodology includes the simple aggre-
gating procedure we used and the baselines we combined.

A. Ensemble Procedure

For our baseline ensemble methods we use two common
ensembling procedures from the literature [24]; stacking and
bagging. To reduce the number of variables affecting our
results, we restrict our ensemble methods to specific sizes and
parameters outlined below.

« Stacking, Figure 2a: Stacking ensembles aggregate com-
ponent models that are each trained on the entire training
set. Component models in a stacking ensemble do not
need to be the same architecture, but they can be. The
stacking procedure is 1) select which models will be com-
ponents in the ensemble, 2) train each model using the
entire training set, and 3) select and apply an aggregation
method to the output of the models. In our case, each
component model in our stacking ensemble is trained on
1.9 million code comment pairs from the Java dataset and
a mean aggregation method is applied.

« Bagging, Figure 2b: The bagging procedure is very sim-
ilar to the stacking procedure with one major difference.
Instead of training each model on the entire training set,
each model is trained on a subset of the training set. There
are a variety of ways to choose which subset to train
each bagging model on, but a very common method is to
randomly select a subset with replacement. In this paper
we trained two models on separate randomly selected
50% of the training set. Because the we randomly select
with replacement, there may be overlap in the training
data for each model. The intuition behind bagging is that
a random subset of data may have a different distribution
than the dataset as a whole, allowing the model to learn
different sets of features.



The aggregation technique we use takes the mean of the
output at each time step during inference following work in
neural machine translation by Sennrich et al. [40]. In their
project, they achieved state of the art translation results by
ensembling a collection of trained translation models and using
the mean of their output vectors to generate a prediction.
With this aggregation technique each model will have slight
variations on its output distribution, but we can smooth out
these variations by averaging the outputs together.

B. Baselines

For our baselines we compare non-ensemble models against
stacking and bagging ensemble procedures. We use the base-
line models trained following the stacking and boosting proce-
dure as component models in the simple ensemble. We chose
these baselines to outline how ensemble methods perform on a
variety of model types and architectures, including source code
specific features such as the AST and additional file context.

Baseline Models

o Seq2Seq: This model is based off the model outlined in
Iyer et al. [11]. It uses the source code sequence as input
into a standard encoder-decoder architecture. We adapt
this model by adding an attention mechanism between the
encoder and decoder, which has become common practice
for sequence-to-sequence models [15].

o Transformer: We use a transformer encoder baseline
following the current trend in neural machine transla-
tion [41]. Transformers have been shown to outperform
sequence-to-sequence models that use recurrent layers in
translation and summarization tasks. Because they don’t
generally use recurrent layers they also train faster than
similar GRU or LSTM based models. This baseline uses
a transformer to encode the source code sequence and a
GRU to decode.

o Seq2Seq-AST-Flat: This model represents a set of mod-
els that use a flattened AST as an input. Hu et al. and
LeClair et al. use an SBT representation of the AST, flat-
tening it to a single sequence. LeClair ef al. additionally
remove identifiers from the SBT representation calling
the new representation SBT-AST-ONLY (SBT-AQO). We
use the SBT-AO representation of the AST for our flat-
AST baseline becuase it has been shown to outperform
the SBT approach. In this approach both the source code
and flattened AST sequence are provided to model as
input.

o Seq2Seq-AST-GNN: This model uses a GNN to encode
the AST instead of flattening it. We follow work outlined
in LeClair et al., Fernandes et al., and Xu et al. [16],
[19], [33]. In these works, the AST is kept as a tree with
each AST node becoming an input to the encoder. A
GNN layer is then used to encode the AST nodes with
attention mechanisms between the source code, AST, and
generated comment.

e Seq2Seq-FC: The FC version of the seq2seq model
follows the work by Haque et al. [13] which uses the
other methods from the same file as additional context

to the model. This additional file context allows the
model to learn vocabulary that may not exist within
the method itself. Other related work includes additional
context information such as API calls [14] or project level
information [35]. We chose to use file context because the
dataset was readily available and in their work, Haque et
al. compares to a variety of additional baselines.

o Seq2Seq-AST-Flat-FC: Similar to the seq2seq-FC base-
line, this baseline uses the file context model proposed by
Haque et al. [13] with the addition of the flattened AST
as an input. This model has three inputs, the source code
sequence, the flattened AST sequence, and the additional
file context.

C. Results

We present our experimental results in three parts for
comparison, 1) baseline models evaluated without ensembling
(Figure 3a), 2) combinations of baseline models trained using
the stacking procedure (Figure 3b), and 3) combinations of
baseline models trained using the bagging procedure (Fig-
ure 3c).

In Figure 3a we present BLEU scores for the set of baseline
models without any ensembling procedure applied. We observe
that the AST-Flat-FC model had the best overall performance
with a BA score of 19.31. The Transformer model had the
lowest performance with a BA score of 17.74. The Seq2Seq
and Seq2Seq-FC models had the same performance with a
BA score of 18.15. The AST-Flat model obtained a 19.08
BA score and the AST-GNN model obtained an 18.81 BA
score. We use these baseline scores as a direct comparison
for the stacking and bagging ensemble procedures. While the
results we obtained for the baseline models is in line with
those reported in their respective papers, we do see some
variation when comparing BA scores. Difference in score
can be attributed to random initialization of parameters and
differences in training, validation, and testing set split.

In Figure 2a we show the results for the stacking procedure
using the set of baseline models as component models. The
diagonal of Figure 2a show the results for ensembles whose
component models are the same architecture. Outside of the
main-diagonal are results for each combination of component
models using differing model architectures.

First, if we look only at ensembles whose components
are the same architecture (the main diagonal of Fig 2a) we
see that the AST-Flat-FC ensemble has the best performance
with 20.16 BA score, which is a 4.7% increase over a single
AST-Flat-FC model. The ensemble with lowest performance
from this group is the Transformer ensemble with 18.88 BA
score. Every model, when having components of the same
architecture, achieved an improved BA score with an average
increase of 1.10 BA, or an average of 6% improvement. The
Seq2Seq-FC ensemble had the largest increase in performance
with a 1.21 score improvement. We attribute the increase in
performance when component models use the same architec-
ture to a smoothing effect that combining the outputs has on
the prediction.



Model Type BA B1 B2 B3 B4
Seq2Seq 18.15 | 37.87 | 20.79 | 13.58 | 10.15
Transformer | 17.74 | 36.81 | 20.14 | 13.28 | 10.07
AST-Flat 19.08 | 38.57 | 21.78 | 14.49 | 10.88
AST-GNN 18.81 | 37.70 | 21.33 | 14.33 | 10.85
Seq2Seq-FC | 18.15 | 36.87 | 20.52 | 13.73 | 10.44
AST-Flat-FC | 19.31 | 38.62 | 21.83 | 14.70 | 11.22
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Fig. 3: BLEU scores for (a) non-ensemble models, (b) stacking with simple aggregation, and (c) bagging with simple aggregation

Second, when we compare ensembles that use component
models of different architectures, we see that the AST-Flat-
FC+AST-Flat ensemble achieved a BA score of 20.64. This
shows an 8.1% improvement over the AST-Flat model and
a 6.8% improvement above the AST-Flat-FC model. The
worst overall performing ensemble when using two different
model architectures is the Seq2Seq+Transformer ensemble.
This combination resulted in a BA score of 19.36. The
ensemble that had the largest improvement over the baseline
model is the Transformer+Seq2Seq-AST-Flat-FC ensemble.
This combination achieved a 14.8% BA improvement over
the baseline Transformer model, and a 8.9% improvement
over the baseline AST-Flat-FC model. The stacking procedure
resulted in improvement on every ensemble combination. We
believe that the improved score is due to the combination of
complimentary and orthogonal information provided by the
combination of models.

Figure 3c shows our results from the bagging procedure
using the set of baseline models as component models. When
the bagging procedure is applied to two model of the same
architecture the AST-Flat ensemble has the best BA score of
19.34, which is a 0.03 BA improvement over the baseline
AST-Flat model. The Seq2Seq-FC+AST-Flat-FC ensembles
see a performance decrease when trained using the bagging
procedure. This performance loss can be attributed to the
reduced training data size introduced by bagging. The FC
models use additional file context inputs to help improve
model performance, but this adds additional trainable param-
eters to the model. We also note that the FC models need to

be trained to 15 epochs before convergence as reported by
Haque et al. while the other models only need 10 epochs to
converge. It is likely that these models require more data than
the other models due to the number of trainable parameters.

When the bagging procedure is applied to component
models of different architectures the AST-Flat+AST-Flat-FC
ensemble has the best performance with a BA score of 19.63.
The Seq2Seq+Transformer ensemble had the worst overall
performance with a BA score of 18.43. We found that the
combination of models that had the same input types (e.g.
the Seq2Seq and Transformer, or AST-Flat and AST-GNN)
generally had minimal performance increase from ensembling.
Models that have different or orthogonal data inputs had larger
BA score improvements when ensembled.

Overall, we found that bagging performed worse than stack-
ing. This could be due to a variety of factors. First, the com-
plexity of the component models may require a large dataset
for model convergence, which bagging reduced the training
set size significantly. Second, bagging performance may be
sensitive to the number of component models. We limit our
work to two component models, but more models may improve
performance. The stacking procedure had improvements over
all baseline component models with the largest improvement
being the Transformer+AST-Flat-FC ensemble, and the best
combination of component models being the AST-Flat+AST-
Flat-FC ensemble. The stacking ensemble results show that
models that were trained using complementary orthogonal
input data have the best improvement over their baseline
models.



VI. RQ3: VECTOR SPACE ANALYSIS

This section describes our methodology for answering RQo,
procedures for analysis, data, and interpretations.

A. Methodology

To answer RQ2 we evaluate and compare how the model
encoders create internal representations of the source code.
Comparing the output of the model encoders can show us if
the models are encoding methods in a similar way. Due to
random initialization and weight updates during training, we
can not directly compare the output vectors of each model.
Instead we compare sets of similar methods using a cosine-
similarity score. A high level overview of the process we use
to obtain the similar methods can be seen in Figure 4.

Procedure to extract similar methods in the testing set using
cosine-similarity:

1) Using a trained model, extract the vector output of the
encoder for every method in the testing set. This gives
us the models learned internal representation of each
method in the testing set. Do this for both encoders
in the comparison. This produces two lists of vector
representations for each method.

2) For the file context vectors, we average the output of the
time distributed GRU layer.

3) For each method vector in the testing set, we find the
100 most similar method vectors using cosine-similarity
metric. We apply this to the lists generated by both
encoders.

4) To compare the different encoders, calculate the number
of functions that overlap between each methods top 100
similarity list.

Using this method we compare the outputs of model en-
coders for the source code, AST, and file context of the
baseline models. We found that the encoders that have many
overlapping functions, then it is likely that the encoders have
learned to represent methods in a similar way. If there is low
agreement between the encoders list of similar functions, then
the encoders may have learned orthogonal representations of
the source code. Using our results from RQ1 we show that the
models that had the largest improvement when ensembled, also
show very little overlap in their inputs when compared with
other models.
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Fig. 4: Methodology for finding orthogonal representations of
source code features.

B. Results

Figure 5a shows histograms of encoder comparisons. In
these figures the x-axis is the number of methods that overlap
in the encoders 100 most similar lists, as explained in the
previous section. For example in Figure 5a, the bar labeled
‘5’ is the count of all methods in the testing set that had an
overlap count of 5. Having an overlap count of 5 indicates that
for a given method the encoders agreed on 5 entries. In this
example, the number of methods that had an overlap count of
5 in the testing set is in between 100 and 1000. Each histogram
shows the overlap distribution over the testing set.

Figure 5a is the overlap between the source code sequence
encoder and AST encoder from the AST-Flat model. When
comparing the source code sequence encoder to the AST en-
coder we see very little overlap in method similarity. This may
indicate that the source code sequence encoder and the AST
encoder have learned to represent methods in different ways.
This is likely due to the encoders learning from orthogonal,
complementary information. We expect this from inputs that
use different parts of the source code, in this case the source
code sequence and AST.

In Figure 5b we see a similar situation where there is almost
no overlap in the methods the encoders find similar. This
figure compares the source code sequence encoder and AST
encoder of the AST-GNN model. We see an overlap histogram
similar to the AST-Flat comparison, with less overlap in the
10+ groups, but slightly more in the 0-3 groups. This could be
due to the GNN providing a more orthogonal representation
of the AST than the AST-Flat model. In Figure 5c we show
the overlap between the AST encoders of the AST-Flat and
AST-GNN models. In this histogram we see that while there
is still very little overlap, there are many more methods that
have an overlap count of 1 or 2. This could mean that while
the ASTs are being represented differently to each model, they
are learning some features that allow them to identify a small
subset of similar methods the same way.

Not all encoder overlaps show orthogonal representations.
In Figure 5d there is significantly more overlap between the
encoders, with some methods having 70-80 of their top 100
similar methods shared between the encoders. This figure
shows the overlap between the source code sequence encoders
from the Transformer and AST-Flat models. Both encoders are
trained on the source code sequence as input and have learned
similar representations of the source code sequence input. We
found that many of the of the source code sequence encoders
shared a high level of similarity. Similarly, in Figure 5e we
compare the file context encoder average output from the
Seq2Seq-FC and AST-Flat-FC models. In this comparison we
see a lot of overlap between the encoders, the only difference
between these two models is that the AST-Flat-FC model has
an additional input of the flattened AST. We attribute the
large overlap between these encoders to the file context being
learned in similar ways between the Seq2Seq-FC and AST-
Flat-FC models. It is likely that these models utilize the file
context in similar ways when generating summaries.
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Figure 5f compares the AST encoder of the AST-Flat
and AST-Flat-FC models. Again, we see very little overlap
between the AST encoders. We found this to be common
between all of the models that utilize either flat or GNN
representations of the AST. This could be due to each model
learning different types of features from the AST that, along
with the other inputs, improve model performance. For in-
stance, having the file context along with the AST may
allow the model to focus on AST structure elements to boost
performance on a specific subset of methods. If the model
does not have the file context available, it may have to learn
more generalized representations for the AST.

VII. EXAMPLES

In this section we give two examples from the testing set.
These examples show how the encoders for the source code,
AST, and file context differ in how they represent functions
and determine which functions are most similar.

A. Example 1

This example compares similar methods from the source
code sequence encoder and AST encoder of the AST-Flat
model. It shows how the two encoders differ by showing the
most similar method to the input method for both encoder. We
show the input method source code and source sequence, as
well as the associated comment.

The input method is a table GUI method that returns a
Boolean if a tooltip is able to be set. The most similar method
based on the source code encoder is another GUI method that
returns a Boolean and determines if a panel is in a certain
position. The most similar method based on the AST encoder
is a networking method. This method also returns a Boolean
similar to the input method, but it doesn’t have much else in
common. The AST encoder is finding structural elements to
match to. In this case the return type of the method. The source
code sequence encoder is matching to similar vocabulary such
as ‘table’, ‘graph’, ‘panel‘.

Input Method ID: 18252737
Source code input
private boolean showTable (Graph graph, ...
if (table!=nullé&é&!tableNodes.containsKey...
Node n = graph.addNode () ;
n.setString("label", table.getName());

String tooltip = tableRenderer.get...
n.setString("tooltip", tooltip);
tableNodes.put (table, n);
return true;

}

return false;

Source code sequence
private boolean show table graph graph table table if
table null table nodes contains key table node n graph
add node n set string label table get name string tooltip
table renderer get tool tip table n set string tooltip
tooltip table nodes put table n return true return false

Comment
creates visible node for given table

Most similar method based on source code sequence
Similar Method ID: 40467654

Source Code input
public boolean is over panel int ax int ay if tab only
return is over ax ay else point p new point 0 O calc abs
position p if ax p x ax p x width ay p y tab height ay
p y height return true else return false

Comment
determines whether the position ax ay is over the panel
takimg

Most similar method based on AST sequence
Similar Method ID: 39298423

Source Code input

private boolean check target reconnection line end-
points must be different shapes if new target equals old
source return false return false if the line exists already
for iterator iter new target get target segment part
delegates iterator iter has next segment part delegate
conn segment part delegate iter next return false if a
old source new target line exists already and it is a
differenct instance that the line field if conn get point
adelegate equals old source conn equals line return false
return true

Comment
return true if reconnecting the line instance to new
source is allowed

B. Example 2

In this example we compare the closest methods from the
source code sequence encoder and the file context encoder
using the AST-Flat-FC model. This model uses a source code
sequence, AST, and file context as input. The input method is a
GUI method that creates a panel for cvs options. When using
the source code sequence encoder to find the most similar
method, we get a method that sets a view for a model. This
likely was the closest method for this encoder because of
tokens such as ‘position’, ‘window’, ‘grid’ which all are used
in many GUI methods. The file context encoder also finds
a GUI method that shares language with the input method
such as ‘minimizer’ and ‘layout’. The file context provides
additional vocabulary context, unlike the AST which learns
structural similarities.

Method ID: 299963



Source code input

private void createCVSOptions (int timeWindow) {
this.timeWindow = new TextField(
Integer.toString(
timeWindow) ) ;
CVSOptions = new Panel();
CVSOptions.setLayout (new GridBagLayout ());
GridBagConstraints c =
c.anchor = GridBagConstraints.WEST;
.fill = GridBagConstraints.NONE;
.welghtx = 1;
.weighty = 1;
.gridx = 0;
.gridy = 0;
CVSOptions.add (new Label ("Time window:"),
c.gridx = 1;
CVSOptions.add(this.timeWindow, c);
}

Q0 QaaQa

c)i

Source code sequence

private void create cvsoptions int time window this time win-
dow new text field integer to string time window cvsoptions
new panel cvsoptions set layout new grid bag layout grid
bag constraints ¢ new grid bag constraints ¢ anchor grid bag
constraints west c fill grid bag constraints none ¢ weightx 1 ¢
weighty 1 ¢ gridx O ¢ gridy O cvsoptions add new label time
window ¢ ¢ gridx 1 cvsoptions add this time window c

Comment
construct the panel for the cvs options

new GridBagConstraints();

Most similar method from source code sequence encoder
Method ID: 45891192

Source Code input

public void show big view state model model state view
small small view m current big view new state view
big model small view this m current small view small
view todo move controller like state controller small is
instantiate new state controller big m model this model
m current big view m right panel remove all m right
panel add m current big view border layout center m
model set current position index of view small view
refresh

Comment
sets the model for the detailed view

Most similar method from file context encoder
Method ID: 299982

Source Code input
private void enable minimizer options boolean b dim
set enabled b iter set enabled b init layout set enabled
b attr exp set enabled b repu exp set enabled b grav set
enabled b no weight set enabled b vert repu set enabled
b load init layout set enabled b

Comment
enable the part concerning the minimizer

VIII. DISCUSSION & FUTURE WORK

In this paper we present two major additions to the work in
source code summarization.

1) We explore the performance of ensembling a variety of
baseline models using a simple aggregation technique to
show how models combined with different architectures
and inputs perform on the task of source code summa-
rization.

2) To help explain why ensembling may work well with
models that use orthogonal types of input data, we
explore and compare the internal source code repre-
sentations these models learned. This provides insight
into how we may be able to better combine models, as
well as which types of models may perform best when
ensembled.

In our encoder representation comparison we discuss why
complementary orthogonal input may be beneficial for models
to learn better source code representations. We also show two
examples to further illustrate how the learned representations
of source code differs between encoders that were trained
on different features of source code data (source text, AST,
file context, etc). Through these examples we can see that
models trained on orthogonal data complement each other
well when ensembled. Also, even when training models of the
same architecture, ensemble methods improve overall model
performance. This paper provides a groundwork for future
projects focused on the problem of ensembling source code
summarization models.

A. Future Work

One potential path for future work is to explore aggregation
strategies and how they can be optimized for source code sum-
marization. In this paper we use a simple mean combination
aggregation strategy and do not explore how more advanced
aggregation strategies, such as meta-learning, may perform.

IX. REPRODUCIBILITY
All of our models, source code, and data used in this work
can be found in our online repository at https://bit.ly/3tiF8pc
A. Hardware Details

For training, validating, testing of our models we used a
workstation with Xeon E1430v4 CPUs, 110GB RAM, a Titan
RTX GPU, and a Quadro P5000 GPU
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