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INTRODUCTION
 

Computational notebooks are documents that can be 
read similarly to a textbook section or journal paper, 
but can be run as computer code.  The genesis of these 

notebooks has come from the continual evolution of com-
puter programming methodology to make programs more 
comprehensible.  This is by no means a new notion and is 
described by Knuth in his article on “literate programming” 
from 1984.[1]  Traditional computing environments such as 
MATLAB® and Mathematica®, to name only a few, have 
evolved to offer interactivity, unique toolboxes, and well-
documented help resources.  These may be strong arguments 
to teach with such languages; however, studies contrasting 
teaching in Python® and MATLAB have generally found Py-
thon to be more effective for novice programmers, although 
there are advantages and disadvantages to each language.[2,3]  
Proprietary environments also have a significant downside for 
students due to their expensive licensing fees that may make 
it difficult for students to apply the codes they have developed 
after the course ends or to share code with colleagues who 
do not have a license. 

Jupyter Notebook® is a tool introduced in 2015 that advanc-
es the notion of narrative in programming.[4]  Jupyter’s main 
aims were to create a system to ensure that computational 
tools can be used in a wide variety of contexts, be created 
in collaboration, and be easily understood and reproduced. 
Jupyter offers a web-based interactive computing platform.  
The web-based nature allows for relatively quick and easy 
use of these notebooks and programming capabilities; the user 
needs only a web browser to interact and code.  However, all 
functionality can also be used offline if desired.  Jupyter note-
books can combine live code, text, equations, interactive user 
interfaces, and other rich media.  Jupyter supports a number 
of programming languages, including Python, Julia®, and R®.

Within this article we present five case studies for the use 
of Jupyter notebooks in the chemical engineering curriculum 
at a variety of institutions.  In each case we describe how the 
notebooks are implemented and used in the classroom, as 
well as the impact on students and instructors. 

GEORGIA INSTITUTE OF TECHNOLOGY: 
TEACHING DATA-DRIVEN DECISION-
MAKING FOR CHEMICAL PROCESS 
ENGINEERING

Optimization problems can be found everywhere in en-
gineering, in both industry and academia.  However, most 
chemical engineering programs do not offer a course that 
discusses optimization specifically in the context of chemi-
cal engineering case studies.  At the same time, over the past 
few years we have observed a tremendous increase in inter-
est in data-analytics and machine learning across all areas of 
chemical engineering.[5,6]  In academia, data-analytics is being 
used to enable or expedite scientific discovery in materials 
science, pharmaceuticals, process systems engineering, and 
more.  Similarly, industry is entering an era of digitalization 
that has led to an explosion of chemical, process, and manu-
facturing and operations data.  It is undoubtable that a large 
fraction of chemical engineering graduates will be faced with 
design, control, or operations optimization problems that will 
also involve handling of data sets.  As a result, incorporation 
of such concepts in our curriculum will make our graduates 
competitive in today’s market.

The above tasks (i.e. data-analytics for decision making) 
require proficiency in computer programming for data pro-
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cessing, analysis, visualization, modeling, and optimization. 
In this case study, a new undergraduate elective course was 
developed to introduce chemical engineers to various tech-
niques for data-driven decision-making in chemical process 
engineering, as well as Python programming.  The course was 
taught primarily using Jupyter notebooks.  The versatility and 
flexibility of Jupyter notebooks facilitated the instruction of 
optimization and machine-learning theory, but also enabled: 
(i) the students to learn and practice their programming 
skills in the classroom; (ii) the creation of a very interactive, 
hands-on lecture where the data and results were visualized; 
and finally (iii) the incorporation of active-learning group 
exercises and discussion in the lecture.

The main learning outcomes of this course are (i) under-
standing of basic theory of linear, nonlinear and mixed-integer 
optimization; (ii) introduction to sampling, regression, vali-
dation and data-reduction techniques; (iii) understanding of 
how to use data-driven techniques for optimization; and (iv) 
comprehension of the dangers and ethics of the use of data for 
decision making.  Overall, the course maintained a balance 
between theory, tools, and applications such that the students 
obtain key knowledge on how to efficiently formulate their 
optimization problem, know its mathematical characteristics, 
select the appropriate software/tool and, if needed, create a 
customizable tool to solve the given problem at hand.  This 
balance was enabled through the use of open source Python 
tools for data processing, machine-learning, visualization 
and optimization and most importantly, Jupyter notebooks.

 Each lecture started with the review of the background, 
theory, and mathematical representation of a specific type of 
optimization or machine-learning algorithm.  This was fol-
lowed by the loading of a data-set and the formulation of the 
computer program that employed the theory to the specific 
data set, concluding with the visualization and discussion of 
the results.  Students followed the lecture through projection 
of the instructor’s screen and their personal laptops, which 
allowed them to keep notes on their own version of Jupyter 
Notebook, as well as participate in active learning exercises.  
In 80% of the lectures, an active-learning exercise was in-
cluded, during which the students were asked to complete a 
short assignment in small groups of 2-3 members, followed 
by an in-class open discussion of the solution.[7]  These active-
learning exercises ranged from purely conceptual questions 
to purely computer programming assignments.  For example, 
the students were asked to generate a computer program from 
scratch that would optimize a function, or, most frequently, 
they were asked to make a modification to a provided code 
to obtain the result (e.g. correct an error, fill in a few miss-
ing coding lines, change some parameters and observe the 
sensitivity of the outcome, etc.)

The student feedback on the usefulness and effectiveness 
of Jupyter notebooks has been very positive.  Students found 
that hands-on programming in class and visualization of the 

results were crucial towards understanding hard concepts, 
such as the use of derivatives in searching for an optimum, the 
representation of data in reduced-dimensions, and the effects 
of lack of data, noise, and outliers on data-driven modeling 
and optimization.

At the beginning of the course, almost 70% of the students 
did not have any prior Python programming experience, and 
almost 90% of the students had not used Jupyter notebooks 
before.  All of the students had previous programming experi-
ence in MATLAB or other programming languages.  Three 
lectures at the beginning of the course were dedicated to 
tutorials in Python and Jupyter Notebook.  One of the chal-
lenges pointed out by students with minimal prior Python 

programming expertise was the steep learning curve of the 
course, which included learning optimization theory, machine 
learning, and statistics concepts at the same time as learning 
to program in a new language.  However, none of the students 
found that it was challenging to learn how to use, read, and 
modify Jupyter notebooks.  In fact, several students recog-
nized that the use of Jupyter notebooks is by itself a skill 
that can be beneficial in other aspects of their careers.  For 
example, students now use Jupyter notebooks for research 
projects and research communication within their lab, with 
industry, and as supplementary material to accompany their 
publications.  Despite the challenge of learning a new pro-
gramming language, all students passed the course and were 
able to complete challenging projects using programming 
in Python. 

Overall, through this experience, it became clear that a 
course on topics that involve modern data analytics, machine 
learning, realistic data sets, and decision-making was effective 
mainly because of this new medium that enables the combi-
nation of theory, images, programming, and plotting within 
a single lecture.  The instructor plans to make the lectures 
available as stand-alone teaching modules that can be shared 
with the community, and this points to another advantage of 
the use of this flexible teaching medium.

 

UNIVERSITY OF NOTRE DAME: 
NUMERICAL METHODS, APPLIED STATIS-
TICS, AND MORE

Over the past few years, Jupyter notebooks have become 
an integral part of at least eight chemical engineering courses 
at Notre Dame taught by three faculty:[8]

 1. CBE 20255 Introduction to Chemical Engineering 
Analysis (sophomore, required)[9]

 2. CBE 20258 Numerical and Statistical Analysis (sopho-
more, required) (discussed in this article)

 3. CHE 30324 Physical Chemistry for Chemical Engi-
neers (junior, required)[10]
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 4. CBE 30338 Chemical Process Control (junior, 
     required)[11]

 5. CBE 40455 Process Operations (senior, elective)[12]

 6. CBE 60499 Nonlinear and Stochastic Optimization 
(graduate, elective) (discussed in this article)

 7. CBE 60547 Computational Chemistry (graduate, 
elective)[13]

 8. CBE 60553 Advanced Chemical Engineering Ther-
modynamics (graduate, required)[14]

This case study highlights pedagogical advantages and 
shortcomings of Jupyter notebooks in the context of teaching 
numerical methods and applied statistics in CBE 20258 and 
CBE 60499 with Python.

Jupyter notebooks facilitate active learning by co-locating 
code and diverse outputs (text, error messages, and graphics) 
into a single, living document.  Previously, when teaching 
CBE 20258 with MATLAB, it was difficult to engage stu-
dents with examples since code (script), text output (console), 
and graphics were all on separate windows.  Moreover, text 
(markdown) cells in Jupyter Notebook allow descriptive text, 
equations (through LaTeX), and embedded images to be easily 
interspersed between computer code and output.  Though the 
equivalent can also be done in MATLAB using the live editor 
feature, it is not as intuitive as in Jupyter.  

The latest iteration of CBE 20258 is organized with one 
notebook for each class meeting.  Before each class, students 
are required to (i) read the notebook and any assigned book 
sections, and (ii) complete brief home activities.  The note-
book also includes several more complex, often multipart, 
class activities.  During class session, we work through the 
class activities individually, in partners, or as a large group.  
While scrolling between class activities in the notebook, we 
stop to answer questions on the reading and home activities.  
As needed, 5 to 10-minute mini-lectures are given on im-
portant and difficult concepts.  Jupyter notebooks are a key 
enabling technology for this class structure because examples, 
activities (with detailed instructions), and reading material are 
integrated into a single living document.

Cloud-based hosting platforms for Jupyter notebooks can 
eliminate barriers for access, simplify class administration, 
and further facilitate active learning.  CBE 60499 was last 
taught using Jupyter locally installed on each student’s per-
sonal laptop.  Although Anaconda®, a Python distribution, 
simplifies the installation process for students, this local 
installation works best with small classes.  During the last 
two iterations of CBE 20258, we have experimented with 
two cloud-based Jupyter systems: Google ColaboratoryTM 
and VocareumTM.  Both systems allow students to complete 
all class assignments through a web-browser on any internet 
connected computer.

Google Colaboratory (“Colab” for short) is a free comput-

ing environment built for research. Colab is best described 
as “Google DocsTM but for code,” with similar comments and 
editing from multiple users.  At Notre Dame we shared all 
class notebooks with students in a read-only Google DriveTM 

folder.  Colab would then prompt students to save a copy of 
the notebook in their own Google Drive.  This facilitates easy 
sharing, interactive editing, and automated back-ups with revi-
sion history.  To submit assignments, students would create 
a shareable URL, add the URL to the top of their notebook, 
and save the notebook as a PDF.

Vocareum is a hosted pay-for-use Jupyter server built for 
education.  A key advantage of Vocareum is that it integrates 
directly with learning management systems (LMS) including 
Sakai.  Most importantly, Vocareum supports auto-grading 
scripts, including the open-source nbgrader platform for 
Jupyter notebooks.  Auto-grading has two main advantages: (i) 
it gives students instant feedback on their work, and (ii) dra-
matically reduces the time required to grade the assignment. 
However, auto-grading also has significant drawbacks in that 
it can be time-consuming to set up and cannot give qualita-
tive feedback (for example, in assessing figures or code for 
readability).  For CBE 20258, the auto-grader allows for ac-
countability with the home activities before each class, which 
is not feasible otherwise due to time constraints.  Although 
Vocareum allows for manual grading of Jupyter notebooks, 
the interface is cumbersome.  Instead, students are required 
to submit both (i) a notebook to Vocareum for auto-grading 
sections, and (ii) a PDF printout to GradescopeTM to assess 
coding style (comments, etc.), figures, and pseudocode or 
model derivations.  In summary, neither Colab or Vocareum 
is perfect.  Colab offers more flexible sharing and is free, but 
Vocareum has education-focused features, including LMS in-
tegration and auto-grading that can greatly streamline classes.

UNIVERSITY OF BRITISH COLUMBIA: 
INTERACTIVE NOTEBOOKS IN REACTOR 
DESIGN AND PROCESS CONTROL

At the University of British Columbia (UBC), Reactor De-
sign (CHBE 355) and Process Control (CHBE 356) are junior-
level chemical engineering courses taken in the same term 
that require significant mathematical and computational back-
grounds.  The reactor design course focuses on homogeneous 
chemical reactor design and modelling.  The process control 
course focuses on modelling chemical processes in order to 
design effective control strategies.  Engineering undergradu-
ates with limited mathematical knowledge and programming 
skills have the most difficulty with these courses.  Engineers 
working in industry often need to solve poorly-defined prob-
lems that require proficiency with advanced computational 
and design tools.  Engineering graduates who lack design and 
programming experience can face difficulty in the job market 
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as they have little exposure to these types of problems.
Guzman et al. highlighted the use of interactive tools 

to encourage active participation and facilitate student-
focused learning in engineering education.[15]  These 
tools allow students to understand difficult mathematical 
concepts through manipulatable figures.  Students can 
develop a comprehensive understanding of course ma-
terials and obtain design experience through interactive 
tools and integrated projects that requires content from 
multiple courses to solve.  In order to develop students’ 
design, analysis, and problem-solving skills, compu-
tational tools for these two courses using Python were 
introduced through Jupyter notebooks.  Figure 1 shows 
a screenshot from a Jupyter notebook from the process 
control course.

Syzygy is an online Jupyter Notebook hosting service 
offered by the Pacific Institute of Mathematical Sci-
ences, Compute Canada, and Cybera to researchers and 
educators across Canada.  This tool is free for instruc-
tors, students, and researchers and allows notebooks 
to be easily run and shared.  During tutorial sessions, 
the teaching assistant leading the tutorial would work 
through a notebook with their screen mirrored on a pro-
jector as students worked in their own copy of a Jupyter 
notebook.  The communication tool SlackTM was used as 
a discussion board to facilitate student question during 
the tutorial period.

Students in these courses had prior experience with 
MATLAB, but were assumed to have no prior experience 
with Python.  In order to introduce students to Python and 
its application in solving a variety of mathematical problems, 
six tutorial notebooks were created to introduce students 
to relevant functions for solving a variety of mathematical 
systems.  These were used in tutorials in both courses during 
the first third of the course.  The following six tutorials in 
each course then focused on the use of computational tools 
to solve relevant problems.  In addition to notebooks used 
in the tutorials, students were given take home assignments 
(two in reactor design and one in process control) and one 

final project in each course.  The final projects applied the 
skills students had learned in previous tutorials to address a 
complex problem in an industrial context.  All of these tuto-
rial notebooks can be accessed online through a GitHubTM 

repository.[16]

A survey was run at the end of the courses focusing on 
student experience in the final projects.  Responses, found in 
Table 1, were received from 19 students out of the roughly 
120 unique students in both classes (note that about 95% of 
students are common between the two courses).  This low 
turnout was perhaps due to having no incentive for survey 
completion as well as the survey being at the end of the term 

TABLE 1 
Student survey results from reactor design and process control Jupyter-based terms projects. 

Survey Question Strongly 
Agree Agree Neutral Disagree Strongly 

Disagree

The project enhanced my learning of the course material. 
I can see the relevance of the project to the course material. 4 7 4 4 0

The project content was interesting. 3 6 8 2 0

I can see the benefit of learning programming and Python 
to my future career. 11 5 3 0 0

Figure 1.  A screenshot from a Jupyter notebook from the process 
control course showcasing coding input that can be manipulated 

and corresponding graphical output for a step change in a 
control process.
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when students were busy with other projects and studying for 
final exams.  Given the small number of responses, no overall 
conclusion can be reached, but the students who did respond 
indicated they saw the benefit to their future careers of learn-
ing programming.  Open comments from students at the end 
of the survey point to the range of background programming 
abilities of students.  Many comments focused on the pace of 
the tutorials and programming content, with some saying the 
pace was too fast while others said the opposite.

CARNEGIE MELLON UNIVERSITY: 
INTEGRATING JUPYTER INTO THE 
MASTER OF SCIENCE PROGRAM

Jupyter and related methods have been used extensively 
in the Master of Science (MS) program in the Department of 
Chemical Engineering at Carnegie Mellon University (CMU). 
The MS program was designed to give chemical engineering 
students specialization in numerical methods and computa-
tional skills to tackle more complicated and realistic prob-
lems in industrial settings.  The students come from diverse 
educational backgrounds.  Most of these students have ChE 
undergraduate degrees, but background varies and includes 
large US research universities, small liberal arts colleges, and 
foreign universities including China, India, and Japan (among 
others).  Most undergraduate programs integrate a small 
amount of programming exercises into the core curriculum, 
typically as MATLAB assignments and labs.  Informal polls 
of this population of students indicate that about 10% have 
no programming experience at all from their undergraduate 
curriculum, and less than half have been introduced to Python.  
This diversity of backgrounds presents a challenge to teaching 
a course completely in Python, but by the end of their first 
semester with two Python-intensive courses all students are 
able to solve technical numerical programming problems. 

Although chemical engineering instruction with Jupyter 
is quite recent, similar approaches have been used for some 
time at CMU.  Two of the first-semester core classes in the 
MS program are taught entirely with computational methods, 
including a numerical methods course (06-623) and a reactor 
engineering course (06-625).  The format for both courses 
was pioneered and developed by Prof. John Kitchin, who has 
described extensively how Emacs’ org-mode can be used for 
education.[17]  Emacs is a powerful open source text editor, 
and org-mode is a package that can be run within Emacs.  
Org-mode allows a number of features, including a simple 
document markup syntax, the capability to embed interactive 
code and data in a document, and the capability to export a 
document into another format such as PDF or LaTeX. From 
2015 to 2017, 06-625 was taught with all lecture notes, home-
work, and exams using the org-mode structure.  In 2017, Prof. 
Zack Ulissi transitioned to Jupyter notebooks based on their 

increasing popularity and relevance to other fields. In 2018 
and 2019, both Fall core classes (06-623 and 06-625) were 
taught in the Jupyter format.  Lecture notes, assignments, 
and exams are available for 06-623.[18]  This approach was 
also adopted for one semester for the undergraduate reaction 
engineering course, 06-634.  Email surveys of students one 
semester after taking these courses indicate that 80% of the 
students are still using Jupyter in their research/classes, sug-
gesting that the skills are transferable to broader chemical 
engineering challenges. 

Course Format 
06-623 and 06-625 at CMU are relatively unique among 

numerical methods courses in that nearly 100% of in-class 
lectures, exercises, homework, and exams are in the form 
of Jupyter notebooks.  Lectures are given by projecting the 
instructor’s laptop screen with the interactive notebook. 
Lecture notes are distributed before class, and students are 
expected to bring their own laptops and follow along.  This 
format is interactive as the instructor can develop Python 
solutions to engineering problems as a live demonstration, 
can adjust and interact with existing solutions (e.g. change 
initial conditions or tolerances and observe the effect on so-
lutions), and answer student questions about the methods or 
ideas with additional examples.  All homework and exams 
are distributed in the form of Jupyter notebooks, and students 
complete the notebooks and submit them as the notebook 
file and a PDF.  This significantly simplifies the evaluation 
process since the exams/homeworks are in exactly the same 
format as the daily lectures. 

Intro to Python On-Ramp 
In the context of a one-semester course for students using 

Python and Jupyter for the first time, the on-ramp process is 
extremely important.  Various strategies that have been used in 
teaching 06-623 and 06-625 include: (i) introduction through 
the first two weeks of class (with in-class demonstrations 
and exercises); (ii) use of tailored on-line Python materials 
as out-of-class exercises in week 1, and (iii) a short half-day 
Python-intensive workshop before the first week of class. Op-
tion (ii) was implemented using the Open Learning Inititative 
(OLI) system at CMU with help from the Eberly Center and a 
Wimmer teaching fellowship for Prof. Ulissi.  Option (iii) was 
implemented as a single 5-hour session using the established 
Software Carpentry “Introduction to Programming” module 
the week before classes started.[19]  In all cases, nearly all 
students were able to complete the courses, and most students 
were comfortable with the format by the end of the third week 
of lectures.  Self-reported homework and out-of-class study 
times in the first two weeks were considerably lower with 
options (ii)/(iii) instead of (i), suggesting that these methods 
helped with the on-ramp experience. 
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Grading
Grading of Jupyter notebooks is still imperfect.  Distribut-

ing and collecting notebooks can be performed with some 
packages such as nbgrader, but this may require specific code 
structure depending on how it is implemented.  LMS integra-
tion of nbgrader is dependent on the Jupyter platform and 
LMS being used.  Furthermore, setting up standard/repeated 
feedback (e.g. different students making the same mistakes) in 
nbgrader can be time consuming.  The choice to use nbgrader 
will likely depend on class size and whether assignments 
can be re-used over multiple years.  Prof. Ulissi currently 
uses Gradescope to grade the notebooks submitted as PDFs.  
Students simply print their notebook to PDF and upload it to 
Gradescope.  Note that the default Jupyter to PDF conversion, 
that works via pdflatex, is less favorable as equation errors 
in the markdown cells, which often display correctly within 
Jupyter, frequently break the pdflatex conversion.  Teaching 
assistants (TAs) then use the Gradescope interface to quickly 
grade the assignment as they would a normal engineering 
homework.  Students are also expected to submit a copy of 
the Juptyer notebook in case the TAs wish to manually check 
the solution/code or for plagiarism detection (detailed below).

Plagiarism
An obvious concern in programming-heavy courses is the 

possibility of plagiarism.  These challenges are not unique to 
chemical engineering or Jupyter notebooks.  Since students 
submit copies of their notebooks, standard methods such as 
Measure Of Software Similarity (MOSS) can be used.[20] 
Collected Jupyter notebooks are batch-converted to Python 
scripts, which are then submitted to MOSS for analysis.  
This process is not perfect but quickly flags the most flagrant 
violations.  A secondary benefit of this approach is that this 
process also identifies students who copied and modified 
particularly relevant examples from the lecture notes.  While 
not academically dishonest if disclosed, this method of solu-
tion is less desirable and often correlated with students who 
struggle to creatively solve engineering problems in formats 
they have not seen before.  Finally, with an exam format of 
every student working on a laptop and submitting their own 
notebook, it is very difficult to guarantee students are not 
messaging each other with solutions.  Standard approaches 
(random seating, TAs roaming the room, etc.) can partially 
address this challenge. 

Installation/Usage
Most students do not have experience installing and using 

Python and Jupyter notebooks.  We have used pre-installed 
anaconda installations, docker images, and on-line hosted 
instances such as Google Colab or Microsoft Azure Note-
booksTM.  All were sufficient for the needs of the classes, but 
the hosted solutions have had the fewest technical difficul-
ties.  Prof. Kichin has developed a flask web app interface 

(Techela) to Jupyter notebook distribution and submission 
that largely hides many of these difficulties if a local Python 
installation is used.[21] 

UNIVERSITY OF WISCONSIN-MADISON: 
TEACHING ADVANCED OPTIMIZATION 
TECHNIQUES TO UNDERGRADUATE 
STUDENTS USING JULIA AND JUPYTER 
NOTEBOOKS

Optimization has traditionally been a difficult topic to 
teach to undergraduate students.  The mathematics behind 
it (and associated software tools) are rather abstract and 
sophisticated. Commercial optimization tools (e.g. AMPL®, 
AIMMS®, GAMS®) are computationally powerful, but they 
are targeted towards graduate-level students and industrial 
practitioners. These tools also have proprietary syntax and 
stand-alone implementations that complicate integration with 
other tools (e.g. visualization).  On the other hand, MATLAB 
(the most popular scientific computing package for under-
graduate education) provides a flexible environment, but its 
optimization tools are computationally inefficient and difficult 
to use (e.g. translating an optimization problem into matrix-
vector form and/or computing derivatives is difficult).  As a 
result, instructors who teach optimization using such tools 
can spend significant amounts of time (weeks to months) 
teaching students how to use software tools, as opposed to 
teaching students how to properly formulate the problem at 
hand and analyze the results.  Moreover, students tend to lose 
motivation if they feel that the tools learned cannot solve 
industrially-relevant problems. 

Recent developments in open-source modeling languages 
such as Pyomo (in Python) and JuMP (in Julia) have dra-
matically changed the landscape of optimization software.  In 
particular, these tools are much more accessible to students.
[22,23]   Pyomo and JuMP also largely benefit from the fact 
that they reside in a flexible computing environment (as with 
MATLAB), which facilitates the use of supporting tools (e.g. 
linear algebra, data, statistics, visualization) in the modeling 
and analysis process.  Such tools are also under active devel-
opment by the open-source Julia and Python communities. 

Jupyter notebooks are a premier example of how open-
source software benefits undergraduate education.  At UW-
Madison we have been using JuMP and Jupyter notebooks 
to teach optimization to undergraduate students.  In the 
Chemical and Biological Engineering Department, Jupyter 
notebooks are being used to teach the senior Process Design 
course (CBE 450), while in the Electrical and Computer 
Engineering Department, Jupyter notebooks are being used 
to teach the Introduction to Optimization course (CS/ECE/
ISyE 524).  In CBE 450 the instructor spends a total of 4 
hours teaching students the basics of optimization modeling 
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and implementations in JuMP (the students have 
no previous background in optimization).  This 
is possible because the syntax of JuMP is com-
pact and intuitive (the software implementation 
of a model looks similar to that on paper).  For 
instance, a simple but powerful feature of JuMP 
is the ability to express variables as unicode sym-
bols, which allows students to define variables 
using letters from the Greek alphabet.  JuMP also 
incorporates set notation and allows indexes to 
take names (e.g. chemical formulas to identify 
components).  Jupyter notebooks provided to the 
students are executed in the public portal https://
www.juliabox.com (students do not have to install 
new software in their computers).  

Learning JuMP allows students to tackle 
complex optimization problems rather easily.  
For instance, we teach them how to optimize a 
flowsheet, how to design water and heat recovery 
networks, how to design compressor trains, and 
how to conduct equilibrium calculations.  These 
examples are non-trivial (e.g. involve difficult 
sets of nonlinear equations) and are sufficient for 
students to start comprehending the concepts of 
objective functions, constraints, trade-offs, and 
nonlinearity as well as to understand the power of 
modern optimization tools.   Specifically, JuMP is 
not an educational package but is in fact actively 
used in academic and industrial research (JuMP 
can tackle problems with millions of variables).
[24]  The objective is thus to help students appreci-
ate that the tools learned in their undergraduate 
education do solve real problems. 

It is important to emphasize that all of these benefits are 
largely enabled by Jupyter notebooks.  Implementing JuMP 
models as plain Julia scripts, while doable, does not provide 
an interactive experience and can be frustrating to students 
who are not familiar with the language.  Specifically, Jupyter 
allows students to experiment with their code and quickly see 
the outcomes (i.e. execute pieces of code on-the-fly).  This 
feature is particularly important when building and debugging 
complex optimization models.  Moreover, students are asked 
to submit their homework assignments as Jupyter notebooks, 
and this teaches them how to properly document and share 
code.  Jupyter notebooks also enable students to learn and 
appreciate the benefits of LaTeX (an advanced type-setting 
system).  The use of Jupyter notebooks also help students 
understand the computational workflow behind their code 
(an insight that gets lost when executing a script all-at-once).  
The use of embedded visualization tools in notebooks has 
also proven to be of high value, as most students prefer to 
visualize data and like to perform sensitivity analyses (see 
Figure 2).  Notebooks thus provide a natural segue to the use 

of data analysis, uncertainty quantification, and visualization 
techniques. 

CONCLUSIONS

Computational notebooks are powerful and versatile tools 
that can be used at a variety of instructional levels.  They have 
become relatively easy to implement and can be leveraged to 
help students understand physical, chemical, and biological 
phenomena that chemical engineers deal with on a daily basis.  
Furthermore, their use helps promote data and programming 
literacy, which is becoming increasingly important for all 
engineering disciplines.
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Figure 2.  Snapshot of Jupyter notebook implementing sensitivity 
analysis for a simple optimization problem. 
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