
Store-Collect in the Presence of Continuous
Churn with Application to Snapshots

and Lattice Agreement

Hagit Attiya1(B), Sweta Kumari1, Archit Somani1, and Jennifer L. Welch2

1 Department of Computer Science, Technion, Haifa, Israel
{hagit,sweta,archit}@cs.technion.ac.il

2 Department of Computer Science and Engineering, Texas A&M University,
College Station, TX, USA
welch@cse.tamu.edu

Abstract. We present an algorithm for implementing a store-collect object in an
asynchronous crash-prone message-passing dynamic system, where nodes con-
tinually enter and leave. The algorithm is very simple and efficient, requiring just
one round trip for a store operation and two for a collect. We then show the versa-
tility of the store-collect object for implementing churn-tolerant versions of useful
data structures, while shielding the user from the complications of the underlying
churn. In particular, we present elegant and efficient implementations of atomic
snapshot and generalized lattice agreement objects that use store-collect.

Keywords: Store-collect object · Dynamic message-passing systems · Churn ·
Crash resilience · Atomic snapshots · Generalized lattice agreement

1 Introduction

A popular programming technique that contributes to designing provably-correct dis-
tributed applications is to use shared objects for interprocess communication, instead of
more low-level techniques. Although shared objects are a convenient abstraction, they
are not generally provided in large-scale distributed systems; instead, nodes keep copies
of the data and communicate by sending messages to keep the copies consistent.

Dynamic distributed systems allow computing nodes to enter and leave the system
at will, either due to failures and recoveries, moving in the real world, or changes to the
systems’ composition, a process called churn. Motivating applications include those in
peer-to-peer, sensor, mobile, and social networks, as well as server farms. We focus on
the situation when the network is always fully connected, which could be due to, say,
an overlay network. A broadcast mechanism is assumed through which a node can send
a message to all nodes present in the system.

The usefulness of shared memory programming abstractions has been long estab-
lished for static systems (e.g., [4,5]), which have known bounds on the number of fixed
computing nodes and the number of possible failures. This success has inspired work

Supported by ISF grant 380/18 and NSF grant 1816922; full paper in [9].

c© Springer Nature Switzerland AG 2020
S. Devismes and N. Mittal (Eds.): SSS 2020, LNCS 12514, pp. 1–15, 2020.
https://doi.org/10.1007/978-3-030-64348-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64348-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-64348-5_1

2 H. Attiya et al.

on providing the same for newer, dynamic, systems. However, most of this work has
shown how to simulate a shared read-write register (e.g., [2,6,10,11,18]). We discuss a
couple of exceptions [12,21] below.

In this paper, we promote the store-collect shared object [7] (defined in Sect. 2) as a
primitive well-suited for dynamic message-passing systems with an ever-changing set
of participants. Each node can store a value in a store-collect object with a STORE oper-
ation and can collect the latest value stored by each node with a COLLECT operation.
Inherent in the specification of this object is an ability to track the set of participants
and to read their latest values.

Below we elaborate on three advantageous features of the store-collect object: The
store-collect semantics is well-suited to dynamic systems and can be implemented eas-
ily and efficiently in them; the widely-used atomic snapshot object can be implemented
on top of a store-collect object; and a variety of other commonly-used objects can be
implemented either directly on top of a store-collect or on top of an atomic snapshot
object. These implementations are simple and inherit the properties of being churn-
tolerant and efficient, showing that store-collect combines algorithmic power and effi-
ciency.

A churn-tolerant store-collect object can be implemented fairly easily. We adopt
essentially the same system model as in [6], which allows ongoing churn as long as not
too many churn events take place during the length of time that a message is in transit.
To capture this constraint, there is an assumed upper boundD on the maximummessage
delay, but no (positive) lower bound. Nodes do not know D and have no local clocks,
causing consensus to be unsolvable [6]. The model differentiates between nodes that
crash and nodes that leave; nodes that have entered but not left are considered present
even if crashed. The number of nodes that can be crashed at any time is bounded by a
fraction of the number of nodes present at that time. During any time interval of length
D, the number of nodes entering or leaving is a fraction of the number of nodes present
in the system at the beginning of the interval. (See Sect. 3 for model details.)

Our algorithm for implementing a churn-tolerant store-collect object is based on
the read-write register algorithm in [6]. It is simple and efficient: once a node joins, it
completes a store operation within one round-trip, and a collect operation within two
round-trips. The store-collect object satisfies a variant of the “regularity” consistency
condition, which is weaker than linearizability [19]. In contrast to our single-round-trip
store operation, the write operation in the algorithm of [6] requires two round trips.
Another difference between the algorithms is that in ours, each node keeps a local set
of tuples with an entry for each known node and its value instead of a single value;
when receiving new information, instead of overwriting the single value, our algorithm
merges the new information with the old. One contribution of our work in this paper
is a significantly revised proof of the churn management protocol that is much simpler
than that in [6], consequently making it easier to build on the results. (See Sect. 4.)

Building an atomic snapshot on top of a store-collect object is easy! We present a
simple algorithm with an elegant correctness proof (Sect. 5.1). One may be tempted to
implement an atomic snapshot in our model by plugging churn-tolerant registers (e.g.,
[6]) into the original algorithm of [1]. Besides needlessly sequentializing accesses to the
registers, such an implementation would have to track the current set of participants. A

Store-Collect in the Presence of Continuous Churn with Applications 3

store-collect object which encapsulates the changing participants and collects informa-
tion from them in parallel, yields a simple algorithm very similar in spirit to the original
but whose round complexity is linear instead of quadratic in the number of participants.
The key subtlety of the algorithm is the mechanism for knowing when to borrow a scan
in spite of difficulties caused by the churn, in order to ensure termination.

Atomic snapshot objects have numerous uses in static systems, e.g., to build multi-
writer registers, concurrent timestamp systems, counters, and accumulators, and to
solve approximate agreement and randomized consensus (cf. [1,4]). In addition to anal-
ogous applications, we show (Sect. 5.2) how a churn-tolerant atomic snapshot object
can be used to provide a churn-tolerant generalized lattice agreement object [15]. This
object supports a PROPOSE operation whose argument is a value belonging to a lat-
tice and whose response is a lattice value that is the join of some subset of all prior
input values, including its own argument. Generalized lattice agreement is an extension
of (single-shot) lattice agreement, well-studied in the static shared memory model [8].
Generalized lattice agreement has been used to implement many objects [13,15], most
notably, conflict-free replicated data types [21,24,25].

The store-collect object specification is versatile. Our atomic snapshot and gener-
alized lattice agreement algorithms demonstrate that layering linearizability on top of
a store-collect object is easy. Yet not every application needs the costs associated with
linearizability, and store-collect gives the flexibility to avoid them. Our approach to pro-
viding churn-tolerant shared objects is modular, as the underlying complications of the
message-passing and the churn is hidden from higher layers by our store-collect imple-
mentation. As evidence, we observe in [9] that store-collect allows very simple imple-
mentations of max-registers, abort flags, and sets, in which an implemented operation
takes at most a couple of store and collect operations. The choice of problems and the
algorithms follow [21] but the algorithms inherit good efficiency and churn-tolerance
properties from our store-collect implementation.

Related Work: An algorithm that directly implements an atomic snapshot object in
a static message-passing system, bypassing the use of registers, is presented in [14].
This algorithm includes several nice optimizations to improve the message and round
complexities. These include speeding up the algorithm by parallelizing the collect, as
is already encapsulated in our store-collect algorithm. Our atomic snapshot algorithm
works in a dynamic system and has a shorter and simpler proof of linearizability.

Aguilera [3] presents a specification and algorithm for atomic snapshots in a
dynamic model in which nodes can continually enter and communicate via shared reg-
isters. This algorithm is then used for group membership and mutual exclusion in that
model. Variations of the model were proposed in [17,22], which provided algorithms
for election, mutual exclusion, consensus, collect, snapshot, and renaming. Spiegelman
and Keidar [23] present atomic snapshot algorithms for a crash-prone dynamic sys-
tem in which processes communicate via shared registers. Their algorithms uniquely
identify each scan operation with a version number to help determine when a scan can
be borrowed; we use a similar mechanism in our snapshot algorithm. However, our
atomic snapshot algorithm uses a shared store-collect object which tolerates ongoing
churn. Our use of a non-linearizable building block requires a more delicate approach to

4 H. Attiya et al.

proving linearizability, as we cannot simply choose, say, a specific write to an atomic
register as the linearization point of an update, as can be done in [23].

The problem of implementing shared objects in the presence of ongoing churn and
crash failures in message-passing systems is studied in [10,11], for read-write registers,
and [12], for sets. Unlike our results, these papers assume the system size is restricted
to a fixed window and the system is eventually synchronous. Like our algorithms, the
set algorithm in [12] uses unbounded local memory at the nodes.

A popular alternative way to model churn in message-passing systems is as
a sequence of quorum configurations, each of which consists of a set of nodes
and a quorum system over that set (e.g., [2,16,18,20,21]). Explicit reconfiguration
operations replace older configurations with newer ones. The assumptions made in
[2,16,18,20,21] are incomparable with those in [6] and in our paper, as the former
assume churn eventually stops while the latter assume the churn is bounded.

Most papers on generalized lattice agreement have assumed static systems (cf. [8,
13,15,24,25]. A notable exception is [21], which considers dynamic systems subject to
changes in the composition due to reconfiguration. This paper provides an implemen-
tation for a large class of shared objects, including conflict-free replicated data types,
that can be modeled as a lattice. By showing how to view the state of the system as a
lattice as well, the paper elegantly combines the treatment of the reconfiguration and the
operations on the object. Unlike our work, the algorithms in [21] require that changes
to the system composition eventually cease in order to ensure progress.

2 The Store-Collect Problem

A shared store-collect object [7] supports concurrent store and collect operations per-
formed by some set of clients. Each operation has an invocation and response. For
a store operation, the invocation is of the form STOREp(v), where v is a value drawn
from some set and p indicates the invoking client, and the response is of the form ACKp,
indicating that the operation has completed. For a collect operation, the invocation is of
the form COLLECTp and the response is of the form RETURNp(V), where V is a view,
that is, a set of client-value pairs without repetition of client ids. We use the notation
V (p) to indicate v if 〈p, v〉 ∈ V and ⊥ if no pair in V has p as its first element.

Informally, the behavior required of a store-collect object is that each collect oper-
ation should return a view containing the latest value stored by each client. We do not
require the store and collect operations to appear to occur instantaneously, that is, the
object is not necessarily linearizable.

A sequence σ of invocations and responses of store and collect operations is a sched-
ule if, for each client id p, the restriction of σ to invocations and responses by p consists
of alternating invocations and matching responses, beginning with an invocation. Each
invocation and its matching following response (if present) together make an operation.
If the response of operation op comes before the invocation of operation op′ in σ, then
we say op precedes op′ (in σ) and op′ follows op. We assume that every value writ-
ten in a store operation in a schedule is unique (a condition that can be achieved using
sequence numbers and client ids).

A schedule σ satisfies regularity for the store-collect problem if:

Store-Collect in the Presence of Continuous Churn with Applications 5

– For each collect operation cop in σ that returns V and every client p, if V (p) = ⊥,
then no store operation by p precedes cop in σ. If V (p) = v �= ⊥, then there is
a STOREp(v) invocation that occurs in σ before cop completes and no other store
operation by p occurs in σ between this invocation and the invocation of cop.

– For every two collect operations in σ, cop1 which returns V1 and cop2 which returns
V2, if cop1 precedes cop2 in σ, then for every 〈p, v1〉 ∈ V1, there exists v2 such that
〈p, v2〉 ∈ V2 where either v1 = v2 or the STOREp(v1) invocation occurs before the
STOREp(v2) invocation in σ. We denote this as V1 � V2.

3 Overview of System Model

The events that can occur at a node p are entering the system (ENTERp), leaving the
system (LEAVEp), crashing (CRASHp), receiving a message m (RECEIVEp(m)), and
invoking an operation (COLLECTp or STOREp(v)). The occurrence of an event at node
p results in changes to p’s local state; optionally, a message to be broadcast; and option-
ally, a response, which is RETURNp(V) for a collect, ACKp for a store, and JOINEDp

for the enter. An execution is a collection of sequences of events, one sequence for each
node, that satisfies certain conditions. The key points are the following.

A node enters, leaves, and crashes at most once. A node does nothing before it
enters and after it crashes or leaves.

We assume that a nonnegative real number is associated with each event in an exe-
cution, which is the time when the event occurs. A node is present at time t if it entered
but did not leave before time t; a crashed node is considered to be present. N(t) is the
number of nodes present at time t. There is a constant Nmin such that N(t) ≥ Nmin

for all t ≥ 0. A node is active at time t if it is present and not crashed at time t.
At time 0, the system consists of a finite nonempty set of nodes, S0, that are consid-

ered by definition to be active. Initially nodes in S0 have knowledge about all the nodes
in S0; every other node, which enters after time 0, has no initial knowledge about any
node other than itself. A node is joined (or a member) at time t if it is present (has not
left) and either is in S0 or has experienced JOINEDp.

A broadcast service reliably delivers each message sent by node p at time t to each
node q that is active throughout [t, t + D], where D > 0 is a maximum message delay
unknown to the nodes, if p’s next event is not CRASHp. If p’s next event is to crash or if q
enters, leaves, or crashes during the interval, there is no guarantee whether q receives the
message. This is a weaker broadcast specification than in [6], which assumed broadcasts
were atomic with respect to crashes. Messages from the same sender are received in the
order they are sent. Every message that is received has delay in (0,D].

Let α > 0 and 0 < Δ < 1 be real numbers that denote the churn rate and failure
fraction, respectively. The parameters α and Δ are known to the nodes. For all times
t ≥ 0, there are at most α ·N(t) enter and leave events in [t, t+D] (churn assumption),
and at most Δ · N(t) nodes are crashed at time t (failure fraction assumption).

An algorithm is a correct implementation of a store-collect object if in every exe-
cution: (1) Every node that enters the system after time 0 and remains active eventually
joins, and no joined node p experiences JOINEDp. (2) Every store or collect operation
invoked at a node that remains active eventually completes. (3) The schedule resulting

6 H. Attiya et al.

from restricting the execution to the store and collect invocations and responses satisfies
regularity for the store-collect problem.

4 The Continuous Churn Collect (CCC) Algorithm

In our algorithm, nodes run client threads, which invoke collect and store operations,
and server threads. We assume that the code segment that is executed in response to
each event executes without interruption.

Our implementation adds a sequence number, sqno, to each value in a view, which
is now a set of triples, {〈p, v, sqno〉, . . .}, without repetition of node ids. We use the
notation V (p) = v if there exists sqno such that 〈p, v, sqno〉 ∈ V , and ⊥ if no triple in
V has p as its first element. A merge of two views picks the latest value in each view.
That is, given two views V1 and V2, merge(V1, V2) is the subset of V1 ∪V2 consisting of
every triple whose node id is in one of V1 and V2 but not the other, and, for node ids that
appear in both V1 and V2, it contains only the triple with the larger sequence number.
Note that V1, V2 � merge(V1, V2).

A node p tracks the composition of the system with a set Changes of events con-
cerning the nodes that have entered the system. Initially, node p’s Changes set equals
{enter(q)|q ∈ S0} ∪ {join(q)|q ∈ S0}, if p ∈ S0, and ∅ otherwise. Node p
also maintains a set of nodes that it believes are present: Present = {q|enter(q) ∈
Changes ∧ leave(q) �∈ Changes}, i.e., nodes that have entered, but have not left, as far
as p knows. The code for managing these sets (Algorithm 1) is the same as [6] except
for Line 5, which merges newly received information with current local information
instead of overwriting it. Once a node has joined, its client thread handles collect and
store operations (Algorithm 2) and its server thread (Algorithm 3) responds to clients.
The client at node p maintains a derived variable Members = {q | join(q) ∈ Changes∧
leave(q) �∈ Changes} of nodes it considers as members, i.e., nodes that have joined but
not left.

Each node keeps a local copy of the current view in its LView variable. In a collect
operation, a client thread requests the latest value of servers’ local views using a collect-
query message (Line 29). When a server node p receives a collect-query message, it
responds with its local view (LView) through a collect-reply message (Line 53) if p
has joined the system. When the client receives a collect-reply message, it merges its
LViewwith the received view (RView), to get the latest value corresponding to each node
(Line 31). Then the client waits for sufficiently many collect-reply messages before
broadcasting the current value of its LView variable in a storemessage (Line 36). When
server p receives a store message with a view RView, it merges RView with its local
LView (Line 50) and, if p is joined, it broadcasts store-ack (Line 48). The client waits
for sufficiently many store-ackmessages before returning LView to complete the collect
(Line 47); this threshold is recalculated in Line 34 to reflect possible changes to the
system composition that the client has observed.

In a store operation, a client thread updates its local variable LView to reflect the
new value by doing a merge (Line 39) and broadcasts a store message (Line 42). When
server p receives a store message with view RView, it merges RView with its local
LView (Line 48) and, if p is joined, it broadcasts store-ack (Line 50). The client waits
for sufficiently many store-ack messages before completing the store (Line 46).

Store-Collect in the Presence of Continuous Churn with Applications 7

Algorithm 1. CCC—Common code managing churn, for node p.
Local Variables:
LView: set of (node id, value, sequence number) triples, initially ∅ // local view
is_joined: Boolean, initially false // true iff p has joined the system
join_threshold: int, initially 0 // number of enter-echo messages needed for joining
join_counter: int, initially 0 // number of enter-echo messages received so far
Changes: set of enter(q), leave(q), and join(q) // active membership events known to p

initially {enter(q)|q ∈ S0} ∪ {join(q)|q ∈ S0} if p ∈ S0, and ∅ otherwise
Derived Variable:
Present = {q | enter(q) ∈ Changes∧ leave(q) �∈ Changes}

When ENTERp occurs:
1: add enter(p) to Changes
2: broadcast 〈enter, p〉

When RECEIVEp〈enter, q〉 occurs:
3: add enter(q) to Changes
4: broadcast〈enter-echo,Changes, LView,

is_joined, q〉

When RECEIVEp〈enter-echo, C, RView, j, q〉
occurs:
5: LView = merge(LView, RView)
6: Changes = Changes ∪ C
7: if ¬is_joined ∧ (p == q) then
8: if (j ==true)∧(join_threshold == 0)

then
9: join_threshold = γ · |Present|
10: join_counter++
11: if join_counter ≥ join_threshold > 0

then
12: is_joined = true
13: add join(p) to Changes

14: broadcast 〈join, p〉
15: return JOINEDp

When RECEIVEp〈join, q〉 occurs:
16: add join(q) to Changes
17: add enter(q) to Changes
18: broadcast 〈join-echo, q〉

When RECEIVEp〈join-echo, q〉 occurs:
19: add join(q) to Changes
20: add enter(q) to Changes

When LEAVEp occurs:
21: broadcast 〈leave, p〉
22: halt

When RECEIVEp〈leave, q〉 occurs:
23: add leave(q) to Changes
24: broadcast 〈leave-echo, q〉

When RECEIVEp〈leave-echo, q〉 occurs:
25: add leave(q) to Changes

The fraction β is used to calculate the number of messages that should be received
(stored in local variable threshold) based on the size of the Members set, for the oper-
ation to terminate. Setting β is a key challenge in the algorithm as setting it too small
might not return correct information from collect or store, whereas setting it too large
might not guarantee termination of the collect and store.

We define a phase to be the execution by a client node p of one of the following
intervals of its code: (1) lines 26 through 33, the first part of a collect operation, (2)
lines 34 through 36 and 43 through 47, the second part of a collect operation called the
“store-back”, or (3) lines 37 through 46, the entirety of a store operation. The first kind
of phase is called a collect phase while the second and third kinds are called a store
phase. For any completed phase ϕ executed by node p, define view(ϕ) to be the value
of LViewt

p, where t is the time at the end of the phase. Since a store operation consists
solely of a store phase, we also apply the notation to an entire store operation.

8 H. Attiya et al.

Algorithm 2. CCC—Client code, for node p.
Local Variables:
optype: string, initially ⊥ // indicates which type of operation (collect or store) is pending
tag: int, initially 0 // counter to identify currently pending operation by p
threshold: int, initially 0 // number of replies/acks needed for current phase
counter: int, initially 0 // number of replies/acks received so far for current phase
sqno: int, initially 0 // sequence number for values stored by p
Derived Variable:
Members = {q| join(q) ∈ Changes ∧ leave(q) �∈ Changes}

When COLLECTp occurs:
26: optype = collect; tag++
27: threshold = β · |Members|
28: counter = 0
29: broadcast 〈collect-query, tag, p〉

When RECEIVEp〈collect-reply, RView, t, q〉
occurs:
30: if (t == tag) ∧(q == p) then
31: LView = merge(LView, RView)
32: counter++
33: if (counter ≥ threshold) then
34: threshold = β · |Members|
35: counter = 0
36: broadcast 〈store, LView, tag, p〉

When STOREp(v) occurs:
37: optype = store; tag++
38: sqno++
39: LView = merge(LView,{〈p, v, sqno〉})
40: threshold = β · |Members|
41: counter = 0
42: broadcast 〈store, LView, tag, p〉

When RECEIVEp〈store-ack, t, q〉 occurs:
43: if (t == tag) ∧(q == p) then
44: counter++
45: if (counter ≥ threshold) then
46: if (optype==store) then return ACK
47: else return LView

Algorithm 3. CCC—Server code, for node p.

When RECEIVEp〈store, RView,tag, q〉 occurs:
48: LView = merge(LView, RView)
49: if is_joined then
50: broadcast 〈store-ack, tag, q〉
51: broadcast 〈store-echo, LView〉

When RECEIVEp〈collect-query, tag, q〉 occurs:
52: if is_joined then
53: broadcast 〈collect-reply, LView, tag, q〉

When RECEIVEp〈store-echo, RView〉 occurs:
54: LView = merge(LView, RView)

To prove the correctness of the algorithm, consider any execution of the algorithm.
The correctness of the algorithm relies on the following constraints (Z =

[
(1 − α)3

−Δ · (1 + α)3
]
, which is the fraction of nodes that survive an interval of length 3D):

Nmin ≥ 1
Z + γ − (1 + α)3

(A)

γ ≤ Z/(1 + α)3 (B)

β ≤ Z/(1 + α)2 (C)

β >
(1 − Z)(1 + α)5 + (1 + α)6

((1 − α)3 − Δ · (1 + α)2)((1 + α)2 + 1)
(D)

Store-Collect in the Presence of Continuous Churn with Applications 9

Fortunately, there are values for the parameters α, Δ, γ, and β that satisfy these con-
straints. In the extreme case when α = 0 (i.e., no churn), the failure fraction Δ can
be as large as 0.21; in this case, it suffices to set both γ and β to 0.79 for any value
of Nmin that is at least 2. As α increases up to 0.04, Δ must decrease approximately
linearly until reaching 0.01; in this case, it suffices to set γ to 0.77 and β to 0.80 for any
value of Nmin that is at least 2. The following technical claims hold:

Lemma 1. For all i ∈ N and all t ≥ 0, (a) at most ((1 + α)i − 1) · N(t) nodes enter
during (t, t + i · D]; and (b) N(t + i · D) ≤ (1 + α)i · N(t).

Lemma 2. For any interval [t1, t2] with t2 − t1 ≤ 3D, where S is the set of nodes
present at t1, at least Z · |S| of the nodes in S are active at t2.

Below, a local variable name is subscripted with p and superscripted with t to denote
its value in node p at time t; e.g., vt

p is the value of node p’s local variable v at time t.
In the analysis, we will frequently be comparing the data in nodes’ Changes sets to

the set of ENTER, JOINED, and LEAVE events that have actually occurred in a certain
interval. We are especially interested in these events that trigger a broadcast invoked
by a node that is not in the middle of crashing, as these broadcasts are guaranteed to
be received by all nodes that are present for the requisite interval. We call these active
membership events. Because of the assumed initialization of the nodes in S0, we use
the convention that the set of active membership events occurring in the interval [0, 0]
is {enter(p)|p ∈ S0} ∪ {join(p)|p ∈ S0}. The next lemma holds:

Lemma 3. For every node p and all times t such that p is joined and active at t,
Changestp contains all the active membership events for [0,max{0, t − 2D}].

We can prove that a node that is active sufficiently long eventually joins.

Theorem 1. Every node p that enters at some time t and is active for at least 2D time
joins by time t + 2D.

Theorem 2. A phase invoked by a client that remains active completes within 2D time.

Proof sketch. Consider a phase invoked by node p at time t. Let S be the set of nodes
present at time max{0, t − 2D}. Lemma 2 and Theorem 1 imply that at least Z · |S|
of them are joined by time t and active at time t + D, and thus respond to p’s message.
We argue that Z · |S| is at least as large as the value of threshold computed by p in
Line 27 or 34 or 40 of Algorithm 2. We first show that |S| ≥ |Presenttp|/(1 + α)2, by
Lemmas 3 and 1(a). Then we note that Constraint C implies that Z/(1 + α)2 ≥ β, and
so Z · |S| ≥ β · |Presenttp|. Since |Presenttp| ≥ |Memberstp|, the definition of threshold
gives the result.
�

The next lemma shows that the view of a store phase is smaller, in the partial order
�, than the view of a subsequent, non-overlapping, collect phase.

Lemma 4. For any store phase s and any collect phase c, if s finishes before c starts
and c terminates, then view(s) � view(c).

10 H. Attiya et al.

Theorem 3. The schedule resulting from the restriction of the execution to the store
and collect invocations and responses satisfies regularity for the store-collect problem.

Proof. (1) Suppose cop is a collect operation that returns view V . Let c be the collect
phase of cop. Let p be a node. If V (p) = ⊥ and a store operation by p, consisting
of store phase s, precedes cop, then, by Lemma 4, view(s) � view(c). Hence, view(s)
contains a tuple for p with a non-⊥ value, which is a contradiction.

Therefore, V (p) = v �= ⊥. We show that a STOREp(v) invocation occurs before
cop completes and no other store operation by p occurs between this invocation and
the invocation of cop. A simple induction shows that every (non-⊥) value for one node
in another node’s LView variable at some time comes from a STORE invocation by the
first node that has already occurred. Since V is the value of the invoking node’s LView
variable when cop completes, there is a previous STOREp(v) invocation.

Now suppose for the sake of contradiction that the STOREp(v) completes—call this
operation sop—and there is another store operation by p, call it sop′, that follows sop
and precedes cop. Let v′ be the value of sop′; by the assumption of unique values,
v �= v′. Since sop and sop′ are executed by the same node, it is easy to see from the
code that view(sop) � view(sop′). By Lemma 4, view(sop′) � view(c) = V . But then
value v is superseded by value v′ �= v, contradicting the assumption that V (p) = v.

(2) Suppose cop1 and cop2 are two collect operations such that cop1 returns V1,
cop2 returns V2, and cop1 precedes cop2. Note that cop1 contains a store phase s which
finishes before the collect phase c of cop2 begins. By Lemma 4, view(s) � view(c).
Regularity holds since view(s) = V1 and view(c) = V2, implying that V1 � V2.
�

By Theorem 1, every node that enters and remains active sufficiently long eventually
joins. Since a store operation consists of a store phase and a collect operation consists
of a collect phase followed by a store phase, by Theorem 2, every operation eventually
completes as long as the invoker remains active. Finally, Theorem 3 ensures regularity.

Corollary 1. CCC is a correct implementation of a store-collect object, in which each
Store or Collect completes within a constant number of communication rounds.

5 Implementing Distributed Objects Despite Continuous Churn

We show implementations of two objects using store-collect. Three additional objects
are discussed in [9]. For all applications, we assume that the conditions for store-collect
termination hold, which guarantees termination of the operations.

5.1 Atomic Snapshots

Like other atomic snapshot algorithms [1,14,23], our algorithm uses repeated collects
to identify an atomic scan when two collects return the same collected views. Updates
help scans to complete by embedding an atomic scan that can be borrowed by over-
lapping scans they interfere with. The set from which the values to be stored in the
snapshot object are taken is denoted ValAS . A snapshot view is a subset of Π ×ValAS ,
i.e., a set of (node id, value) pairs, without duplicate node ids.

Store-Collect in the Presence of Continuous Churn with Applications 11

An atomic snapshot provides two operations: SCAN(), which has no arguments and
returns a snapshot view, and UPDATE(v), which takes a value v ∈ V alAS as an argu-
ment and returns ACK. Its sequential specification consists of all sequences of updates
and scans in which the snapshot view returned by a SCAN contains the value of the last
preceding UPDATE for each node p, if such an UPDATE exists, and no value, otherwise.

An implementation should be linearizable [19]. Roughly speaking, for every exe-
cution α, we should find a sequence of operations, containing all completed operations
in α and some of the pending operations, which is in the sequential specification of an
atomic snapshot, and preserves the real-time order of non-overlapping operations in α.

Our algorithm to implement an atomic snapshot uses a store-collect object, whose
values are taken from the set (P indicates the power set of its argument):

ValSC = ValAS × N × N × P(Π × ValAS) × P(Π × N)

The first component (val) holds the argument of the most recent update invoked at p.
The second component (usqno) holds the number of updates performed by p. The third
component (ssqno) holds the number of scans performed by p. The fourth component
(sview) holds a snapshot view that is the result of a recent scan done by p; it is used
to help other nodes complete their scans. The fifth component (scounts) holds a set of
counts of how many scans have been done by the other nodes, as observed by p. The
projection of an element v in ValSC onto a component is denoted, respectively, v.val,
v.usqno, v.ssqno, v.sview, v.scounts.

A store-collect view is a subset of Π × ValSC , i.e., a set of (node id, value) pairs,
with no duplicate node ids. We extend the projection notation to a store-collect view
V , so that V.comp is the result of replacing each tuple 〈p, v〉 in V with 〈p, v.comp〉;
when v.comp = ⊥, the tuple is omitted. Recall that for any kind of view V , V (p) is the
second component of the pair whose first component is p (⊥ if there is no such pair).

To execute a SCAN, Algorithm 4 increments the scan sequence number (ssqno)
(Line 55) and stores it in the shared store-collect object with all the other components
unchanged, indicated by the − notation. Then, a view is collected (Line 57). In a while
loop, the last collected view is saved and a new view is collected (Line 59). If the two
most recently collected views are equal (Line 60), the latest collected view is returned
(Line 61). We call this a successful double collect, and say that this is a direct scan. Oth-
erwise, the algorithm checks whether the last collected view contains a node q that has
observed its own ssqno, by checking the scounts component (Line 62). If this condition
holds, the snapshot view of q is returned (Line 63); we call this a borrowed scan.

An UPDATE first obtains all scan sequence numbers from a collected view and
assigns them to a local variable scounts (Line 64). Next, the value of an embedded
scan is saved in a local variable sview (Line 65). Then it sets its val variable to the argu-
ment value and increments its update sequence number (Lines 66 and 67). Finally the
new value, update sequence number, collected view, and set of scan sequence numbers
are stored; the node’s own scan sequence number is unchanged (Line 68).

To prove linearizability, we consider an execution and specify an ordering of all the
completed scans and all the updates whose store on Line 68 takes effect. The ordering
takes into consideration the embedded scans, which are inside updates, as well as the
“free-standing” scans; since scans do not change the state of the atomic snapshot object,
it is permissible to do so. We first show that direct scans are comparable in the � order.

12 H. Attiya et al.

Algorithm 4. Atomic snapshot: code for node p.
Local Variables:
ssqno: int, initially 0 // counts how many scans p has invoked so far
scounts: set of (node id, integer) pairs with no duplicate node ids; initially ∅
val: an element of ValAS , initially ⊥ // argument of most recent update invoked by p
usqno: int, initially 0 // number of updates p has invoked so far
sview: a snapshot view, initially ∅ // the result of recent embedded scan by p
V1, V2: store-collect views, both initially ∅

When SCANp() occurs:
55: ssqno++
56: STOREp(〈−, −, ssqno, −, −〉)
57: V1 = COLLECTp()
58: while true do
59: V2 = V1; V1 = COLLECTp()
60: if (V1 == V2) then
61: return V1.val // direct scan
62: if ∃q such that

〈p, ssqno〉 ∈ V1(q).scounts then

63: return V1(q).sview
// borrowed scan

When UPDATEp(v) occurs:
64: scounts = COLLECTp().ssqno
65: sview = SCANp() // embedded scan
66: val = v
67: usqno++
68: STOREp(〈val, usqno, −, sview, scounts〉)
69: return ACK

Lemma 5. If a direct scan by node p returns V1 and a direct scan by node q returns V2,
then either V1 � V2 or V2 � V1.

Proof. Let cop1p and cop2p be the last two collects of p (both returning V1), and cop1q
and cop2q be the last two collects of q (both returning V2). We have that either cop1p
completes before cop2q starts or cop1q completes before cop2p starts. In the former case,
by the regularity of store-collect, V1 � V2, while in the latter case, V2 � V1.
�

Consider all direct scans in the order they complete and place them by the compa-
rability order. If a direct scan returning snapshot view V1 precedes another direct scan
returning snapshot view V2, then the regularity of store-collect ensures V1 � V2. Hence,
this ordering preserves the real-time order of non-overlapping direct scans.

The next lemma helps to order borrowed scans. Its statement is based on the obser-
vation that if a scan sopp by node p borrows the snapshot view in V1(q), then there is
an update uopq by q that writes this view (via a store).

Lemma 6. If a scan sopp by node p borrows from a scan sopq by node q, then sopq
starts after sopp starts and completes before sopp completes.

Proof. Let uopq be the update in which sopq is embedded. Since sopp borrows the
snapshot view of sopq, its ssqno appears in scounts of q’s value in the view collected in
Line 59. The properties of store-collect imply that the collect of uopq (Line 64) does not
complete before the store of p (Line 56) starts. Hence, sopq (called in Line 65) starts
after sopp starts. Furthermore, since the collect of p returns the snapshot view stored
after sopq completes (Line 68), sopq completes before sopp completes.
�

For every borrowed scan sop1, there exists a chain of scans sop2, sop3, . . ., sopk
such that sopi borrows from sopi+1, 1 ≤ i < k, and sopk is a direct scan from which

Store-Collect in the Presence of Continuous Churn with Applications 13

sop1 borrows. Consider all borrowed scans in the order they complete and place each
borrowed scan after the direct scan it borrows from, as well as all previously linearized
borrowed scans that borrow from the same direct scan. Applying Lemma 6 inductively,
sopk starts after sop1 starts and completes before sop1 completes, i.e., the direct scan
from which a scan borrows is completely contained, in the execution, within the bor-
rowing scan. This fact, together with the rule for ordering borrowed scans, implies that
the real-time order of any two scans, at least one of which is borrowed, is preserved
since direct scans have already been shown to be ordered properly.

Finally, we consider all updates in the order their stores (Line 68) start. Place each
update, say uop by node p with argument v, immediately before the first scan whose
returned view includes 〈p, v′〉, where either v′ = v or v′ is the argument of an update
by p that follows uop. If there is no such scan, then place uop at the end of the ordering.
Note that all later scans return snapshot views that include 〈p, v′〉, where either v′ = v
or v′ is the argument of an update by p that follows uop. This rule for placing updates
ensures that the ordering satisfies the sequential specification of atomic snapshots.

Note that if a scan completes before an update starts, then the scan’s returned view
cannot include the update’s value; similarly, if an update completes before a scan starts,
then the scan’s returned view must includes the update’s value or a later one. This
shows that the ordering respects the real-time order between non-overlapping updates
and scans. The next lemma deals with non-overlapping updates.

Lemma 7. Let V be the snapshot view returned by a scan sop. If V (p) is the value of
an update uopp by node p and an update uopq by node q precedes uopp, then V (q) is
the value of uopq or a later update by q.

Consider an update uopp, by node p, that follows an update uopq, by node q, in the
execution. If uopp is placed at the end of the (current) ordering because there is no scan
that observes its value or a later update by p, then it is ordered after uopq. If uopp is
placed before a scan, then the same must be true of uopq. By construction, the next scan
after uopp in the ordering, call it sop, returns view V with V (p) equal to the value of
uopp or a later update by p. By Lemma 7, V (q) must equal the value of uopq or a later
update by q. Thus uopq cannot be placed after sop, and thus it is placed before uopp.

We now consider the termination property of the algorithm. Let V1 and V2 be two
collect views returned by consecutive collects cop1 and cop2, within a scan sopq by
node q. If this double collect is not successful, then V1 �= V2. If V1(p).usqno �=
V2(p).usqno, then it is immediate that for some update uopp of node p, either uopp’s
scounts includes the scan sequence number of sopq, or uopp starts before sopq starts.
Let t be the time that sopq starts, and note that at most N(t) updates are pending at time
t. Further note that if uopp’s scounts includes the scan sequence number of sopq, then
sopq can borrow the scan view of uopp’s embedded scan. This implies that sopq has at
most N(t) unsuccessful double collects before it can borrow a scan view, and there-
fore it executes at most O(N(t)) collects. Hence, UPDATE executes at most O(N(t))
collects and stores. Putting the pieces together, we have:

Theorem 4. Algorithm 4 is a linearizable implementation of an atomic snapshot
object. The number of communication rounds in a SCAN or an UPDATE operation is at
most linear in the number of nodes present in the system when the operation starts.

14 H. Attiya et al.

5.2 Generalized Lattice Agreement

Let 〈L,�〉 be a lattice, where L is the domain of lattice values, ordered by �. We
assume a join operator, �, that merges lattice values. A node p calls a PROPOSE opera-
tion with a lattice input value, and gets back a lattice output value. The input to p’s i-th
PROPOSE is denoted vp

i and the response is wp
i . The following conditions are required:

(1) Every response value wp
i is the join of some values proposed before this response,

including vp
i , and all values returned to any node before the invocation of p’s i-th PRO-

POSE (validity). (2) Any two values wp
i and wq

j are comparable (consistency). This
definition is a direct extension of one-shot lattice agreement [8], following [21]. The
version studied in [15] is weaker and lacks real-time guarantees across nodes.

Our algorithm uses an atomic snapshot object, in which each node stores a single
lattice value (val). A PROPOSE operation is simply an UPDATE of a lattice value which
is the join of all the node’s previous inputs, followed by a SCAN returning the analogous
values for all nodes, whose join is the output of PROPOSE.

Validity and consistency are immediate from atomic snapshot properties. Clearly,
the algorithm terminates within O(N) collects and stores, where N is the maximum
number of nodes concurrently active during the execution of PROPOSE. Since PROPOSE

includes one UPDATE and one SCAN, it terminates if the node does not crash or leave.

6 Conclusion

We have advocated for the usefulness of the store-collect object as a powerful, flexible,
and efficient primitive for implementing a variety of shared objects in dynamic systems
with continuous churn. If the level of churn is too great, our store-collect algorithm
is not guaranteed to preserve the safety property; that is, a collect might miss the value
written by a previous store, essentially by the same counter-example as that given in [6].
This behavior is in contrast to the algorithms in [2,18,21], which never violate the safety
property but only ensure progress once reconfigurations cease. In future work, we would
like to either improve our algorithm to avoid this behavior or prove that any algorithm
that tolerates ongoing churn is subject to such bad behavior.

Our correctness proof for our store-collect algorithm requires that the parameters
defining the churn rate and failure fraction satisfy certain conditions. These conditions
imply that even in the absence of churn the failure fraction tolerable by our algorithm
is smaller than in the static case (namely, less than one-third versus less than one-half).
Some degradation is unavoidable when allowing for the possibility of churn, since an
argument from [6] can be adapted to show that when implementing store-collect in a
system with churn rate α, the fraction of failures must be less than 1/(α + 2). It would
be nice to find less restrictive constraints on the parameters, either through a better
analysis or a modified algorithm, or to show that they are necessary.

Another desirable modification to the store-collect algorithm would be reducing
the size of the messages and the amount of local storage by garbage-collecting the
Changes sets. In the same vein, we would like to know if modifying the atomic snapshot
specification to remove from returned views entries of nodes that have left, as is done
in [23], can lead to a more space-efficient algorithm.

Store-Collect in the Presence of Continuous Churn with Applications 15

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of shared
memory. J. ACM 40(4), 873–890 (1993)

2. Aguilera, M.K., Keidar, I., Malkhi, D., Shraer, A.: Dynamic atomic storage without consen-
sus. J. ACM 58(2), 7:1–7:32 (2011)

3. Aguilera, M.K.: A pleasant stroll through the land of infinitely many creatures. SIGACT
News 35(2), 36–59 (2004)

4. Aspnes, J.: Notes on theory of distributed systems. http://www.cs.yale.edu/homes/aspnes/
classes/465/notes.pdf. Accessed 8 Aug 2020

5. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing systems. J.
ACM 42(1), 124–142 (1995)

6. Attiya, H., Chung, H., Ellen, F., Kumar, S., Welch, J.: Emulating a shared register in an
asynchronous system that never stops changing. TPDS 30(3), 544–559 (2018)

7. Attiya, H., Fouren, A., Gafni, E.: An adaptive collect algorithm with applications. Dist.
Comp. 15(2), 87–96 (2002)

8. Attiya, H., Herlihy, M., Rachman, O.: Atomic snapshots using lattice agreement. Dist. Comp.
8(3), 121–132 (1995)

9. Attiya, H., Kumari, S., Somani, A., Welch, J.L.: Store-collect in the presence of continuous
churn with application to snapshots and lattice agreement. CoRR abs/2003.07787 (2020).
https://arxiv.org/abs/2003.07787

10. Baldoni, R., Bonomi, S., Kermarrec, A.M., Raynal, M.: Implementing a register in a dynamic
distributed system. In: ICDCS, pp. 639–647 (2009)

11. Baldoni, R., Bonomi, S., Raynal, M.: Implementing a regular register in an eventually syn-
chronous distributed system prone to continuous churn. TPDS 23(1), 102–109 (2012)

12. Baldoni, R., Bonomi, S., Raynal, M.: Implementing set objects in dynamic distributed sys-
tems. J. Comput. Syst. Sci. 82(5), 654–689 (2016)

13. Chordia, S., Rajamani, S., Rajan, K., Ramalingam, G., Vaswani, K.: Asynchronous resilient
linearizability. In: DISC pp. 164–178 (2013)

14. Delporte-Gallet, C., Fauconnier, H., Rajsbaum, S., Raynal, M.: Implementing snapshot
objects on top of crash-prone asynchronous message-passing systems. TPDS 29(9), 2033–
2045 (2018)

15. Faleiro, J.M., Rajamani, S., Rajan, K., Ramalingam, G., Vaswani, K.: Generalized lattice
agreement. In: PODC, pp. 125–134 (2012)

16. Gafni, E., Malkhi, D.: Elastic configuration maintenance via a parsimonious speculating
snapshot solution. In: DISC, pp. 140–153 (2015)

17. Gafni, E., Merritt, M., Taubenfeld, G.: The concurrency hierarchy, and algorithms for
unbounded concurrency. In: PODC, pp. 161–169 (2001)

18. Gilbert, S., Lynch, N.A., Shvartsman, A.A.: RAMBO: a robust, reconfigurable atomic mem-
ory service for dynamic networks. Dist. Comp. 23(4), 225–272 (2010)

19. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.
Trans. Prog. Lang. Sys. 12(3), 463–492 (1990)

20. Jehl, L., Vitenberg, R., Meling, H.: SmartMerge: a new approach to reconfiguration for
atomic storage. In: DISC, pp. 154–169 (2015)

21. Kuznetsov, P., Rieutord, T., Tucci-Piergiovanni, S.: Reconfigurable lattice agreement and
applications. In: OPODIS, pp. 31:1–31:17 (2019)

22. Merritt, M., Taubenfeld, G.: Computing with infinitely many processes. In: DISC, pp. 164–
178 (2000)

23. Spiegelman, A., Keidar, I.: Dynamic atomic snapshots. In: OPODIS (2016)
24. Zheng, X., Garg, V., Kaippallimalil, J.: Linearizable replicated state machines with lattice

agreement. In: OPODIS (2019)
25. Zheng, X., Hu, C., Garg, V.: Lattice agreement in message passing systems. In: DISC (2018)

http://www.cs.yale.edu/homes/aspnes/classes/465/notes.pdf
http://www.cs.yale.edu/homes/aspnes/classes/465/notes.pdf
https://arxiv.org/abs/2003.07787

	Store-Collect in the Presence of Continuous Churn with Application to Snapshots and Lattice Agreement
	1 Introduction
	2 The Store-Collect Problem
	3 Overview of System Model
	4 The Continuous Churn Collect (CCC) Algorithm
	5 Implementing Distributed Objects Despite Continuous Churn
	5.1 Atomic Snapshots
	5.2 Generalized Lattice Agreement

	6 Conclusion
	References

