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ABSTRACT

Data corruption is an impediment to modern machine learning de-
ployments. Corrupted data can severely bias the learned model and
can also lead to invalid inferences. We present, Picket, a simple
framework to safeguard against data corruptions during both train-
ing and deployment of machine learning models over tabular data.
For the training stage, Picket identifies and removes corrupted data
points from the training data to avoid obtaining a biased model. For
the deployment stage, Picket flags, in an online manner, corrupted
query points to a trained machine learning model that due to noise
will result in incorrect predictions. To detect corrupted data, Picket
uses a self-supervised deep learning model for mixed-type tabular
data, which we call PicketNet. To minimize the burden of deploy-
ment, learning a PicketNet model does not require any human-
labeled data. Picket is designed as a plugin that can increase the
robustness of any machine learning pipeline. We evaluate Picket
on a diverse array of real-world data considering different corrup-
tion models that include systematic and adversarial noise during
both training and testing. We show that Picket consistently safe-
guards against corrupted data during both training and deploy-
ment of various models ranging from SVMs to neural networks,
beating a diverse array of competing methods that span from data
quality validation models to robust outlier-detection models.

1 INTRODUCTION

Data quality assessment is critical in all phases of the machine
learning (ML) life cycle. Both in the training and deployment (infer-
ence) stages of ML models, erroneous data can have devastating ef-
fects. In the training stage, errors in the data can lead to biased ML
models [3, 6, 27, 42], i.e., models that learn wrong decision bound-
aries. In the deployment stage, errors in the inference queries can
result in wrong predictions, which in turn can be harmful for crit-
ical decision making systems [6, 44]. ML pipelines need reliable
data quality assessment during both training and inference to be
robust to data errors.

We focus on tabular data and seek to develop a simple, plug-
and-play approach to guard against corrupted data (including ad-
versarially corrupted data) during both training and inference in
ML pipelines. During training, our goal is to identify and filter cor-
rupted examples from the data used to train a model, while during
deployment, our goal is to flag erroneous query points to a pre-
trained ML model, i.e., points that due to noise will result in incor-
rect predictions of the ML model. This work introduces a unified
solution to guard against corrupted data for both the training and
deployment stages of ML models.

Guarding against corrupted data in ML pipelines exhibits many
challenges. First, detecting corrupted examples in the training data

can be a hard exercise that requires developing methods that go be-
yond standard outlier detection mechanisms [49]. Data poisoning
techniques [4, 27, 35, 44] attack models by adding a small fraction
of adversarially crafted poisoned data to the training set. Any re-
liable mechanism that filters corruptions from a training data set
should not only remove easy to detect outliers but also hard to
detect poisoned data.

Second, online-detection of inference queries that yield a model
misprediction due to corruption requires not only knowledge of
the data quality, but also knowledge of the tolerance of the trained
ML model to corruptions. The reason is that not all corruptions
will flip the prediction of a trained ML model and different mod-
els exhibit different degrees of robustness to corruption. Moreover,
adversarial noise may target specific subsets of the data or classes
in the ML pipeline [27]. For this reason, online-filtering of cor-
rupted inference queries requires a method that takes both the
downstream model and data quality into account.

The above challenges require rethinking the current solutions
for identifying errors in data. The majority of outlier detection
methods in the statistical literature [8, 29, 49] and error detection
methods in the database literature [20, 33] are not effective against
adversarial corruptions [27]. More advanced methods are required
to defend against adversarial corruptions [44]. However, current
methods are typically limited to real-valued data [10] and focus
either on training [11] or inference [18, 40] but not both. Finally,
recent techniques for data validation in ML pipelines that are de-
ployed in industrial settings [6, 42] rely on user-specified rule- or
schema-based quality assertions evaluated over batches of data
and it is unclear if they can support on-the-fly, single point vali-
dation, which is required during inference.

We present Picket, a framework for safeguarding against cor-
rupted data during both the training and deployment stages of ML
pipelines. Picket can be used in an offline manner to validate data
that will be used for training but can also be used in an online man-
ner to safeguard against corruptions for on-the-fly queries at in-
ference time. We empirically demonstrate that Picket outperforms
both state-of-the-art outlier detection mechanisms such as Robust
Variational Autoencoders [14], and state-of-the-art methods for de-
tection of adversarial corruption attacks during inference [18, 40].
Our work makes the following technical contributions:
Self-Attention for Tabular Data Picket is built around Picket-
Net, a new deep learning-based encoder for mixed-type tabular
data. PicketNet can model mixtures over numerical, categorical,
and even text-based entries of limited length (e.g., descriptions).
The goal of PicketNet is to learn the characteristics of the distribu-
tion governing the non-corrupted data on which the ML pipeline
operates and it is used in Picket to distinguish between clean data
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points and corrupted ones. The architecture of PicketNet builds
upon the general family of Transformer networks [46] and intro-
duces a new multi-head self-attention module [46] over tabular
data. This module follows a stream-based architecture that is able
to capture not only the dependencies between attributes at the
schema-level but also the statistical relations between cell values—
it follows a schema stream and value stream architecture. We find
that compared to schema-only models, PicketNet’s two-stream ar-
chitecture is critical for obtaining accurate predictions across di-
verse data sets.

Robust Training over Arbitrary Corruptions We show how to
learn a PicketNet model without imposing any extra labeling bur-
den to the user and by operating directly on potentially corrupted
data (i.e., we do not not require access to clean data to learn the
non-corrupted data distribution). We achieve that by using a ro-
bust self-supervised training approach that is robust to corrupted
data points (including adversarial points). As with standard self-
supervision, the context captured in the data is used as the su-
pervision signal. The training procedure for PicketNet monitors
the reconstruction loss of tuples in the input data over early train-
ing iterations and uses related statistics to identify suspicious data
points. These points are then excluded from subsequent iterations
during training.

A Plugin to ML Pipelines We demonstrate how Picket can serve
as a “plugin” that safeguards against corrupted data in different ML
pipelines during both training and inference. We evaluate Picket
over multiple data sets with different distributional characteristics
and consider different types and magnitudes of corruption, rang-
ing from simple random noise to adversarial attacks that explic-
itly aim to harm the performance of downstream ML models. We
find that Picket provides a reliable mechanism for detecting data
corruptions in ML pipelines: Picket consistently achieves an area
under the receiver operating characteristic curve (AUROC) score
of above or close to 80 points for detecting corrupted data across
different types of noise and ML models.

2 BACKGROUND

Data Corruption Models We consider data corruption due to
random, systematic, and adversarial noise.

1. Random noise is drawn from some unknown distribution that
does not depend on the data. Random noise is not predictable and
cannot be replicated in a repeatable manner. While, many ML mod-

els are robust to purely random noise during training, high-magnitude

random noise can still lead to false predictions, and hence is of in-
terest to our study.

2. Systematic noise depends on values in the data and leads to re-
peated errors in data samples. This type of noise biases the distri-
bution of the data. Systematic noise can skew the distribution of
the data, and this bias can potentially harm the performance of an
ML model depending on the importance of the corrupted features
to the downstream prediction task.

3. Adversarial noise contaminates the data to explicitly mislead ML
models and harm their performance. At training time, adversarial
noise corrupts the training points to force a model to learn a bad de-
cision boundary; at test time, adversarial noise corrupts the input
queries in a manner that will lead to a false prediction by the model.
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It usually depends on the data and the target model, although some
types of adversarial noise may work well across different models.

Dealing with Corrupted Data in ML The most common ap-
proach to deal with corrupted data during training is to identify
corrupted samples and remove them from the training set. This
process is referred to as filtering. Given a training data set D, fil-
tering identifies a set of clean data points C C D to be used for
training. Common filtering mechanisms rely on outlier detection
methods [8, 14, 29]. In addition, recent filtering methods focus on
adversarial corruptions over real-valued data [10, 14]. Finally, there
are data validation modules for ML platforms [3, 6, 42] that rely
on user-defined rules and simple statistics to check the quality of
data batches. The statistical tests used by these methods are sub-
sumed by outlier detection methods and user-defined quality rules
are out of the scope of this work. For inference, apart from outlier
detection methods, there are methods that accept or reject infer-
ence queries by using statistical tests that compare the query to
clean data [18] or by considering variations in a model’s internal
data representation [40]. We also consider the online detection of
inference queries that result in wrong predictions due to corrup-
tion.

Self-Supervision In self-supervised learning systems [9, 45], the
learning objective is to predict part of the input from the rest of
it. A typical approach to self-supervision is to mask a portion of
the input, and then let the model reconstruct the masked portion
based on the unmasked parts. By self-supervision, a model learns
to capture dependencies between different parts of the data. Self-
supervised learning is a subset of unsupervised learning in a broad
sense since it does not need human supervision.

Multi-Head Self-Attention Models with multi-head self-attention
mechanism learn representations for structured inputs e.g., a tuple
or a text sequence, by capturing the dependencies between differ-
ent parts of the inputs [46]. One part can pay different levels of
attention to other parts of the same structured input. For example,
consider the text sequence “the dog wears a white hat”, the token
“wears” pays more attention to “hat” than “white” although “white”
is closer in the sequence. The attention mechanism can also be ap-
plied to tuples that consist of different attributes [47]. Multi-head
self-attention takes an ensemble of different attention functions,
with each head learning one.

We provide a brief review of the multi-head self-attention model [46].

Let x1, x2, . . ., xT be the embedding of a structured input with T to-
kens. Each token x; is transformed into a query-key-value triplet
(qi = Woxi, ki = Wkx;, v; = Wyx;) by three learnable matrices
Wo, Wk and Wy The query g;, key k;, and value v; are real-valued
vectors with the same dimension d. The output of a single head for
the i token is Z};l wijvj, a weighted sum of all the values in the

sequence, where w;; = softmax((qiTkl, qiTkz, s qiTkT)/‘/E)j. The
attention x; pays to x; is determined by the inner product between
g; and k;. Multiple heads share the same mechanism but have dif-
ferent transformation matrices. The outputs of all the heads are
concatenated and transformed into the final output by an output
matrix Wy, which is also learnable.
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3 OVERVIEW OF PICKET

We review Picket’s functionalities during the training and infer-
ence phases of a ML pipeline. An overview diagram of Picket’s
core components and functionalities is shown in Figure 1. The cor-
responding pseudo-code is shown in Algorithm 1.

Algorithm 1: Picket in a typical ML pipeline

Training Time:

Input: dataset D, downstream model type and
configuration Z¢onfig;

Output: filtered dataset C, trained downstream model f;

C = PicketNetTrainingAndEarlyFiltering (D, );

f = DownstreamModelTraining(C, Zeonfig);

Inference Time (Offline Phase):

Input: filtered dataset C, trained downstream model f;
Output: trained PicketNet M, victim sample detectors g;
M = PicketNetTraining(C);

augmented dataset A = DataAugmentation(M, f);

g = VictimSampleDetectorTraining(A);

Inference Time (Online Phase):

Input: data stream S, trained downstream model f, trained
PicketNet M, victim sample detectors g;

Output: final prediction Yprediction:

raw prediction yraw = DownstreamPrediction(S, f);

Yprediction = PicketVictimDetection(S, yraw, M, g)

Guarding against Corrupted Data in Training

We consider a tabular data set D with N training examples. Let x be
asample (tuple) in D with T attributes. These attributes correspond
to the features that are used by the downstream model. For each x
we denote x* its clean version; if x is not corrupted then x = x™*.

We assume that D contains clean and corrupted samples and
that the fraction of corrupted samples is always less than half. The
goal of Picket is to filter out the corrupted samples in D and con-
struct a clean set of examples C C D to be used for training a down-
stream model. Without loss of generality we assume that Picket
performs filtering over D once. This process can be repeated for
data batches over time. We next describe how we construct C in
Picket.

Picket follows the next steps: First, Picket learns a self-supervised
PicketNet model M that captures how data features are distributed
for the clean samples. Picket does not require human-labelled ex-
amples of corrupted or clean data. During training, Picket records
the reconstruction loss across training epochs for all points in D.
After training of M, we analyze the reconstruction loss progression
over the first few training epochs to identify points in D that are
corrupted (see Section 5 for details). Set C is constructed by remov-
ing these corrupted points from D. We also proceed with training
M on C. The pre-trained PicketNet model M is used to detect cor-
ruptions during inference.

Guarding against Corrupted Data in Inference
We consider a trained model f that serves inference queries over

data points with the same T attributes as in the training phase of
the ML pipeline. We define a victim sample to be a point x such
that f(x*) = y but f(x) # y, i.e, the input sample is corrupted
and it gets misclassified due to corruption. We show an example
that illustrates the difference between non-victim and victim sam-
ples according to our definition in Figure 2. The goal of Picket is
to solve the following problem: Given an already-trained classifier
f, for each sample x that comes on the fly, we want to tell if it is a
good sample or it is a victim sample and will be misclassified due
to corruption, i.e., we want to detect if f(x) # f(x*). We assume
access to data set C and model M output by Picket for safeguard-
ing during the training phase of the ML pipeline in hand. We then
adopt a two-phase approach, offline and online phase, to solve the
aforementioned problem.

We now focus on the offline phase. Given the trained model f,
data set C, and model M, we learn a victim-sample detector for
each class in the prediction task in-hand. Each victim-sample de-
tector is a binary classifier that detects if an input sample x will be
misclassified by f due to corruption. The victim-sample detectors
operate on an extended feature set: Beyond the original T features
of the inference query x we add T additional features correspond-
ing to the reconstruction-loss obtained by masking each feature in
turn and applying model M to predict it back.

During the online phase, we use model M and the victim-sample
detectors over a stream of incoming inference queries to identify
victim samples. Picket performs the following: for each incoming
point x, Picket evaluates classifier f on x to obtain an initial predic-
tion f(x). Picket also uses M to compute the reconstruction-loss
vector for the features of x. The extended feature vector contain-
ing the original features of x and the reconstruction loss features
are given as input to the victim sample detector for the class that
corresponds to the prediction f(x). Using this input, the detector
identifies if point x corresponds to a victim sample. If the point
is not marked as suspicious the final prediction is revealed down-
stream, otherwise the inference query is flagged.

4 THE PICKETNET MODEL

Picket uses a new two-stream multi-head self-attention model to
learn the distribution of tabular data. We refer to this model as
PicketNet. The term stream refers to a path in a neural network
that focuses on a specific view of the input data. For example, stan-
dard attention mechanism is one stream that learns value-based
dependencies between the parts of the input data (see Section 2).
Combining multiple streams, where each stream focuses on learn-
ing a different view of the data, has been shown to achieve state-of-
the-art results in natural language processing tasks [50] and com-
puter vision tasks [43] but has not been applied on tabular data.
PicketNet introduces a new two-stream model for tabular data and
proposes a robust, self-supervised training procedure for learning
this model.

4.1 Model Architecture

PicketNet contains two streams: a schema stream and a value stream.
The schema stream captures schema-level dependencies between
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Figure 2: An example of non-victim and victim samples. The grey line is the decision boundary of a binary classifier that
separates the red circles and the blue stars in the two-dimensional space. (a)Before corruption, some samples (e.g. point A and
B) get misclassified, but they are not victim samples because they are clean, and the misclassification is due to the limitation
of the model. Those samples should be handled by model analytics, and are out of the scope of our framework. (b) After
corruption, two samples are shifted by the noise (point C and D). C is not a victim sample since the noise injected does not
affect the correctness of classification. D is a victim sample because it gets misclassified due to noise.

attributes of the data, while the value stream captures dependen-
cies between specific data values. A design overview of Picket-
Net is shown in Figure 3 with details of the two streams. The in-
put to the network is a mixed-type data tuple x with T attributes

X1, X2y« « s XT

The first level of Picket obtains a numerical representation of
tuple x. To capture the schema- and value-level information for x,
we consider two numerical representations for each attribute i: 1)
a real-valued vector that encodes the information in value x;, de-
noted by Ii(O) ,and 2) areal-valued vector that encodes schema-level
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information of attribute i, denoted by Pl.(O) . For example, a tuple
with two attributes is represented as II(O)PI(O)IZ(O)PZ(O). To convert

xj tol i(o), PicketNet uses the following process: The encoding for
each attribute value x; is computed independently. We consider
1) categorical, 2) numerical, and 3) textual (short-text) attributes.
For categorical attributes, we use a learnable lookup table to get
the embedding for each value in the domain. This lookup table
is learned jointly with all other components of PicketNet. For nu-
merical attributes, we keep the raw value as one dimension and
pad the other dimensions with zeros. For text attributes, we train a
fastText [5] model over the corpus of all the texts and apply SIF [2]
to aggregate the embedding of all the words in a cell. The initial

embedding vectors I ;O) are inputs to the value-level stream.

Each vector Pl.(o) serves as a positional encoding of the attribute
associated with index i. Positional encodings are used to capture

high-level dependencies between attributes. Pi(o) is consistent for
attribute i in all examples, ie., it does not change as the values
in different examples vary. Hence, it captures common dependen-

cies at the schema level. Each Pi(o) corresponds to a trainable vec-
tor that is initialized randomly and is fed as input to the schema
stream.

We now describe subsequent layers of our model. These lay-
ers consider the two attention streams and form a stack of n self-
attention layers. The output of the previous layer serves as the
input to the next layer. Self-attention layer [ takes the value vec-

tor Il.(l) and positional encoding Pi<l) to learn a further represen-
tation for attribute i and its value x;. After each attention layer,
the outputs of the two streams are aggregated and fed as input to
the value-level stream of the next layer, while the schema stream
still takes as input the positional encoding. The output of the value

D

stream Hi(l) and that of the schema stream G; "’ are computed as:

HY =MHS(Q = Lo(1!"),K = LK(I;Q

1,.“”]")5
V= LV(I;QIMT))

! ! :
6" =MHS(Q = Lo(P").K = L (P)l; ),
V= LV(I;QL“.,T))

where MHS represents the multi-head attention function followed
by a feed-forward network and Lo, Lk, Ly are linear transforma-
tions that transform the input into query, key, or value vectors by
the corresponding weight matrices for Q, K, and V. Finally, Q, K,V
are matrices formed by packing the query, key and value vectors
from their inputs.

The difference between the two streams is that the query in the
schema stream corresponds to the positional encoding, therefore
it learns higher-level dependencies. For the value stream the input
to the next level is the sum of the outputs from the two streams:

Il.<l+1) = H;l) + Gfl); for the schema stream the input to the next

level Pl.<l+1) corresponds to a new positional encoding that does not

depend on the previous layers. If layer [ is the last layer, O; = I i(lﬂ)

is the final representation for attribute value x;.

4.2 Training Process

We learn PicketNet using the noisy data set D without any human-
labeled examples of corrupted or clean data. Training follows a
self-supervised learning objective.

Self-Supervised Training For each point in D, we mask one of
the attributes and then try to reconstruct it based on the values of
the other attributes in the same tuple. Other attributes may still
contain noisy data or missing values. The attributes are masked in
turn following an arbitrary order. The training is also multi-task
since the reconstruction of each attribute forms one learning task.
We use different types of losses for the three types of attributes
to quantify the quality of reconstruction. Consider a sample x whose

original value of attribute i is x;. If x; is numerical, its a one-dimensional

value, and hence, the reconstruction of the input value is a regres-
sion task: We apply a simple neural network on the output O; to get
an one-dimensional reconstruction %;, and use the mean squared
error (MSE) loss: MSE (x;, £;) = (x; — %:)2.

For categorical or text-based attributes we use the cross-entropy
loss. Consider a tuple x and its attribute i. For its attribute value
x; let I? (x;i) be the base-embedding before passing through the at-
tention layers of PicketNet, and O;(xpask) the contextual encod-
ing of value x; after pushing tuple x5 (With attribute i masked)
through PicketNet. Given tuple x, we randomly select a set of other
values Z; from the domain of attribute i. We consider the training
loss associated with identifying x; as the correct completion value
from the set of possible values {x;} U Z;. To compute the training
loss we use the cosine similarity between O;(xy,s) and the input
encoding Ilp(r) for each r € {x;} U Z;, then we apply the softmax
function over the similarities and calculate the cross-entropy (CE)
loss:

CE(x, Zi;i, M)
exp(sim(I”) (x;), O; (Xmask)))

=—log( - ©
Zre{xi}UZi eXP(Slm(Ii (r), Oi (Xmask)))

where sim(a, b) is the cosine similarity between a and b.

Loss-based Filtering to Ensure Robust Training
The data used to learn PicketNet can be corrupted, in which case
self-supervised learning might lead to a biased model due to the
presence of noise. To make learning robust to noisy input, we use a
loss-based filtering mechanism to detect and ignore corrupted data
during training of a PicketNet model. The process we use follows
the next steps:
1. Warm-start PicketNet by training over D for E; epochs.
2. Train PicketNet over D for E; epochs and, for each sample in x €
D, record the epoch-wise average loss Loss;(x) for each attribute i,
i=12....,T.
3.For each sample, aggregate the losses attribute-wise by Loss(x) =
Z,'T=1 Loss;j(x)/Medianp (Loss;(-)) where Medianp computes the
median over all points in D.
4. Put a sample into set D’ if its aggregated loss is less than 64y, or
greater than pjgn, where 8joyw and Spgh are pre-specified thresh-
olds; D’ is the set of samples to be removed.
5. Train PicketNet over C = D \ D’ until convergence.

The thresholds 8oy and ;g control the sensitivity of the de-
tection. In practice, we can set 8oy and Spjgh based on a relatively
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Figure 3: (a) Overview of the two-stream multi-head self-attention network. (b) An illustration of the schema stream for the
first attribute.(c) An illustration of the value stream for the first attribute.

clean validation set. A common strategy is setting their values
based on the validation set so that the false positive rate (FPR) is
under some value (e.g. 5%). When a relatively clean validation set
is not available, the thresholds can be set based on the histogram
of the reconstruction loss. Filtering out abnormal peaks and low
density tails in the histogram is a natural strategy, and we validate
the effectiveness of it in Section 6.4.

When we do the attribute-wise aggregation, we normalize the
loss of each attribute by dividing with the median of it to bring dif-
ferent types of losses to the same scale. The normalized loss charac-
terizes how large the loss is relative to the average level loss in that
attribute. We use the median since it is robust against extremely
high or low values, while the mean can be significantly shifted by
them.

The filtering is two-sided because randomly or systematically
corrupted samples and adversarially crafted (poisoned) samples
have different behaviors during the early training stage. Outliers
with random or systematic noise are internally inconsistent and
thus have high reconstruction loss in the early training stage of
PicketNet. However, poisoned samples tend to have unusually low
reconstruction loss. The reason is that poisoned data tend to be
concentrated on a few locations to be effective and appear normal,
as is pointed out by Koh et al. [27]. Such concentration forces deep

0.10
e Clean Samples
0.08 Randomly Corrupted Samples
: Systematically Corrupted Samples
B Poisoned Samples
2 0.061
i
j
[
0 0.04 1
0.02
0.00 L s

0 100 200 300 400 500
Reconstruction Loss

Figure 4: Distribution of the reconstruction loss (early in
training) for different types of clean and noisy samples.

networks such as PicketNet to fit quickly and therefore the recon-
struction loss in the early stage is lower than that of the clean sam-
ples. We confirm this hypothesis experimentally. Figure 4 shows
the distribution of the reconstruction loss for 1) clean, 2) randomly
and systematically corrupted, and 3)poisoned samples for a real-
world dataset. The noise used in this illustrative example follows
the procedure described in Section 6.1. The three distributions have



Picket: Guarding Against Corrupted Data in Tabular Data during Learning and Inference

notable statistical distances. Hence, we need to remove samples
with high loss to capture random or systematic corruptions, and
samples with abnormally low loss to defend against poisoning at-
tacks.

5 DETECTING DATA CORRUPTIONS

The reconstruction loss of PicketNet is the key to training time and
inference time detection. We now provide more details on these
functions of Picket.

Detecting Corrupted Training Data Detection of corrupted train-
ing data follows directly from the training procedure of Picket-
Net described in the previous section (Section 4.2). Given an ML
pipeline that aims to learn a model f for a downstream task, we 1)
first train a PicketNet model over the data considered for training
and 2) only use the data points that are not filtered during the train-
ing of PicketNet to train the downstream model f. This approach
allows us to apply Picket to any training pipeline regardless of the
downstream model. Effectively, the pre-trained PicketNet is used
as an encoder capable to detect outlier points. As we show in Sec-
tion 6, our approach is effective across different types of ML mod-
els. For adversarially poisoned training data, we find that using
Picket as a filter before training, allows us to train downstream ML
models that exhibit similar performance to that of models trained
on non-corrupted data.

Victim Sample Detection for Inference We now describe how
we construct the victim sample detectors to safeguard against cor-
ruptions during inference for a trained classifier f (see Section 3).
For each class y in the downstream classification task, we build a
detector gy to identify victim samples, i.e., samples that f will mis-
classify due to corruption of the feature values. The detectors are
binary classifiers. In our experiments, we use logistic regression
models with regularization parameter 1.0 as detectors.

Atinference time, the victim sample detectors are deployed along
with the downstream model f and a pre-trained PicketNet model
M. Whenever a sample x comes, the downstream model gives the
prediction f(x). The corresponding detector gr(y) takes into ac-
count x and the feature-wise reconstruction loss (not aggregated)
from M and decides if x should be marked as suspicious.

We learn the victim-sample detectors by using a data set with
artificially corrupted data points. We describe this process below;
notice that no human-labeled data is required. We start from the
filtered data C output by Picket during the training phase of the
ML pipeline. We first apply the already-trained classifier f on all
points in C and obtain a subset of points for which f returns the
correct prediction, i.e., f(x) = y. We denote this subset Ccor. More-
over, we partition Ceor into sets Cz.,, one for each class y of the
downstream prediction class. For each partition, we use the points
in CZ, to construct artificial victim samples and artificial noisy
points for which f returns the correct prediction despite the injec-
tion of noise. We discuss the artificial noise we inject in detail in
Section 6.1. Let VSY and NSZ, be the set of artificial victim samples
and the set of noisy but correctly classified sample generated from
Ccyor respectively. To construct these two data sets we select a ran-
dom point x* from CZ, and inject artificial noise to obtain a noisy
version x; we then evaluate f(x) andif f(x) = f(x*) = y we assign
the generated point x to N ScyOr otherwise we assign it to VSY. We

iteratively perform the above process for randomly selected points
in CZ, until we populate sets VSY and NSZ,. with enough points
such that |CZ,| = |[NSZ,| = 0.5 x |VSY|. Given these three sets,
we construct a new augmented data set AY = CY UNSY U VSY.
We extend the feature vector for each point in x € AY by concate-
nating it with the reconstruction loss vector obtained after passing
each point through the trained PicketNet M. We also assign to it a
positive label (indicative that we will obtain a correct prediction)
if it originated from CZ,, or NSY.. and a negative label (indicating
that we will obtain a wrong prediction) if it originated from VSY.
The output of this procedure is the training data for the victim
sample detector g,. We repeat the above process for each class y.

Ideally, the artificial noise that we inject should have the same
distribution as that in the real-world case. However, it is impos-
sible to know the exact noise distribution in advance. A practical
solution is injecting mixed-type artificial noise to help the detec-
tors learn an approximate boundary between good and victim sam-
ples. As mentioned we discuss the artificial noise we consider in
Section 6.1. We validate the effectiveness of mixed-type artificial
noise in Section 6.4.

6 EXPERIMENTS

We evaluate how effective Picket and a diverse array of compet-
ing methods are on detecting different types of corruption in ML
pipelines during the training and inference phases. We also provide
several micro-benchmarks over different design choices in Picket.
Finally, we report the runtime and discuss the scalability.

6.1 Experimental Setup

Datasets We consider six datasets with different mixtures of nu-
merical, categorical, and text-based attributes. These datasets are
obtained from the UCI repository [13] and the CleanML bench-
mark [28]. All datasets focus on binary classification tasks. The
characteristics of these datasets are summarized in Table 1. A de-
tailed description of the datasets is as follows.

o Wine: The dataset consists of statistics about different types
of wine based on physicochemical tests. The task is to pre-
dict if the quality of a type of wine is beyond average or not.
The features are purely numerical.

o Adult: The dataset contains a set of US Census records of
adults. The task is to predict if a person makes over $50,000
per year. The features are a mixture of categorical and nu-
merical attributes.

e Marketing: The dataset comes from a survey on household
income consisting of several demographic features. The task
is to predict whether the annual gross income of a house-
hold is less than $25,000. The features are purely categori-
cal.

o Restaurant: The dataset contains information of restaurants
from Yelp. The task is to predict if the price range of a restau-
rant is “one dollar sign” on Yelp. The features are a mixture
of categorical values and textual description,

e Titanic: The dataset contains personal and ticket informa-
tion of passengers. The task is to predict if a passenger sur-
vives or not. The features are a mixture of numerical, cate-
gorical and textual attributes.



Table 1: Properties of the datasets in our experiments.

b Si Numerical Categorical Textual
ataset e Attributes Attributes Attributes
Wine 4898 11 0 0
Adult 32561 5 9 0
Marketing 8993 0 13 0
Restaurant 12007 0 3 7
Titanic 891 2 5 3
HTRU2 17898 8 0 0

e HTRU2: The dataset contains statistics about a set of pul-
sar candidates collected in a universe survey. The task is to
predict if a candidate is a real pulsar or not. The features are
purely numeric.

The last dataset, i.e., HTRUZ, is purely numerical and we use
it in the context of adversarial noise. The datasets above are the
ones we use for most of our experiments. In addition, we use Food
labeled by [20] for real noise, and Alarm [21] for the study of scal-
ibility. We consider downstream ML pipelines over these datasets
that use 80% of each dataset as the training set, and the rest as test
data. To reduce the effect of class imbalance, we undersample the
unbalanced datasets where over 70% of the samples belong to one
class. The numerical attributes are normalized to zero mean and
unit variance before noise injection.

Noise Models In our experiments, we consider different types of
noise: 1) random, 2) systematic, 3) adversarial noise, and 4) com-
mon errors in real-world datasets.

Random and systematic noise are model agnostic and only take
into account the dataset. For random and systematic noise, we cor-
rupt f fraction of the cells in the noisy samples. We now provide
a detailed description of the random and systematic noise genera-
tion process we consider.

Random Noise: For a categorical or textual attribute, the value of
a corrupted cell is flipped to another value in the domain of that
attribute. For a numerical attribute, we add Gaussian noise to the
value of a corrupted cell, with zero mean and standard deviation
of o1, where o7 is a constant.

Systematic Noise: For categorical and textual data, we randomly
generate a predefined function ¢ which maps the value x} of the
cell to be corrupted to another value x; in the same domain. The
mapping function depends on both the original value in that at-
tribute and that in another pre-specified attribute, i.e., x; = ¢(x}, x}“)
where j # i. For a numerical attribute, we add a fixed amount of
noise oy to the value of a corrupted cell, where o is a constant.

We consider three settings with respect to the fraction of cor-
rupted cells in the noisy samples (and the magnitude of error in the
case of numerical values) for random and systematic noise, which
we refer to as High (f = 0.5, 01 = o2 = 5), Medium (f = 0.3,
01 =03 =3)and Low (f = 0.2, 01 = 02 = 1).

For adversarial attacks, we use methods that take into account
specific ML models. Specifically, we use data poisoning techniques
at training, and evasion attack methods at inference. For the part
of our evaluation that focuses on training time, we generate poi-
soned samples using the back-gradient method [35]. Since, this
type of poisoning is specific to different downstream models we
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consider different dataset-model combinations in our evaluation.
For the part of our evaluation that focuses on inference time, we
use the projected gradient descent (PGD) attack [31], a popular and
effective white-box evasion attack method, to generate adversarial
test samples. We use the implementation of PGD attack from [36].
The corruption injected by the PGD attack is bounded by an infin-
ity norm of 0.2. The step size is 0.1 and the number of iterations is
100.

For common errors in real-world datasets, we consider missing
values that cannot be detected during pre-processing (e.g. 99999
instead of NaN), multiplicative scaling of attributes (e.g. due to ac-
cidental changes of units), and typos in textual or categorical at-
tributes. We synthesize this kind of noise as follows:

(1) If the corrupted cell is numerical, with probability 1/3 it will
be 10 times larger, and with the same probability it will be
10 times smaller. Otherwise, the cell will contain a missing
value.

(2) If the corrupted cell is categorical or textual, with probabil-
ity 1/2 one of the character will be replaced by a random
character. Otherwise, the cell will contain a missing value.

For this kind of noise, we set the fraction of corrupted cells in the
noisy samples as = 0.3. We also include Food, a dataset that con-
tains real-world errors with manually labeled ground truth [20]. It
has 3 numerical, 6 categorical and 5 textual attributes. Out of its
3000 samples, 30.3% are corrupted.

As discussed in Section 5, we use artificially generated noise
to create the training data for learning the victim-sample detec-
tors. We now describe the type of noise we consider. Recall that
we consider access to the set of clean sample C and we augment
this set with artificially corrupted data. We emphasize that the
noise is always different than the noise considered in the train-
ing data. Since we assume that the type of noise in the test set is
unknown in advance, the artificial noise contains a mixture of dif-
ferent levels of random noise ((f = 0.4, 01 = 4), (f = 0.25,01 = 2),
(f = 0.15,01 = 1.5)). We additionally augment C with samples
corrupted by random noise (§ = 1, 01 = 0.25) and adversarial sam-
ples generated by Fast Gradient Sign Method (FGSM) [17](noise
bounded by an infinite norm of 0.1) to defend against adversar-
ial noise. This corruption is different from the PGD attack consid-
ered during inference to ensure that we evaluate against a different
noise distribution during online inference.

Downstream ML Models We consider the following downstream
models: 1) A Logistic regression (LR) model with regularization
parameter 1.0; 2) A Support Vector Machine (SVM) with a linear
kernel and regularization parameter 1.0; 3) A fully-connected neu-
ral network (NN) with 2 hidden layers of size 100. We use a small
model with 1 hidden layer of size 10 when we perform poisoning
attacks due to the runtime complexity of the attack algorithm. The
downstream models we choose cover different optimization objec-
tives (logistic/hinge loss and convex/non-convex optimization ob-
jectives) and exhibit different robustness. Numerical attributes are
encoded as their raw values for downstream models. Categorical
and textual attributes are encoded in the same way as in Picket.

Training-Time Baselines We compare against three unsuper-
vised outlier detection methods as follows: 1) Isolation Forest (IF) [29],
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an approach similar to Random Forests but targeting outlier de-
tection, 2) One-Class SVM (OCSVM) [8] with a radial basis func-
tion kernel, and 3) Robust Variational Autoencoders (RVAE) [14],
a state-of-the-art generative model used for outlier detection on
mixed-type tabular data. For IF, we use 100 base estimators in the
ensemble. For RVAE, we use the default hyperparameter recom-
mended by Eduardo et al. [14], which has 972,537 parameters. Note
that the capacity of the RVAE model used in our experiments is
larger than PicketNet, which has 382,722 parameters. The detailed
hyper-parameters we use for PicketNet is reported in Appendix A.1.

Inference-Time Baselines We compare against: 1) victim-sample
detectors based, 2) naive confidence-based, and 3) adversarial data
detection methods.

Methods based on per-class victim sample detectors follow the
same strategy as Picket but use different features. We consider: 1)
Raw Feature (RF), the binary classifiers only use the raw features of
the data; 2) RVAE, the binary classifiers use only the cell-level prob-
ability of being outliers provided by RVAE as features; 3) RVAE+,
the classifiers use a combination of the features from the two meth-
ods above.

We also consider the next naive methods: 1) Calibrated Confi-
dence Score (CCS), which assumes that the predictions of the down-
stream model have lower confidence for victim samples than clean
samples. We calibrate the confidence scores of the downstream
models using temperature scaling [19]. 2) k-Nearest Neighbors (KNN),
which assumes that a victim sample has a different prediction from
its neighbors. We use different distances for different types of at-
tributes. For numerical attributes, the distance is d/0.05 if d < 0.05,
where d is the difference between two normalized values; the dis-
tance is 1 if d > 0.05. For categorical attributes, we use the Ham-
ming distance and for text attributes the cosine distance. We set k
to 10.

We consider two methods of adversarial sample detection: The
Odds are Odd (TOAO) [40], which detects adversarial samples based
on the change in the distribution of the prediction logit values after
the injection of random noise. It adds Gaussian, Bernoulli, and Uni-
form noise of different magnitude and takes the majority vote of
all noise sources. 2) Model with Outlier Class (MWOC) [18], which
assumes that the feature distribution of adversarial samples is dif-
ferent from that of benign samples and adds a new outlier class to
the downstream model to characterize the distribution of adversar-
ial samples.

For a fair evaluation of baselines against Picket, we also reveal
the augmented version of C used to learn the victim-sample detec-
tors in Picket to competing methods so that they fine-tune their
models to noise (RF, RVAE, RVAE+, MWOC, Picket), or use it to
find a good threshold (CCS, KNN, TOAO).

Metrics For training-time outlier detection, we report the area
under the receiver operating characteristic curve (AUROC). We use
AUROC since it is an aggregate measure of performance across all
possible threshold settings. We also consider the test accuracy of
downstream models. For victim sample detection, we report the
F scores of the classification between correctly classified samples
and victim samples.
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Figure 5: AUROC of outlier detection for random noise. The
error bars represent the standard errors. Picket is signifi-
cantly better (with p value less than 0.05) than the others
on Wine, Adult, Marketing and Restaurant.
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Figure 6: AUROC of outlier detection for systematic noise.
The error bars represent the standard errors. Picket is signif-
icantly better (with p value less than 0.05) than the others on

Wine, Adult, Restaurant and Titanic.

Evaluation Protocol All experiments are repeated five times with
different random seeds that control train-test split and noise injec-
tion; the mean is reported. We also perform one-sided paired t-tests
when we compare the examined methods. A method is considered
significantly better than another one if the p value is less than 0.05.
In addition, we provide a cross-validation-based evaluation in Ap-
pendix A.3 that examine the performance of outlier detection on
unseen data.

6.2 Training-Time Evaluation

We evaluate the performance of different methods on detecting er-
roneous points in the training data. We then evaluate how these
methods affect the performance of downstream models. We also
provide a study on synthetic datasets in Appendix A.2 to see how
these outlier detection methods perform when certain aspects of
the data and noise vary.

Detecting Corrupted Training Examples Figures 5, 6, and 7
show the AUROC obtained by the methods for different types of
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Figure 7: AUROC of outlier detection for poisoned samples.
The error bars represent the standard errors. Picket is signif-
icantly better (with p value less than 0.05) than the others on
all the combinations except Wine-SVM.

noise, when 20% of the samples are corrupted. The results for ran-
dom and systematic noise correspond to Medium level noise. Re-
sults for Low and High levels are reported in Appendix A.5. For
Figure 7, note that the poisoned samples are model-specific and
hence we report the dataset model combination on the x-axis. Due
to data poisoning being limited to numerical data, we only eval-
uate on Wine and HTRU. As shown, Picket is the only approach
that consistently achieves an AUROC of close to or more than 0.8 for
all datasets and for all noise settings. Other methods achieve com-
parable performance in some settings but they are not consistent
across diverse settings. IF and OCSVM perform poorly on datasets
with textual attributes (Restaurant and Titanic) due to their lim-
ited capacity to handle text-based attributes. RVAE works quite
well under random noise, but its performance drops a lot when it
comes to systematic noise, which shows that it is not robust against
noise that introduces bias. In the presence of poisoned data, we find
that IF performs well on Wine but poorly on HTRUZ2, but OCSVM
shows the opposite. A possible reason is that the two datasets ex-
hibit different types of correlation between attributes, and the two
methods are good at capturing only one of them. RVAE shows poor
performance for both datasets.

For common errors in the real world, the results are shown in
Figure 8. We add synthetic errors of this type to Titanic and Restau-
rant, where 20% are corrupted. We choose these two because they
contain textual attributes for typos. We also report the results on
Food with real-world noise. We can see that on Restaurant and
Titanic, Picket outperforms the others by more than 6 points. On
Food, all the methods perform poorly. This is because the noise
level in Food is very low, and therefore hard to detect. In fact, the
real noise contained in Food does not have a significant effect on
the downstream models (as is shown in Table 22).

We also study how the fraction of corrupted samples affects the
performance of detection (see Appendix A.4). We find that Picket
keeps a relatively consistent performance when the fraction of cor-
rupted samples varies.

Effect on Downstream Models We also study the effect of differ-
ent filtering methods on the downstream models. For each method,
we filter 20% of the samples with highest outlier scores, and train
different downstream models on the resulting training set. For each
dataset, the test set is fixed and contains only clean data. As refer-
ence points, we also include the test accuracy when 1) the training

Zifan Liu, Zhechun Zhou, and Theodoros Rekatsinas

7
5

N\ £ OCSVME RVAE £ Picket

AUROC

oteteteteteteve%s

AAVRARRRARRRTA O

=

Restaurant Titanic Food

Figure 8: AUROC of outlier detection for common errors in
the real world. The error bars represent the standard errors.
Picket is significantly better (with p value less than 0.05)
than the others on all the datasets.

Table 2: Test accuracy of downstream models under adver-
sarial poisoning attacks and different filtering methods. The
numbers are made bold when the corresponding method is
significantly better (with p value less than 0.05) than all the
others.

Dataset CL NF

DM*‘ IF  OCSVM RVAE Picket

LR |0.7261 0.6976 0.7051 0.7312] 0.7349 0.6745
Wine |[SVM|0.7286 0.6933 0.7082 0.7310 [ 0.7386 0.6727
NN [0.7210 0.6894 0.7035 0.7320 | 0.7365 0.6722
LR |0.8884 0.9015 0.8811 0.9067 | 0.9396 0.8799
HTRU2 | SVM | 0.8884 0.8979 0.8887 0.92320.9424 0.8832
NN [0.8671 0.8707 0.8643 0.9000 | 0.9280 0.8646

*DM = Downstream Model.

data is clean without corruption (CL), and 2) the training data is
corrupted but no filtering (NF) is performed. Note that in the CL
and NF cases, the sample size is different from the rest since there
is no filtering in these two. As a side effect of filtering, the decrease
in sample size will also affect the performance of the downstream
model. We want to include such an effect in our comparison, so we
use CL and NF with no sample filtered out as baselines.

First, we consider the case of data poisoning since this type of
corruption has the most significant effect on the downstream mod-
els. We measure the test accuracy of the downstream models when
poisoned data are injected into the training stage. The results are
shown in Table 2. If we compare CL with NF we see an average
drop of six accuracy points if corruptions are ignored and no filter-
ing is applied. We find that all methods reduce the negative impact
of the poisoned data and bring up the test accuracy. Nevertheless
that Picket outperforms all competing baselines and yields test time
accuracy improvements of more than three points in some cases. We
see that Picket is able to recover most of the accuracy loss for all
models in the Wine dataset and comes very close to CL for HRTU?2.
All other methods exhibit smaller accuracy improvements and do
not exhibit consistent behavior across datasets.

We also consider the cases of random and systematic noise, as
well as common errors in the real world. These types of noise
do not directly attack the downstream model. Moreover, most ML
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models are somewhat robust to these types of noise. As a result,
we expect to see a small gap in the test accuracy between CL and
NF, and all methods to perform comparably. We report the results
in these setups in Appendix A.6 for completeness.

6.3 Inference-Time Evaluation

We evaluate the different methods on victim sample detection un-
der different types of noise. The F; scores under random (Medium
level), systematic (Medium level), adversarial noise and common
errors in the real world are reported in Table 3, 4, 5 and 6. Food
with real-world noise is not reported since we cannot find enough
victim samples from it. We report results for High and Low noise
in Appendix A.7.

From the tables, we can see that Picket has the best performance
in most cases. By comparing RF and our method, we show that the
reconstruction loss features provided by PicketNet are good signals to
help identify victim samples. Such signals are better than those pro-
vided by RVAE since our method outperforms RVAE+ most of the
time. TOAO performs consistently poorly since the assumption it
relies on does not hold for the downstream models and datasets we
consider. It works for image classification with complex convolu-
tional neural networks under adversarial settings since adding ran-
dom noise to images could eliminate the effect of adversarial noise.
However, for tabular datasets and models which are not that com-
plex, especially when the noise is not adversarial, adding random
noise does not make a big difference. Another method from the
adversarial learning literature (MWOC) works well in some cases
even if the noise is not adversarial.

6.4 Micro-Benchmarks

We perform a series of micro-benchmarks to evaluate different de-
sign decisions related to Picket.

Effectiveness of the Two-Stream Self-Attention

We perform an ablation study to validate the effectiveness of the
two-stream self-attention. We evaluate the performance of outlier
detection with only one stream and with both. The results are de-
picted in Figure 9. In the case of one stream, we simply let the

output of self-attention layer [ be either Hl.(l) for the value stream,

or Gl.(l) for the schema stream instead of Hl.(l) + Gl.(l), where i is the
index of the attribute. For fair comparison, we expand the dimen-
sion of all the vectors involved in the computation of multi-head
self-attention functions and feed-forward networks by a factor of
V2 in the one-stream cases, so that the network capacity (number
of parameters) remains the same after the pruning of one stream.
We use three setups: Wine with poisoning attack on NN, Adult
with systematic noise (Medium level), and Marketing with random
noise (Medium level).

From Figure 9, we see that for Adult and Marketing, PicketNet
with two streams outperforms both one-stream options. For Wine,
the value stream itself works fine, but a combination of the two
streams does not impair the performance of the model. Neither
of the two one-stream options demonstrates obvious superiority
over the other one, since there are cases that the value stream per-
forms better than the schema stream, and cases that the opposite
happens.
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Figure 9: Outlier detection under different stream settings.
The error bars represent the standard errors.
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Figure 10: Early vs. after-convergence filtering. The error
bars represent the standard errors.

Effectiveness of the Early Filtering Mechanism
We validate the effectiveness of early filtering by comparing the
performance of outlier detection at the early stage of PicketNet’s
training to that after convergence. The results are shown in Fig-
ure 10. We use the setup from the previous micro-benchmark.
Figure 10 shows that filtering at early stages consistently out-
performs filtering after convergence. The reason is that in the early
stage of training, the model is less likely to overfit to the input, and
therefore the reconstruction loss of the outliers differs from that of
the clean samples more.

Histogram-Based Threshold Selection We validate the effec-
tiveness of the histogram-based threshold selection strategy men-
tioned in Section 4.2. To better illustrate how it affects the down-
stream accuracy, we use Wine and HTRU2 with poisoning attacks
(20% of the samples are poisoned) where corruption has a signifi-
cant effect on the downstream models. For each dataset and down-
stream model combination, we plot the histogram of the Picket
reconstruction loss in Figure 11, and select the thresholds d}oy, and
Shigh accordingly so that the abnormal peaks and low-density tails
are filtered out. We report the downstream accuracy after filtering
with this strategy (Picket-Hist) in Table 7. Same as Section 6.2, we
also report the downstream accuracy under CL and NF as refer-
ence points. The results show that Picket-Hist gets very close to
CL where the data is clean, and much better than NF where no fil-
tering is applied, which verifies the effectiveness of this threshold-
selection strategy.
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Table 3: F; scores of victim sample detection at inference time under random noise (Medium level). The numbers are made
bold when the corresponding method is significantly better (with p value less than 0.05) than all the others.

Dataset |DM* RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

LR [0.7690 0.7786 0.8172 0.6667 0.6686 0.6813 0.7150 0.8094

Wine |SVM|0.7812 0.7859 0.8254 0.6667 0.6750 0.6858 0.7622 0.8223

NN |0.7125 0.7470 0.7833 0.5896 0.6669 0.5107 0.6988 0.7631

LR [0.8352 0.7403 0.8489 0.6692 0.7866 0.2224 0.6725 0.8602

Adult  [SVM|0.8434 0.7416 0.8553 0.6688 0.8060 0.4696 0.6215 0.8658

NN |0.8131 0.7127 0.8315 0.5117 0.6891 0.3216 0.7132 0.8411
#

LR [0.7726 - - 0.7403 0.6456 0.6457 0.7459 0.8266
Restaurant [SVM|0.6854 - - 0.6796 0.6628 0.6596 0.5580 0.7618
NN |0.7605 - 0.6994 0.6609 0.6110 0.7025 0.8203

LR [0.8366 0.6623 0.8403 0.7567 0.7815 0.6666 0.7996 0.8549
Marketing |SVM|0.8461 0.6689 0.8501 0.7527 0.7886 0.5133 0.8109 0.8607
NN [0.7931 0.6650 0.8029 0.6588 0.7050 0.6648 0.7265 0.8162

LR [0.8257 - - 0.6990 0.6562 0.1409 0.7736 0.8424
Titanic [SVM[0.8482 - - 0.6658 0.6436 0.4652 0.7932 0.8528
NN |0.8393 - - 0.6631 0.6387 0.2575 0.7566 0.8483

*DM = Downstream Model. *RVAE is not applicable to text attributes.

Table 4: F; scores of victim sample detection at inference time under systematic noise (Medium level). The numbers are made
bold when the corresponding method is significantly better (with p value less than 0.05) than all the others.

Dataset ‘DM* RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

LR [0.6883 0.4987 0.6619 0.6667 0.6499 0.3152 0.7937 0.7046
Wine SVM|0.6785 0.5056 0.6630 0.6667 0.6325 0.3399 0.7957 0.6973
NN [0.6760 0.6134 0.5689 0.6865 0.6659 0.3765 0.7190 0.6034
LR [0.8281 0.6960 0.8342 0.6695 0.7488 0.1864 0.7430 0.8501
Adult  [SVM[0.8414 0.6729 0.8428 0.6694 0.7900 0.3617 0.6646 0.8643
NN |0.8108 0.6534 0.8245 0.5439 0.6808 0.2195 0.7850 0.8336
IR [0.7773 - - 0.7419 0.6524 0.6496 0.7487 0.8255
Restaurant [SVM [0.7275 - - 0.7093 0.6475 0.6356 0.6125 0.7845
NN |0.7628 - - 0.7010 0.6579 0.6051 0.7003 0.8126
LR [0.8358 0.6504 0.8403 0.7623 0.7770 0.6090 0.8068 0.8514
Marketing [SVM [ 0.8501 0.6575 0.8552 0.7716 0.7817 0.6185 0.8208 0.8638
NN |0.8036 0.6355 0.8098 0.6649 0.7074 0.6635 0.7035 0.8118

LR [0.8376 0.7349 0.6493 0.4076 0.7901 0.8438
Titanic |SVM|[0.8224 - - 0.6674 0.6387 0.5592 0.7593 0.8412
NN |0.8112 - - 0.6660 0.6333 0.3139 0.7462 0.8159

*DM = Downstream Model. *RVAE is not applicable to text attributes.

Table 5: F; scores of victim sample detection at inference time under adversarial noise. The numbers are made bold when the
corresponding method is significantly better (with p value less than 0.05) than all the others.

Dataset| DM*| RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

LR 0.7899 0.6758 0.7905 0.8233 0.6660 0.5030 0.8287 0.8197
Wine [SVM]0.7951 0.6791 0.8004 0.8119 0.6660 0.5743 0.8324 0.8291
NN |0.7400 0.6922 0.7347 0.6815 0.6663 0.6620 0.3980 0.7442
LR |0.8727 0.0160 0.8699 0.6667 0.6654 0.5123 0.8389 0.8757
HTRU2|SVM |0.9409 0.3436 0.9399 0.6667 0.6623 0.6456 0.2211 0.9438
NN |0.9103 0.3007 0.9164 0.7258 0.6656 0.2873 0.7726 0.9201

*DM = Downstream Model.

Table 6: F; scores of victim sample detection at inference time under common errors in the real world. The numbers are made
bold when the corresponding method is significantly better (with p value less than 0.05) than all the others.

Dataset ‘ DM*

RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

7

LR [0.7335 - - 0.7420 0.6527 0.5003 0.7330 0.7445

Restaurant [SVM [ 0.6948 - - 0.7168 0.6415 0.6104 0.6189 0.6928
NN |0.7716 - - 0.6818 0.6633 0.5470 0.6762 0.7713

LR [0.5633 - - 0.3350 0.6792 0.5934 0.4740 0.8905

Titanic |SVM|0.6304 - - 0.4412 0.6798 0.4374 0.5706 0.8651
NN |0.6100 - - 0.4140 0.6816 0.6855 0.8093 0.8205

*DM = Downstream Model. *RVAE is not applicable to text attributes.
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Figure 11: Histograms of the reconstruction loss under different dataset-model combinations and the thresholds 5}y, Shigh-

Table 7: Test accuracy of downstream models after filtering
based on the histogram of reconstruction loss (Picket-Hist).

Dataset | Downstream Model | Picket-Hist ~ CL NF
LR 0.7500 0.7551 0.6846
Wine SVM 0.7459 0.7530 0.6836
NN 0.7133 0.7204 0.6561
LR 0.9344 0.9435 0.8810
HTRU2 SVM 0.9375 0.9435 0.8856
NN 0.9207 0.9207 0.8720

Effectiveness of Per-Class Victim Sample Detectors We com-
pare the performance of our per-class detectors against a unified
detector and a score-based detector. The unified detector uses one
single logistic regression model over the same features to distin-
guish between good and victim samples regardless of the down-
stream predictions. The score-based detector follows the logic of
the training time outlier detector, i.e., it aggregates the reconstruc-
tion losses attribute-wise, and considers samples with high loss as
victims. We perform the comparison on three datasets with all of
the three downstream models: Wine with adversarial noise, Adult
with systematic noise (Medium level) and Marketing with random
noise (Medium level).

The result is shown in Table 8. Per-Class Detectors outperform
the other two, which validates the effectiveness of having one de-
tector per-class. The unified detector performs poorly because the
victim samples in one class differ from those in the other statis-
tically, in which case one class may suffer from corruption in one
group of attributes, while the other class may suffer from that in an-
other group of attributes. The score-based detector does not work
well since it only has access to the noise level of the samples but

Table 8: A comparison between the per-class detectors, the
unified detector, and the score-based detector on inference
time victim sample detection.

Downstream | Per-Class Unified Score-based
Dataset Model Detectors Detector  Detector

LR 0.8188 0.7023 0.6885

Wine SVM 0.8287 0.7152 0.7261
NN 0.7444 0.4027 0.6594

LR 0.8489 0.6710 0.7197

Adult SVM 0.8634 0.6983 0.7297
NN 0.8336 0.6785 0.7225

LR 0.8553 0.7740 0.7343

Marketing SVM 0.8618 0.7774 0.7361
NN 0.8152 0.7370 0.7174

does not consider the connection between corruptions and the down-
stream prediction.

Effectiveness of Mixed Artificial Noise We validate the effec-
tiveness of our artificial noise setting (Mixed) by comparing it to
the setting where the artificial noise is generated in the same way
as the test time noise (Exact). The results are shown in Table 9. We
use the same datasets and test time noise as the previous micro-
benchmark. We find that with mixed artificial noise, the perfor-
mance of Picket is comparable to the setting where the exact noise
distribution is known under random (see Marketing) and system-
atic noise (see Adult). Under adversarial noise (see Wine), Exact is
better than Mixed but the gap is not excessively large.

6.5 Fairness of Outlier Detection

We compute the equality of opportunity between majority and mi-
nority groups to check the fairness of outlier detection. Specifically,
the opportunity yg for each group G is defined as the fraction of



Table 9: F1 scores of Picket on victim sample detection under
different artificial noise settings.

Downstream .
Dataset Model Mixed Exact
LR 0.8197 0.8646
Wine SVM 0.8291 0.8812
NN 0.7442 0.7790
LR 0.8501 0.8372
Adult SVM 0.8643 0.8562
NN 0.8336 0.8157
LR 0.8549 0.8544
Marketing SVM 0.8607 0.8592
NN 0.8162 0.8120

clean examples in that group that are kept after filtering:

kept clean
Where

N;ePt is the number of clean examples in G that are not filtered

Ngea“ is the number of clean examples in group G, and

out. We report the difference of opportunity Ay = yg. — vg:
where Gy is the majority group and Gy, is the minority. Ay closer
to 0 indicates better fairness.

We choose two demographic datasets, Adult and Marketing, to
verify the fairness of the outlier detection methods. For each dataset,
we pick one sensitive attribute at a time, and divide its value do-
main into majority and minority groups as follows:

(1) Sort the values by their frequency in descending order.

(2) Add values in order to the majority group until it covers
more than 80% of the examples.

(3) Add the rest of the values into the minority group.

We inject random and systematic noise of medium magnitude to
20% of the examples, filter out 20%, and report the difference of op-
portunity for each dataset-attribute combination in Table 10. We
can see that for most of the sensitive attributes, the difference of
opportunity is less than 0.05 if the data are filtered by Picket. How-
ever, for certain attributes (e.g. Marketing-Marital and Marketing-
Language), the difference is quite large, which shows potential risk
of unfairness. The other models also show bias towards the ma-
jority group for certain attributes. We defer the improvement of
fairness as a future direction to explore.

6.6 Runtime and Scalability

We report the training time of PicketNet for each dataset in Ta-
ble 12. The device we use is a single NVIDIA Tesla V100-PCIE GPU
with 32GB memory. Note that the current runtime has not been
fully optimized.

We also study the attribute-wise scalibilty of PicketNet using
synthetic datasets. The datasets have a different number of attributes
ranging from 2 to 20 with a increase step of one, while the other set-
tings are the same (the dimension of Il.(l) and Pl.(l) is fixed to 8). We
report the training time of 100 epochs in Figure 12. The growth
of the runtime is roughly quadratic as the number of attributes
increases. This is expected since the dependencies between one
attribute and all the others yield quadratic complexity. When the
number of attributes is excessively large, we can apply simple meth-
ods like computing the correlations between attributes to split the
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Figure 12: Attribute-wise scalibility of PicketNet

attributes into groups, where only the attributes within the same
group exhibit correlations. Then, we can apply PicketNet to learn
the structure for each of the groups. We evaluate the effectiveness
of this strategy on the Alarm dataset [21] which contains 36 at-
tributes and 1000 records. The functional dependencies in Alarm
is known. We split the attributes into three groups based on the
functional dependencies. Each group contains 12 of them. We run
Picket outlier detection on the three groups independently, and
then aggregate the reconstruction loss across groups. We inject
random and systematic noise of medium magnitude to 20% of the
records, and report the AUROC of outlier detection in Table 11.
The results show that Picket provides high-quality outlier detec-
tion under the aforementioned strategy.

We report the inference time overhead (runtime of PicketNet
loss computing and victim sample detectors) as long as the run-
time of downstream prediction of each dataset in Table 13, when
the data come in batches of 100. We can see that the overhead of
PicketNet loss computing dominates the runtime, but it is still no
more than a few seconds. As the downstream model becomes more
complex, the relative overhead introduced by Picket would be re-
duced.

7 RELATED WORK

Data Validation Systems for ML TFX [3, 6] and Deequ [42] pro-
pose data validation modules that rely on user-defined constraints
and simple anomaly detection. CleanML [28] studies how the qual-
ity of training data affects the performance of downstream models.
These works focus on simple constraints such as data types, value
ranges, and one-column statistics and ignore the structure of the
data. NaCL [25] and CPClean [24] propose algorithms to deal with
missing entries, and the effect of missing entries are analyzed the-
oretically in [30]. These works are orthogonal to ours since they
only consider missing entries.

Learning Dependencies with Attention Mechanisms Atten-
tion mechanisms have been widely used in the field of natural lan-
guage processing to learn the dependencies between tokens [46,

50]. Recently, AimNet [47] demonstrates that attention mechanisms
are also effective in learning the dependencies between attributes

in structured tabular data. AimNet employs the attention techniques
to impute the missing values in tabular data and achieve state-of-
the-art performance. AimNet is rather simplistic and it only cap-
tures schema-level dependencies. Furthermore, AimNet requires

clean training data and does not employ any robust-training mech-
anism to tolerate noise.
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Table 10: Difference of opportunity when 20% of the examples are filtered out.

Noise

Dataset-Attribute
Type

IF

OCSVM

RVAE

Picket

Marketing-Marital
Marketing-Age
Marketing-Education
Marketing-Live
Marketing-Dual
Marketing-Hometype
Marketing-Ethnic
Marketing-Language
Adult-Workclass
Adult-Marital-status
Adult-Relationship
Adult-Race

Random

-0.0469
0.0720
-0.0436
-0.1131
-0.0226
-0.0865
-0.1762
-0.5625
-0.1290
-0.3111
-0.2545
-0.4452

-0.0821
-0.0071
-0.0521
-0.1242
-0.0737
-0.1581
-0.2258
-0.4739
-0.0259
-0.0676
0.0027
-0.0326

-0.0196
0.0019
-0.0192
-0.0488
-0.0357
-0.0634
-0.0760
-0.0753
-0.0277
-0.0013
0.0081
-0.0259

-0.1400
0.0216
0.0174
-0.0242
-0.0089
-0.0458
-0.0610
-0.3739
-0.0042
-0.0706
-0.0188
-0.0515

Marketing-Marital
Marketing-Age
Marketing-Education
Marketing-Live
Marketing-Dual
Marketing-Hometype
Marketing-Ethnic
Marketing-Language
Adult-Workclass
Adult-Marital-status
Adult-Relationship
Adult-Race

Systematic

-0.0541
0.0902
-0.0366
-0.0781
-0.0275
-0.0995
-0.1919
-0.5981
-0.1819
-0.3158
-0.2444
-0.4124

-0.1178
-0.0051
-0.0509
-0.1333
-0.0757
-0.1892
-0.2465
-0.5397
-0.0079
-0.0690
-0.0148
-0.0560

-0.0418
0.0097
-0.0164
-0.0640
-0.0224
-0.1182
-0.1388
-0.1555
-0.0287
0.0026
0.0067
-0.0088

-0.2031
0.0270
0.0142
-0.0090
-0.0244
-0.0528
-0.0777
-0.4791
-0.0012
-0.2519
-0.0635
-0.0719

Table 11: AUROC scores of outlier detection on the Alarm
dataset. The attributes are split into three groups for Picket.

NoiseType| IF  OCSVM RVAE Picket

0.8848 0.8835 0.9357 0.9579
0.7410  0.7283  0.7957 0.7967

Random
Systematic

Table 12: Training time of PicketNet for each dataset.

Dataset Wine Adult Restaurant Marketing Titanic HTRU2
Training

. 1953 8256 3794 4581 1693 189
Time (sec)

Outlier Detection Methods Outlier detection for tabular data
has been studied for years, and many rule-based methods have
been proposed [15, 23, 39]. Learning-based outlier detection has
become popular recently and focuses on semi-supervised or unsu-
pervised approaches. Semi-supervised methods such as the ones
proposed in [20, 33, 49] still need human in the loop to explicitly
label some data. Isolation Forest [29] and One-Class SVM [8] are
simple unsupervised methods that are widely used. Autoencoder-
based outlier detection methods [1, 14, 41] are most relevant to our
work since they also rely on the reconstruction of the input, and
among them RVAE [14] works best for mixed-type tabular data.

Adversarial Attacks and Defenses Training time attacks [4, 27,
35] add poisoned samples to corrupt the target model. Filtering-
based defenses [11, 44] remove suspicious samples during train-
ing based on training statistics. Inference time attacks [7, 31, 34]
add small perturbation to test samples to fool the classifier. Ef-
forts have been made to improve the robustness of the model by
training data augmentation [16, 32] or making modifications to
the model [37, 38, 48]. Those works focus on robustness from the
model perspective without assessment of data quality. Hence, they
are orthogonal to ours. Another group of defenses trying to detect

adversarial samples at inference time are more directly related to
our work. Roth et al. [40] and Hu et al. [22] add random noise to
input samples and detect suspicious ones based on the changes in
the logit values. Grosse et al. [18] assume that adversarial samples
have different distributions from benign samples and add another
class to the classifier to detect them.

8 CONCLUSION

We introduced Picket, a first-of-its-kind system that safeguards
against data corruptions for machine learning pipelines over tabu-
lar data either during training or deployment. To design Picket, we
introduced PicketNet, a novel self-supervised deep learning model
that corresponds to a Transformer network for tabular data. Picket
is designed as a plugin that can increase the robustness of any ma-
chine learning pipeline.
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A APPENDIX
A.1 Hyper-parameters of PicketNet

PicketNet is not sensitive to hyper-parameters in most cases. The
default hyper-parameters we use in the experiments is shown in
Table 14. For purely numerical datasets, we reduce the dimension
of Ii(l) and Pi(l) to 8, and for HTRU2, we reduce the number of
self-attention layers to 1. In the other datasets, we always use the
default hyper-parameters. We use the Adam optimizer [26] with
B1 =09, fo = 0.98 and € = 10~? for training. The learning rate
Ir = 0.5d7%> min(s7%3,30071s), where d is the dimension ofIl.U)

and Pi(l), s is the index of the training step. Ir increases in the first
few steps and then decreases. Typically, PicketNet takes 100 to 500
epochs to converge, depending on the datasets.

A.2 Outlier Detection on Synthetic Data

We evaluate the performance of outlier detection on synthetic datasets

to understand the effects of several aspects about the data and
noise, including the strength of structure, data dimension, noise
level and magnitude of extreme outliers. Here the term structure
means dependencies or correlations between attributes.

We generate synthetic datasets as follows. Each synthetic data
point x = [x1,x2,. ..,xT]T is generated by x = Az, where z €
RR and A € RT*R_ Each entry of z is sampled from the standard
Gaussian distribution, and each entry of A is sampled uniformly
from —1 to 1. Unless otherwise specified, we inject random noise
with f = 0.2 and o1 = 1 to 20% of the samples by default.

Effect of Structure By performing outlier detection over syn-
thetic datasets that exhibit different strength of structure, we show
that the advantage of Picket over the other outlier detection meth-
ods is its ability to capture the structure of the data. We fix T = 10
and vary R to change the strength of structure. Smaller R indicates
stronger structure and more redundancy across attributes. The re-
sults are shown in Figure 13. Picket performs better when the struc-
ture is strong, while the performance of the other methods is not
affected by the strength of structure, which indicates that Picket is
able to capture the structure of the data and benefit from it.

Effect of Data Dimension We vary the the data dimension T
to study how it affects the performance. The hidden dimension
R is set to T so that the attributes are independent. The results
are shown in Figure 14. The performance of all methods increases
as the data dimension gets larger. The reason is that there are
more corrupted cells in corrupted samples when the dimension
increases, making them easier to be detected. Note that RVAE per-
forms quite well in this setting, which is not surprising since it is
built exactly on the assumption that the data come from Gaussian
distributions.

Effect of Noise Level We study the effect of noise level, including
the fraction of corrupted samples, the fraction of corrupted cells
in corrupted samples (f) and the magnitude of the random noise
(01). Each time we vary one of the factors and fix the others. The
data dimension T is fixed to 10, and R is fixed to 5. As is shown
in Figure 15, when we vary the fraction of corrupted samples, the
performance of all methods keeps stable. Figure 16 and 17 show
that the performance of all methods increases as we increase the

Zifan Liu, Zhechun Zhou, and Theodoros Rekatsinas

fraction of corrupted cells in corrupted samples or the magnitude
of the random noise. These results show that the corruption level of
the corrupted samples have a more significant effect on the outlier
detection performance than the fraction of corrupted samples.
Effect of Extreme Outliers We study how the models behave
under extreme outliers with different magnitude. We corrupt 20%
of the samples, and among those samples 20% of the cells are mul-
tiplied by a scaling factor. We vary the value of the scaling factor
and report the detection performance in Figure 18. As the scaling
factor gets larger, the performance of all methods increases. This is
expected since more extreme values deviate more from the normal
distribution.
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Figure 13: Training time outlier detection over synthetic
datasets that exhibit different strength of structure.
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Figure 14: Training time outlier detection over synthetic
datasets that have different dimensions.

A.3 Outlier Detection with Cross-Validation

We evaluate the ability to detect outliers for unseen data during
training using cross-validation. We use 5 iterations of 2-fold cross-
validation with a modified t-test recommended by Dietterich and
Thomas [12]. Specifically, in each iteration, we randomly split the
dataset into two folds. Then we use one fold to train the outlier de-
tection models, and the other to validate their performance. The re-
sults are reported in Table 15. The results shows that Picket achieves
the best performance among the examined methods on all dataset-
noise combinations for unseen data at training time. In some cases,
Picket is significantly better than all competing methods.



Picket: Guarding Against Corrupted Data in Tabular Data during Learning and Inference

Table 14: Default hyper-parameters for PicketNet.

Hyper-Parameter

Value

Number of Self-Attention Layers

Number of Attention Heads
Dimension of I l( D and Pi( b

64

Number of Hidden Layers in Each Feedforward Network 1
Dimension of the Hidden Layers in Feedforward Networks 64

Dropout 0.1
Size of the Negative Sample Set Z; 4
Warm-up Epochs E; for Loss-Based Filtering 50
Loss Recording Epochs E; 20
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Figure 15: Training time outlier detection over synthetic
datasets under different fractions of corrupted samples.
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Figure 16: Training time outlier detection over synthetic
datasets under different fractions of corrupted cells in cor-
rupted samples.

A.4 Performance of Training Time Outlier
Detection under Different Fraction of
Corrupted Samples

We vary the fraction of corrupted samples, and report the corre-
sponding AUROC of training time outlier detection in Figure 19.
The datasets we use are Wine with poisoning attack on NN, Adult
with systematic noise, and Marketing with random noise. The ran-
dom and systematic noise is in the Medium level.

From the results we can see that the detection performance could
either increase or decrease as the fraction of corrupted samples
grows, depending on the type of noise and detection method. One
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Figure 17: Training time outlier detection over synthetic
datasets under different noise magnitudes.

1.0
0.9+
g i
& 0.8+
2
< 4
0.7
—%— IF —*— OCSVM 4 RVAE Picket
6t+——r-—TF"7—T7T"
2 3 4 5 6 7 8 9 10 11

Scaling Factor

Figure 18: Training time outlier detection over synthetic
datasets under different levels of extreme values.

one hand, the outliers are easier to detect when they form a larger
cluster; one the other hand, more corrupted samples may mislead
the learning of the clean distribution. Nevertheless, Picket keeps
a relatively consistent performance with either large or small frac-
tion of corrupted samples, while other methods may have a large
gap when the fraction varies.

A.5 Performance of Training Time Outlier
Detection under Low/High Level
Random/Systematic Noise

We depict the AUROC of training time outlier detection under
low/high level random/systematic noise in Figure 20, 21, 22, 23,
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Figure 19: AUROC of outlier detection under different fractions of corrupted samples.

Table 15: AUROC of outlier detection from cross-validation.
The numbers are made bold when the corresponding
method is significantly better (p value less than 0.05) than
all the others.

Dataset Noise Type ‘ IF  OCSVM RVAE Picket
Random-Medium | 0.8876 0.8886 0.9170 0.9252
Systematic-Medium | 0.9537  0.8971  0.9123 0.9669

Wine Poison-LR 0.9756  0.9054 0.9061 0.9781
Poison-SVM 0.9761  0.9047  0.9025 0.9787

Poison-NN 0.9877  0.8696  0.9356 0.9921

Adult Random-Medium | 0.7800 0.8260 0.9019 0.9240
Systematic-Medium | 0.8048  0.8217  0.8530 0.9180
Random-Medium | 0.4814 0.4431 0.6985 0.9281

Restaurant | Systematic-Medium [ 0.4805 0.4449 0.6596 0.8778
Real” 0.5514 0.5116 0.4558 0.8978

Marketing Random-Medium | 0.7539  0.7804 0.8688 0.8646
Systematic-Medium | 0.6746  0.6632  0.7787 0.7810
Random-Medium | 0.6014 0.6933  0.5819 0.7709

Titanic | Systematic-Medium | 0.5811  0.7037  0.5557 0.7691
Real 0.5851  0.6472  0.5000 0.7314

Food Real 0.5094  0.5210 0.5180 0.5506

*Real is short for common errors in the real world.

when 20% of the samples are corrupted. The observation is quite
similar to the case of medium level noise. The performance of Picket
is quite good and consistent across different datasets and noise set-
tings. RF and OCSVM perform poorly on the datasets that contain
textual attributes. RVAE is competitive in some cases but fails in
the others. Note that low level noise is much harder to detect than
high level noise. The reason is that samples with high level noise
tend to deviate a lot from the clean distribution, while samples with
low level noise look quite similar to the clean ones and may not be
detectable in some cases. However, low level noise will not affect

the downstream model as much as high level noise, unless it is
adversarially crafted.
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Figure 20: AUROC of outlier detection for random noise
(Low level). The error bars represent the standard errors.

A.6 Accuracy of Downstream Models under
Random/Systematic Noise with Different
Filtering Methods

We also study how the accuracy of the downstream models changes

when we apply different filtering methods under random and sys-

tematic noise. We first focus on random noise. The results are shown
in Tables 16, 17, 18. As expected, in the presence of random noise,

the performance of the downstream models drops in some cases

and remains roughly the same in the other cases if we look at CL

and NF. In the cases when the downstream accuracy drops, we can

see that filtering helps most of the time.
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Figure 21: AUROC of outlier detection for random noise
(High level). The error bars represent the standard errors.
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Figure 22: AUROC of outlier detection for systematic noise
(Low level). The error bars represent the standard errors.
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Figure 23: AUROC of outlier detection for systematic noise
(High level). The error bars represent the standard errors.

If we compare the performance of Picket and NF in Table 17 for
Neural Networks, we see that for Adult, Titanic, and Restaurant
Picket exhibits slightly worse test accuracy. These results are attrib-
uted to the selected thresholds for filtering in Picket (see Section 5).
In Figure 24, we show the test accuracy of the downstream neural
network for different levels of the Picket threshold. We can see that
for some datasets, random noise serves as regularization and im-
proves the performance of the downstream model. Therefore, we
need to tune the threshold to achieve the best performance.

We then turn our attention to systematic noise. The results are
shown in Table 19, 20, 21. Picket performs the best in most cases,
but still the numbers are quite close. Under common errors in the
real world, CL and NF are also quite close, and filtering does not
help.

Table 16: Test accuracy of downstream models under ran-
dom noise (Low level) and different filtering methods.

Dataset |DM*| IF  OCSVM RVAE Picket | CL NF

LR | 0.7429 0.7435 0.7427 0.7429 [ 0.7457 0.7443
Wine SVM | 0.7447  0.7437 0.7486 0.7465 | 0.7465 0.7453
NN [ 0.7857 0.7800 0.7849 0.7941( 0.8051 0.7922
LR | 0.8207 0.8211 0.8127 0.8233(0.8240 0.8190
Adult SVM [ 0.8181 0.8196 0.8075 0.8212 | 0.8238 0.8187
NN [0.7818 0.7800 0.7803 0.7816 [ 0.7909 0.7836
LR | 07318 0.7347 0.7361 0.7352 | 0.7375 0.7378
Restaurant | SVM | 0.6922  0.7078 0.7123 0.6972 [ 0.7116 0.7060
NN [ 0.7128 0.6982 0.7099 0.7135 [ 0.7306 0.7182
LR | 07622 0.7661 0.7642 0.7663 | 0.7672 0.7691
Marketing | SVM | 0.7649  0.7668  0.7655 0.7678 | 0.7681 0.7708
NN [0.7362 0.7282 0.7302 0.7265 | 0.7261 0.7300
LR | 07810 0.7777 0.7832 0.78440.7877 0.7821
Titanic | SVM | 0.7799 0.7866 0.7783 0.7877 | 0.7888 0.7888
NN [0.7654 0.7542 0.7531 0.7654 | 0.7743 0.7709

*DM = Downstream Model.

Table 17: Test accuracy of downstream models under ran-
dom noise (Medium level) and different filtering methods.

Dataset ‘ DM*

IF  OCSVM RVAE Picket | CL NF

LR |0.7410 0.7396 0.7410 0.7398 [ 0.7457 0.7280
Wine SVM | 0.7441 0.7457 0.7443 0.7431 | 0.7467 0.7259
NN [ 0.7743 0.7776  0.7816 0.7776 | 0.7973 0.7761
LR | 0.8140 0.8220 0.8233 0.8224 [ 0.8240 0.8111
Adult SVM [ 0.8109  0.8200 0.8219 0.8207 | 0.8238 0.8082
NN [0.7856 0.7795 0.7830 0.7850 [ 0.7934 0.7883
LR | 07342 0.7321 0.7313 0.7366 [ 0.7375 0.7349
Restaurant | SVM | 0.7111  0.7083  0.6898 0.6858 [ 0.7185 0.6872
NN [ 0.7059 0.7064 0.7062 0.7157 | 0.7298 0.7210
LR | 0.7645 0.7624 0.7642 0.7656 | 0.7672 0.7665
Marketing | SVM | 0.7654  0.7639  0.7654 0.7665 | 0.7681 0.7669
NN [ 0.7267 0.7360 0.7301 0.7344 [ 0.7311 0.7310
LR | 07799 0.7821 0.7777 0.7877 | 0.7877 0.7754
Titanic | SVM | 0.7810 0.7765 0.7788 0.7933 | 0.7888 0.7821
NN [ 0.7575 0.7665 0.7408 0.7765 | 0.7944 0.7844

*DM = Downstream Model.

Table 18: Test accuracy of downstream models under ran-
dom noise (High level) and different filtering methods.

Dataset ‘DM* IF  OCSVM RVAE Picket | CL NF

LR | 0.7410 0.7406 0.7398 0.7418 ] 0.7457 0.6861
Wine SVM | 0.7441 0.7414 0.7427 0.7453 | 0.7469 0.6806
NN [ 0.7865 0.7839 0.7896 0.7806 | 0.7941 0.7780
LR | 0.8047 0.8196 0.8218 0.8224(0.8240 0.8002
Adult SVM | 0.8024 0.8196 0.8207 0.8205 | 0.8238 0.7971
NN | 0.7853 0.7763 0.7867 0.7861 [ 0.7982 0.7863
LR |0.7380 0.7369 0.7335 0.7327 [ 0.7375 0.7416
Restaurant | SVM | 0.7161  0.7060  0.7154 0.7126 | 0.7053 0.6872
NN | 0.7147 0.7172  0.7155 0.7206 [ 0.7251 0.7247
LR | 07653 0.7649 0.7641 0.7668 | 0.7672 0.7671
Marketing [ SVM | 0.7660  0.7660  0.7659 0.7699 | 0.7681 0.7686
NN [ 0.7255 0.7265 0.7284 0.7271 [ 0.7245 0.7295
LR |0.7877 0.7777 0.7799 0.7799 | 0.7877 0.7877
Titanic | SVM | 0.7922 0.7810  0.7855 0.7799 | 0.7888 0.7844
NN [ 0.7609 0.7687 0.7709 0.7765 | 0.7866 0.7832

*DM = Downstream Model.

A.7 Test Time Victim Sample Detection under
Low/High Level Random/Systematic Noise

In Table 23, 24, 25, 26, we show the F1 scores of victim sample
detection under low/high level random/systematic noise. The arti-
ficial noise setting is the same as described in Section 6.3. We can
see that Picket outperforms all the other methods in most cases.
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0.82 . Wino o Markeling < Titanio Table 21: Test accuracy of downstream models under system-
0.804 X Adut Restaurant atic noise (High level) and different filtering methods.
0.78]
| Dataset |DM*| IF OCSVM RVAE Picket | CL  NF
>
g 076+ IR [ 07437 07350 07443 0.7447]0.7457 0.7100
3 ] Wine | SVM | 07457 07365 0.7476 0.7455 | 0.7467 0.7041
< 0744 NN | 07961 07961 07990 0.8008 | 0.7992 0.8031
] e IR | 08071 08055 0.8193 0.8079 | 0.8240 0.8011
P I e S S Adult  [SVM| 08039 0.8038 0.8175 0.8060 | 0.8238 0.8002
: NN |0.7843 07800 07834 0.7822 | 0.7961 0.7885
1 LR [ 07329 0.7332 0.7346 0.7371| 0.7375 0.7361
0.70+ Restaurant [ SVM | 0.7155 0.7051  0.7041 0.7187 | 0.6726 0.6925
—— NN | 07100 07032 07132 0.7111 | 0.7232 07124
0 0.05 0.10 0.15 0.20 LR [ 0.7653 0.7655 0.7638 0.7636 | 0.7672 0.7656
Removed Fraction Marketing | SVM | 0.7656  0.7661 0.7646 0.7640 | 0.7681 0.7678
NN | 0.7292 0.7304 0.7256 0.7258 | 0.7303 0.7294
LR [ 07777 0.7788 0.7821 0.7799 | 0.7877 0.7877
Figure 24: Changes in test accuracy Of a neural network Titanic SVM | 0.7799 0.7855 0.7855 0.7799 | 0.7888 0.7866
NN | 0.7553 0.7598 0.7654 0.7441 | 0.7855 0.7832
when filtering different fraction of the points; random noise DM =D ;
= Downstream Model.
(Medium level).

Table 22: Test accuracy of downstream models under com-

Table 19: Test accuracy of downstream models under system- mon errors in the real world and different filtering methods.

atic noise (Low level) and different filtering methods.

Dataset ‘DM*‘ IF  OCSVM RVAE Picket [ CL NF

Dataset ‘DM* IF  OCSVM RVAE Picket | CL NF LR |0.7388 0.7351 0.7328 0.7351 [ 0.7404 0.7395
Restaurant | SVM | 0.7028  0.6937  0.6922 0.7072 | 0.6959 0.7112
LR | 0.7418 0.7424 0.7478 0.7473 | 0.7457 0.7408 NN | 0.7187 0.7176  0.7204 0.7137 | 0.7118 0.7215
Wine SVM | 0.7422  0.7453 0.7498 0.7492 | 0.7473 0.7484 LR | 0.7464 0.7497 0.7732 0.7475 | 0.7799 0.7609
NN | 0.7876  0.7890 0.7882 0.7976 | 0.8045 0.7939 Titanic SVM | 0.7363  0.7363 0.7609 0.7520 | 0.7542 0.7598
LR [0.8224 0.8205 0.8209 0.8189 [ 0.8240 0.8200 NN [ 0.7274 0.7251 0.7285 0.7318 [ 0.7095 0.7207
Adult SVM | 0.8203 0.8196 0.8165 0.8170 [ 0.8238 0.8186 LR | 0.6628 0.6960 0.6917 0.6978 [ 0.7163 0.6868
NN [0.7816 0.7746 0.7748 0.7779 | 0.7955 0.7815 Food SVM [ 0.6529 0.6849 0.6720 0.6794 | 0.7095 0.7108
LR | 0.7336  0.7339 0.7359 0.7336 | 0.7375 0.7356 NN [ 0.6505 0.6443 0.6431 0.6560 | 0.6609 0.6597

Restaurant | SVM | 0.7063  0.6863  0.7035 0.7082 | 0.7108 0.7047 *DM = Downstream Model.

NN | 07113 07072 07079 0.7160|0.7301 0.7201
LR | 07639 07630 0.7616 0.7644 | 0.7672 0.7668 . . .
Marketing | SVM | 07635 07634 07614 0.7683 | 07681 0.7676 Table 23: F; scores of victim sample detection at inference

NN [ 0.7316 0.7305 0.7329 0.7312 | 0.7324 0.7325 time under random noise (Low level).
LR | 0.7866 0.7888 0.7799 0.7989 | 0.7877 0.7821
Titanic SVM | 0.7899  0.7866 0.7754 0.8022 | 0.7888 0.7911
NN | 0.7575 0.7520  0.7564 0.7598 | 0.7944 0.8011

*DM = Downstream Model.

RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

Dataset ‘ DM*

LR [0.7408 0.6910 0.7523 0.6667 0.6626 0.4971 0.8084 0.7824
Wine SVM |0.7440 0.6918 0.7558 0.6667 0.6638 0.6016 0.8004 0.7828

Table 20: Test accuracy of downstream models under system- NN [0.6882 0.6318 0.6456 0.6770 0.6656 0.5231 0.7202 0.6713
. . . . . LR [0.8393 0.6563 0.8486 0.6696 0.7834 0.1968 0.7902 0.8685
atic noise (Medlum level) and dlﬁerent ﬁlterlng methOdS' Adult SVM |0.8456 0.6743 0.8535 0.6691 0.8131 0.4602 0.7114 0.8714
NN |0.8017 0.5429 0.8052 0.6635 0.6806 0.1900 0.7965 0.8267

IR [0.7870 —F - 0.7586 0.6702 0.6441 07649 0.8328
Dataset ‘DM*‘ IF OCSVM RVAE Picket | CL  NF Restaurant|SVM |0.6370 - ~ 0.6895 0.6351 0.6634 0.5538 0.7123
NN 07609 - ~ 07066 0.6643 0.6071 0.7075 0.8119
) LR |0.7414 = 07388 07435 0.7445) 07457 07316 LR [0.8503 0.6340 08565 0.7771 0.7913 0.6630 0.8227 0.8662
Wine | SVM| 07441 = 0.7384  0.7459 0.7463 | 0.7461 0.7316 Marketing | SVM |0.8590 0.6324 0.8635 0.7789 0.8034 0.6636 0.7748 0.8720
NN |0.7959 07933 07918 07953 ] 0.8000 0.7855 NN [0.7917 0.6197 0.7986 0.6809 0.7134 0.6665 0.7128 0.8125
IR [ 0813 0815 08207 08171 | 08240 0509 TR Toma— — 0060 06957 0437 09T 0.8151
Adult | SVM | 08103 08142 0.8178 08159 | 08238 0.8080 Titanic |SVM|0.8547 - ~ 06750 0.6544 0.6489 0.7738 0.8731
NN | 07822 07839 0.7843 0.7837 | 0.7931 0.7869 NN |ogaas - 06698 06132 01717 07795 0.8514
IR | 07305 0.7315 0.7351 0.73830.7375 0.7372 - - - - :
Restaurant | SVM | 07070 0.7008  0.7107 0.7077 | 0.7136 0.6964 DM is short for Downstream Model. "RVAE is not applicable to textual attributes.

NN [ 0.7198 0.7154 0.7175 0.7228 | 0.7346 0.7215
LR | 07642 0.7640 0.7660 0.7673|0.7672 0.7664
Marketing | SVM | 0.7670  0.7658  0.7655 0.7686 | 0.7681 0.7686
NN | 0.7272 0.7311 0.7251 0.7281 [ 0.7277 0.7295
LR |0.7877 0.7821 0.7799 0.7866 | 0.7877 0.7877
Titanic SVM | 0.7922 0.7777 0.7821 0.8022 | 0.7888 0.7911
NN | 0.7464 0.7508 0.7464 0.7553 [ 0.7866 0.7777

*DM = Downstream Model.

MWOC performs quite well for the Wine dataset, but it fails com-
pletely under high random noise (the F1 score is 0.33). Similar to
the case of medium noise, we observe that the reconstruction loss
from PicketNet provides extra signals that improve the detection
of victim samples (see the comparison between RF and Picket).
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Table 24: F; scores of victim sample detection at inference
time under random noise (High level).

Dataset |DM* RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

LR 0.7525 0.7867 0.7950 0.6657 0.6727 0.5901 0.5860 0.8059

Wine |SVM|0.7496 0.7898 0.7984 0.6633 0.6815 0.7256 0.7295 0.8030

NN | 0.6805 0.7697 0.7887 0.4560 0.6668 0.5752 0.3301 0.7803

LR |0.7969 0.7725 0.8149 0.6570 0.7593 0.2408 0.5033 0.8273

Adult  [SVM|0.8035 0.7765 0.8201 0.6580 0.7700 0.4737 0.4909 0.8312

NN | 0.7952 0.7781 0.8124 0.3089 0.6988 0.4284 0.4234 0.8214
#

LR |0.7457 = - 0.7075 0.6506 0.6504 0.7111 0.8137
Restaurant [SVM | 0.6948 - - 0.6704 0.6553 0.6567 0.5964 0.7824
NN | 0.7437 - 0.6788 0.6642 0.6119 0.6852 0.8135

LR ]0.8118 0.7044 0.8146 0.7052 0.7566 0.6645 0.7590 0.8244
Marketing |SVM [ 0.8111 0.7022 0.8156 0.6994 0.7527 0.6652 0.7486 0.8247
NN |0.7934 0.7068 0.7999 0.6085 0.7042 0.6630 0.7042 0.8038

LR |0.813¢ - - 0.6437 0.6457 0.4383 0.7153 0.8227
Titanic |SVM[0.8113 - - 0.6533 0.6354 0.6444 0.6815 0.8105
NN | 0.7993 - - 0.6516 0.6328 0.2824 0.6505 0.8058

*DM is short for Downstream Model. *RVAE is not applicable to textual attributes.

Table 25: F; scores of victim sample detection at inference
time under Systematic noise (Low level).

Dataset ‘DM* RF  RVAE RVAE+ CCS KNN TOAO MWOC Picket

LR [0.6826 0.5225 0.6632 0.6667 0.6474 0.4203 0.8063 0.7039
Wine SVM|[0.6658 0.5252 0.6566 0.6667 0.6328 0.4835 0.7933 0.6915
NN [0.6741 0.6010 0.5601 0.6856 0.6661 0.4980 0.6985 0.6058
LR [0.8146 0.6291 0.8176 0.6696 0.7463 0.1842 0.7412 0.8317
Adult  [SVM|0.8360 0.6277 0.8418 0.6694 0.7952 0.3382 0.6374 0.8589
NN [0.8100 0.5607 0.8208 0.6026 0.6763 0.1878 0.7740 0.8262
IR [0.7951 - - 0.7725 0.6274 0.6460 0.7770 0.8269
Restaurant[SVM[0.7080 - - 0.6524 0.6585 0.6488 0.5976 0.7321
NN |0.7633 - - 0.7143 0.6588 0.6080 0.7043 0.7897
LR [0.8540 0.6090 0.8606 0.7855 0.7923 0.6615 0.8274 0.8724
Marketing [ SVM |0.8597 0.6214 0.8590 0.7939 0.7936 0.6629 0.7828 0.8676
NN 0.7892 0.5557 0.7899 0.6864 0.7142 0.6658 0.6819 0.7972

LR [0.8064 0.7235 0.6409 0.3751 0.7684 0.8300
Titanic [SVM|[0.8563 - - 0.6778 0.6361 0.6498 0.7867 0.8656
NN [0.8314 - - 0.6679 0.6462 0.1507 0.7667 0.8434

*DM is short for Downstream Model. *RVAE is not applicable to textual attributes.

Table 26: F; scores of victim sample detection at inference
time under Systematic noise (High level).

Dataset |DM* RF RVAE RVAE+ CCS KNN TOAO MWOC Picket

LR [0.6866 0.3982 0.6697 0.6667 0.6440 0.3612 0.7826 0.6918

Wine |SVM|[0.6784 0.4293 0.6712 0.6667 0.6175 0.4102 0.7688 0.6878

NN |0.6701 0.6127 0.5913 0.6876 0.6656 0.5009 0.7536 0.5967

LR [0.8100 0.7619 0.8120 0.6699 0.7234 0.1846 0.7431 0.8370

Adult  [SVM|0.8156 0.7507 0.8174 0.6694 0.7463 0.3736 0.6833 0.8313

NN |0.8086 0.7341 0.8186 0.4264 0.6883 0.2859 0.7701 0.8285
#

LR [0.7552 - - 0.7156 0.6475 0.6525 0.7221 0.8136
Restaurant|SVM |0.7017 - - 0.6693 0.6626 0.6594 0.5877 0.7705
NN [0.7523 0.6853 0.6667 0.6123 0.7003 0.8149

LR [0.8232 0.6981 0.8285 0.7423 0.7620 0.6634 0.7864 0.8406
Marketing | SVM |0.8361 0.6703 0.8387 0.7138 0.7701 0.6653 0.7433 0.8483
NN [0.7896 0.6960 0.7991 0.6413 0.7066 0.6623 0.7176 0.8092

LR [0.8255 - - 0.6843 0.6298 0.4501 0.7830 0.8270
Titanic |SVM[0.7945 - - 0.6517 0.6120 0.6686 0.6815 0.7972
NN |0.8240 - - 0.6665 0.6349 0.2243 0.7519 0.8347

*DM is short for Downstream Model. *RVAE is not applicable to textual attributes.
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