(o415 CACHE special section)

COMPUTATIONAL NOTEBOOKS IN
CHEMICAL ENGINEERING CURRICULA

FANTI BOUKOUVALA', ALEXANDER DOWLING?, JONATHAN VERRETT?, ZACHARY ULISSI¥, AND

VICTOR ZAVALA’
Georgia Institute of Technology * Atlanta, GA 30332
University of Notre Dame * Notre Dame, IN 46556

Carnegie Mellon University * Pittsburgh, PA 15213

SR BN~

INTRODUCTION

(jomputational notebooks are documents that can be
read similarly to a textbook section or journal paper,
but can be run as computer code. The genesis of these

notebooks has come from the continual evolution of com-

puter programming methodology to make programs more
comprehensible. This is by no means a new notion and is
described by Knuth in his article on “literate programming”’
from 1984. Traditional computing environments such as
MATLAB® and Mathematica®, to name only a few, have
evolved to offer interactivity, unique toolboxes, and well-
documented help resources. These may be strong arguments
to teach with such languages; however, studies contrasting
teaching in Python® and MATLAB have generally found Py-
thon to be more effective for novice programmers, although
there are advantages and disadvantages to each language >

Proprietary environments also have a significant downside for

students due to their expensive licensing fees that may make

it difficult for students to apply the codes they have developed
after the course ends or to share code with colleagues who
do not have a license.

Jupyter Notebook® is a tool introduced in 2015 that advanc-
es the notion of narrative in programming.' Jupyter’s main
aims were to create a system to ensure that computational
tools can be used in a wide variety of contexts, be created
in collaboration, and be easily understood and reproduced.
Jupyter offers a web-based interactive computing platform.
The web-based nature allows for relatively quick and easy
use of these notebooks and programming capabilities; the user
needs only a web browser to interact and code. However, all
functionality can also be used offline if desired. Jupyter note-
books can combine live code, text, equations, interactive user
interfaces, and other rich media. Jupyter supports a number
of programming languages, including Python, Julia®, and R®.
Vol. 54, No. 3, Summer 2020

University of Wisconsin-Madison * Madison, WI 53706

University of British Columbia * Vancouver, BC V6T1Z3

Within this article we present five case studies for the use
of Jupyter notebooks in the chemical engineering curriculum
at a variety of institutions. In each case we describe how the
notebooks are implemented and used in the classroom, as
well as the impact on students and instructors.

GEORGIA INSTITUTE OF TECHNOLOGY:
TEACHING DATA-DRIVEN DECISION-
MAKING FOR CHEMICAL PROCESS
ENGINEERING

Optimization problems can be found everywhere in en-
gineering, in both industry and academia. However, most
chemical engineering programs do not offer a course that
discusses optimization specifically in the context of chemi-
cal engineering case studies. At the same time, over the past
few years we have observed a tremendous increase in inter-
est in data-analytics and machine learning across all areas of
chemical engineering.” In academia, data-analytics is being
used to enable or expedite scientific discovery in materials
science, pharmaceuticals, process systems engineering, and
more. Similarly, industry is entering an era of digitalization
that has led to an explosion of chemical, process, and manu-
facturing and operations data. It is undoubtable that a large
fraction of chemical engineering graduates will be faced with
design, control, or operations optimization problems that will
also involve handling of data sets. As a result, incorporation
of such concepts in our curriculum will make our graduates
competitive in today’s market.

The above tasks (i.e. data-analytics for decision making)
require proficiency in computer programming for data pro-

© Copyright ChE Division of ASEE 2020
143

cessing, analysis, visualization, modeling, and optimization.
In this case study, a new undergraduate elective course was
developed to introduce chemical engineers to various tech-
niques for data-driven decision-making in chemical process
engineering, as well as Python programming. The course was
taught primarily using Jupyter notebooks. The versatility and
flexibility of Jupyter notebooks facilitated the instruction of
optimization and machine-learning theory, but also enabled:
(i) the students to learn and practice their programming
skills in the classroom; (ii) the creation of a very interactive,
hands-on lecture where the data and results were visualized;
and finally (iii) the incorporation of active-learning group
exercises and discussion in the lecture.

The main learning outcomes of this course are (i) under-
standing of basic theory of linear, nonlinear and mixed-integer
optimization; (ii) introduction to sampling, regression, vali-
dation and data-reduction techniques; (iii) understanding of
how to use data-driven techniques for optimization; and (iv)
comprehension of the dangers and ethics of the use of data for
decision making. Overall, the course maintained a balance
between theory, tools, and applications such that the students
obtain key knowledge on how to efficiently formulate their
optimization problem, know its mathematical characteristics,
select the appropriate software/tool and, if needed, create a
customizable tool to solve the given problem at hand. This
balance was enabled through the use of open source Python
tools for data processing, machine-learning, visualization
and optimization and most importantly, Jupyter notebooks.

Each lecture started with the review of the background,
theory, and mathematical representation of a specific type of
optimization or machine-learning algorithm. This was fol-
lowed by the loading of a data-set and the formulation of the
computer program that employed the theory to the specific
data set, concluding with the visualization and discussion of
the results. Students followed the lecture through projection
of the instructor’s screen and their personal laptops, which
allowed them to keep notes on their own version of Jupyter
Notebook,as well as participate in active learning exercises.
In 80% of the lectures, an active-learning exercise was in-
cluded, during which the students were asked to complete a
short assignment in small groups of 2-3 members, followed
by an in-class open discussion of the solution.” These active-
learning exercises ranged from purely conceptual questions
to purely computer programming assignments. For example,
the students were asked to generate a computer program from
scratch that would optimize a function, or, most frequently,
they were asked to make a modification to a provided code
to obtain the result (e.g. correct an error, fill in a few miss-
ing coding lines, change some parameters and observe the
sensitivity of the outcome, etc.)

The student feedback on the usefulness and effectiveness
of Jupyter notebooks has been very positive. Students found
that hands-on programming in class and visualization of the

144

results were crucial towards understanding hard concepts,
such as the use of derivatives in searching for an optimum, the
representation of data in reduced-dimensions, and the effects
of lack of data, noise, and outliers on data-driven modeling
and optimization.

At the beginning of the course, almost 70% of the students
did not have any prior Python programming experience, and
almost 90% of the students had not used Jupyter notebooks
before. All of the students had previous programming experi-
ence in MATLAB or other programming languages. Three
lectures at the beginning of the course were dedicated to
tutorials in Python and Jupyter Notebook. One of the chal-
lenges pointed out by students with minimal prior Python
programming expertise was the steep learning curve of the
course, which included learning optimization theory, machine
learning, and statistics concepts at the same time as learning
to program in a new language. However, none of the students
found that it was challenging to learn how to use, read, and
modify Jupyter notebooks. In fact, several students recog-
nized that the use of Jupyter notebooks is by itself a skill
that can be beneficial in other aspects of their careers. For
example, students now use Jupyter notebooks for research
projects and research communication within their lab, with
industry, and as supplementary material to accompany their
publications. Despite the challenge of learning a new pro-
gramming language, all students passed the course and were
able to complete challenging projects using programming
in Python.

Overall, through this experience, it became clear that a
course on topics that involve modern data analytics, machine
learning, realistic data sets, and decision-making was effective
mainly because of this new medium that enables the combi-
nation of theory, images, programming, and plotting within
a single lecture. The instructor plans to make the lectures
available as stand-alone teaching modules that can be shared
with the community, and this points to another advantage of
the use of this flexible teaching medium.

UNIVERSITY OF NOTRE DAME:
NUMERICAL METHODS, APPLIED STATIS-
TICS, AND MORE

Over the past few years, Jupyter notebooks have become
an integral part of at least eight chemical engineering courses
at Notre Dame taught by three faculty:®!

1. CBE 20255 Introduction to Chemical Engineering
Analysis (sophomore, required)”

2.CBE 20258 Numerical and Statistical Analysis (sopho-
more, required) (discussed in this article)

3. CHE 30324 Physical Chemistry for Chemical Engi-
neers (junior, required)!”

Chemical Engineering Education

4.CBE 30338 Chemical Process Control (junior,
required)"!

5. CBE 40455 Process Operations (senior, elective)!'?!

6.CBE 60499 Nonlinear and Stochastic Optimization
(graduate, elective) (discussed in this article)

7.CBE 60547 Computational Chemistry (graduate,
elective)!

8.CBE 60553 Advanced Chemical Engineering Ther-
modynamics (graduate, required)!#

This case study highlights pedagogical advantages and
shortcomings of Jupyter notebooks in the context of teaching
numerical methods and applied statistics in CBE 20258 and
CBE 60499 with Python.

Jupyter notebooks facilitate active learning by co-locating
code and diverse outputs (text, error messages, and graphics)
into a single, living document. Previously, when teaching
CBE 20258 with MATLAB, it was difficult to engage stu-
dents with examples since code (script), text output (console),
and graphics were all on separate windows. Moreover, text
(markdown) cells in Jupyter Notebook allow descriptive text,
equations (through LaTeX), and embedded images to be easily
interspersed between computer code and output. Though the
equivalent can also be done in MATLAB using the live editor
feature, it is not as intuitive as in Jupyter.

The latest iteration of CBE 20258 is organized with one
notebook for each class meeting. Before each class, students
are required to (i) read the notebook and any assigned book
sections, and (ii) complete brief home activities. The note-
book also includes several more complex, often multipart,
class activities. During class session, we work through the
class activities individually, in partners, or as a large group.
While scrolling between class activities in the notebook, we
stop to answer questions on the reading and home activities.
As needed, 5 to 10-minute mini-lectures are given on im-
portant and difficult concepts. Jupyter notebooks are a key
enabling technology for this class structure because examples,
activities (with detailed instructions), and reading material are
integrated into a single living document.

Cloud-based hosting platforms for Jupyter notebooks can
eliminate barriers for access, simplify class administration,
and further facilitate active learning. CBE 60499 was last
taught using Jupyter locally installed on each student’s per-
sonal laptop. Although Anaconda®, a Python distribution,
simplifies the installation process for students, this local
installation works best with small classes. During the last
two iterations of CBE 20258, we have experimented with
two cloud-based Jupyter systems: Google Colaboratory™
and Vocareum™. Both systems allow students to complete
all class assignments through a web-browser on any internet
connected computer.

Google Colaboratory (“Colab” for short) is a free comput-

Vol. 54, No. 3, Summer 2020

ing environment built for research. Colab is best described
as “Google Docs™ but for code,” with similar comments and
editing from multiple users. At Notre Dame we shared all
class notebooks with students in a read-only Google Drive™
folder. Colab would then prompt students to save a copy of
the notebook in their own Google Drive. This facilitates easy
sharing, interactive editing, and automated back-ups with revi-
sion history. To submit assignments, students would create
a shareable URL, add the URL to the top of their notebook,
and save the notebook as a PDF.

Vocareum is a hosted pay-for-use Jupyter server built for
education. A key advantage of Vocareum is that it integrates
directly with learning management systems (LMS) including
Sakai. Most importantly, Vocareum supports auto-grading
scripts, including the open-source nbgrader platform for
Jupyter notebooks. Auto-grading has two main advantages: (i)
it gives students instant feedback on their work, and (ii) dra-
matically reduces the time required to grade the assignment.
However, auto-grading also has significant drawbacks in that
it can be time-consuming to set up and cannot give qualita-
tive feedback (for example, in assessing figures or code for
readability). For CBE 20258, the auto-grader allows for ac-
countability with the home activities before each class, which
is not feasible otherwise due to time constraints. Although
Vocareum allows for manual grading of Jupyter notebooks,
the interface is cumbersome. Instead, students are required
to submit both (i) a notebook to Vocareum for auto-grading
sections, and (ii) a PDF printout to Gradescope™ to assess
coding style (comments, etc.), figures, and pseudocode or
model derivations. In summary, neither Colab or Vocareum
is perfect. Colab offers more flexible sharing and is free, but
Vocareum has education-focused features, including LMS in-
tegration and auto-grading that can greatly streamline classes.

UNIVERSITY OF BRITISH COLUMBIA:
INTERACTIVE NOTEBOOKS IN REACTOR
DESIGN AND PROCESS CONTROL

At the University of British Columbia (UBC), Reactor De-
sign (CHBE 355) and Process Control (CHBE 356) are junior-
level chemical engineering courses taken in the same term
that require significant mathematical and computational back-
grounds. The reactor design course focuses on homogeneous
chemical reactor design and modelling. The process control
course focuses on modelling chemical processes in order to
design effective control strategies. Engineering undergradu-
ates with limited mathematical knowledge and programming
skills have the most difficulty with these courses. Engineers
working in industry often need to solve poorly-defined prob-
lems that require proficiency with advanced computational
and design tools. Engineering graduates who lack design and
programming experience can face difficulty in the job market

145

as they have little exposure to these types of problems.

Guzman et al. highlighted the use of interactive tools
to encourage active participation and facilitate student-
focused learning in engineering education.’™ These
tools allow students to understand difficult mathematical
concepts through manipulatable figures. Students can
develop a comprehensive understanding of course ma-
terials and obtain design experience through interactive
tools and integrated projects that requires content from
multiple courses to solve. In order to develop students’
design, analysis, and problem-solving skills, compu-
tational tools for these two courses using Python were
introduced through Jupyter notebooks. Figure 1 shows
a screenshot from a Jupyter notebook from the process
control course.

Syzygy is an online Jupyter Notebook hosting service
offered by the Pacific Institute of Mathematical Sci-
ences, Compute Canada, and Cybera to researchers and
educators across Canada. This tool is free for instruc-
tors, students, and researchers and allows notebooks
to be easily run and shared. During tutorial sessions,
the teaching assistant leading the tutorial would work

In [82]: # Gen

erate a step response
o np.linspace (0,100,1000)

our input is one between t=20 and t=60
U = np.zeros(len(T))

U[200:600] = 1

t, yout, _ = control.forced response(G_s, T, U)
Plot

plt.figure ()

plt.xlabel('Time")

plt.ylabel ('Output’)
plt.plot(t,yout)
plt.step(t,U, linestyle='--")

[<matplotlib.lines.Line2D at 0x11e2085c0>]

0 20 40 60 80 100

Time

through a notebook with their screen mirrored on a pro-
jector as students worked in their own copy of a Jupyter
notebook. The communication tool Slack™ was used as
a discussion board to facilitate student question during
the tutorial period.

Students in these courses had prior experience with
MATLAB, but were assumed to have no prior experience
with Python. In order to introduce students to Python and
its application in solving a variety of mathematical problems,
six tutorial notebooks were created to introduce students
to relevant functions for solving a variety of mathematical
systems. These were used in tutorials in both courses during
the first third of the course. The following six tutorials in
each course then focused on the use of computational tools
to solve relevant problems. In addition to notebooks used
in the tutorials, students were given take home assignments
(two in reactor design and one in process control) and one

Figure 1. A screenshot from a Jupyter notebook from the process
control course showcasing coding input that can be manipulated

and corresponding graphical output for a step change in a
control process.

final project in each course. The final projects applied the
skills students had learned in previous tutorials to address a
complex problem in an industrial context. All of these tuto-
rial notebooks can be accessed online through a GitHub™
repository.!'

A survey was run at the end of the courses focusing on
student experience in the final projects. Responses, found in
Table 1, were received from 19 students out of the roughly
120 unique students in both classes (note that about 95% of
students are common between the two courses). This low
turnout was perhaps due to having no incentive for survey
completion as well as the survey being at the end of the term

TABLE 1
Student survey results from reactor design and process control Jupyter-based terms projects.

. Strongly . Strongly
Survey Question Agree Agree Neutral | Disagree Disagree
The project enhanced my learning of the course material.

- . 4 7 4 4 0

I can see the relevance of the project to the course material.
The project content was interesting. 3 6 8 2 0
I can see the benefit of learning programming and Python 1 5 3 0 0
to my future career.

146

Chemical Engineering Education

when students were busy with other projects and studying for
final exams. Given the small number of responses, no overall
conclusion can be reached, but the students who did respond
indicated they saw the benefit to their future careers of learn-
ing programming. Open comments from students at the end
of the survey point to the range of background programming
abilities of students. Many comments focused on the pace of
the tutorials and programming content, with some saying the
pace was too fast while others said the opposite.

CARNEGIE MELLON UNIVERSITY:
INTEGRATING JUPYTER INTO THE
MASTER OF SCIENCE PROGRAM

Jupyter and related methods have been used extensively
in the Master of Science (MS) program in the Department of
Chemical Engineering at Carnegie Mellon University (CMU).
The MS program was designed to give chemical engineering
students specialization in numerical methods and computa-
tional skills to tackle more complicated and realistic prob-
lems in industrial settings. The students come from diverse
educational backgrounds. Most of these students have ChE
undergraduate degrees, but background varies and includes
large US research universities, small liberal arts colleges, and
foreign universities including China, India, and Japan (among
others). Most undergraduate programs integrate a small
amount of programming exercises into the core curriculum,
typically as MATLAB assignments and labs. Informal polls
of this population of students indicate that about 10% have
no programming experience at all from their undergraduate
curriculum, and less than half have been introduced to Python.
This diversity of backgrounds presents a challenge to teaching
a course completely in Python, but by the end of their first
semester with two Python-intensive courses all students are
able to solve technical numerical programming problems.

Although chemical engineering instruction with Jupyter
is quite recent, similar approaches have been used for some
time at CMU. Two of the first-semester core classes in the
MS program are taught entirely with computational methods,
including a numerical methods course (06-623) and a reactor
engineering course (06-625). The format for both courses
was pioneered and developed by Prof. John Kitchin, who has
described extensively how Emacs’ org-mode can be used for
education."” Emacs is a powerful open source text editor,
and org-mode is a package that can be run within Emacs.
Org-mode allows a number of features, including a simple
document markup syntax, the capability to embed interactive
code and data in a document, and the capability to export a
document into another format such as PDF or LaTeX. From
2015t02017,06-625 was taught with all lecture notes, home-
work, and exams using the org-mode structure. In 2017, Prof.
Zack Ulissi transitioned to Jupyter notebooks based on their

Vol. 54, No. 3, Summer 2020

increasing popularity and relevance to other fields. In 2018
and 2019, both Fall core classes (06-623 and 06-625) were
taught in the Jupyter format. Lecture notes, assignments,
and exams are available for 06-623.1"8! This approach was
also adopted for one semester for the undergraduate reaction
engineering course, 06-634. Email surveys of students one
semester after taking these courses indicate that 80% of the
students are still using Jupyter in their research/classes, sug-
gesting that the skills are transferable to broader chemical
engineering challenges.

Course Format

06-623 and 06-625 at CMU are relatively unique among
numerical methods courses in that nearly 100% of in-class
lectures, exercises, homework, and exams are in the form
of Jupyter notebooks. Lectures are given by projecting the
instructor’s laptop screen with the interactive notebook.
Lecture notes are distributed before class, and students are
expected to bring their own laptops and follow along. This
format is interactive as the instructor can develop Python
solutions to engineering problems as a live demonstration,
can adjust and interact with existing solutions (e.g. change
initial conditions or tolerances and observe the effect on so-
lutions), and answer student questions about the methods or
ideas with additional examples. All homework and exams
are distributed in the form of Jupyter notebooks, and students
complete the notebooks and submit them as the notebook
file and a PDF. This significantly simplifies the evaluation
process since the exams/homeworks are in exactly the same
format as the daily lectures.

Intro to Python On-Ramp

In the context of a one-semester course for students using
Python and Jupyter for the first time, the on-ramp process is
extremely important. Various strategies that have been used in
teaching 06-623 and 06-625 include: (i) introduction through
the first two weeks of class (with in-class demonstrations
and exercises); (ii) use of tailored on-line Python materials
as out-of-class exercises in week 1, and (iii) a short half-day
Python-intensive workshop before the first week of class. Op-
tion (ii) was implemented using the Open Learning Inititative
(OLI) system at CMU with help from the Eberly Center and a
Wimmer teaching fellowship for Prof. Ulissi. Option (iii) was
implemented as a single 5-hour session using the established
Software Carpentry “Introduction to Programming” module
the week before classes started.”” In all cases, nearly all
students were able to complete the courses, and most students
were comfortable with the format by the end of the third week
of lectures. Self-reported homework and out-of-class study
times in the first two weeks were considerably lower with
options (ii)/(iii) instead of (i), suggesting that these methods
helped with the on-ramp experience.

147

Grading

Grading of Jupyter notebooks is still imperfect. Distribut-
ing and collecting notebooks can be performed with some
packages such as nbgrader, but this may require specific code
structure depending on how it is implemented. LMS integra-
tion of nbgrader is dependent on the Jupyter platform and
LMS being used. Furthermore, setting up standard/repeated
feedback (e.g. different students making the same mistakes) in
nbgrader can be time consuming. The choice to use nbgrader
will likely depend on class size and whether assignments
can be re-used over multiple years. Prof. Ulissi currently
uses Gradescope to grade the notebooks submitted as PDFs.
Students simply print their notebook to PDF and upload it to
Gradescope. Note that the default Jupyter to PDF conversion,
that works via pdflatex, is less favorable as equation errors
in the markdown cells, which often display correctly within
Jupyter, frequently break the pdflatex conversion. Teaching
assistants (TAs) then use the Gradescope interface to quickly
grade the assignment as they would a normal engineering
homework. Students are also expected to submit a copy of
the Juptyer notebook in case the TAs wish to manually check
the solution/code or for plagiarism detection (detailed below).

Plagiarism

An obvious concern in programming-heavy courses is the
possibility of plagiarism. These challenges are not unique to
chemical engineering or Jupyter notebooks. Since students
submit copies of their notebooks, standard methods such as
Measure Of Software Similarity (MOSS) can be used.””
Collected Jupyter notebooks are batch-converted to Python
scripts, which are then submitted to MOSS for analysis.
This process is not perfect but quickly flags the most flagrant
violations. A secondary benefit of this approach is that this
process also identifies students who copied and modified
particularly relevant examples from the lecture notes. While
not academically dishonest if disclosed, this method of solu-
tion is less desirable and often correlated with students who
struggle to creatively solve engineering problems in formats
they have not seen before. Finally, with an exam format of
every student working on a laptop and submitting their own
notebook, it is very difficult to guarantee students are not
messaging each other with solutions. Standard approaches
(random seating, TAs roaming the room, etc.) can partially
address this challenge.

Installation/Usage

Most students do not have experience installing and using
Python and Jupyter notebooks. We have used pre-installed
anaconda installations, docker images, and on-line hosted
instances such as Google Colab or Microsoft Azure Note-
books™. All were sufficient for the needs of the classes, but
the hosted solutions have had the fewest technical difficul-
ties. Prof. Kichin has developed a flask web app interface

148

(Techela) to Jupyter notebook distribution and submission
that largely hides many of these difficulties if a local Python
installation is used.’?"

UNIVERSITY OF WISCONSIN-MADISON:
TEACHING ADVANCED OPTIMIZATION
TECHNIQUES TO UNDERGRADUATE
STUDENTS USING JULIA AND JUPYTER
NOTEBOOKS

Optimization has traditionally been a difficult topic to
teach to undergraduate students. The mathematics behind
it (and associated software tools) are rather abstract and
sophisticated. Commercial optimization tools (e.g. AMPL®,
AIMMS®, GAMS®) are computationally powerful, but they
are targeted towards graduate-level students and industrial
practitioners. These tools also have proprietary syntax and
stand-alone implementations that complicate integration with
other tools (e.g. visualization). On the other hand, MATLAB
(the most popular scientific computing package for under-
graduate education) provides a flexible environment, but its
optimization tools are computationally inefficient and difficult
to use (e.g. translating an optimization problem into matrix-
vector form and/or computing derivatives is difficult). Asa
result, instructors who teach optimization using such tools
can spend significant amounts of time (weeks to months)
teaching students how to use software tools, as opposed to
teaching students how to properly formulate the problem at
hand and analyze the results. Moreover, students tend to lose
motivation if they feel that the tools learned cannot solve
industrially-relevant problems.

Recent developments in open-source modeling languages
such as Pyomo (in Python) and JuMP (in Julia) have dra-
matically changed the landscape of optimization software. In
particular, these tools are much more accessible to students.
22231 Pyomo and JuMP also largely benefit from the fact
that they reside in a flexible computing environment (as with
MATLAB), which facilitates the use of supporting tools (e.g.
linear algebra, data, statistics, visualization) in the modeling
and analysis process. Such tools are also under active devel-
opment by the open-source Julia and Python communities.

Jupyter notebooks are a premier example of how open-
source software benefits undergraduate education. At UW-
Madison we have been using JuMP and Jupyter notebooks
to teach optimization to undergraduate students. In the
Chemical and Biological Engineering Department, Jupyter
notebooks are being used to teach the senior Process Design
course (CBE 450), while in the Electrical and Computer
Engineering Department, Jupyter notebooks are being used
to teach the Introduction to Optimization course (CS/ECE/
ISyE 524). In CBE 450 the instructor spends a total of 4
hours teaching students the basics of optimization modeling

Chemical Engineering Education

and implementations in JuMP (the students have
no previous background in optimization). This
is possible because the syntax of JuMP is com-
pact and intuitive (the software implementation
of a model looks similar to that on paper). For
instance, a simple but powerful feature of JuMP
is the ability to express variables as unicode sym-
bols, which allows students to define variables
using letters from the Greek alphabet. JuMP also
incorporates set notation and allows indexes to
take names (e.g. chemical formulas to identify
components). Jupyter notebooks provided to the
students are executed in the public portal https://
www.juliabox.com (students do not have to install
new software in their computers).

Learning JuMP allows students to tackle
complex optimization problems rather easily.
For instance, we teach them how to optimize a
flowsheet, how to design water and heat recovery
networks, how to design compressor trains, and
how to conduct equilibrium calculations. These
examples are non-trivial (e.g. involve difficult
sets of nonlinear equations) and are sufficient for
students to start comprehending the concepts of
objective functions, constraints, trade-offs, and
nonlinearity as well as to understand the power of
modern optimization tools. Specifically, JuMP is
not an educational package but is in fact actively
used in academic and industrial research (JuMP

In [2]:

im] =

B

juliabox.com G (4]

~ Jupyter simple_julia_example_function Lest checkpoint a few seconds ago (autosaved)

View Inset Cel Kemel Widgeis Help Trusted

B+ %« OB 4+ ¥ MHAn B C » | Code R

using JuMP, Ipopt, PyPlot

define function to create JuMP model
function getJuMPmodel (p)

m = Model(solver=IpoptSolver(max_iter=100,tol=le-8,print_level=0))
§variable(m,x1>=0)

@variable(m,x2>=0,start=1)

fconstraint(m, x14x2 == p)

@NLconstraint(m, x1/x2 == 1

#NLobjective(m, Min, x1+x2°2)

return m

end

‘..@

create vector spanning parameter range and placeholder for optimal objective

p= 1:1:10
@ = zeros(length(p))

run loop to solve problem
for j=l:length(p)

m=getJuMPmodel (p[31)
status=solve(m)
@[j]l=getobjectivevalue(m)

en
plot optimal objective as function of

plot(p,®,color="blue"); grid("on"); xlabel("p"); ylabel(L"φ")
savefig("plot.pdf”);

30

25

20

can tackle problems with millions of variables).
(241 The objective is thus to help students appreci-
ate that the tools learned in their undergraduate
education do solve real problems.

It is important to emphasize that all of these benefits are
largely enabled by Jupyter notebooks. Implementing JuMP
models as plain Julia scripts, while doable, does not provide
an interactive experience and can be frustrating to students
who are not familiar with the language. Specifically, Jupyter
allows students to experiment with their code and quickly see
the outcomes (i.e. execute pieces of code on-the-fly). This
feature is particularly important when building and debugging
complex optimization models. Moreover, students are asked
to submit their homework assignments as Jupyter notebooks,
and this teaches them how to properly document and share
code. Jupyter notebooks also enable students to learn and
appreciate the benefits of LaTeX (an advanced type-setting
system). The use of Jupyter notebooks also help students
understand the computational workflow behind their code
(an insight that gets lost when executing a script all-at-once).
The use of embedded visualization tools in notebooks has
also proven to be of high value, as most students prefer to
visualize data and like to perform sensitivity analyses (see
Figure 2). Notebooks thus provide a natural segue to the use

Vol. 54, No. 3, Summer 2020

Figure 2. Snapshot of Jupyter notebook implementing sensitivity

analysis for a simple optimization problem.

of data analysis, uncertainty quantification, and visualization
techniques.

CONCLUSIONS

Computational notebooks are powerful and versatile tools
that can be used at a variety of instructional levels. They have
become relatively easy to implement and can be leveraged to
help students understand physical, chemical, and biological
phenomena that chemical engineers deal with on a daily basis.
Furthermore, their use helps promote data and programming
literacy, which is becoming increasingly important for all
engineering disciplines.

ACKNOWLEDGMENTS

The authors would like to acknowledge the financial sup-
port provided by Computer Aids in Chemical Engineering
(CACHE) for faculty attending the CACHE 50th Anniversary
meeting.

149

REFERENCES

10.

11.

12.

150

Knuth DE (1984) Literate programming. The Computer Journal 27(2):
97-111. https://doi.org/10.1093/comjnl/27.2.97

Fangohr H (2004) A Comparison of C, MATLAB, and Python as
teaching languages in engineering. International Conference on
Computational Science 1210-1217.

Colliau T,Rogers G, Hughes Z and Ozgur C (2017) MatLab vs. Python
vs. R. Journal of Data Science 15(3): 355-372.

Perez F and Granger BE (2015) Project Jupyter: Computational nar-
ratives as the engine of collaborative data science.

Chiang L, Lu B and Castillo I (2017) Big data analytics in chemi-
cal engineering. Annual Review of Chemical and Biomolecular
Engineering 8: 63-85. https://doi.org/10.1146/annurev-chembio-

eng-060816-101555
Qin SJ (2014) Process data analytics in the era of big data. AIChE J.

60(9): 3092-3100. https://doi.org/10.1002/aic.14523

Felder RM and Brent R (2009) Active learning: An introduction. ASQ
Higher Education Brief2(4): 1-5.

Kantor J (2019) Jupyter Notebooks for ChE education. CAChE
Summer 2019 Newsletter available at https://cache.org/summer-
2019-newsletter

Kantor J (2019) CBE20255: Introduction to chemical engineering
analysis. https://github.com/jckantor/CBE20255 accessed September
14,2019.

Schneider WF (2019) CHE 30324: Physical chemistry for chemical
engineers. https://github.com/wmfschneider/CHE30324 accessed
September 14,2019.

Kantor J (2019) CBE 30338: Chemical process control. http:/jckantor.
github.io/CBE30338/ accessed April 18,2020.

Kantor J (2019) CBE 40455: Process operations. https://github.com/
jckantor/CBE40455 accessed September 14,2019.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Schneider WF (2019) CBE 60547: Computational chemistry. https://
github.com/wmfschneider/CBE60547 accessed September 14,2019.
Schneider WF (2017) CBE 60553: Advanced chemical engineering
thermodynamics https://github.com/wmfschneider/CBE60553 ac-
cessed September 14, 2019.

Guzman JL, Astrom KJ , Dormindo S, Hégglund T and Piguet Y
(2008) Interactive learning modules for PID control. I[EEE Control
Syst Mag 28(5): 118-134. https://doi.org/10.1109/MCS .2008.927332
Triandafilidi V, Tsai Y, Lim S, Lo NT, Kritharis A, Ioannidis N, Shen
EQ and VerrettJ (2019) CHBE 356 & CHBE 355. https://github.com/
OpenChemE accessed September 14, 2019.

Kitchin JR (2015) Examples of effective data sharing in scientific
publishing. ACS Catal. 5(6): 3894-3899. https://doi.org/10.1021/
acscatal.5b00538

Kitchin JR (2019) £19-06623. https://github.com/jkitchin/f19-06623
accessed September 14, 2019.

The Carpentries (2019) Programming with python. https://swcar-
pentry.github.io/python-novice-inflammation/ accessed September
14,2019.

Schleimer S, Wilkerson DS and Aiken A (2003) Winnowing: Local
algorithms for document fingerprinting. Proceedings 2003 ACM
SIGMOD international conference on management of data, 76-85.
https://doi.org/10.1145/872757.872770

Kitchin JR (2019) techela. https://github.com/jkitchin/techela ac-
cessed September 14, 2019.

Dunning I, Huchette J and Lubin M (2017) JuMP: A modeling lan-
guage for mathematical optimization. SIAM Rev. 59(2): 295-320.
https://doi.org/10.1137/15M 1020575

Bezanson J, Edelman A, Karpinski S, and Shah VB (2017) Julia: A
fresh approach to numerical computing. SIAM Rev. 59(1): 65-98.
https://doi.org/10.1137/141000671

Jalving J, Cao Y and Zavala VM (2019) Graph-based modeling and
simulation of complex systems. Comput. Chem. Eng. 125: 134-154.

https://doi.org/10.1016/j.compchemeng.2019.03.009

Chemical Engineering Education

