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ABSTRACT
In this article, we propose a simple algorithm to cluster

nonnegative data lying in disjoint subspaces. We analyze its
performance in relation to a certain measure of correlation
between said subspaces. We use our clustering algorithm
to develop a matrix completion algorithm which can outper-
form standard matrix completion algorithms on data matrices
satisfying a certain natural low rank condition.

Index Terms— Nonnegative matrix factorization, matrix
completion, clustering, compressed classification

I. INTRODUCTION
Real world data is often high dimensional, that is to

say a given data point may be modeled by a vector in a
high dimensional Euclidean space. While genuinely high
dimensional data would be prohibitively difficult to analyze,
most data encountered are effectively low dimensional. For
instance, the data points may approximately lie in some (a
priori unknown) low dimensional subspace of their ambient
space. Moreover, one often encounters data which is non-
negative in the sense that each of its entries is nonnegative,
such as data stemming from user surveys, rating systems,
or biomedical monitoring. Here, we consider such low
dimensional data and address the problem of data completion
via two other data oriented tasks, clustering and nonnegative
matrix factorization.

An important problem in data science is that of data
completion, and matrix completion in particular [1]. Namely,
one wishes to recover an unknown matrix from only a
subset of its entries. To make the problem well-posed, one
typically assumes that the underlying matrix is also low-
rank, a reasonable assumption in many applications where
there is a small number of intrinsic features that describe
the large-scale data. One typically also assumes that the
observed entries are selected in a “nice" way, such as
uniformly at random, to avoid degenerate sampling patterns.
There are now many provably robust methods to matrix
completion including convex optimization programs [2], [3]
and projection based methods [4], [5].

Clustering is another typical problem in data science
whose aim is to cluster, or group, unlabeled data. That is,
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one has a data set consisting of two or more families of
data points such that members of each family share intrinsic
characteristics. Based on these intrinsic characteristics, one
must sort the data into its different families. There are now
many methods to cluster data along with a wide array of
theoretical and empirical support, see e.g. [6], [7], [8] and
references therein. Although there are now many sophisti-
cated methods for clustering, the simpler k-means clustering
method [9], which aims to separate the data points into k
clusters so that each point belongs to a cluster with the
nearest mean, is still useful in many applications. However,
like many others, k-means fails in most applications where
the data families live in some low dimensional subspaces,
where linear separability need not be apparent.

Lastly, another useful tool we will utilize is nonnegative
matrix factorization (NMF) [10], [11]. Concretely, the prob-
lem of NMF is to factor an M × N data matrix X into
X ≈ AS where A is a non-negative M × T matrix and S
a non-negative T ×N matrix. The parameter T corresponds
to the number of topics to represent the data, the matrix
A then gives a topic representation for each of the M
variables, and S a topic representation for each of the N
users (for example). Concretely, we can view Aij as an
indicator of how important the ith variable is for the jth
topic, and Sjk as how important the jth topic is to user k.
This structure implicitly reveals topics in the data, which can
be interpreted on their own or used as features in other data
processing tasks. This type of NMF is called unsupervised
representation since it works only on the raw data, without
any other observation information. NMF is also by now a
standard tool in dimensionality reduction. The advantage of
this factorization compared to other dimensionality reduction
techniques such as PCA, IMF, etc. is that the nonnegativity
constraints enforce a certain locality, and hence interpretabil-
ity, of its hidden features. See for instance [12], [13].

In this paper, we discuss the clustering and completion
problems in the context of nonnegative data belonging to
disjoint low dimensional subspaces of a high dimensional
Euclidean space. This additional structure appears in data
arising from an abundance of applications, ranging from
collaborative filtering to multi-class learning, where the
structure may arise from subgroups of e.g. users that have
similar preferences. Utilizing this additional structure allows
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us to decrease the number of observations needed and/or
decrease the reconstruction error. In particular, we present
a clustering algorithm based on nonnegative matrix factor-
ization (NMF), Algorithm 1, and examine the relationship
between its performance and a certain measure of correlation
between the two families of data points that we are trying to
separate (cluster). We then discuss an application to a certain
"block completion" algorithm, which can yield significant
improvements compared to standard matrix completion al-
gorithms regarding recovery error for matrices satisfying a
very natural low-rank type condition.

II. CLUSTERING VIA NMF
Consider a data set consisting of vectors xi belonging to

one of two disjoint low dimensional subspaces W1,W2 ≤
Rn. Suppose further that the entries of the data vectors are
all nonnegative. The problem is to sort the data according to
its respective subspace. While standard clustering techniques
applied to the data fail in general, one may take advantage
of a certain orthogonalizing effect of NMF. To explain the
first step in our proposed simple method, let us interpret our
m data points xi ∈ Rn as row vectors and concatenate them
into the data matrix X ∈ Rm×n. Suppose we have an upper
bound for the sum of the dimensions of the subspaces:

dimW1 + dimW2 ≤ r

We perform NMF with r hidden features (topics) to factor
X into a product of a weight matrix W ∈ Rm×r and a
hidden feature matrix H ∈ Rr×n. We then cluster not on
the original data, but on the rows of the weight matrix W .
This is described succinctly as Algorithm 1.

Algorithm 1 Clustering Via NMF

1. Input: Data matrix X, upper bound for rank r.
2. NMF: Perform NMF with r hidden features to write
X = WH
3. Apply k-means to rows of W

Algorithm 1 proves to be very effective, even in the
presence of considerable noise. One explanation for this
phenomenon is that NMF exhibits a certain orthogonal-
ization effect. In particular, it is not necessarily true that
if one forms a nonnegative matrix H ′ whose rows are
a given set of r linearly independent nonnegative vectors
belonging to W1 + W2 that one may still be able to factor
X = W ′H ′ for some nonnegative W ′. This prevents a
degree of "mixing" of hidden feature basis vectors associated
to the two subspaces when performing NMF. The result is
that the rows of any weight matrix W obtained via NMF
applied to our data matrix will have very small values at
entries corresponding to basis vectors for a family in which is
does not belong. Put simply, NMF has reduced the problem
of clustering nonnegative data belonging to general low
dimensional subspaces to that of clustering nonnegative data

belonging to low dimensional coordinate subspaces (thus
NMF has "orthogonalized" the original subspaces).

Below we illustrate the relationship between success of
clustering and a certain measure of correlation between
subspaces.

Suppose U, V ⊂ Rn are two subspaces of the same
dimension r. We define the correlation measure α(U, V )
between them as

α(U, V ) =
1

r
tr(PUPV ),

where PU denotes the orthogonal projection onto U and
similarly for PV . Note that for any two subspaces we have
0 ≤ α(U, V ) ≤ 1, α(U, V ) = 0 iff U and V are orthogonal
and α(U, V ) = 1 iff U = V .

Naturally, one expects that as the correlation measure
between subspaces increases, they become more difficult to
cluster. This is indeed the case.

Fix n, r with r � n and consider an r×n random matrix
with i.i.d. entries uniformly distributed between 0 and 1. A
particular instance of this random matrix is a proxy for an
r-dimensional subspace of Rn. Abusing notation, we will
refer to such an instance as U . We construct matrices V
with various correlation measures through a multiplication
by a matrix of the form exp(tA) where t is a scalar and
A is a random skew-symmetric matrix (obtained by skew-
symmetrizing an instance of a random standard Gaussian
matrix). Thus t = 0 implies U = V , and larger t implies
a greater correlation measure between the subspaces. Of
course t cannot be too large, otherwise V may possess
negative entries.

We will consider various pairs of U and V as constructed
above. Let U -block be the product of an instance of an m×
r standard uniform matrix with U , and construct V -block
similarly. We concatenate these two row matrices to obtain
our 2m× n row matrix X .

Figure 1 represents the average clustering error under the
above model with m = 100, n = 80, r = 5. Each simulation
consists of 100 samples. As noted, the accuracy is smaller
for smaller values of α, when the subspaces are closer to
being orthogonal.

III. APPLICATION TO MATRIX COMPLETION

In many applications where one wishes to perform data
completion, the data points naturally lie in different sub-
spaces. For example, in collaborative filtering where the data
represents users and their ratings of certain products, the
overall data matrix may be low rank since there are a few
underlying features that describe the users or products (e.g.
movie genre, user demographics or preferences, etc.). How-
ever, it may more often be the case that even more structure
is present, for example the users may be divided into similar
blocks so that each block is of even lower rank than the
overall matrix. If such blocks can be identified, performing
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Fig. 1: Average clustering error (average number of misclas-
sified data points over 100 trials) as a function of the average
correlation measure α(U, V ) = 1

r tr(PUPV ) between the
subspaces U, V which generated the data.

matrix completion on each block individually will result in
lower error and/or the need for fewer measurements.

Here we thus consider the problem of matrix completion,
applied to matrices of the form considered in the previous
section (namely concatenations of blocks). In fact we allow
for matrices obtained by permuting the rows of such ma-
trices, since the data is unlabeled. While one can attempt
to apply standard matrix completion, we demonstrate that
improvements can be made if one exploits the additional
structure of our data matrices.

We introduce a novel matrix completion algorithm, Al-
gorithm 2, which we refer to as Block Completion. The
algorithm proceeds by first applying an initial, "basic" matrix
completion to the entire data matrix.

In practice, applying a finite number of iterates of a
standard matrix completion algorithm may yield matrices
which have negative entries, even for nonnegative, low rank
matrices, let alone for matrices which are only approximately
low rank. We avoid this problem by using a certain simul-
taneous matrix completion and nonnegative matrix factor-
ization algorithm, MC-NMF, as in [14], to implement our
basic completion. MC-NMF was formulated to minimize a
non-convex, constrained least squares objective, and is based
on the standard alternating direction method of multipliers
(ADMM) framework. The algorithm takes in an incomplete,
low rank, nonnegative matrix X , a set of sampled values,
and an estimate for its rank, and at each iterate returns a
completed pair of low rank nonnegative factors W,H such
that after sufficiently many iterates one obtains X ≈ WH .
In short, the "basic completion" algorithm used in this paper
simply applies MC-NMF with a fixed number of iterates and
returns the product WH of its outputs.

Although the error from this initial matrix completion

may be large, empirically one often finds that Algorithm
1 nonetheless succeeds in clustering the (noisy) data points.
We obtain data sub-matrices (blocks) from these clusters,
and apply basic completion to each block using the original
observed entries. The point is that the blocks are lower rank,
and so one expects an improvement in recovery error. We
concatenate the completed blocks in the obvious way and
take this as the output for block completion.

Algorithm 2 Block Completion

1. Initialization: Mask Ω of observed entries of data matrix
X , upper bound for rank r.
2. Basic Completion: Apply standard matrix completion
algorithm to whole matrix X using observed entries Ω
3. Sort Blocks: Apply clustering via NMF (Algorithm 1)
to obtain matrices A and B by concatenating the data
vectors belonging to respective clusters.
4. Complete Blocks: Using masks derived from original
mask, apply basic completion to both A and B individu-
ally.
5. Reassemble: construct the full completed matrix from
the completed blocks.

To test this approach, we recorded a comparison of stan-
dard completion with block completion. Our data matrices
were constructed by concatenating two low rank blocks.
Each block was the product of an instance of a standard
uniform 100 × 5 matrix with a standard uniform 5 × 80
matrix. The observed entries corresponded to a Bernoulli
matrix with various sampling rates p. We used 500 iterates of
the basic completion algorithm described above. The result
represents the average relative error of one hundred random
samples. Figure 2 demonstrates the advantages of such an
approach. Indeed, for low sampling rates the relative error
when applying block completion is significantly lower than
that of basic completion. Figure 4 shows an example of the
obtained results.

We empirically confirm that our method is robust to a
reasonable level of noise. In 3, we fix a sampling rate of .2
and consider various noise levels. Our data has the form of
the data matrices described above, plus a noise term. The
noise is simulated as a standard uniform matrix, normalized
so that its frobenius norm is the product of the noise level
factor indicated on the x-axis of the figure by the frobenius
norm of the exact matrix. The indicated values associated
to each noise level factor are the results of averaging the
relative errors of 100 trials each.

IV. CONCLUSION
We have presented a simple clustering algorithm based

on NMF which is very effective in separating nonnegative
data belonging to disjoint, low-dimensional subspaces, even
with considerable noise. As an application, we introduced
a matrix completion algorithm designed to more accurately
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Fig. 2: Comparison of Relative Error Between Completion
Algorithms as a function of the sampling rate p.

Fig. 3: Comparison of Relative Error Between Completion
Algorithms as a function of noise factor.

complete certain matrices satisfying a low-rank type con-
dition. This algorithm has the potential to yield non-trivial
insights from incomplete data matrices comprised of data
points belonging to two or more different families.
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