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Abstract—Information can propagate among Online Social
Network (OSN) users at a high speed, which makes the OSNs
important platforms for viral marketing. Although the viral
marketing related problems in OSNs have been extensively
studied in the past decade, the existing works all assume known
propagation rates. In this paper, we propose a novel model,
Dynamic Influence Propagation (DIP), which allows propagation
rates to increase after a topic becomes popular and can be used
for describing information propagation in OSNs more
realistically. Based on DIP, we define a new research problem:
Threshold Activation Problem under DIP (TAP-DIP). However,
it adds another layer of complexity over the already #P-hard
TAP problem. Despite it hardness, we are able to approximate
TAP-DIP with Oðlog jV jÞ ratio, where jV j is the number of users
in the network. Our solution consists of global optimization
techniques and a novel solution to the general version of TAP.
We also consider the more complicated case when the
propagation rates may change multiple times and the changes are
non-immediate, with corresponding solution and analyses. We
test our solution using various real OSN datasets, and
demonstrate that our solution not only generates high-quality
seed sets, but also scales.

Index Terms—Dynamic influence propagation, online social
network, threshold activation problem.

I. INTRODUCTION

INFLUENCE propagation is an essential problem that has

been studied in various contexts [1]–[28]. In OSNs, popular

and unpopular topics may propagate following completely dif-

ferent patterns. Especially, people tend to share the popular

topics with their friends much faster. By analyzing the retweet

delay for tweets before/after a topic becomes trending, we

observed a much shorter retweet delay after trending for the

majority of around 4,000 Twitter trending topics in the US.

This observation indicates that influence propagation speed

can depend on the topic’s popularity.

This characteristic of influence propagation has not been

studied in literature. In previous works, there are two major

types of influence propagation models: 1) the Triggering

Model [3] in which the influence propagates in rounds and

thus the propagation rate is uniform; 2) the Continuous-Time

Diffusion Model [7], in which the propagation rate is decided

by a probability density function (pdf) for each edge. The two

existing models share a common feature that they are static:

whether the propagation rate is constant or follows a pdf, it is

known before the propagation starts.

To better depict influence propagation in reality, it is neces-

sary to develop a propagation model that enables changes of

propagation rates based on the current propagation status.

Therefore, we propose the Dynamic Influence Propagation

(DIP) model, which can explicitly consider the rate changes.

In the DIP model, we extend the idea in literature [18] that a

topic becomes more popular when the number of influenced

nodes increases. Notice that the condition may not always

reflect the complicated conditions in reality (e.g. Twitter has

internal algorithms for selecting trending topics), but it is a

reasonable abstraction. We then formulate the Threshold Acti-

vation Problem with DIP (TAP-DIP) to analytically study the

model. TAP-DIP asks for a seed set with a minimum size that

guarantees the number of nodes being influenced can reach a

threshold within time limit. In the problem, the propagation

rate may change due to the DIP model.

The main challenge of TAP-DIP is resulted from its new

dynamic propagation rates, as it creates an obstacle for using

the sampling techniques [3], [9] that are applied to solve influ-

ence propagation related problems. The sampling techniques

are important for influence propagation since even computing

the exact influence is #P-hard [5]. Each sample provides infor-

mation on what nodes can be influenced by a certain node (for-

ward sampling [3]) or the set of nodes that may influence a

target node (reverse sampling [9]). As the sampling techniques

only work with a fixed propagation model, they have no access

to dynamic information such as propagation rate change and

cannot be easily adapted to solve TAP-DIP.

To tackle the challenges brought by dynamic propagation

rates, for a special case that the propagation rate may change

once, we propose the algorithm FAST (stands for Finding Antic-

ipated Speedup Time) which can decide the near-optimal time

that the propagation rate may increase, with a carefully designed

global optimization framework utilizing Lipschitz-alike
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properties. The optimality is in terms of minimizing the number

of seeds used for two objectives: 1) trigger the propagation rate

increase 2) ensure total number of influenced users reach the

threshold. FAST breaks down TAP-DIP into subproblems in

which the rate increases happen at fixed times, and hence the

sampling methods are again applicable. However, the subpro-

blems are still complicated as they need to meet the thresholds

for both triggering the rate increase and satisfying the activation

requirement. To solve the subproblems, we designed the first

efficient algorithms for both Multi-TAP (MTAP) and Multi-

Influence Maximization (MIM). FAST can solve the TAP-DIP

problemwith approximation ratio 2 log jV j (V is the set of nodes

in the OSN), which is close to the best ratio log jV j that one can
expect for TAPwithoutDIP.

We also consider the general setting with multiple changes

of propagation rates. To solve it, we propose an efficient

multi-variate global optimization algorithm and utilize the

proposed algorithms for MTAP and MIM. The approximation

ratio of this solution is ð1þ zÞlog jvj, where z is the number of

times that the propagation rate may change.

In summary, our contributions are as follows.

� We propose TAP-DIP, the first influence propagation

related problem in OSNs that explicitly considers prop-

agation rate increases. We support the validity of the

model by data analysis results from crawled retweets in

around 4,000 Twitter trending topics.

� We propose the algorithm FAST to solve TAP-DIP in

the special case with one possible rate change. It is the

first solution to TAP-DIP with an approximation ratio

of 2 log jV j. The two subroutines of FAST, MMinSeed

and Multi-IM, are the first algorithms that can effi-

ciently solve the MTAP problem and the MIM problem,

respectively.

� We propose the FASTS algorithm to solve the general

problem that allows z propagation rate changes in TAP-

DIP, with the approximation ratio ð1þ zÞlog jV j.
� We perform extensive experiments on various real OSN

data sets to demonstrate both the efficiency of our pro-

posed algorithms and the drastic difference in the solu-

tions when considering rate increase.

Related Work. Kempe et al. [3] are the first to study influ-

ence propagation in OSNs mathematically. Their focus was

on the Influence Maximization problem (IM), which drew

much attention in the research community [4]–[14], [22], [27].

Recently, IM related studies also consider solution robust-

ness [24], competition with time constraint [25], IM with

empirical models [26], in multiple rounds [23] and at commu-

nity level [28]. Another major problem is TAP [15]–[20]. The

main propagation model adopted in the papers is the Trigger-

ing model [3] or its variations, the Independent Cascading

(IC) model or the Linear Threshold (LT) model. Another

model that considers variation in propagation rate is the con-

tinuous time diffusion model [7]. However, both models

assume known and fixed parameters for the diffusion, which

may not represent the real-world scenarios.

As even computing the exact influence is #P hard [5], the

mainstream approach of solving IM or TAP relies extensively

on sampling, which is inefficient (due to many redundant sam-

ples) until Borgs et al. proposed the Reverse Influence Sam-

pling (RIS) method in [9]. The RIS method was further

refined in [10]–[12], [14] for better time complexity. However,

the RIS method was not yet applied to solve TAP or MIM, nor

can it consider the DIP model. The only exception is [21],

from which this paper is extended.

Organization. The rest of the paper is organized as follows.

In Section II, we present our analysis on propagation rates and

define the TAP-DIP problem. Section III and IV discuss our

solution, FAST to TAP-DIP. Section V discusses the solution

FASTS to the generalized problem. The performance of

FAST/FASTS and the behavior of the DIP model are analyzed

in Section VI. Section VII concludes the paper.

II. MODEL AND PROBLEM DEFINITION

A. Analysis of Twitter Data

We crawled the tweet stream data for 5,049 different

Twitter trending topics in the US using the REST APIs1, dur-

ing the period of Nov. 2016 to Apr. 2017. Specifically, we col-

lected the retweets whose times are within three days of the

time that the topic first became trending. In order to decide the

trending times for the topics, we first maintain the collection

of all trending topics in three days and then crawl the current

trending topics every 5 minutes. The trending time is consid-

ered as the first time that a new trending topic is recorded. We

also update the collection when necessary. When the trending

time of a topic is decided, we can use the Search API in

REST2 to fetch the historical retweets within the desired

times. The retweets are separated by the trending time and

into two groups, before trending and after trending, as our

major goal is to demonstrate that the propagation rate

increases after the topic being trending. The propagation rate

is characterized by the reciprocal of the time difference

between the retweet and the original tweet (retweet delay) in

this case. We omit the topics having less than 100 retweets

before/after trending to avoid outliers (such as promoted

trending topics with few retweets) and we are left with 3,988

topics after this step. For each remaining topic, we calculated

the time difference between each of its retweets and the corre-

sponding original tweet. Based on the arrays of time differen-

ces before/after trending, we can decide whether the time

difference decreased (or equivalently, propagation rate

increased) after trending, using KS-test [29] and t-test.

In Fig. 1, we present the test results of all the topics. It is

clear that the increase of propagation rate after trending is a

common phenomenon, as 86.1% of the topics have shorter

average retweeting time delay. Among those topics (label

“L”), 72.8% have significant increase in propagation rate (“L,

NKS,SL”), verified by both KS-test and t-test.

We further study the distribution of propagation rate

increase of those who increased significantly (2,502

topics in total). Define the propagation rate increase as

1https://dev.twitter.com/rest/public
2https://dev.twitter.com/rest/public/search
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avg. retweet delay before trending
avg. retweet delay after trending

, we obtain the histo-

gram of rate increase in Fig. 2, where the y-axis denote the

fraction of topics having rate increase in the range. The rate

increase distribution is heavy tailed with some concentration

on small numbers (1-10).

Last but not the least, we have a closer inspection of the aver-

age retweet delay, grouped by the difference between the retweet

times and the corresponding trending times. For example, a�10

means the retweet is 10 hours before the topic get trending.

Aggregating more than 60 million retweets from the 3,988 non-

trivial trending topics, we obtain the following figure.

The volume of retweets is as expected: most of the retweets

are concentrated around the trending time and there are more

retweets after trending than before trending. The average retweet

delay, however, shows some interesting behavior. First, there are

two periods of time that a decrease of the retweet delay is

observed: one from 20 hours before trending to the trending

time, one around 40� 70 hours after trending. The two periods

of decrements are possibly due to different reasons. The earlier

one follows our intuition that when a topic starts to be trending,

it spreads faster. The latter onemay be explained by the hypothe-

sis that the users who are enthusiastic about a topic are likely to

keep retweeting it with short delay. The longer after the trending

time, the higher the fraction of the enthusiastic users among all

users that are still retweeting about the topic. This fact is then

reflected in the decrement of retweet delay. Second, the decrease

of retweet delay is a gradual process: no single point shows an

abrupt drop in delay. This behavior is natural, however, it causes

extra complicacy in propagation modeling.

B. The DIP Model

We abstract the OSN as a directed, connected graph G ¼
ðV;EÞ, where V denotes all the users in the OSN, and E corre-

sponds to the relationships among the users (follow, friend,

etc.) Each edge ðu; vÞ 2 E is associated with a weight puv 2
½0; 1� and a probability density function luvðbÞ, which are used

to characterize the influence propagation model that is detailed

in the following. Also, we consider the propagation rate at

time t as rðtÞ, which is defaulted at 1 and rðtÞ > 1 means a

faster propagation.

To model the change in influence propagation rate while

considering the impact of social relationship strength, we

combine the IC model and the Continuous-Time Diffusion

Model into the Continuous Time IC Model (CTIC), whose

definition is as follows. We denote the initial set of activated

(influenced) nodes as S.
Definition 1 (Continuous Time . Model): Consider a graph

G ¼ ðV;EÞ with luvðbÞ and puv defined on each edge ðu; vÞ 2
E. The influence diffusion process starts when all nodes in S
are activated at time t ¼ 0 and all other nodes remain unacti-

vated. When node u is activated at time t, each neighbor v of

u will be activated at time tþ b=rðtÞ with probability puv
where b follows the probability density function luvðbÞ. Once
a node is activated, it will never be deactivated. The process

stops when no more nodes can be activated.

Under the CTIC model, we can characterize the rate change

using the function rðtÞ. The function in general can depict a

wide range of propagation scenarios. In this paper, we con-

sider one class of rðtÞ based on the idea in [18] and the find-

ings from Section II-A. Specifically, we consider a topic to be

more popular (and thus propagates faster) when the “speedup”

event happens: the number of influenced nodes reaches certain

thresholds. In the remaining, we will use speedup to denote

the event and speedup time to denote the time that the event

happens. Based on the findings, the speedups may not be

immediate: the propagation rate may gradually increase until

reaching the upper bound. We denote ItðSÞ as the total num-

ber of nodes influenced at time t, given the initial seed set S.
Let 0 < f1 < f2 < < fz < fzþ1 ¼ 1 be the thresholds and

1 ¼ r0 < r1 < r2 < < rz, k1; k2; . . . ; kz � 0 as the parame-

ters of speedups. ris denote the intensity of the propagation

rate change and kis are used to model the gradual increment in

propagation rate between speedup times. Note that the gradual

increment can be modeled in many ways as there exists no

known results. We select a simple linear model that suffices

for the analysis in this paper. It is not the focus of the paper to

derive more accurate propagation rate change models. We call

the speedup event i happens at time ti when the following

three conditions hold: 1) ItiðSÞ >¼ fijV j. 2) ItiðSÞ <
fiþ1jV j and 3)Iti��ðSÞ < fijV j, where 0 < � < ti. For nota-
tional convenience, we add a dummy speedup that happens at

time tzþ1 ¼ þ1. Given the speedup times t1 � t2 �� tzþ1,

we can then define rðtÞ as follows:

rðtÞ ¼
1; t < t1
ri�1 þ ðri � ri�1Þminft�ti

ki
; 1g; ti � t < tiþ1; i 2 ½1; z�

�

Fig. 1. Statistical Test Results. L/S means the average propagation rate after
trending is larger/smaller than before. Then SL/NSL or SS/NSS denotes if it is
significantly large/small by t-test. NKS/KS means reject or cannot reject the
null hypothesis of KS test.

Fig. 2. Distribution of rate increase.
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C. The TAP-DIP Problem.

In a viral marketing campaign, the goal can often be influ-

encing at least a certain number of users within a period of

time. For example, a company showcasing its new product will

want it to be exposed to a certain percentage of the market

within a few days after the release. The company needs to

choose some users as seeds to propagate the product informa-

tion, and seeding each user incurs a cost. For cost-effectiveness,

companies always want to minimize the number of seed users,

when the costs of seeding the users are the same. Thus, the

problem can be rephrased as finding a seed set with minimum

size such that the number of activated nodes can be at least a

certain threshold hjV j. Such a problem is termed as the Thresh-

old Activation Problem (TAP). In a typical TAP problem, the

underlying influence propagation model is often static, that the

parameters of the model will not change overtime. TAP-DIP,

however, is the version of TAP that considers dynamic influ-

ence propagation models. In this paper, we focus on the TAP

problem with the propagation model CTIC.

Definition 2 (TAP-DIP): Given an OSN G ¼ ðV;EÞ with

luvðbÞ and puv defined on each edge ðu; vÞ 2 E, the activation

threshold h, the trending triggering threshold f1; . . . ;fz, the

speedup parameters r1; . . . ; rz and k1; . . . ; kz, the time limit T ,
TAP-DIP asks to find a seed set S with minimum size such

that the influence spread IT ðSÞ ¼ E½ItðSÞ� is at least hjV j
within time T .

For the majority of the paper, we focus on the case when the

propagation rate can change only once and the change is

immediate. This case can be obtained from the model dis-

cussed above by setting z ¼ 1 and k1 ¼ 0. For simplification,

we remove the subscripts for f; r and ignore k in this case. We

will discuss the generalized model in Section V.

In the following two sections, we propose FAST, our solution

to TAP-DIP with only one possible rate change. For conciseness,

most of the proofs are placed in the appendix (available online).

III. FAST: SOLUTION TO TAP-DIP

A. Overview

For all existing solutions to influence propagation related

problems, a known propagation model is required, which is

not possible in TAP-DIP as the propagation rate may change

based on number of influenced nodes. To fill the gap, we can

provide a key value: the time t that the propagation rate

changes. In TAP-DIP, this value is a variable based on number

of influenced nodes. When added as an input, it defines fixed

propagation models, yet it also brings in the constraint that the

number of influenced nodes must meet the triggering threshold

f at time t. Thus, with a fixed t, TAP-DIP can be reduced to a

problem of finding the minimum seed set to reach fjV j and
hjV j thresholds at time t and T , respectively. We assume that

a threshold is met when the expected influence, but not the

actual influence, is larger than the threshold as it is not possi-

ble to obtain the actual influence when calculating the seed

set. Although it may not be exactly the same as in DIP, this

assumption is still acceptable: the influence is usually

concentrated at the expectation [18]. We also demonstrate in

our experiments that the performance of the algorithms are

satisfactory, in which we run extensive simulations to demon-

strate the performance when we trigger speedups by actual

influence. Notice that the propagation models in times ½0; t�
and ðt; T � are different due to the change in propagation rate.

We term the problem as Multi-TAP (MTAP), which is a gen-

eralization of the TAP problem that only considers satisfying

a single threshold hjV j at time T , but is still much more acces-

sible than TAP-DIP itself.

As the actual solution to MTAP is complicated, we delay its

details in Section IV and assume for now that it is available in

a blackbox. We can feed a t value to it and obtain a seed set

St. Clearly, the solution to TAP-DIP is the St with minimum

cardinality. However, the function HðtÞ ¼ jStj has no closed

form and we have to use global optimization techniques to

find its minimum. Since the range of HðtÞ is discrete, we can-
not use tools like Lipschitz optimization [30] directly. None-

theless, we can define a Lipchitz-alike property for discrete

functions and utilize the property to develop our solution,

FAST, which can find globally near-optimal values of a func-

tion given the property, with limited calls to function value

calculation.

Definition 3 (Lipschitz-alike condition for discrete func-

tions): A function fðxÞ defined on a discrete region X satis-

fies the Lipschitz-alike condition if there exists a real constant

L � 0, such that for all x1; x2 2 X,

jfðx1Þ � fðx2Þj � Ljjx1 � x2jj2 (1)

In the following, we first prove an approximation H 0ðtÞ of
the function HðtÞ satisfies (1), and then propose the algorithm

FAST that finds near-optimal values ofHðtÞ over t.

B. The FAST Algorithm

If we denote D as the minimum distance3 between any two

possible values of t, HðtÞ is a discrete function and we can

prove that HðtÞ satisfies (1) with L ¼ jV j=D. Unfortunately,
the estimation of L is too crude and it provides little informa-

tion to minimizing the function. Therefore, we introduce a

relaxed version ofHðtÞ that a much smaller L is achievable.

We write the relaxed version of HðtÞ as H 0ðtÞ ¼
S�
s ðtÞ þ S�

aðtÞ, where S�
s ðtÞ denotes the minimum number of

nodes to guarantee f fraction of influenced nodes in G on

expectation and therefore a speed-up at t; S�
aðtÞ denotes the

minimum number of nodes to guarantee h fraction of activa-

tion in G on expectation given a speed-up at t. Notice that

S�
aðtÞ is calculated based on the assumption that the nodes trig-

gered the speed-up did not influence any nodes in G. There-

fore, H 0ðtÞ is an upper bound on the number of required

nodes, as stated in the following lemma.

Lemma 1: H 0ðt�
0
Þ � 2Hðt�Þwhere t� ¼ arg mint2½0;T �HðtÞ

and t�
0
¼ arg mint2½0;T �H

0ðtÞ.

3In practice, we can let t take values kD; k 2 N. This is acceptable as we
usually use minutes/hours as the smallest time unit for marketing campaigns.
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It is clear that S�
s ðtÞ; S

�
aðtÞ are monotonically decreasing/

increasing with t, respectively. Such properties lead to a more

accurate estimation of L values forH 0ðtÞ.
Lemma 2: Given an interval ½t1; t2� and function values

H 0ðt1Þ ¼ S�
s ðt1Þ þ S�

aðt1Þ; H
0ðt2Þ ¼ S�

s ðt2Þ þ S�
aðt2Þ, H 0ðtÞ

satisfies (1) over ½t1; t2� with constant

lt1;t2 ¼
1

D
maxfS�

s ðt1Þ � S�
s ðt2Þ; S

�
aðt2Þ � S�

aðt1Þg (2)

The following lemma adapted from [31] ensures a lower

bound on function values within any interval ofH 0ðtÞ.4

Lemma 3: When H 0ðtÞ satisfies (1) over ½t1; t2� with con-

stant lt1;t2 ,

min
t2½t1;t2�

H 0ðtÞ �
H 0ðt1Þ þH 0ðt2Þ

2
�
lt1;t2ðt2 � t1Þ

2
(3)

With Lemmas 2 and 3, we propose FAST for finding the

global minimum of H 0ðtÞ over ½0; T �, assuming that we have

access to the values of HðtÞ and H 0ðtÞ, which will be detailed

in Section IV.

FAST utilizes the Lipschitz-alike property of H 0ðtÞ. Intui-

tively, it iteratively finds the interval with minimum lower

bound by Lemma 3 and calculate a new value in the interval,

until the interval is small enough. By (1), the minimum of

H 0ðtÞ is close to one of the calculated values. We further refine

the result by calculating Hð�tÞ instead of H 0ð�tÞ at the end. The
following theorem guarantees the solution quality.

Theorem 1: Hð�tÞ � 2Hðt�Þ þ 1, where t� ¼ arg mint2½0;T �
HðtÞ.

IV. MMINSEED: SOLUTION TO MULTI-TAP

In this section, we describe the missing piece in Section III:

how to calculate H 0ðtÞ; HðtÞ, which completes FAST. As dis-

cussed in Section III-A, calculating HðtÞ is actually solving

MTAP with two thresholds. For H 0ðtÞ, its two components

S�
s ðtÞ; S

�
aðtÞ can be seen as TAP instances with threshold ujV j

and time limit t, threshold hjV j and time limit T , respectively.
Therefore, a solution to MTAP suffices for completing FAST.

In the following, we propose the first efficient solution to a

generalized version of MTAP (defined below) that considers

multiple thresholds and time limits. Thus, our proposed solu-

tion MMinSeed is not only capable for solving HðtÞ; H 0ðtÞ,
but also applicable to the general scenarios.

Definition 4 (MTAP): Given GðV;EÞ, V l � V; l ¼ 1; . . .; L,
thresholds h1; . . . ; hL, time points t1; . . .; tL and the propaga-

tion model, MTAP asks for a seed set S that can influence, by

expectation, hljV
lj nodes in each subset at tl.

A. The RIS Framework

Due to the complexity from the probabilistic network, sam-

pling is the most popular method to estimate the influence

spread of a seed set in each ground set. Here we adopt the

state-of-art Reverse Influence Sampling (RIS) technique [9]

for generating samples. Specifically, we combine the sampling

methods in two recent papers [11], [12] to generate samples

for each ground set under Continuous IC propagation model.

The RIS approach has two phases. In the sample generation

phase, a number of samples are generated, where each sample

consists of all nodes that can influence a random node in a

realization of the probabilistic graph. In the seed set selection

phase, a maximum coverage problem (with nodes as sets and

samples as elements) is greedily solved to obtain the seed set

for influence maximization.

The sampling method for TAP-DIP. When the propagation

rate increases in TAP-DIP, more nodes may influence the ran-

domly picked node through RIS within the time limit. Hence,

it is necessary to extend the RIS sampling method to handle

the case. The method we will discuss is not only good for

TAP-DIP, but also capable for handling the general case with

multiple thresholds and non-immediate change in propagation

rates.

Observe that varying the propagation rate is equivalent to

varying the time limit: a shorter delay can easily be trans-

formed to the normal delay with the extended time limit. With

this observation, we propose an approach to obtain RIS sam-

ples with changes in propagation rates. The key idea is, given

a set of speedup times, we first convert the time limit under

speedups to the time limit with the original propagation rate.

Then we proceed with the typical RIS sampling method under

the converted time limit. The detail of the time limit conver-

sion algorithm (TLCA) is as follows.

Theorem 2: Obtaining samples with RIS and changes in prop-

agation rates with the original time limits is equivalent to

obtaining samples with RIS using the original propagation

rate and the time limits outputted by Algorithm 2.

B. The MMinSeed Algorithm

To adapt the RIS framework to solve MTAP, there are two

obstacles. The first one is how to guide the solution to consider

Algorithm 1: Finding Anticipated Speedup Time (FAST)

Input:H 0ðtÞ; HðtÞ; t 2 ½0; T �
Output: The global minimizer �t ofH 0ðtÞ,Hð�tÞ
CalculateH 0ð0Þ; H 0ðT Þ by Algorithm 3.

Let t1 ¼ 0; t2 ¼ T , i; k ¼ 2, Calculate lti�1 ;ti based on (2)

while jti � ti�1j �
1

lti�1 ;ti
do

tkþ1 ¼ tiþti�1
2

þ H0ðti�1Þ�H0ðtiÞ
2lti�1 ;ti

, k++

CalculateH 0ðtkþ1Þ by Algorithm 3

Renumber all points such that 0 � t1 � 	 	 	 � tk � T
for Each interval ½tj�1; tj� do
Calculate ltj�1;tj based on (2) and Rj based on rhs of (3)

Let i ¼ argminj¼1;...;kfRjg

H 0ð�tÞ ¼ minfH 0ðtiÞji ¼ 1; . . . ; kg
�t ¼ argminfH 0ðtiÞji ¼ 1; . . . ; kg
CalculateHð�tÞ by Algorithm 3.

4The original lemma was for continuous functions, however, the same
methodology can be adapted to prove the same result for discrete functions.
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all the thresholds at the same time. A second and more chal-

lenging one is that, the RIS framework is designed for maxi-

mizing influence with a fixed number of seeds. Also, the

number of samples required to guarantee a certain level of

accuracy will increase with more seed nodes. However,

MTAP asks for minimizing the seed set size, which is

unknown and cannot be used to determine the number of

required samples.

In order to overcome the first obstacle, we need to design an

objective function that satisfies the following conditions: (1)

Maximizing the function will fulfill all thresholds. (2) When a

threshold is fulfilled, additional influence to the corresponding

ground set should not bring any benefit to the function (3) The

function must be submodular. The first two conditions insure

the correctness of the function, while the last one helps deriv-

ing the approximation ratio.

We design the function fðSÞ as follows:

fðSÞ ¼
X

l2L

minfhljV
lj; jV lðSÞjg; S � S (4)

where jV lðSÞj denotes the expected number of nodes influ-

enced by S in the ground set V l. Clearly, fðSÞ is submodular

and monotone increasing as it is the sum of submodular func-

tions. Also, each ground set can contribute up to its threshold

to the function value. Additionally, the maximum of this func-

tion can only be achieved when all thresholds are fulfilled.

We describe MMinSeed in Algorithm 3. In MMinSeed, the

process of finding the number of seeds utilizes the submodular-

ity of fð:Þ. In each round, MMinSeed calculates the average

gain in fð:Þ of adding a seed node in the previous round, which
is defined as Df ¼ ðf � fprevÞ=ðj� jprevÞ where f; fprev,
j; jprev are the function value f̂ðSÞ and number of seeds in the

previous two rounds, respectively. Then, the algorithm esti-

mates how many new seed nodes are required, denoted by Dj,

assuming all the new nodes can bring the gain equal to Df . The

approach will reduce the number of calls to its subroutine,

Algorithm 4. Comparing with binary search, the greatest advan-

tage of this approach is that it will never choose a seed set size

that is larger than necessary, which is guaranteed by submodu-

larity. A larger seed set is not preferable since it leads to generat-

ing more samples, which is redundant and costs extra time.

The subroutine Multi-IM (Algorithm 4), is the first efficient

solution to the MIM problem. It maintains L collections of

samples R1; . . . ;Rl (one for each threshold) and it keeps gen-

erating new samples for each collection up to a given amount

NRl . Then, Algorithm 4 greedily solves a submodular maximi-

zation problem with the submodular function fðSÞ defined in

(4), using at most k nodes. The resulting set Sk is used to verify

if the number of samples intersect with Sk, CRlðSkÞ, is at least
g l. If the verification is successful, Rl is enough to guarantee

the accuracy of estimating the ground set. It then stops generat-

ing new samples forRl. Otherwise, it doubles NRl , generating

samples up to NRl and rerun the verification. When all Rl

passed the verification, the solution Sk is returned as output.

C. Theoretical Analysis.

Since fð:Þ is submodular, the following result [32] holds

using the greedy algorithm, if all fð:Þ values can be obtained

in polynomial time:

fðSg
j Þ � ð1� ð1� 1=kÞjÞfðS�

kÞ

where Sg
j is the collection of the first j sets selected by the

greedy algorithm to maximize fð:Þ and S�
k is the optimal col-

lection of size k. However, in Multi-IM, the values of fð:Þ are
not accurate but estimated by RIS. Hence, we can only have a

weaker result as in Theorem 3.

Algorithm 2: TLCA

Input: Time limit T , speedup times t1; t2; . . . ; tz, speedup parameters

r1; r2; . . . ; rz and k1; k2; . . . ; kz.
Output: New time limit T 0

T 0 ¼ t1
Let tzþ1 ¼ T , r0 ¼ 1

for i from 1 to z do

if tiþ1 � ti > ki then

T 0 ¼ T 0 þ kiðriþri�1Þ
2

þ ðtiþ1 � ti � kiÞri
else

T 0 ¼ T 0 þ
ðtiþ1�tiÞððtiþ1�tiÞðri�1þriÞþ2kiri�1Þ

2ki
Return T 0

Algorithm 3:MMinSeed

Input: Graph G ¼ ðV;EÞ, Ground sets V 1; . . . ; V L with thresholds

h1; . . . ; hL, � > 0

Output: Seed set S � V
fðS�Þ ¼

P

l2L hljV
lj.

j ¼ 1; jprev ¼ 0, f ¼ 0; fprev ¼ 0, S ¼ ;
Find S using Algorithm 4 with jSj � j
f ¼ f̂ðSÞ
while f̂ðSÞ < ð1� �ÞfðS�Þ do
Df ¼ ðf � fprevÞ=ðj� jprevÞ

Dj ¼ dð1��ÞfðS�Þ�f̂ðSÞ
�DðfÞ

e
fprev ¼ f; jprev ¼ j
j ¼ jþ Dj

Find S using Algorithm 4 with jSj � j
f ¼ f̂ðSÞ

Algorithm 4:Multi-IM

Input: Graph G ¼ ðV;EÞ, Ground sets V 1; . . . ; V L with thresholds

h1; . . . ; hL, Precision parameters � > 0, d 2 ð0; 1Þ
Output: Seed set S � V
Collection of samplesRl ¼ ;; l ¼ 1; . . . ; L

fl ¼ ð1�1=eÞsþtl

� , g l ¼ 7eðflÞ2

3ðe�1Þ

NRl ¼ g l; ctnl ¼ true; l ¼ 1; . . . ; L
while 9l s.t. ctnl ¼¼ false do
Sk = Greedy size k solution to maximize f̂ðSÞ
for Each l ¼ 1; . . . ; L do

if ctnl then

if CRlðSkÞ � g l then

ctnl ¼ false
else

Generate NRl samples forRl,NRl ¼ 2NRl
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Theorem 3: Algorithm 4 guarantees

fðSg
j Þ � ð1� ð1� 1=kÞj � �ÞfðS�

kÞ (5)

with probability at least 1� d.

To prove Theorem 3, we prove the following two Lemmas.

In lemma 4, we derive the number of samples required to

guarantee (5). Next, we ensure that Algorithm 4 generates at

least that many samples in Lemma 5. The validity of Theo-

rem 3 is then derived by combining Lemma 4 and Lemma 5,

and applying the union bound. Notice that L 2 N
þ and d 2

ð0; 1Þ, so the probabilities in Lemma 4 and Lemma 5 are well

defined.

Lemma 4: The number of samples required to guarantee (5)

with probability at least 1� Lþ1
2Lþ1

d is

Q ¼
X

L

l¼1

Ql (6)

Ql ¼
7ejV ljðflÞ2

3ðe� 1ÞIlT ðS
�
kÞ
;fl ¼

ð1� 1=eÞs þ tl

�

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnð
2Lþ 1

d
Þ

r

; tl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1�
1

e
Þðln

ð2Lþ 1Þ jV lj
j

� �

d
Þ

v

u

u

t

d 2 ð0; 1Þ and � 2 ð0; 1
2
Þ are constants.

Lemma 5: Algorithm 4 guarantees the number of samples

for each threshold is at least Ql when it stops, with probability

at least 1� L
2Lþ1

d.

It is possible that IlT ðS
�
kÞ is close to 0. This will only happen

if the probability puv for all edges ðu; vÞ 2 E are close to 0.

We ignore such cases since no strategy can grant any benefit.

With Theorem 3, we are able to derive the approximation

ratio of MMinSeed in Theorem 4 and eventually, the approxi-

mation ratio of FAST in Theorem 5.

Theorem 4: MMinSeed has approximation ratio log jV j and
achieves at least ð1� �Þ of the required fð:Þ value, given (5).
Theorem 5: FAST has approximation ratio of 2 log jV j.
Theorem 6: The time complexity of FAST is

OðmnT
D

P

l2Lðf
lÞ2ÞÞ, where n;m are number of nodes and

edges in the graph, respectively.

V. SOLUTION TO THE GENERAL PROBLEM

In this section, we lift the constraints on z and k. In other

words, there may be multiple speedup events and they may not

be immediate. In this general problem, the main challenge of

TAP-DIP remains and is more complicated: we need to have the

knowledge of multiple, instead of one, speedup times to enable

sampling. It requires a non-trivial extension to Algorithm 1.

Following the idea in Algorithm 1, we would like to find the

best set of speedup times that results in the minimum number

of seeds. Doing so requires optimizing a multi-variate function

Hðt1; t2; . . . ; tzÞ (or HðtÞ in short) and Algorithm 1, designed

for univariate function minimization, cannot work. However,

we can generalize the approach. Recall that Algorithm 1

iteratively finds a new evaluation point within an interval that

is having the least lower bound on function value and then

separate the interval to two, update the l values and continue.

With z dimensions, we need a more complicated data structure

to organize the regions: we encode the regions in a hyperoc-

tree [33], in which each region is a node in tree and a non-leaf

node (corresponds to a separated region) will have exactly 2z

children. A region is defined by two z dimensional vectors

t
l ¼ ðtl1; . . . ; t

l
zÞ and t

h ¼ ðth1 ; . . . ; t
h
z Þ, with tli < thi ; 8i ¼

1; . . . ; z. We term them as the defining vectors of the region.

The vertices of the region will be all z dimensional binary vec-

tors, where a 0 in position i indicates the vertex has value tli
for dimension i, and 1 otherwise. With a new evaluation point

t
0, the separation will take place in the region that satisfies

tli < t0i < thi ; 8i ¼ 1; . . . ; z.5 Each one of the 2z new regions

will involve a vertex t
o of the old region and the point t0. The

two defining vectors for the new region are the pairwise mini-

mum/maximum of the vectors to and t0, respectively.

When the regions are available, we may generalize

Lemma 1 and Lemma 2 to calculate the l values for each

region. Let S�
si
ðtÞ be the number of seeds required to trigger

the ith speedup event without considering the impact of any

other speedups and S�
aðtÞ be the number of seeds required to

guarantee h fraction of activation inG given speeds happening

at times t ¼ ðt1; t2; . . . ; tzÞ. Let H 0ðtÞ ¼
Pz

i¼1 S
�
si
ðtiÞ þ

S�
aðtÞ, we have the following results,

6:

Lemma 6: H 0ðt�
0
Þ � ðz þ 1ÞHðt�Þ where t

�0 ; t� are mini-

mizers forH 0ð:Þ andHð:Þ, respectively.
Lemma 7: Given the two defining vectors tl ¼ ðtl1; . . . ; t

l
zÞ

and t
h ¼ ðth1 ; . . . ; t

h
z Þ of a region and function values

H 0ðtlÞ; H 0ðthÞ, let D be the minimum distance between any

two possible values of t, then H 0ðtÞ satisfies (1) in the region

with constant

l
tl;th ¼

1

D
maxfS�

aðt
lÞ � S�

aðt
hÞ;
X

z

i¼1

S�
si
ðtliÞ �

X

z

i¼1

S�
si
ðthi Þg

(7)

With l
tl;th values and function valuesH

0ðtlÞ; H 0ðtlÞ, we can
obtain a lower bound for all function values when the varia-

bles are in the region.

Lemma 8: The lower bound R
tl;th of function values for the

region defined by tl; th satisfies:

R
tl;th �

H 0ðtlÞ þH 0ðthÞ

2
�
l
tl;th jjt

h � t
ljj2

2
(8)

In a region, the points t
0 that are likely to hit the lower

bound satisfy

H 0ðthÞ �H 0ðtlÞ

l
tl;th

¼ jjth � t
0jj2 � jjt0 � t

ljj2 (9)

5We omit the possible equality here, as it will just result in a degenerated
problem with less regions per separation.

6The proofs are similar to those for Lemma 1 2 and thus omitted.
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As there can be infinitely many such points when z � 2 (e.g.

the points form a hyperbola with z ¼ 2), we consider the only

point that is on the segment connecting t
l; th. Combining (9)

and the fact that the point is on the segment, we solve the point

as follows:

t
0 ¼ ðath1 þ ð1� aÞtl1; . . . ;at

h
z þ ð1� aÞtlzÞ

where a ¼ 1�
jH 0ðthÞ �H 0ðtlÞj

2l
tl;th jjt

l � t
hjj2

þ
1

2

 !2

(10)

With all the above analysis, we have Algorithm 5 that sol-

ves our general problem. Notice that with a fixed set of

t1; . . . ; tz, Algorithm 3 and Algorithm 4 are capable of finding

the minimum number of seeds, even in this general case.

Theorem 7: Hðt�Þ � ðz þ 1ÞHðtOPT þ 1Þ
The proof for the above performance guarantee is an exten-

sion to that of Theorem 5 and hence omitted.

Theorem 8: The time complexity of FASTS is

Oðmn
T
D
z

� �

P

l2Lðf
lÞ2ÞÞ.

VI. EXPERIMENTS

A. Experimental Settings.

The experiments are conducted on a Linux machine with

2.3 GHz Xeon 18 core processor and 256 GB of RAM. We

carry experiments under Continuous IC models on the follow-

ing datasets from [34].

Datasets. We select 8 OSN datasets of various sizes to test

the impact of the dynamic influence propagation model. The

description summary of those datasets is shown in Table I.

Parameter Settings. We follow the papers [6], [10] for set-

ting propagation probability puv, which is calculated as puv ¼
1

dinv
where dinv denotes the indegree of node v. We model the

propagation rate using Weibull distribution as [7], [11] and fix

the shape parameter at 4, scale parameter at 1 throughout the

experiments.

In all the experiments, we keep � ¼ 0:1 and d ¼ 1=n if the

values are not stated otherwise. The time limit is set at 10. The

values of r, the propagation rate change, varies from 1.5 to

4.0. The f; h values are not set explicitly, instead, we set the

number of nodes required for being trending (T-Node) and for

overall activation requirement(A-Node), based on the size of

the networks. The parameters are summarized in Table I.

B. Performance of FAST.

Since the TAP-DIP problem is new, there are no suitable

algorithms that can be compared directly with FAST. Instead,

we demonstrate the performance of FAST via its subroutine.

We compare the MMinSeed algorithm with its variation that

uses the IMM algorithm [11] instead of the Multi-IM algorithm

(Algorithm 4) as a subroutine. In the comparison, we only

allow one threshold and modify IMM’s sampling method to

allow the Continuous-IC model. The comparison is based on

the scenario with no rate change and the lowest activation

threshold for each network.

Figure 4 proves a clear difference of the running time.The

Multi-IM supported MMinSeed is much faster (the running time

is in log scale) than the one supported by IMM. The main reason

for the superior performance of Multi-IM is that it decides the

sample requirement dynamically, while IMM has a parameter

estimation stage to estimate the number of required samples,

which can be inaccurate and results in a sample collection that is

much larger than necessary when the seed set size is small. In the

running time comparison, we set � ¼ 0:5 to allow IMM finish in

reasonable time. Each number is the average of 10 runs, as the

variation of running time is small and the difference is apparent.

Scalability of FAST.During our experiments, we observe that

all the scenarios had less than 20 iterations inside FAST, which

means the time complexity of FAST is larger than that of

TABLE I
DATASETS’ STATISTICSAlgorithm 5: Finding Anticipated Speedup Times (FASTS)

Input:H 0ðtÞ; HðtÞ; 2 ½0;T�z

Output: The global minimizer t� ofH 0ðtÞ,Hðt�Þ
CalculateH 0ð0Þ; H 0ðTÞ by Algorithm 3.

Construct a tree with the regionH 0ð0Þ; H 0ðTÞ as the root.
Let the min region Rmin ¼ ðH 0ð0Þ; H 0ðTÞÞ, P ¼ f0;Tg.
Calculate l0;T based on (7)

while Rmin ðt
l; thÞ satisfies jjtl � t

hjj2 �
1

l
tl ;th

do

Find the new evaluation point t0 in Rmin based on (10).

CalculateH 0ðt0Þ by Algorithm 3

Add t0 to P .

Construct 2z new regions as children of Rmin in the tree.

for Each region as a leaf in the tree do

Calculate l
tl ;th based on (7) and Rtl ;th based on ð8Þ.

Let Rmin ¼ argminregion ðtl;thÞ as leaves in the treefRðtl;thÞg

H 0ðt�Þ ¼ minfH 0ðt0Þjt0 2 Pg, t� ¼ argminfH 0ðt0Þjt0 2 Pg
CalculateHðt�Þ by Algorithm 3.

Fig. 3. Retweet delays.
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MMinSeed only by a multiplicative constant (< 40). Figure 5

demonstrates the scalability of FAST. The trend line (corre-

sponds to the right y-axis) denotes the size of different networks

(number of edges) and the box plots (corresponds to the left

y-axis) displays the running time in different networks with vari-

ous settings. Notice that we use the first letter of each dataset due

to space issues. We can observe a nice feature of FAST that its

running time grows linearly in terms of network size. For large

networks such as Pokec (61.2 M edges) and LiveJournal (138 M

edges), FAST can finish within three hours.

C. Quality of the Seed Sets.

One key factor we would like to consider is how the seed set

will differ with/without the consideration of DIP. Figure 6 com-

pares the seed sets obtained by FAST and those obtained by solv-

ing the base case of TAP without considering the rate increase.

In the pie charts, the shared seeds means the proportion of seed

nodes that exists in both FAST seeds and base seeds. The data in

each chart is averaged among the result from 180 runs of various

settings. Clearly, considering the rate increase explicitly result in

a large reduction in number of seeds required.

As the FAST seed set is mostly a subset of the base seed set,

we would expect that the FAST seed set has a smaller influ-

ence spread. However, we will demonstrate that the FAST

seeds can still meet the threshold with extensive simulations.

For each setting in each dataset, we simulate 10,000 random

propagation process from both the FAST seeds and the base

seeds. The rate increase is applied when the actual number of

influenced nodes hit the trending thresholds. Figure 7 depicts

the percentage of nodes activated comparing with the corre-

sponding threshold. As we set � at 0.1, the reference line (in

yellow) is drawn at 90%. A point over the reference line

means the average number of activated nodes (over 10,000

simulations) in a certain scenario meets 90% of the threshold.

In all the four datasets, the base seed set activated much more

nodes than required by the threshold, which suggests that their

size can actually be reduced. In most cases, the FAST seed

sets can meet the requirement. One exception is in the Live-

Journal data set, it is possible that the influence spread in Live-

Journal is not concentrated at the expectation.

D. Sensitivity Analysis of Key Parameters

In this section, we test the impact of three parameters: r
(the propagation rate after trending), T-Node (# nodes required

to be trending) and A-Node (overall activation requirement) to

the behavior of FAST. The results are displayed in heat maps, a

warmer color means an earlier time for rate increase (decided by

FAST). The data sets are grouped based on parameter setting

(refer to Table I for details) into small (Facebook, WikiVote),

medium (Gplus, Twitter, Epinions, Slashdot) and large (Live-

Journal, Pokec). In each heat map, we vary two parameters and

take average over the other. A warmer color in a cell denotes a

earlier time for rate increase.In Fig. 8a-8c, we vary r and

T-Nodes. One clear trend is that when more T-Nodes are

required, FAST tends to choose a later time for starting the trend

and the speed up. It is reasonable as it can be costly to activate

T-Nodes early when the number is high. In some scenarios,

FAST may choose not to have the speed up at all when T-Node

is too large and r is small. What seems counter-intuitive in those

Figures is that FASTmay not choose to have the speed up earlier

when r increases. This phenomena can possibly explained from

the perspective of cost. With a larger r, FAST can influence a set

of nodes in less time, even with the same seed set. Thus, FAST

is not that “hurry” of starting the speed up, as it is able to reach

the threshold when triggering the speed up later with less cost.

In Figs. 8d-8i, we vary A-Nodes. In most of the cases,

FAST tend to have the speed up earlier when facing a larger

threshold. The opposite is shown in some rare cases, mostly

because r is too low or T-Node is too high, which makes

FAST think starting the speed-up early is not beneficial.

Fig. 5. Running Time of FAST.
Fig. 4. Efficiency of MMinSeed with Multi-IM/IMM.

Fig. 6. Seed Set Distribution.

3108 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 7, NO. 4, OCTOBER-DECEMBER 2020

Authorized licensed use limited to: University of Florida. Downloaded on September 09,2021 at 15:39:28 UTC from IEEE Xplore.  Restrictions apply. 



E. Result for the General Problem

The main interest we have for the general problem is: how

the results differ from the case with only one speedup event?

Hence, we create the general scenarios based on single

speedup scenarios. For a single speedup scenario with speedup

rate r and trending requirement (T-Node) NT , we apply the

following changes to obtain a general scenario: 1) Add a

speedup that happens with threshold
NT
2

and rate rþ1
2
. 2) For

the two speedups, let k ¼ 1. Notice that we keep the overall

activation requirement (A-Node) the same.

We run both the single speedup and the general scenario in

Facebook and Slashdot datasets. For the running time, the gen-

eral scenario usually runs around 10 times slower than the single

speedup scenario. This is understandable. Each time when we

evaluate a new node in the single speedup scenario, we only

need to run Algorithm 3 for that node. In the general scenario,

however, we need to do so for both defining vectors of all the 2k

(4 in our experiment as we have k ¼ 2) new regions. Also, each

call to Algorithm 4 requires an extra set of samples for the new

speedup threshold. On the other hand, the convergence of Algo-

rithm 5 is similar to that of Algorithm 1, each call to Algorithm 5

ends within 30 iterations of the main loop.

In Figs. 9(a) and 9(b), we compare the speedup times in both

scenarios. It is interesting that Algorithm 5 decided the first

speedup in the general case should be very early and the second

should be very late. Having the first speedup can be very

Fig. 7. Percentage of Nodes Activated.

Fig. 8. Sensitivity Analysis Results.
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tempting as the requirement is low (only half of the second).

However, as we calculate the seeds for speedups separately, the

cost to have the second speedup early can be high.With the first

speedup available, the need for a early second speedup is not

strong. It is costly but without much benefit, especially consid-

ering the fact that the speedup is not immediate.

We then illustrate the impact of the general case in regards

to the size and the quality (represented by the actual coverage

in simulation) of the seeds. The changes are calculated as

Change in # seeds ¼
# seeds in single - # seeds in general

# seeds in single

Change in cov. ¼
act. cov. in general - act. cov. in single

act. cov. in single

In Fig. 9c, we can observe a clear reduction in # seeds when

the activation (coverage) requirement is low. As depicted in

Fig. 9a, the first speedup is usually triggered early. In a small

network like Facebook, doing so does not require a large num-

ber of seeds and it is not necessary to have many more seeds to

meet the coverage requirement. However, the actual coverage

was slightly reduced, yet it was still above the 90% coverage

requirement, as desired. When coverage requirement is 1400

and 1600, the result for the general scenario shows improvement

on both ends: less seeds, more coverage. With higher activation

requirement, however, the number of seeds increased. The main

reason may be the slightly reduced approximation ratio (from

2 log jV j to 3 log jV j) and the selection of two speedup times.

The algorithm will need more seeds to ensure the coverage

requirement to remedy the fact that the second speed up happens

really late and not immediate, comparing with the single speed

up scenario. The same analysis extends to Fig. 9d.

VII. CONCLUSION

In this paper, we proposed a novel dynamic influence propa-

gation model, which can more accurately characterize the

information diffusion in social networks compared with the

existing propagation models. The model is supported by anal-

ysis of the crawled retweet data, that most topics will propa-

gate faster after being trending. To study the impact of DIP in

OSNs, we propose a new TAP-DIP problem by substituting

the static propagation model in TAP with DIP. Although

TAP-DIP is even harder than TAP, we designed the FAST

algorithm that can solve it with approximation ratio similar to

the best for TAP. We also propose a solution to the general

TAP-DIP problem, which allows multiple rate changes, with

similar guarantee. In experiments, we demonstrated that

FAST can generate high quality seed sets and is scalable.

Also, we confirmed that DIP has a high impact in the result.
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