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Note that we are merely sampling a continuous system at

discrete timesteps, so continuous-time concepts such as accel-

eration are still well defined. We collect a dataset of the form

D := {labels, covariates}s=t−k,...,t−1, where s is the index of

discrete timesteps, and k denotes the fixed size of the sliding

time window. From equation (5), we have

D =
{
ÿs −

(
ᾱsus + β̄s

)
,us

}

s=t−k,...,t−1
.

Given a dataset, our method solves regularized least squares

a.k.a. ridge regression on the labels and covariates. The weight

of the solution is α̃t, and bias is β̃t. Note that in textbook-style

least squares, the weight is a vector, and the label and bias are

scalars; for our learning problem, the weight is a matrix in

R
d×m, and the label and bias are vectors in R

d. But we can

simply reduce this to d independent vector-scalar least squares

problems. The same regularization is added independently to

these d problems, since they share the same covariates; thus

inversion of the covariance matrix, the most computationally

costly step, is only performed once.

The solved parameters are then immediately used by the

model-based controller to produce ut. In both of our later ex-

amples, the baseline controller solves for ut in an application-

specific optimization problem with the assumed nominal pa-

rameters ᾱt and β̄t. We simply substitute these with ᾱt + α̃t

and β̄t + β̃t respectively, as shown in Figure 2.

Learning is performed online, as the controller is running

with the learned parameters. At the beginning, all residual

parameters are initialized to zero, because there is not enough

data to learn them. Once we are k steps into the trajectory, we

have enough data to form D as above and solve for the residual

parameters; informed by them, the controller generates an

improved trajectory, which in turn generates new data that

are more relevant as time goes on.

The fact that D only keeps the k most recent data points

implements a natural forgetting mechanism. In reinforcement

learning terms, D is called the replay buffer, which stores the

off-policy data that are not generated by the current controller;

in our case, data in D are generated by the old controllers using

the residual parameters from previous timesteps. Because we

learn small, local models, we encourage forgetting so that

our model capacity can be used only for the neighborhood

of our current state. This is in contrast to the vast literature in

reinforcement learning [33], [24], [34], [4], where the goal is

to learn a large, global model; there the replay buffer contains

as much historical data as possible, and various techniques are

implemented to discourage forgetting.

Our method can also be viewed as bootstrapping from a

“bad” controller based on an inaccurate model to a better

one. This might not be feasible, however, if the initial model

deviates too much from the plant. For example, if the nominal

model is so far off that the robot loses balance immediately,

no useful information will be contained in the data collected.

Fortunately, when deviations happen gradually over time,

there will more likely be enough information for learning to

maintain a controller that keeps generating useful data. We

study this phenomenon empirically in Section IV.

C. Theoretical Analysis

Suppose the true (plant) output dynamics is control-affine:

ÿt = αtut + βt. (6)

We prove that our method stabilizes the tracking errors under

two assumptions. The main theorem illustrates our intuition

of learning in a local time window under smoothly varying

dynamics, and characterizes the role of k, our window size.

Denote errors in the nominal model’s prediction as

ˆ̈yt := ÿt −
(
ᾱtut + β̄t

)
= α̂tut + β̂t, (7)

with α̂t :=αt − α̃t, and β̂t :=βt − β̃t.

Denote the prediction of the residual model as

˜̈yt := α̃tut + β̃t. (8)

Assumption 1: The model-based controller can stabilize the

tracking errors η = [y; ẏ] if for some ǫ > 0,
∥
∥
∥ÿt −

(

(ᾱt + α̃t)ut +
(

β̄t + β̃t

))∥
∥
∥ < ǫ. (9)

Assumption 2: ‖α̂t+1 − α̂t‖ < δα, ‖β̂t+1 − β̂t‖ < δβ .

In words, Assumption 1 says that the proposed model-based

controller works when the proposed (nominal plus residual)

model is relatively accurate; Assumption 2 says that the

deviations in dynamics are relatively smooth (in the space of

parameters) over time.

In addition, we denote the motor torque saturation as ‖u‖ <
B. Denote u′

t = [ut; 1] ∈ R
m+1, and

U′ =

[

[u1; 1]
⊤; ...; [uk; 1]

⊤

]

∈ R
k×(m+1). (10)

We set k ≥ m+1, so σmin(U
′) > 0, i.e. the covariance matrix

of ordinary least squares (OLS) has rank m+ 1.

Theorem 1: Given the above assumptions, if

(B + 1)2
√
d

σmin(U′)
k
√
k(δα + δβ) < ǫ, (11)

then the model-based controller stabilizes η.

Note that any claim of stability in Theorem 1 is completely

inherited from the baseline controller, when Assumption 1

holds. Our method is agnostic to the exact type of stability

e.g. exponential / asymptotic, which depends on the underlying

baseline, and is orthogonal to the theory we develop.

In Theorem 1, B, d, δα and δβ are constants determined

by the application. ǫ is the model-based controller’s tolerance

for model inaccuracy, also independent of our method. The

only quantity we tune is k, the window size, which strongly

affects σmin(U
′). With a large k, we pay a factor of k

√
k,

intuitively due to the lag in our dataset. With a small k, we

pay for the decrease in σmin(U
′), as α̃ and β̃ become more

sensitive to noise. The user should tune k to find a sweet spot

in the middle. In practice, we use regularized least squares

instead of OLS, so σmin(U
′) is always > 0 and more noise

tolerant, making the balance less delicate w.r.t. choice of k.

We use k = 100 in both of our applications (100 and 200 ms

respectively).



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2021

Before proving Theorem 1, we state two lemmas, whose

proofs are given in Subsection A of the appendix.

Lemma 1: For A ∈ R
m×n and b ∈ R

m, if ‖A‖ ≤ δA and

‖b‖ ≤ δb, then ‖[A,b]‖ ≤ δA + δb.

Lemma 2: Let yt ∈ R
d, ut ∈ R

m and At ∈ R
d×m. Let

yt = Atut for t = 1, ..., k, and Ã be the OLS estimator

of the dataset {(y1,u1), ..., (yk,uk)}. If for t = 1, ..., k + 1,

‖At+1 −At‖ < δA, and ‖ut‖ < B, then

∥
∥At − Ãt

∥
∥ <

B
√
d

σmin(U)
k
√
kδA, (12)

where U = [uT
1 ; ...;u

T
k ] ∈ R

k×m.

Proof of Theorem 1: By triangle inequality, we have ‖u′
t‖ <

B + 1. Also define Ât = [α̂t, β̂t] ∈ R
d×m+1, and similarly

Ãt = [α̃t, β̃t]. Combining Assumption 2 and Lemma 1, we

have ‖Ât+1 − Ât‖ < δα + δβ . Now
∥
∥
∥
∥
ÿt −

(

(ᾱt + α̃t)ut +
(

β̄t + β̃t

))
∥
∥
∥
∥

(13)

=
∥
∥ˆ̈yt − ˜̈yt

∥
∥ =

∥
∥
∥
∥
(α̂t − α̃t)ut +

(

β̂t − β̃t

)
∥
∥
∥
∥

(14)

=

∥
∥
∥
∥

(

Ât − Ãt

)

u′
t

∥
∥
∥
∥
≤ (B + 1)

∥
∥
∥
∥
Ât − Ãt

∥
∥
∥
∥
. (15)

By definition, Ãt is the least squares solution on D. We then

apply Assumption 1 and Lemma 2 to finish the proof.

III. APPLICATIONS

We now apply our method to two model-based controllers,

derived from two different perspectives for different robotic

platforms: a Lyapunov perspective to control the full-order

dynamics of bipedal robots, and a simplified dynamics based

control architecture for robust quadrupedal locomotion. We

focus on identifying the components of our method in the

context of each controller, without elaborating on derivations

of the nominal dynamics.

A. CLF-QP for Bipedal Locomotion

Let q be the robot’s configuration, and x = [q; q̇] be the

robot’s state. We define y = h(x), where h is called the virtual

constraints ([35]). For a biped, stabilizing η = [y; ẏ] means,

for example, that the torso maintains a constant posture, and

the legs walk in a scissor-symmetric gait.

The nominal output dynamics, whose derivation we omit,

can then be written in the familiar form of equation (1), using

Lie-derivatives of the nominal dynamics in the state space as

ᾱ and β̄:

ÿ =
d

dt

(
∂h

∂q

)

q̇− ∂h

∂q
D̄

(
C̄q̇+ ḡ

)

︸ ︷︷ ︸

β̄(x)

+
∂h

∂q
D̄B

︸ ︷︷ ︸

ᾱ(x)

u, (16)

where D̄ is the inverse of the mass-inertia matrix, C̄ is the

Coriolis matrix and ḡ is the gravity vector. While ᾱ(x) might

not be square (d = m) in general, this particular bipedal con-

troller has the same number of virtual constraints as actuated

joints. Now the control law u = ᾱ(x)−1
(
−β̄(x) + v

)
, a.k.a.

input-output (I/O) linearization, produces ÿ = v.

We can then design v to stabilize the output dynamics using

control Lyapunov functions (CLFs), a common tool in control

theory for providing stability guarantees in legged locomotion

([36]). Because η̇ is linear in η and v, it is straightforward

to find a CLF by solving the Lyapunov equation V (η) ([37]).

It is then a well known fact that V̇ (η,v) < −cV implies

exponential stability of η(t), with a constant c > 0. This

motivates the following CLF-based quadratic program (CLF-

QP) to solve for v:

v(x) = argmin
v

u⊤u

s.t. C1. V̇ (η,v) < −cV

C2. u = ᾱ(x)−1
(
−β̄(x) + v

)
,

C3. umin � u � umax,

(17)

where umin and umax are bounds of the torque saturation

constraints. Since the output dynamics is already in the form of

equation (1), it is straightforward to apply our method to obtain

α̃ and β̃. We can then modify the C2 in the optimization

problem (17) to have

u = (ᾱ+ α̃)
−1

(

−
(

β̄ + β̃
)

+ v
)

. (18)

In Section IV we show that this simple modification leads to

significant improvements under uncertain dynamics.

B. MPC with Contact Force for Quadrupedal Locomotion

To control a quadrupedal system walking stably under large

disturbance (such as heavy loads), we take the model predictive

control (MPC) approach using the simplified dynamics from

[38] as our baseline controller.

For quadrupedal dynamics, let p, ṗ, p̈ ∈ R
6 be the position,

velocity and acceleration of the robot’s center of mass (CoM).

Let f i ∈ R
3 be the ground reaction force at the robot’s ith foot,

with i ∈ {1, 2, 3, 4}. We also denote f = [f1; f2; f3; f4] ∈ R
12.

The nominal dynamics of the CoM is given by

p̈ = D̄Gf − ḡ, (19)

where ḡ ∈ R
6 is the gravity vector, D̄ ∈ R

6×6 is the inverse

mass matrix, and G ∈ R
6×12 is called the grasp map, which

depends on the robot’s state and is assumed to be accurate.

The goal of the model-based controller is to have p and ṗ

track the desired position and velocity pd and ṗd, generated

from user command. In Sec.II notations, y = p − pd, we

want to stabilize η = [y, ẏ] around zero. This is achieved by

having p̈ track some desired acceleration p̈d, generated from

PD control on pd and ṗd. The model-based controller then

uses equation (19) to solve for f :

argmin
f

‖D̄Gf − ḡ − p̈d‖Q + ‖f‖R

s.t. stance and swing leg constraints,

friction pyramid condition.

(20)

where more details can be found in [39], Following the outline

in Section II, we modify (19) to incorporate the linear residual

model:

p̈ =
(

D̄+ D̃
)

Gf − (ḡ + g̃) , (21)
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TABLE I
LOAD CONDITIONS FOR HARDWARE EXPERIMENTS

Load (kg) 0.9 5.4 7.7 10 0.9

Duration (s) 5 10 10 5 5

joint encoder measurements and produce a CoM velocity

measurement. From this, first order difference is then used

to compute a CoM acceleration estimate for the learning

algorithm. Two parameters for the Kalman filter, namely the

window size and IMU variance value, are tuned to give a final

acceleration estimate with suitable trade-off between lag and

noise. The window size is modified from 120 to 60 samples,

and the IMU variance is modified from equal to the encoder

variance to 5 times the encoder variance. Ultimately, after

tuning, the estimator produces acceptable linear acceleration

estimates, but the angular terms proved too noisy to be

useful. As such, we proceeded with hardware experiments with

learning enabled for only the linear terms.

The hardware experiments were performed on the A1 on

flat, grassy terrain. Both the baseline and proposed methods

perform nominally with low load, but as the weight increases,

the baseline controller sags in body height and is unable to

maintain forward velocity. The proposed controller does not

suffer this degradation and is able to maintain desired body

height and forward velocity for the range of load conditions.

Results for the forward walking test are summarized in Fig-

ure 5. Video comparison of both trot-in-place and forward

walking is available in [40].

V. DISCUSSION

We have introduced a method to update model parameters

through online learning, while a controller is running with

past, inaccurate versions of these parameters. Unlike methods

in adaptive control, our method uses learned parameters that

are general functions of the state, thus inherently time-varying.

To the best of our knowledge, this is the first method that

applies machine learning to make real-time updates (500 to

1000 Hz) in hardware walking experiments.

While the nominal models in our applications are derived

from classical mechanics, our method can be applied to any

black box nominal model e.g. a simulator. While our baselines

are derived from classical control principles, our method can

also be applied to any controller using the black box model,

even a policy trained in simulation. We hope to explore

these potentials in future work, under broader definitions of

unknown dynamics, such as sim-to-real transfer.

APPENDIX

A. Proofs

1) Proof of Lemma 1:

∥
∥[A,b]

∥
∥ = max

x∈Rn,y∈R

∥
∥
∥
∥
[A,b]

[
x

y

] ∥
∥
∥
∥

:

∥
∥
∥
∥

[
x

y

] ∥
∥
∥
∥
≤ 1

= max
x∈Rn,y∈R

∥
∥
∥
∥
Ax+ yb

∥
∥
∥
∥

:

∥
∥
∥
∥

[
x

y

] ∥
∥
∥
∥
≤ 1

≤ max
‖x‖≤1

‖Ax‖+ max
y∈[−1,1]

‖yb‖

= δA + δb.

2) Proof of Lemma 2: We first prove the vector version in

a claim, which is used in the proof of the lemma.

Claim 1: Consider yt = 〈ut,at〉 ∈ R for t = 1, . . . , k, and

ut,at ∈ R
m. Suppose ‖ut‖ < B and ‖at+1 − at‖ < ǫ. Let ã

be the OLS estimator on this dataset, then

‖ak − ã‖ <
B

σmin(U)
k
√
kǫ

.

Proof: Define the feasible set of weights for a dataset as

A = {(a1,a2, · · · ,ak) : yt = 〈ut,at〉 , ‖at − at+1‖ ≤ ǫ, ∀t} .
Then ak can only exist in the kth component of A, denoted

Ak = {ak : ∃(a1, · · · ,ak−1) s.t. (a1,a2, · · · ,ak) ∈ A} .
Our goal is to bound maxak∈Ak

‖ã− ak‖.

Define et = at − ak, where ek = 0 and ‖et+1 − et‖ < ǫ.
We can rewrite A using these conditions as

A = {(a1, · · · ,ak) : yt = 〈ut,at〉 , et = at − ak,

ek = 0, ‖et+1 − et‖ < ǫ, ∀t}.
Define E = [eT1 ; ...; e

T
k ] and A = [aT1 ; ...;a

T
k ]. Also, by

definition of OLS, ã = (UTU)−1UTy. Therefore

‖ak − ã‖ = max
ak∈Ak

‖ã− ak‖

= max
ak∈Ak

‖(UTU)−1UTy − ak‖

= max
ak∈Ak

‖(UTU)−1UT (U ◦A · 1)− ak‖

= max
ak,E

‖(UTU)−1UT (Uak +U ◦E · 1)− aK‖

= max
E

‖(UTU)−1UT (U ◦E · 1)‖

≤ ‖(UTU)−1UT ‖max
E

‖U ◦E · 1‖

=
maxE ‖U ◦E · 1‖2

σmin(U)
,

where ◦ denotes the Hadamard operator, σmin(U) is the

minimum non-zero singular value of U; the last equality

follows from singular value decomposition of U. Note that

max
E

‖U ◦E · 1‖ < max
t=1,...,k

‖ut‖‖[0; · · · ; k − 1]‖ǫ

<

√
3B

3
k
√
kǫ < Bk

√
kǫ,

which finishes the proof of Claim 1.

Now we extend the result of Claim 1 to prove Lemma 2,

Note that in the context of Lemma 2, At ∈ R
d×m, and is

different from the definition of A in the proof of Claim 1. We

use the standard matrix norm relationship ([44])

‖X‖/
√
d ≤ ‖X‖2→∞ ≤ ‖X‖, (25)

for any matrix X ∈ R
d×m. Combining the second half of

equation (25) with the lemma’s assumption, we have

‖At+1 −At‖2→∞ < ǫ. (26)

As explained in Subsection II-B, the matrix-vector least

squares problem is solved by reducing to d independent vector-

scalar sub-problems, for each dimension of yt. Each sub-

problem solves for one row of Ã. From equation (26), we
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already know that rows of the ground truth weight matrices

satisfy the smoothness assumption in Claim 1. Therefore we

can apply Claim 1 to each row of Ã, yielding

‖Ak − Ã‖2→∞ <
B

σmin(U)
k
√
kǫ.

Combining this with the first half of equation (25) finishes the

proof of Lemma 2.
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