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Abstract—A source code summary of a subroutine is a brief
description of that subroutine. Summaries underpin a majority of
documentation consumed by programmers, such as the method
summaries in JavaDocs. Source code summarization is the task
of writing these summaries. At present, most state-of-the-art
approaches for code summarization are neural network-based
solutions akin to seq2seq, graph2seq, and other encoder-decoder
architectures. The input to the encoder is source code, while
the decoder helps predict the natural language summary. While
these models tend to be similar in structure, evidence is emerging
that different models make different contributions to prediction
quality – differences in model performance are orthogonal and
complementary rather than uniform over the entire dataset. In
this paper, we explore the orthogonal nature of different neural
code summarization approaches and propose ensemble models
to exploit this orthogonality for better overall performance. We
demonstrate that a simple ensemble strategy boosts performance
by up to 14.8%, and provide an explanation for this boost.
The takeaway from this work is that a relatively small change
to the inference procedure in most neural code summarization
techniques leads to outsized improvements in prediction quality.

Index Terms—source code summarization, automatic docu-
mentation generation, neural networks

I. INTRODUCTION

A source code “summary” of a subroutine is a natural

language description of that subroutine. Summaries are the

foundation of many documentation systems such as JavaDocs,

where the summary is used to help programmers quickly gain

an understanding of the purpose of the subroutine, without

actually reading its source code [1]. The task of writing

these summaries has come to be known as source code

summarization [2], and has been an active research area for

decades because of a mismatch between programmer behavior

and their expectations: Programmers tend to avoid writing

source code summaries due to the time cost and manual

effort [3], [4]. Yet at the same time, programmers rely on good

documentation written by others [5]. The result that automated

solutions to code summarization are a very high value target

in software engineering research.

Intense research interest has lately been focused on neural

source code summarization approaches. These approaches rely

on datasets of millions of examples of code and code sum-

maries (e.g. [6], [7]) to train a neural network model to predict

This work is supported in part by redacted for blind review.

a source code summary. Almost all neural approaches to

code summarization are some form of an attentional encoder-

decoder model, in which the encoder creates a vectorized

representation of source code, and the decoder represents the

natural language summary. In the past five years, neural ap-

proaches have almost completely superseded alternatives such

as sentence templates or IR-based keyword extraction [8]–[10].

Current strategies to neural code summarization can be

broadly classified by the type of information they focus on

modeling in the encoder. There are approaches that treat

code as text, focusing on the identifier names and other

natural language content buried in code [11], [12]. There are

approaches that encode the context of other code in the same

source file [13]. Some techniques model the structure of source

code with an RNN by linearizing structural representations

such as the AST [12], [14], [15]. And there is very active

scrutiny of GNN-based encoders to model structures such as

the AST or CPG [16]–[18]. All of these lines of inquiry are

showing promise and continue to advance the state of the art.

Recent work in source code summarization has been focus-

ing on providing models with ever more complex representa-

tions of code with the assumption that it will yield better and

better predictions of code summaries [13], [15], [19], [20],

[20]. This approach mirrors progress in many other fields

such as machine translation or image captioning [21], [22].

However, hints from prior work point to a complementary re-

lationship among neural models of code summarization, rather

than a competitive one. Different types of information modeled

by the encoder seem to provide orthogonal improvements

to the predictions. For example, LeClair et al. [15] pointed

out at ICSE’19 that their flattened AST approach improved

predictions for some Java methods in their dataset but not

others – while they observed an improvement in aggregate

BLEU scores, this improvement was concentrated in a subset

of methods. They found a mixture of their approach and a text-

only encoder approach to provide the best overall results. The

point is that significant progress may be possible by combining

encodings that provide orthogonal improvements.

Meanwhile, “ensemble” models have a long tradition in

many research areas as a way to combine contributions from

diverse data sources [23], [24]. Examples include improving

cancer diagnosis accuracy [25], weather prediction [26], stock

market classification [27], solar power output efficacy [28],
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and many others. Sagi et al. [24] point out that the reason en-

semble models work is that they increase data source diversity,

avoid overfitting, and defray problems related to models stuck

at local minima. Yet the benefits ensemble models may offer

to code summarization have not been thoroughly studied.

In this paper, we combine different, complementary source

code encoders for summarization via ensemble models. Our

paper has two parts: 1) we conduct an empirical study in

which we compare off-the-shelf ensemble technique to com-

bine several baseline code summarization models from related

literature, and 2) we provide a rationale behind the increases

we observe from the ensemble techniques, showing how

different models make different contributions to prediction

performance.

We release all code, datasets, and other scripts to help other

researchers via our online appendix (see Section IX).

II. BACKGROUND & RELATED WORK

This section discusses the key supporting technologies and

related work to this paper, namely source code summarization

in SE research and ensemble models generally.

A. Source Code Summarization

Recent work in source code summarization is overwhelm-

ingly centered around the use neural networks and deep

learning architectures. The work can be broadly categorized

into four research directions:

Text-Based: Text-Based models use the text of the source

code itself as a sequence, relying on the words that appear in

the code to generate a summary. These methods usually use

a sequence-to-sequence-like model design. The input to these

models is the source code being summarized. The intended

output is the summary of that source code. These approaches

were first described around 2016, such as by Iyer et al. [11].

These approaches are still frequently used as baselines against

which to evaluate newer approaches.

Flat-Structure: Flat-Structure models take the structure of

the code, usually in the form of the AST, and flatten it into a

sequence. For example, using a depth-first traversal to generate

a sequence from the tree. After the early successes of text-

based neural approaches, a trend formed in which several

papers described code summarization approaches based on this

flattened AST structure. For example, Hu et al. create a tech-

nique for flattening the AST called structure-based traversal

(SBT). Their technique retains the structural information of

the AST during the flattening process by adding a series of

brackets and braces to group AST nodes. Other, more standard

tree traversal techniques such as pre-order or post-order are

considered lossy, in that the original AST may not be able to be

reconstructed from the flattened output. Alon et al. generated

paths between the nodes of the AST as a way to flatten the

structure. They randomly selected multiple pairs of nodes in

the AST for each method, and use the path between nodes as

a flattened representation.

LeClair et al. observed that the language used in the code

and the structure of the code contains orthogonal information

Text Context Flat GNN

2016 Iyer et al. [11] x

2017 Loyola et al. [29] x

2017 Lu et al. [30] x

2018 Hu et al. [20] x x

2018 Liang et al. [31] x

2018 Hu et al. [14] x

2019 LeClair et al. [15] x x

2019 Alon et al. [32] x

2019 Fernandes et al. [33] x

2020 LeClair et al. [16] x x

2020 Haque et al. [13] x x x

2020 Ahmad et al. [34] x x

2021 Zügner et al. [18] x x x

2021 Liu et al. [17] x x

2021 Bansal et al. [35] x x x

Fig. 1: Comparison of recent source code summarization

research categorized into four broad categories: Text-Based,

Structure-Based, Flat-Structure, and GNN-Structure. These

categories reflect the type of input data the models use for

source code summarization.

and could remain separate inputs to the model. They adapted

the SBT approach to what they call the SBT AST Only (SBT-

AO), which removed all identifiers from the SBT represen-

tation. They then had two inputs, one for the source code

sequence and one for the SBT-AO. This allowed the model

to learn the information from how the source code is written

from one input, while also learning only from the structure

with the other input.

Context-Based: Context-Based models rely on information

outside of the method or snippet such as API calls [20] or

other methods in the project [13]. For example, Haque et

al. [13] show how other methods from the same file can

provide additional needed context for a method summary. In an

example, they show a simple setter method “setIntermediate”

which sets a value to a passed parameter. The comment for

this function is “sets the intermediate value for this flight” but

nowhere in the method does the word “flight” appear. Other

methods in the file do contain the word flight, since the project

in question has to do with getting flight information. Recently,

Bansal et al [35] developed a project-context method that uses

the project context in addition to the method tokens and file

context. They created a set of embeddings for each level in

the project-file-method hierarchy and provided the model with

each representation.

GNN-Structure: GNN-Structure-based models retain struc-

ture information in graph or tree formats. For instance,

LeClair et al. [16] build upon their earlier work with flattened

structure models by using both a source sequence input and a

GNN to learn AST node representations. They found that the

AST was able to learn better structure representations than

a flattened AST. Liu et al. [17] combine a retrieval based

technique and a GNN generated summary to produce sum-

maries. They aggregate summaries from similarly structured

code along side a GNN to generate the summary of a method.



B. Ensemble Models

An ensemble model is one in which several other models

are aggregated to generate a single output. Ensemble models

are used in a variety of applications ranging from neural

machine translation [36] to stock market prediction [37].

Ensemble models have been shown to reach state-of-the-art

results in many different areas [24]. The goal of ensembling

is to get a “best of all worlds” output, in which we can take

advantage of a model’s relative strengths while simultaneously

decreasing the effect of its weaknesses. Ensemble models work

by aggregating a collection of models trained for the same task.

There are a variety of aggregation techniques that are used

to combine model outputs. One commonly used aggregation

technique is to average the outputs of all the models in the

ensemble. When applied to text generation this aggregation

technique averages the softmax output of each model for

every time step in the sequence. More sophisticated aggre-

gation techniques can also be used, such as an SVM, neural

network, or weighted sum. Aggregation techniques that use

a learning algorithm are known as meta-learning techniques.

By aggregating these different models we can take advantage

of orthogonal output. For example, LeClair et al. showed

that their non-AST and AST models learned to summarize

orthogonal subsets of Java methods, leading them to test a

simple ensemble. Their ensemble model outperformed both

their non-AST and AST models and showed the potential

viability of a more sophisticated ensemble approach.

When working with ensemble models there are three high

level design concepts: 1) the data used to train each model,

2) the models used in the ensemble, and 3) the procedure

for aggregating those models. When determining model input

data, ensemble models are considered either dependent or

independent. In a dependent ensemble, each model is depen-

dent on the output from another model. An example of a

dependent ensemble model would be AdaBoost [38], where

subsequent models are trained on previously mis-classified

training data. Independent ensembles use a collection of in-

dependently trained models. Two of the primary techniques

used for independent ensembles is bagging and stacking. In

bagging, each model is trained on a subset of the data, while

in stacking each model is trained on the entire dataset. In

both dependent and independent ensembles the outputs of each

model is aggregated to generate a single prediction. In this

paper we focus on independent ensemble techniques.

C. Metrics

BLEU [39] is an automated metric commonly used to score

the output of text generation and translation models. BLEU

scores are commonly used in source code summarization tasks

to rate the summary quality of a model. The BLEU algorithm

scores the overlap of N-Grams in a predicted and reference

text. To achieve a final single score many researchers use

an aggregate of BLEU-1 to BLEU-4 which will count the

number of overlaps in 1,2,3,4-Grams of the predicted text in

the reference text.

III. RESEARCH QUESTIONS

The research objective of this paper is to study the effects of

ensemble models for neural source code summarization, and to

determine the orthogonality of different models that contribute

to the ensembles. We ask the following two research questions:

RQ1 What is the performance difference in terms of

aggregate BLEU scores of existing baselines, when

combined using a simple aggregating procedure?

RQ2 What is the difference in the vector space represen-

tations of the functions in the models contributing to

the ensembles?

The rationale behind RQ1 is that many models have been

proposed for source code summarization, yet related literature

does not describe how these models may contribute in an

ensemble with other models. Our goal with this RQ is to

cast a wide net and include many different model types,

with many different source code input features, while keeping

the aggregation procedure simple so that the results may be

explained and more easily reproduced. To further focus on the

model contribution, we use independent ensemble techniques.

We use aggregate BLEU scores because that is by far the

most common way in which neural source code summarization

techniques are evaluated in related work.

The rationale behind RQ2 is that each model may make

orthogonal contributions to the predictions, yet some models

may perform best because they provide the most orthogonal

view of the source code. It is useful to know which models

make the most different contributions because ensemble mod-

els work best by combining diverse inputs [24]. We focus on

sets of subroutines for which each model performs the best.

IV. DATASETS

The data used in this work is the Java dataset released by

LeClair et al. on recommendations for datasets for source

code summarization [6]. This dataset contains 2.1 million

code comment pairs in the Java programming language and

is available in two formats, 1) filtered and 2) tokenized.

The filtered version of the dataset has taken the raw data

and filtered it down to 2.1 million code/comment pairs, but

has not applied any additional processing to the text itself.

The tokenized format has had text processing applied and is

available in a vectorized format. We use the tokenized version

of the dataset for this work because it has already been cleaned

and processed based on the procedures outlined in other related

works [13]–[15], [32].

We also utilize the adaptation of the Java dataset as outlined

in the work by Haque et al.. This adaption adds a set of file

context vectors for each method in the dataset. The file context

consists of method vectors for each method that exists within

the same file. This allows the model to learn additional context

from the surrounding methods. We use this set to train the file-

context (FC) versions of the models [13], more details can be

found in Section V.





The aggregation technique we use takes the mean of the

output at each time step during inference following work in

neural machine translation by Sennrich et al. [40]. In their

project, they achieved state of the art translation results by

ensembling a collection of trained translation models and using

the mean of their output vectors to generate a prediction.

With this aggregation technique each model will have slight

variations on its output distribution, but we can smooth out

these variations by averaging the outputs together.

B. Baselines

For our baselines we compare non-ensemble models against

stacking and bagging ensemble procedures. We use the base-

line models trained following the stacking and boosting proce-

dure as component models in the simple ensemble. We chose

these baselines to outline how ensemble methods perform on a

variety of model types and architectures, including source code

specific features such as the AST and additional file context.

Baseline Models

• Seq2Seq: This model is based off the model outlined in

Iyer et al. [11]. It uses the source code sequence as input

into a standard encoder-decoder architecture. We adapt

this model by adding an attention mechanism between the

encoder and decoder, which has become common practice

for sequence-to-sequence models [15].

• Transformer: We use a transformer encoder baseline

following the current trend in neural machine transla-

tion [41]. Transformers have been shown to outperform

sequence-to-sequence models that use recurrent layers in

translation and summarization tasks. Because they don’t

generally use recurrent layers they also train faster than

similar GRU or LSTM based models. This baseline uses

a transformer to encode the source code sequence and a

GRU to decode.

• Seq2Seq-AST-Flat: This model represents a set of mod-

els that use a flattened AST as an input. Hu et al. and

LeClair et al. use an SBT representation of the AST, flat-

tening it to a single sequence. LeClair et al. additionally

remove identifiers from the SBT representation calling

the new representation SBT-AST-ONLY (SBT-AO). We

use the SBT-AO representation of the AST for our flat-

AST baseline becuase it has been shown to outperform

the SBT approach. In this approach both the source code

and flattened AST sequence are provided to model as

input.

• Seq2Seq-AST-GNN: This model uses a GNN to encode

the AST instead of flattening it. We follow work outlined

in LeClair et al., Fernandes et al., and Xu et al. [16],

[19], [33]. In these works, the AST is kept as a tree with

each AST node becoming an input to the encoder. A

GNN layer is then used to encode the AST nodes with

attention mechanisms between the source code, AST, and

generated comment.

• Seq2Seq-FC: The FC version of the seq2seq model

follows the work by Haque et al. [13] which uses the

other methods from the same file as additional context

to the model. This additional file context allows the

model to learn vocabulary that may not exist within

the method itself. Other related work includes additional

context information such as API calls [14] or project level

information [35]. We chose to use file context because the

dataset was readily available and in their work, Haque et

al. compares to a variety of additional baselines.

• Seq2Seq-AST-Flat-FC: Similar to the seq2seq-FC base-

line, this baseline uses the file context model proposed by

Haque et al. [13] with the addition of the flattened AST

as an input. This model has three inputs, the source code

sequence, the flattened AST sequence, and the additional

file context.

C. Results

We present our experimental results in three parts for

comparison, 1) baseline models evaluated without ensembling

(Figure 3a), 2) combinations of baseline models trained using

the stacking procedure (Figure 3b), and 3) combinations of

baseline models trained using the bagging procedure (Fig-

ure 3c).

In Figure 3a we present BLEU scores for the set of baseline

models without any ensembling procedure applied. We observe

that the AST-Flat-FC model had the best overall performance

with a BA score of 19.31. The Transformer model had the

lowest performance with a BA score of 17.74. The Seq2Seq

and Seq2Seq-FC models had the same performance with a

BA score of 18.15. The AST-Flat model obtained a 19.08

BA score and the AST-GNN model obtained an 18.81 BA

score. We use these baseline scores as a direct comparison

for the stacking and bagging ensemble procedures. While the

results we obtained for the baseline models is in line with

those reported in their respective papers, we do see some

variation when comparing BA scores. Difference in score

can be attributed to random initialization of parameters and

differences in training, validation, and testing set split.

In Figure 2a we show the results for the stacking procedure

using the set of baseline models as component models. The

diagonal of Figure 2a show the results for ensembles whose

component models are the same architecture. Outside of the

main-diagonal are results for each combination of component

models using differing model architectures.

First, if we look only at ensembles whose components

are the same architecture (the main diagonal of Fig 2a) we

see that the AST-Flat-FC ensemble has the best performance

with 20.16 BA score, which is a 4.7% increase over a single

AST-Flat-FC model. The ensemble with lowest performance

from this group is the Transformer ensemble with 18.88 BA

score. Every model, when having components of the same

architecture, achieved an improved BA score with an average

increase of 1.10 BA, or an average of 6% improvement. The

Seq2Seq-FC ensemble had the largest increase in performance

with a 1.21 score improvement. We attribute the increase in

performance when component models use the same architec-

ture to a smoothing effect that combining the outputs has on

the prediction.



Model Type BA B1 B2 B3 B4

Seq2Seq 18.15 37.87 20.79 13.58 10.15

Transformer 17.74 36.81 20.14 13.28 10.07

AST-Flat 19.08 38.57 21.78 14.49 10.88

AST-GNN 18.81 37.70 21.33 14.33 10.85

Seq2Seq-FC 18.15 36.87 20.52 13.73 10.44

AST-Flat-FC 19.31 38.62 21.83 14.70 11.22
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seq2seq 19.34 19.36 19.86 19.81 19.92 20.42

Transformer x 18.88 19.8 19.64 19.71 20.38

AST-Flat x x 20.13 20.13 20.26 20.64

AST-GNN x x x 19.89 20.09 20.22

seq2seq-FC x x x x 19.36 20.20

AST-Flat-FC x x x x x 20.16
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seq2seq 18.53 18.43 18.89 18.92 18.97 19.28

Transformer x 18.07 18.88 18.86 18.82 19.06

AST-Flat x x 19.34 18.88 19.34 19.63

AST-GNN x x x 19.11 19.30 19.50

seq2seq-FC x x x x 18.01 18.98

AST-Flat-FC x x x x x 18.31

(c)

Fig. 3: BLEU scores for (a) non-ensemble models, (b) stacking with simple aggregation, and (c) bagging with simple aggregation

Second, when we compare ensembles that use component

models of different architectures, we see that the AST-Flat-

FC+AST-Flat ensemble achieved a BA score of 20.64. This

shows an 8.1% improvement over the AST-Flat model and

a 6.8% improvement above the AST-Flat-FC model. The

worst overall performing ensemble when using two different

model architectures is the Seq2Seq+Transformer ensemble.

This combination resulted in a BA score of 19.36. The

ensemble that had the largest improvement over the baseline

model is the Transformer+Seq2Seq-AST-Flat-FC ensemble.

This combination achieved a 14.8% BA improvement over

the baseline Transformer model, and a 8.9% improvement

over the baseline AST-Flat-FC model. The stacking procedure

resulted in improvement on every ensemble combination. We

believe that the improved score is due to the combination of

complimentary and orthogonal information provided by the

combination of models.

Figure 3c shows our results from the bagging procedure

using the set of baseline models as component models. When

the bagging procedure is applied to two model of the same

architecture the AST-Flat ensemble has the best BA score of

19.34, which is a 0.03 BA improvement over the baseline

AST-Flat model. The Seq2Seq-FC+AST-Flat-FC ensembles

see a performance decrease when trained using the bagging

procedure. This performance loss can be attributed to the

reduced training data size introduced by bagging. The FC

models use additional file context inputs to help improve

model performance, but this adds additional trainable param-

eters to the model. We also note that the FC models need to

be trained to 15 epochs before convergence as reported by

Haque et al. while the other models only need 10 epochs to

converge. It is likely that these models require more data than

the other models due to the number of trainable parameters.

When the bagging procedure is applied to component

models of different architectures the AST-Flat+AST-Flat-FC

ensemble has the best performance with a BA score of 19.63.

The Seq2Seq+Transformer ensemble had the worst overall

performance with a BA score of 18.43. We found that the

combination of models that had the same input types (e.g.

the Seq2Seq and Transformer, or AST-Flat and AST-GNN)

generally had minimal performance increase from ensembling.

Models that have different or orthogonal data inputs had larger

BA score improvements when ensembled.

Overall, we found that bagging performed worse than stack-

ing. This could be due to a variety of factors. First, the com-

plexity of the component models may require a large dataset

for model convergence, which bagging reduced the training

set size significantly. Second, bagging performance may be

sensitive to the number of component models. We limit our

work to two component models, but more models may improve

performance. The stacking procedure had improvements over

all baseline component models with the largest improvement

being the Transformer+AST-Flat-FC ensemble, and the best

combination of component models being the AST-Flat+AST-

Flat-FC ensemble. The stacking ensemble results show that

models that were trained using complementary orthogonal

input data have the best improvement over their baseline

models.



VI. RQ2: VECTOR SPACE ANALYSIS

This section describes our methodology for answering RQ2,

procedures for analysis, data, and interpretations.

A. Methodology

To answer RQ2 we evaluate and compare how the model

encoders create internal representations of the source code.

Comparing the output of the model encoders can show us if

the models are encoding methods in a similar way. Due to

random initialization and weight updates during training, we

can not directly compare the output vectors of each model.

Instead we compare sets of similar methods using a cosine-

similarity score. A high level overview of the process we use

to obtain the similar methods can be seen in Figure 4.

Procedure to extract similar methods in the testing set using

cosine-similarity:

1) Using a trained model, extract the vector output of the

encoder for every method in the testing set. This gives

us the models learned internal representation of each

method in the testing set. Do this for both encoders

in the comparison. This produces two lists of vector

representations for each method.

2) For the file context vectors, we average the output of the

time distributed GRU layer.

3) For each method vector in the testing set, we find the

100 most similar method vectors using cosine-similarity

metric. We apply this to the lists generated by both

encoders.

4) To compare the different encoders, calculate the number

of functions that overlap between each methods top 100

similarity list.

Using this method we compare the outputs of model en-

coders for the source code, AST, and file context of the

baseline models. We found that the encoders that have many

overlapping functions, then it is likely that the encoders have

learned to represent methods in a similar way. If there is low

agreement between the encoders list of similar functions, then

the encoders may have learned orthogonal representations of

the source code. Using our results from RQ1 we show that the

models that had the largest improvement when ensembled, also

show very little overlap in their inputs when compared with

other models.

Fig. 4: Methodology for finding orthogonal representations of

source code features.

B. Results

Figure 5a shows histograms of encoder comparisons. In

these figures the x-axis is the number of methods that overlap

in the encoders 100 most similar lists, as explained in the

previous section. For example in Figure 5a, the bar labeled

‘5’ is the count of all methods in the testing set that had an

overlap count of 5. Having an overlap count of 5 indicates that

for a given method the encoders agreed on 5 entries. In this

example, the number of methods that had an overlap count of

5 in the testing set is in between 100 and 1000. Each histogram

shows the overlap distribution over the testing set.

Figure 5a is the overlap between the source code sequence

encoder and AST encoder from the AST-Flat model. When

comparing the source code sequence encoder to the AST en-

coder we see very little overlap in method similarity. This may

indicate that the source code sequence encoder and the AST

encoder have learned to represent methods in different ways.

This is likely due to the encoders learning from orthogonal,

complementary information. We expect this from inputs that

use different parts of the source code, in this case the source

code sequence and AST.

In Figure 5b we see a similar situation where there is almost

no overlap in the methods the encoders find similar. This

figure compares the source code sequence encoder and AST

encoder of the AST-GNN model. We see an overlap histogram

similar to the AST-Flat comparison, with less overlap in the

10+ groups, but slightly more in the 0-3 groups. This could be

due to the GNN providing a more orthogonal representation

of the AST than the AST-Flat model. In Figure 5c we show

the overlap between the AST encoders of the AST-Flat and

AST-GNN models. In this histogram we see that while there

is still very little overlap, there are many more methods that

have an overlap count of 1 or 2. This could mean that while

the ASTs are being represented differently to each model, they

are learning some features that allow them to identify a small

subset of similar methods the same way.

Not all encoder overlaps show orthogonal representations.

In Figure 5d there is significantly more overlap between the

encoders, with some methods having 70-80 of their top 100

similar methods shared between the encoders. This figure

shows the overlap between the source code sequence encoders

from the Transformer and AST-Flat models. Both encoders are

trained on the source code sequence as input and have learned

similar representations of the source code sequence input. We

found that many of the of the source code sequence encoders

shared a high level of similarity. Similarly, in Figure 5e we

compare the file context encoder average output from the

Seq2Seq-FC and AST-Flat-FC models. In this comparison we

see a lot of overlap between the encoders, the only difference

between these two models is that the AST-Flat-FC model has

an additional input of the flattened AST. We attribute the

large overlap between these encoders to the file context being

learned in similar ways between the Seq2Seq-FC and AST-

Flat-FC models. It is likely that these models utilize the file

context in similar ways when generating summaries.





Figure 5f compares the AST encoder of the AST-Flat

and AST-Flat-FC models. Again, we see very little overlap

between the AST encoders. We found this to be common

between all of the models that utilize either flat or GNN

representations of the AST. This could be due to each model

learning different types of features from the AST that, along

with the other inputs, improve model performance. For in-

stance, having the file context along with the AST may

allow the model to focus on AST structure elements to boost

performance on a specific subset of methods. If the model

does not have the file context available, it may have to learn

more generalized representations for the AST.

VII. EXAMPLES

In this section we give two examples from the testing set.

These examples show how the encoders for the source code,

AST, and file context differ in how they represent functions

and determine which functions are most similar.

A. Example 1

This example compares similar methods from the source

code sequence encoder and AST encoder of the AST-Flat

model. It shows how the two encoders differ by showing the

most similar method to the input method for both encoder. We

show the input method source code and source sequence, as

well as the associated comment.

The input method is a table GUI method that returns a

Boolean if a tooltip is able to be set. The most similar method

based on the source code encoder is another GUI method that

returns a Boolean and determines if a panel is in a certain

position. The most similar method based on the AST encoder

is a networking method. This method also returns a Boolean

similar to the input method, but it doesn’t have much else in

common. The AST encoder is finding structural elements to

match to. In this case the return type of the method. The source

code sequence encoder is matching to similar vocabulary such

as ‘table’, ‘graph’, ‘panel‘.

Input Method ID: 18252737

Source code input

private boolean showTable(Graph graph,...

if (table!=null&&!tableNodes.containsKey...

Node n = graph.addNode();

n.setString("label", table.getName());

String tooltip = tableRenderer.get...

n.setString("tooltip", tooltip);

tableNodes.put(table, n);

return true;

}

return false;

}

Source code sequence

private boolean show table graph graph table table if

table null table nodes contains key table node n graph

add node n set string label table get name string tooltip

table renderer get tool tip table n set string tooltip

tooltip table nodes put table n return true return false

Comment

creates visible node for given table

Most similar method based on source code sequence

Similar Method ID: 40467654

Source Code input

public boolean is over panel int ax int ay if tab only

return is over ax ay else point p new point 0 0 calc abs

position p if ax p x ax p x width ay p y tab height ay

p y height return true else return false

Comment

determines whether the position ax ay is over the panel

takimg

Most similar method based on AST sequence

Similar Method ID: 39298423

Source Code input

private boolean check target reconnection line end-

points must be different shapes if new target equals old

source return false return false if the line exists already

for iterator iter new target get target segment part

delegates iterator iter has next segment part delegate

conn segment part delegate iter next return false if a

old source new target line exists already and it is a

differenct instance that the line field if conn get point

adelegate equals old source conn equals line return false

return true

Comment

return true if reconnecting the line instance to new

source is allowed

B. Example 2

In this example we compare the closest methods from the

source code sequence encoder and the file context encoder

using the AST-Flat-FC model. This model uses a source code

sequence, AST, and file context as input. The input method is a

GUI method that creates a panel for cvs options. When using

the source code sequence encoder to find the most similar

method, we get a method that sets a view for a model. This

likely was the closest method for this encoder because of

tokens such as ‘position’, ‘window’, ‘grid’ which all are used

in many GUI methods. The file context encoder also finds

a GUI method that shares language with the input method

such as ‘minimizer’ and ‘layout’. The file context provides

additional vocabulary context, unlike the AST which learns

structural similarities.

Method ID: 299963



Source code input

private void createCVSOptions(int timeWindow){

this.timeWindow = new TextField(

Integer.toString(

timeWindow));

CVSOptions = new Panel();

CVSOptions.setLayout(new GridBagLayout());

GridBagConstraints c = new GridBagConstraints();

c.anchor = GridBagConstraints.WEST;

c.fill = GridBagConstraints.NONE;

c.weightx = 1;

c.weighty = 1;

c.gridx = 0;

c.gridy = 0;

CVSOptions.add(new Label("Time window:"), c);

c.gridx = 1;

CVSOptions.add(this.timeWindow,c);

}

Source code sequence

private void create cvsoptions int time window this time win-
dow new text field integer to string time window cvsoptions
new panel cvsoptions set layout new grid bag layout grid
bag constraints c new grid bag constraints c anchor grid bag
constraints west c fill grid bag constraints none c weightx 1 c
weighty 1 c gridx 0 c gridy 0 cvsoptions add new label time
window c c gridx 1 cvsoptions add this time window c

Comment

construct the panel for the cvs options

Most similar method from source code sequence encoder

Method ID: 45891192

Source Code input

public void show big view state model model state view

small small view m current big view new state view

big model small view this m current small view small

view todo move controller like state controller small is

instantiate new state controller big m model this model

m current big view m right panel remove all m right

panel add m current big view border layout center m

model set current position index of view small view

refresh

Comment

sets the model for the detailed view

Most similar method from file context encoder

Method ID: 299982

Source Code input

private void enable minimizer options boolean b dim

set enabled b iter set enabled b init layout set enabled

b attr exp set enabled b repu exp set enabled b grav set

enabled b no weight set enabled b vert repu set enabled

b load init layout set enabled b

Comment

enable the part concerning the minimizer

VIII. DISCUSSION & FUTURE WORK

In this paper we present two major additions to the work in

source code summarization.

1) We explore the performance of ensembling a variety of

baseline models using a simple aggregation technique to

show how models combined with different architectures

and inputs perform on the task of source code summa-

rization.

2) To help explain why ensembling may work well with

models that use orthogonal types of input data, we

explore and compare the internal source code repre-

sentations these models learned. This provides insight

into how we may be able to better combine models, as

well as which types of models may perform best when

ensembled.

In our encoder representation comparison we discuss why

complementary orthogonal input may be beneficial for models

to learn better source code representations. We also show two

examples to further illustrate how the learned representations

of source code differs between encoders that were trained

on different features of source code data (source text, AST,

file context, etc). Through these examples we can see that

models trained on orthogonal data complement each other

well when ensembled. Also, even when training models of the

same architecture, ensemble methods improve overall model

performance. This paper provides a groundwork for future

projects focused on the problem of ensembling source code

summarization models.

A. Future Work

One potential path for future work is to explore aggregation

strategies and how they can be optimized for source code sum-

marization. In this paper we use a simple mean combination

aggregation strategy and do not explore how more advanced

aggregation strategies, such as meta-learning, may perform.

IX. REPRODUCIBILITY

All of our models, source code, and data used in this work

can be found in our online repository at https://bit.ly/3tiF8pc

A. Hardware Details

For training, validating, testing of our models we used a

workstation with Xeon E1430v4 CPUs, 110GB RAM, a Titan

RTX GPU, and a Quadro P5000 GPU
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