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Abstract
Numerous recent advances in robotics have been inspired by the biological principle of tensile in-

tegrity — or “tensegrity”— to achieve remarkable feats of dexterity and resilience. Tensegrity robots
contain compliant networks of rigid struts and soft cables, allowing them to change their shape by ad-
justing their internal tension. Local rigidity along the struts provides support to carry electronics and
scientific payloads, while global compliance enabled by the flexible interconnections of struts and ca-
bles allows a tensegrity to distribute impacts and prevent damage. Numerous techniques have been
proposed for designing and simulating tensegrity robots, giving rise to a wide range of locomotion
modes including rolling, vibrating, hopping, and crawling. Here, we review progress in the burgeoning
field of tensegrity robotics, highlighting several emerging challenges, including automated design, state
sensing, and kinodynamic motion planning.
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1. Introduction

Tensegrities are composed of rigid compres-
sive elements (struts) and flexible tensile elements
(cables), connected to create a compliant yet sta-
ble network (Fig. 1).1 The inclusion of rigid
components and the overall low stiffness (or high
“softness”2) of the structure endows tensegrities
with desirable properties found in both classi-
cally “rigid” and “soft” robots. Tensegrities have
served to inspire art, model biological structures
like the human skeleton, and to provide designs
for lightweight and strong architecture.3–5 In fact,
tensegrities can form the minimal-mass structure
required to sustain a given compressive6 or bend-
ing7 load, exhibiting great potential for use as
lightweight deployable satellites and other struc-
tures.8 Tensegrities have even been explored
for use as robotic grippers,9 manipulators,10 and
shoulder joints for manipulator arms.11 While
the scope of the tensegrity literature is vast, in
this review, we focus on locomoting tensegrity

robots. We refer to other reviews, when applica-
ble, for further details on non-locomoting tenseg-
rities.1, 3–5, 12–14

Numerous tensegrity robots have been pro-
posed that utilize a wide range of mechanical de-
signs, locomotion modes, and sensing modalities.
For example, some tensegrity robots can adjust
the length of either their struts16 or cables,15, 17

to change their resting shape and induce motion
by shifting their center of mass. Others harness
thrust generated by jet-packs,18 vibration,19 or
propellers.20 Tensegrity robots often exhibit pas-
sive compliance, allowing their structure to absorb
energy, while providing robustness to damage and
pressure.21 Passive deformation may also be ex-
ploited to absorb impacts from unintended falls or
extraterrestrial landing (Fig. 1C).15

In this review, we survey recent progress and
highlight grand challenges for the field of tenseg-
rity robotic locomotion. Although we separate
key concepts for organizational clarity, we would
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Figure 1. Tensegrity concepts were originally applied to create (A) artwork3 and (B) lightweight architectural structures.4
(C) Recently, roboticists have built tensegrity robots that can withstand significant impacts, such as falling from the roof of

a building.15

like to simultaneously convey the interdisciplinary
nature of this field, by discussing interactions be-
tween the relevant fields of study. We begin by
discussing the mechanical design of tensegrity
robots, then overview existing locomotion meth-
ods, sensing techniques, and approaches for con-
trol and motion planning. While there have been
great advancements in each area thus far, fun-
damental challenges remain, ranging from auto-
mated co-design of sensors, actuators, and the un-
derlying mechanical structures; improved sensors
and algorithms for state estimation; and real-time
path planning algorithms. As research progresses,
we expect tensegrity robots to achieve unprece-
dented mobility in extreme environments.

2. Structural Design
There are myriad ways to connect compres-

sive and tensile elements to create tensegrity

structures.1 Various materials could be used for
the compressive and tensile elements, depending
on the desired balance between competing design
objectives (cost, strength, weight, etc.). Fortu-
nately, there are numerous tools to aid in the struc-
tural design of tensegrities, including analytic
frameworks22 and robot simulators.23, 24 Here, we
summarize the design of tensegrity structures, i.e.
the selection and placement of struts and cables.

In the taxonomy delineated by Skelton,
tensegrities can be classified by the number of
rigid bodies in contact.6 For example, class 1
tensegrities, such as the 6-bar icosahedron that
forms the structural basis of numerous tenseg-
rity robots15, 21, 23, 25, 26 (Fig. 2A) have only one
rigid body contacting each node; no two struts
are fixed in contact (however, they could inci-
dentally contact during normal motions). Class 4
‘t-bar’ tensegrities (resembling the kites built by
Snelson,3 but pinned at the two struts’ intersec-
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tion) have four struts connecting at a single node,
and are proven as the minimal mass structures
for compressive loading conditions,6 suggesting
that further developing techniques for automated
design of tensegrity structures could lead to me-
chanically optimal robots. Although most tenseg-
rities are composed of a single base topology,
some tensegrities have nested hierarchies of fun-
damental strut-cable arrangements,6 or a base pat-
tern repeated serially.27 Additionally, researchers
have recently proposed changing the stiffness of
tensegrities on-demand by switching between a
class 1 and a class 2 topology, highlighting the key
role that topology plays in performance, even with
the same set of parts.28

Since each member in a tensegrity primarily
only experiences tension or compression, design-
ers often treat the tensegrity as a simple truss.1
Mechanically, this simplification allows for a high
degree of controllability, reliability, and tunabil-
ity. The truss model also allows for the develop-
ment of analytic models of deformation, alleviat-
ing the need for a more complex finite-element
simulation. Many methods have been proposed
for form-finding (finding the rest configurations)
of tensegrities (as reviewed by Tibert and Pelli-
grino,22 and Juan and Tur,13) and analyzing their
dynamic properties.12 Importantly, the stiffness of
the overall tensegrity structure can be adjusted by
increasing the prestress (or resting tension) in the
tensile elements.

To reduce prototyping cost and time, tenseg-
rity topologies can be designed in an autonomous
or semi-autonomous fashion in a robot simula-
tor. For example, Paul et al. used evolution-
ary algorithms (EA) to specify the number and
size of rods in addition to the inter-rod connec-
tions (Fig. 2B,E).32 To further generalize the de-
sign process, Rieffel et al. designed an EA to
generate graphs that represent the connectivity of
tensegrities, and allowed the simulator to deter-
mine the resting shape (Fig. 2C).30 In these ex-
amples of EA in tensegrity design, the simula-
tion environments and search algorithms were for-
mulated to ensure that generated tensegrity struc-
tures could be manufactured. However, there is
not a generalized framework for determining if or
how simulated solutions will transfer to functional
robotic hardware. Promisingly, Zheng et al. re-

cently proposed a robustness metric for estimating
the likelihood of achieving sim-to-real transfer for
tensegrity designs.33

Tensegrity hardware design is often achieved
through a combination of human intuition and me-
chanical models (Fig 2A-B).21, 29 Once a topology
has been selected, actuator and sensor placement
is often decided heuristically, which can lead to
inefficient or redundant designs. Fortunately, sev-
eral researchers have proposed iterative methods
for choosing where to place sensors and actua-
tors within the networks of cables and struts, in
an effort to balance the competing requirements
of low cost and high performance.34–36 Many ma-
terials for struts and cables have been used, in-
cluding metal and fishing line (Fig. 2B),27, 29 alu-
minum and paracord,15 graphite composite tubes
and passive helical springs (Fig. 2A),21 and acrylic
pipes paired with rubber bands.37 The stiffness
of the tensegrity can even be changed to some
degree through the use of prestress in the ca-
bles, and adjusted in an application-specific man-
ner to improve robot performance. For instance,
a tensegrity-inspired fish robot used pre-stretched
cables to stiffen its body and improve its swim-
ming speed.38 Researchers have even begun ex-
ploring the use of variable-stiffness materials and
mechanisms39 in tensegrities, allowing robots to
change the bending or tensile stiffness of their
members and thereby modify their dynamics. For
example, Zappetti et al. used a low-melting point
alloy to change the stiffness of a stationary three-
bar tensegrity,40 while Friesen et al. controlled the
stiffness of their tensegrity-inspired arm by adjust-
ing its cable tension.11

Connecting the cables and struts in a tenseg-
rity is straightforward for simple structures such
as a three-bar prism, but quickly becomes com-
plicated. For example, the canonical 6-bar icosa-
hedron tensegrity truss has 24 cables that need
to be attached. During assembly, the cables’
natural tension makes the structure deform into
shapes that are difficult to work with. To sim-
plify assembly, one group proposed modular lat-
tices that reduce assembly time from hours to min-
utes for moderately-complex designs (Fig. 2D).31

Zappetti et al. proposed a 3D-printed lattice struc-
ture that was used to make icosahedron mod-
ules,41 while Lee et al. simultaneously 3D printed
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Figure 2. Many methods exist for designing tensegrity robots, using combinations of automated tools and designer
intuition. (A) Hand-designed 6-bar icosahedron with graphite composite tubes and passive helical springs.21 (B)

Hand-designed 3-bar crawling tensegrity structure.29 (C) evolutionary algorithms can operate on an abstract connectivity
graph to generate novel tensegrity designs of varying size and numbers of struts and cables.30 3D printing and rubber bands
were used to physically realize the designs. (D) Modular elastic prototyping nets for quickly manufacturing the cables for a

tensegrity.31 Left: assembly process. Right: additional manufactured structures, including a spine robot (top) and a
cube-like shape (bottom). (E) Direct encoding of cable and strut lengths, in addition to connectivity, can be paired with

evolutionary algorithms to generate tensegrity designs.32

PLA struts alongside a dissolvable mold that was
later filled with silicone to make the tensile ca-
bles.42 Other researchers have proposed 3D print-
ing tensegrities and then replacing some printed
connections with cables, although this technique
has not been used to create locomoting tenseg-
rity robots.30 Additional design considerations for
selecting tensegrity hardware include impact re-
silience,15 cost,35 and modularity.19

3. Simulation
Many studies have employed simulation to

generate and evaluate designs of and control poli-
cies for tensegrity robots. There are three main
families of simulation tools used in this context:
(i) the more traditional physics engines, which are
based on first-principles, analytical models, and
numerical approximations; (ii) analytical formu-
lations, which solve systems of differential equa-
tions that represent the dynamics of a tensegrity

structure; and (iii) the emerging family of differ-
entiable physics engines, which aim to learn a
physical model directly from data. In this sec-
tion, we introduce popular physics engines, dis-
cuss several tensegrity robot simulators, and de-
scribe the newer differentiable simulators. A
high-level comparison of several popular simula-
tors is shown in Table 1. More detailed descrip-
tions of each simulator are presented throughout
this section.

Simulators based upon traditional physics en-
gines use first principles from physics to pre-
dict the future motions of objects. Since tenseg-
rity assemblies are composed of rigid struts and
compliant cables, tensegrity simulators usually in-
clude a collision detector and both rigid body
and soft body dynamics components. Rigid body
physics engines, such as the popular bullet248

and Open Dynamics Engine (ODE),49 can effi-
ciently calculate rigid-body motions in parallel.
Soft-body physics engines implement various so-
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Simulator Physics
Engine

Cable Ground Rod Differentialmass contact reaction friction reaction friction

Paul et al.29 ODE 4 4 4 4
Caliper43 Bullet2 4 4 4 4
NTRT24 Bullet2 4 4 4 4 4
TMO44 Matlab 4

STEDY45 Matlab 4 4
MOTES46 Matlab 4 4 4

Wang et al.47 MuJoCo 4 4 4 4 4

Table 1. Comparison of various tensegrity robot simulators. The main differences of the tensegrity simulators are in 1) the
physics engine that the simulator is built on (where MATLAB refers to custom physics engines programmed using

MATLAB), 2) modeling of the cable (mass and contact with other objects); 3) modeling of the contact between the robot
and the ground (reaction force and friction force); 4) modeling of the rod-rod contact (reaction force and friction force); 5)

differentiability.

lution methods, ranging from the bounding box-
based bullet348 to finite element method (FEM)
-based Vega-FEM50 and SOFA.51 These engines
can accurately model deformable objects, making
them an ideal choice to model soft bodies such as
tensegrity cables, skins, and strut endcaps.

The soft and compliant properties of tenseg-
rities can be simulated by extending or combin-
ing different physics engines (such as ODE, Mu-
JoCu,52 or bullet2). For instance, the early tenseg-
rity simulation environment by Paul et al.29 was
built upon ODE and supports cables as virtual
objects that are mass-less, volume-less, and do
not have any contact characteristics. More recent
work by Wang et al.53 built a tensegrity robot
over the MuJoCo physics engine.52 Both Caliper43

and the open-source NASA Tensegrity Robotics
Toolkit (NTRT)24 extend bullet2 with support for
compliant cables. NTRT provides relatively com-
prehensive support for tensegrity robot modeling
and has consequently become the most popular
choice for the development of gaits in simulation.

Starting from analytical formulations of the
statics and dynamics of a tensegrity structure, sev-
eral researchers have achieved higher-level tasks
such as topology optimization and controller de-
sign.54, 55 These analytical models make simpli-
fications, such as treating the struts as cylinders,
preventing rotation along the axis of the struts, ig-
noring end caps, and assuming there are no col-
lisions between cables. For instance, Tensegri-
tyMATLABObjects (TMO)44 is a Matlab-based
tensegrity simulator which supports strut-ground
collision and friction-less contact. STEDY45 and

MOTES46 are Matlab-based comprehensive tools
that use non-minimal Cartesian coordinates to de-
scribe the dynamics of the system. VirtualTenseg-
rities56 is a Java-based simulator which can visual-
ize multiple tensegrity structures yet neglects col-
lisions.

As an example of how multiple simulators can
be used to model a single robot design, consider
the SUPERBall v2 robot15 (Fig. 3), which is com-
posed of 6 struts and 24 cables. During design,
and for predicting dynamic motions using analytic
models, TensegrityMATLABObjects44 simulator
is often used to reduce cost, development time,
and operational risk. Subsequent controller devel-
opment and modeling can be done in higher-level
simulators such as MuJoCo 53 and NTRT.24 Im-
portantly, TensegrityMATLABObjects can only
model dynamic motions and contacts between
struts and the ground, while neglecting friction,
strut-strut contact, and cable contacts. MuJoCu
can additionally model strut-strut contact and fric-
tion, but only NTRT can detect collisions between
cables and other components. This capability has
helped facilitate successful transfer of locomotion
policies from NTRT to reality.57

Although complicated motions can be gener-
ated in simulation, policy transfer from simula-
tion to reality is plagued by inconsistencies. Mit-
igating this so-called “reality gap” between sim-
ulation and hardware typically requires an itera-
tive process where simulator parameters are tuned
after running experiments on physical robots to
more accurately reflect real conditions. For ex-
ample, hardware validation of the NTRT simu-
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Figure 3. From left to right: SUPERball v215 and its model in TensegrityMATLABObjects,44 MuJoCo53 and NTRT.24

TensegrityMATLABObjects can simulate dynamic motions, while MuJoCu can additionally detect rod-rod collisions, and
NTRT can even detect collisions between cables and other components.

lator has been performed for spine-like tenseg-
rity robots58 and a six strut icosahedron robot.23

These studies identified system parameters that
could be tuned to increase the accuracy of NTRT
and improve its applicability to real systems. To
reduce the data requirement during policy genera-
tion, Zhu et al. employed a Bayesian optimization
identification framework with a parameter projec-
tion to a lower dimensional space through em-
bedding.59, 60 Nevertheless, system identification
techniques assume that the underlying analytical
or numerical model is conceptually correct and
the reality gap can be effectively eliminated by
tuning the model’s parameters. Frequently the
model is imperfect, and significant reality gaps
persist, even after tuning model parameters.

To further diminish the reality gap, researchers
have begun building physics engines predicated
on a differentiable model, such as a deep neural
network (DNN). Differentiable models help to re-
duce data requirements, increase the policy update
frequency from per-trajectory to per -time step,
and allow the robot to learn system dynamics di-
rectly from data. One method for defining differ-
entiable physics engines is to model system com-
ponents as moving particles that interact.61 Each
element in a scene (robot and environment) can be
split into multiple modules, and the simulator can
then generate a graphical representation of mod-
ule interactions. Two classes of interactions can
be defined: fixed system topology and temporary
connections for collisions. This framework gives
rise to an interaction network that depicts the in-
teractions of different modules.

Recently, Wang et al. proposed the first differ-
entiable physics engine focused on tensegrity sys-
tems. It uses interaction networks as well as first
principles from physics.47, 53 Namely, the differ-
entiable physics engine models cable tensions as
spring forces that depend linearly on an unknown

coefficient that needs to be learned from data.
The friction and the reaction forces, however, are
more complex and involve non-linear components
modeled by neural networks. The combination
of first principles and interaction networks results
in a more data-efficient, explainable, and modu-
lar pipeline for system identification. One limita-
tion of the differentiable physics engine of Wang
et al. is that it considers cables as virtual objects
with no mass, volume, or contact. An inherent
limitation of all differentiable engines is that they
assume system dynamics are totally unknown—
even though the governing equations of motion
are often well understood—and try to learn the dy-
namics exclusively from data.

4. Locomotion
A rich variety of locomotion modes have been

demonstrated for tensegrity robots (Fig. 4). Many
of the tensegrity robots we reviewed move by
rolling, or what Kim et al. refer to as “punctuated
rolling,” since the motion is characterized by dis-
crete, sequential impact events between the strut
ends and the ground.62 Other tensegrity robots lo-
comote by swimming, hopping, climbing, flying,
vibrating, or crawling. Often, actuator choice and
robot topology are tightly coupled with the de-
sired mode of locomotion. For example, climbing
robots are best-suited to tower structures, whereas
rolling is best-suited to symmetric topologies ap-
proximating a sphere, such as the widespread 6-
bar icosahedron.

4.1. Rolling

Rolling tensegrities achieve motion by dis-
placing their center of gravity so that it is outside
their polygon of stability (the vertical projection
of the nodes that are in contact with the ground).
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Figure 4. Representative examples of locomotion strategies utilized by tensegrity robots. Since actuation and topology are
often tightly coupled with the locomotion strategy, these are also indicated for each example.
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The result is a tipping from face to face. Since the
mass of a tensegrity is often concentrated in the
rigid struts that form the structure, rolling tenseg-
rities must be capable of large structural deforma-
tions.

Deformations are typically produced by
changing the length of tensile elements along the
edges of a tensegrity, which in turn shifts the
struts, and causes the structure to topple. To
achieve a rolling locomotion mode, many tenseg-
rity robots feature motors mounted on their rigid
struts to contract the cables that serve as the edges
of the tensegrity.23, 25, 62–67 Other actuators have
been demonstrated for changing the length of
the edges, including linear servos in series with
springs,16, 17, 68 liquid crystal elastomer threads ac-
tivated with near-infrared light,69 shape mem-
ory alloy springs,37 silver-coated twisted nylon,70

and McKibben pneumatic actuators.26, 71, 72 Most
rolling tensegrity robots are six-strut class 1 struc-
tures with an icosahedron resting shape. A few
2-strut and 3-strut rolling tensegrities have been
shown in simulation, but none were implemented
in hardware.55, 73 We have observed the rolling lo-
comotion approach used on robots with charac-
teristic length scale of meters (e.g., SuperBall15)
down to a few centimeters (e.g. Wang et al.’s light-
powered tensegrity69), with speeds on the order
of a few body lengths per minute (⇡3.5 BL/min15

and ⇡1.15 BL/min69).

While most rolling tensegrities modulate the
lengths of their tensile elements to roll, several
other strategies have been demonstrated. For ex-
ample, the TT-4mini has custom linear actuators
as its struts and passive elastic elements as its
edges.17 Baines et al. designed reconfigurable
planar membrane actuators that form the faces of
tensegrity robots, capable of extending in-plane to
change the tensegrity’s shape, or bulging out of
plane to tip the tensegrity.74 In-plane extending
membranes were demonstrated on a 6-strut icosa-
hedron, whereas out-of-plane membranes were
demonstrated on a rolling 12-bar rhombicuboc-
tahedron, 4-strut cube, a 10-strut dodecahedron,
and various others. Curved 2-strut tensegrities in-
troduced by Kaufhold et al.75–77 and Rhodes and
Vikas78 roll by shifting masses along tracks em-
bedded in the curved struts.

4.2. Crawling

Several tensegrity robots are capable of de-
forming their structure to use a subset of their strut
ends as feet, achieving gaits resembling those of
legged animals. All reviewed crawling tensegri-
ties either relied on winch and cable actuation27, 29

or were only realized in simulation.79–82 For ex-
ample, Masic et al. simulated a class-II tenseg-
rity tower composed of 4-bar prism segments.79

Paul et al. demonstrated 3-bar27, 29 and 4-bar29

crawling robots in simulation and hardware, re-
sulting in robots 36 cm long, with resulting speeds
of ⇡ 2 BL/min.29 SunSpiral et al. introduced
the TetraSpine, a class of multi-segment spine-
like robots that could walk and climb over ob-
jects in the NTRT simulator, and some progress
was made toward building real robots with a sim-
ilar design.80, 83 A later study on similar simulated
robots led to high-DoF multi-segment spine-like
robots that used central pattern generators (CPGs)
to attain various crawling and snake-like gaits.81

Zappetti et al. demonstrated winch-driven, mod-
ular 6-bar icosahedron tensegrities that could be
connected in series to yield a crawling robot.41, 84

As evidenced by the research referenced
above, crawling tensegrities can be made of ei-
ther single controllable segments, or multiple seg-
ments that collaborate to control their ground con-
tact and locomote. By expanding the range of
shape primitives to include additional geometires,
such as the deployable class-II tensegrity tower
with pentagonal modular sections introduced by
Vueve et al.,85 additional locomotion gaits could
be attained.

4.3. Vibration

Vibrating tensegrities locomote by harnessing
oscillating elements, such as linear electromag-
nets or eccentric mass motors, to dynamically ex-
cite the whole tensegrity structure.41, 82, 86–89 The
locomotion mode is characterized by complex
coupling between multiple physical phenomena,
including asymmetrical friction pairings and dy-
namic “hopping” that ultimately yields motion
along a surface. For example, by dynamically ex-
citing its structure, a two-bar tensegrity could vi-
brate in different directions.89 Other icosahedron
tensegrity robots could drift along a surface.21, 90
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Varying the frequency of their driving motors
(two,21 or three90) led to some ability to change
the robot’s locomotion speed and direction, with
Riefell and Mouret reporting an impressive max-
imum speed of 69 BL/min for their decimeter-
scale robot (rod length of 9.4 cm21). Notably,
since the vibrating class of tensegrity does not re-
quire large structural deformations to locomote,
some modeling inaccuracies can be avoided, such
as those arising when modeling large deforma-
tions and calculating strut collisions. The vibrat-
ing tensegrity thus boasts the resilience character-
istic of tensegrity robots and simplifies modeling
efforts.

4.4. Other locomotion modes
Other locomotion modes achieved by tenseg-

rities include peristaltic pipe-crawling,91, 92 hop-
ping,18, 93 and flying.20, 94 These locomotion
modes could potentially allow robots to access
difficult-to-reach locations or achieve rapid loco-
motion.

Friesen et al. built a duct climbing robot com-
posed of two tetragonal sections, made of six lin-
ear servos each, and winches and cables connect-
ing the two sections.91, 92 The tetragonal section
would expand to jam in the duct while the winches
and cables would advance the un-jammed sec-
tion. This approach could have applications in
pipe inspection, disaster response, or other highly-
constrained environments.

Hopping and flying locomotion modes are
promising for switching between rapid, long-
distance travel and controlled local motions, al-
lowing the robot to adjust to mission demands.
Garanger et al. showcased a hopping 12-bar
rhombicuboctohedron actuated with winch and
cables.93 To achieve hop and roll locomotion,
Kim et al. simulated a 6-bar icosahedron tenseg-
rity with a single thruster in the center,18 whereas
Mintchev et al. built a 6-bar icosahedron tenseg-
rity with two propellers inside.20 A similar robot
by Zha et al. situates a quadcopter inside a 6-bar
icosahedron tensegrity. The quadcopter enables
flying, while the tensegrity permits the robot to
reorient itself after a crash.94

Although no terrestrial mobile robots based
on bending tensegrities have been shown to date,
Bliss, Iwasaki, and Bart-Smith introduced a class-

II tensegrity tower composed of 2-bar planar mod-
ules that are capable of oscillating a fin for gener-
ating thrust underwater.95 Bending motion prim-
itives have been used by free-swimming fish-
inspired robots as well.38, 96 Similarly, Sabelhaus
et al. described a 5-vertebrae spine tensegrity
called ULTRAspine97 and Zappetti et al. demon-
strated a variable stiffness vertebrae spine tenseg-
rity,28 both of which were capable of executing
controlled bending motions.

5. Sensing
Although many tensegrity robots showcased

in the literature operate in a sensor-free, open-
loop manner,21, 67, 98 state estimation25 and contact
sensing23 facilitate closed-loop gait control, and
will potentially enable tensegrity robots to exe-
cute controlled dynamic locomotion in unstruc-
tured environments. A high degree of control over
system dynamics will, in turn, facilitate the trans-
fer of advanced control policies from simulation
to physical hardware. Numerous sensing meth-
ods for tensegrities have been proposed (Fig 5),
yet only a subset of these have been evaluated in
dynamic situations.

Since each member of a class 1 tensegrity is
axially loaded, the full state of a tensegrity robot
comprises the spatial positions and velocities of
its endcaps, ground contact information, tension
in the cables, compression of the struts, and ori-
entation of the overall structure (although orien-
tation could be inferred from the spatial positions
in a global reference frame). Often, only partial
state information is necessary for successful loco-
motion. For example, the modular tensegrity kit
introduced by Kimber et al. only requires a 6-axis
accelerometer to record its vibrations.19

One logical method to estimate spatial posi-
tions is to measure the distance between nodes.
For cable-actuated tensegrities, measuring the
amount the actuator has contracted (or extended)
does not account for stretch in the cables them-
selves or deformation of the struts. Stretch sen-
sors99–101 could potentially be used, but they have
only begun to be investigated in the context of
tensegrity robotics to measure cable length83 or
strut extension.91 For cable-driven robots, quadra-
ture encoders91 or Hall-effect sensors92 attached to
the motors that spool the cables have been utilized
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Figure 5. Sensors allow tensegrities to estimate their 3D shape (state) and detect environmental interactions.25 (A) State
estimation using external ranging sensors. (B) State estimation using surface-based strain sensors.26 (C) Top: contact

measurement using force sensors within the struts’ endcaps. Bottom: numerous sensors were integrated into REcTeR’s
struts.63

to estimate cable length.

Other robots have integrated multiple sensors
into the canonical 6-bar icosahedron to aid in lo-
comotion. For example, ReCTeR had 24 tension
sensors (un-calibrated strain gauges), six ground-
reaction force sensors, and three IMUs on the
endcaps of several of the 6-bar tensegrity’s struts
(Fig 5A).23, 63 The tension sensors input into lin-
ear feedback controllers to drive cable lengths
to setpoints determined by an embodied reser-
voir computer. As a result, the system could re-
cover stable locomotion—even after being phys-
ically restrained. Later work by Burms et al.
employed the force sensors to classify terrain.66

SUPERball was designed to overcome some of
the mechanical limitations of ReCTeR, one of
those being restricted sensing capabilities.63 Ten-
sion sensors were integrated into SUPERball’s
12 passive cables, torque sensors were added to
the active cables, and IMUs measured accelera-

tions on the endcaps. Zhang et al. used the ac-
celerometers on SUPERball to directly transfer
policies from NTRT to hardware, addressing part
of the simulation-to-reality (sim2real) gap which
prevented open-loop policies from transferring.57

SUPERball v2 featured accelerometers to detect
which of its faces was pointing downward, en-
abling the robot to determine feasible actions for
intuitive real-time teleoperation by a human oper-
ator.102

Algorithms have also been proposed to intrin-
sically estimate the shape of tensegrity robots.
Caluwaerts et al. proposed an Unscented Kalman
Filter-based sensor fusion algorithm to estimate
the 3D state of a tensegrity using ranging sen-
sors (Fig 5C).25 Fusing time-of-flight ranging sen-
sors, IMU, and actuator states, Caluwaerts et al.
could localize a meter-scale tensegrity within a
large testing area (91 m2) with ⇠10-cm accuracy.
Stretch sensors99 and McKibben muscles103 were
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integrated into robotic skins to create a reconfig-
urable tensegrity that could roll and achieve si-
multaneous estimation of the spatial positions of
all nodes on a 6-bar tensegrity (Fig. 5B).26, 72

6. Control

Tensegrities can be actuated to achieve a wide
range of goals, from attaining a desired structural
shape trajectory in-place,104 to locomotion,57 to
accomplishing a mission in the field.102 Pose or
task-level controllers can use open loop or closed
loop strategies to determine a desired sequence of
actuator commands and associated forces. The
appropriate controller formulation strongly de-
pends on the types of actuators and sensors on a
tensegrity, and the application intent. This sec-
tion highlights the essential role that control the-
ory has played in developing the field of tenseg-
rity robotics, while conveying how controls can
be applied to achieve more effective in-field de-
ployment.

Controllers can operate over different time
horizons and at various levels of abstraction
(Fig. 6). At a low level, controllers act upon a
single strut or cable in a larger network, modulat-
ing tension based on the equations of dynamics.
Alternatively, controllers can operate at a global
level, and can be formulated to choose a set of
actuation patterns that steer a tensegrity toward a
goal. As a hybrid approach, local dynamics con-
trollers can be placed in sequence or hierarchi-
cally with controllers of increasing levels of ab-
straction, to achieve robust global movement poli-
cies.

Numerous tensegrity controllers have
emerged to achieve closed-loop control objec-
tives, often following several common develop-
ment models (as summarized in Fig. 7). Classical
control strategies rely upon analytical models and
convex optimization to regulate intended behav-
iors.104 More recently, data-driven57 and bioin-
spired techniques81 have allowed the control of
more complex systems that analytical methods
cannot handle. However, it is often infeasible to
predict the conditions under which data-driven
and bio-inspired approaches can safely operate.

6.1. Analytical approaches

Tensegrity research based on analytical meth-
ods has focused on modeling the statics13, 105 and
dynamics12 of a structure to provide effective
equations of motion.14 Given a dynamic model, it
is possible to control a tensegrity structure along
static equilibrium manifolds.104 Changing the
rest lengths of cables in planar tensegrity struc-
tures was the goal of the majority of reported
controllers. Dynamic models for such networks
are attainable using minimal coordinates and or-
dinary differential equations of motion (Fig. 6,
green shading).106 Skelton and Oliveira showed
that the dynamics of three dimensional tensegri-
ties cannot be represented by ordinary differential
equations, but rather become systems of differ-
ential algebraic equations.14 Alternatively, feed-
back linearization control laws107 and Lyapunov-
based controllers for 3D dynamic models106 have
also been applied for tensegrity control. Struc-
tural control of tensegrities can be coupled with
global planning algorithms to move nodes along
a desired trajectory.108–110 The cables connect-
ing the nodes of tensegrity systems are often as-
sumed to behave like linear springs. Sabelhaus et
al. exploited this feature to design model predic-
tive controllers for moving spinelike tensegrities
along a desired configuration trajectory.111

The complex dynamics of tensegrity struc-
tures makes controlling them for locomotion a
challenge, prompting several researchers to de-
velop simpler heuristic controllers (Fig. 6, blue
shading). For example, Shibata et al. used
intuition to design a two-actuator policy to tip
an SMA-powered icosahedron tensegrity between
various faces and locomote.37 Similarly, hand-
picked rolling policies were demonstrated for
icosahedron tensegrities using pneumatic Mck-
ibben actuators as the tensile elements.26, 71 De-
spite having 24 candidate edges for actuating, typ-
ically only one or two actuators were necessary to
tip the tensegrity from face to face in a predictable
manner.

Despite their intuitive appeal, hand-coded
policies have numerous disadvantages. First, they
are highly system-dependent, and do not abstract
to other structures beyond the ones that the pol-
icy was developed for. Second, hand-coded poli-
cies are not conducive to dynamic rolling, but
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Figure 6. Tensegrity robots can be controlled at various levels of abstraction, ranging from low-level motion primitives
generated from manual experimentation or physical models, to high-level motion pla nning to move the robot through a

series of waypoints.

Figure 7. Information flow in tensegrity control policy development. Top: experiments and bio-mimicry can be used to
develop open-loop behaviors and/or feedback policies. Bottom: physics models and equations of motion can generate

optimal trajectories, analytic solutions, and feedback policies that are useful for improving data-driven behaviors or even
generating closed-loop capabilities on their own. This diagram shows enough connections to capture most of the processes

used by tensegrity robots, although other development frameworks are conceivable, including bi-directional information
flows.

rather quasi-static locomotion modes, such as tip-
ping face-to-face. Hand-coded policies do not
lend themselves to quickly generating actuation
sequences to attain many successive face transi-
tions along arbitrary paths. Furthermore, tradi-
tional control approaches generally have not ac-
counted for self-collisions or environmental con-
tact dynamics, limiting their real-world applica-
bility. Hardware experiments have not utilized
analytical control approaches, because they fre-
quently depend on accurate state information,
which is non-trivial to acquire.

6.2. Data-driven and bioinspired frameworks

Seeking to expand beyond hand-coded poli-
cies, researchers have begun to develop data-
driven machine learning as well as bio-inspired
approaches (Fig. 6, blue shading and Fig. 7,
top). When paired with simulators, data-driven
approaches are quite appealing, allowing thou-
sands of control policies to be quickly evaluated.
Since an exhaustive search of control possibil-
ities is impractical, evolutionary algorithms are
frequently applied to achieve locomotive gaits for
tensegrities,29, 112 potentially via multi-agent de-
scriptions of the modular system.113, 114 Addition-
ally, forward kinematics of tensegrity robots have
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been solved using feature extraction via super-
vised learning algorithm,115 and energy-based lo-
cal node models for changeable edge lengths116

and strut lengths.117 The search space can also
be reduced by imposing biologically-inspired a
priori couplings of control inputs through Cen-
tral Pattern Generators (CPGs), which have been
applied frequently to soft robots and recently to
tensegrities.58, 95 In practice, these approaches that
are less dependent on accurate models can make
efficient use of sensor data and computing re-
sources by exploiting body dynamics and mor-
phological computation.112

In particular, Paul et al. introduced a simula-
tion pipeline for developing controllers for 3 and
4-strut tensegrities with both static and dynamic
gaits.29 In this pipeline, an evolutionary algo-
rithm operated upon a population of 200 tenseg-
rity robots in an ODE simulator, to implicitly ac-
count for the nonlinear dynamics of the tensegri-
ties and maximize a simulated robot’s fitness (dis-
tance travelled), by modulating the robot’s actua-
tor firing patterns. Since Paul’s pioneering work,
many subsequent papers have utilized learning
and simulation to generate dynamic rolling poli-
cies for tensegrities. In subsequent research on 6-
bar tensegrity robots by Iscen et al.,113 the length
of each cable was controlled by a sine wave pat-
tern with an independent phase, duration, and am-
plitude, driven by a centralized synchronization
signal, as governed by:

y(t) = C + Asin(!t+ �) (1)

Here, y(t) is the length of a cable, C is an off-
set, A is the actuation amplitude, ! is the angu-
lar frequency, and � is a phase offset. This for-
mulation resulted in 96 independent parameters,
which were calibrated automatically using evo-
lutionary algorithms that evaluated several thou-
sand controllers in simulation. Researchers have
also proposed phase coupled oscillators inspired
by the salamander nervous system,118, 119 applied
to spine-like tensegrity robots.58 To generate poli-
cies for spine tensegrities with extremely high
DOF, Mirletz et al. used a Monte Carlo algorithm
to generate initial guesses, followed by iteratively
sampling a Gaussian distribution around the best
policy parameters.58

Another vein of work relates to deep rein-
forcement learning (RL), and holds promise of

generating successful feedback control policies
that map directly from sensory data to task-
oriented actions.120 A crucial consideration for
extending RL to tensegrities is whether a learned
model can be made to generalize over a large
part of the state space. This consideration can
be addressed in part by using model-based RL
tools, such as Guided Policy Search,121 that com-
bine several locally valid controllers into a single,
more broadly applicable learned policy. RL has
successfully facilitated the development of rolling
controller policies for SUPERball.57

6.3. Motion Planning
If a robot is able to discern its global posi-

tion, it can engage in higher-level motion plan-
ning, exploiting the well-developed literature on
robot path planning (Fig. 6, red shading).122 Mo-
tion planning is needed to perform complex tasks
with long time horizons, such as goal-directed
obstacle-avoiding locomotion, or purposeful de-
formation of a tensegrity structure. Numer-
ous planning algorithms have been proposed for
tensegrity robots, ranging from quasi-static ap-
proaches to more complex asymptotically-optimal
kinodynamic planners.

Early planning methods for tensegrities
planned deployment and shape change by apply-
ing optimization to generate a sequence of stat-
ically stable configurations.108, 123 Further work
accounted for self-collision avoidance in this pro-
cess.124, 125 More recent approaches plan paths
for tensegrity mobility, but still assume a control
process slow enough to eliminate any dynamic ef-
fects.109, 124 This quasi-static assumption is often
applicable to tensegrity-based civil structures,126

but is not amenable to robotic applications.
Other planning strategies chain together sev-

eral motion primitives using a global planner. This
approach decouples planning from dynamics, of-
ten yielding relatively simple yet intuitive solu-
tions. For example, Vespignani et al. introduced a
steerable teleoperation-based controller for icosa-
hedron tensegrities that operated on top of arbi-
trary tipping control primitives.102 Seeking to au-
tomate the path-generation, another group pro-
posed A* for generating actuation sequences for a
rolling and hopping icosahedron in simulation.18

The cost function for weighing the value of possi-
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ble trajectories was dependent on topographic in-
formation (height of adjacent tiles in the search),
whether or not hopping or rolling was chosen
(equivalent to energy expended), and the travelled
distance. Another study proposed a geometric
planning algorithm that generalizes to any n-sided
polyhedral.74 The approach combines a weighted
A* search with geometric constraints of a given
polyhedron, and uses an optimization routine to
keep track of orientation and generate collision-
free paths through the plane. Chaining together
motion primitives with a global planner can be ef-
fective for some nonlinear systems. However, it is
best-suited to scenarios in which a feasible trajec-
tory can be generated on a known environmental
map a priori.

Although the previously discussed planning
approaches were shown to generate feasible paths,
they did not consider energetic optimality un-
der dynamic conditions. To be efficient dur-
ing long-term use, a tensegrity planner should be
able to select configurations that take advantage
of nonlinear dynamics. For example, energeti-
cally complex behaviors such as rolling, jumping,
and climbing all involve nonlinear dynamics and
may enable highly efficient traversal. As well as
monitoring energy, a planner should accommo-
date a high-dimensional state space, avoid self-
collisions, and consider the topography of the cur-
rent terrain. These needs can individually be met
by strictly geometric methods, but addressing all
of them with a single tool is presently infeasible.

In attempts to converge on physically-realistic,
dynamic planners for tensegrities that tackle the
aforementioned concerns, researchers have be-
gun to look toward kinodynamic motion planning.
Kinodynamic motion planning is often framed
as a non-convex trajectory optimization problem
in which costs are minimized under certain con-
straints. Sequential convex optimization can be
used to iteratively correct a trajectory toward a
local minimum.127 An alternative, probabilisti-
cally complete methodology is sampling-based
motion planning. Unlike global, roadmap-based
approaches in this planning family, the popu-
lar incremental Rapidly-Exploring Random Trees
(RRT) algorithm can directly accommodate dy-
namics.128 RRT samples control inputs, rather
than states, and grows the tree by propagating in-

puts’ effects forward from states that have already
been reached, eventually building broad coverage.
Littlefield et al. introduced the first kinodynamic
planning approach for an icosahedron robot.129

They used an informed asymptotically optimal
sampling-based approach to generate collision-
free sequences of kinematic rolling primitives to
navigate along a desired path through cluttered en-
vironments. Doney et al. used a quality diversity
algorithm running a model-free physical tenseg-
rity to autonomously generate a collection of mo-
tion primitives.130

7. Grand Challenges
Tensegrity robots have many advantages com-

pared to traditional autonomous ground vehicles:
robustness to impacts, low weight, novel locomo-
tion modes, and modularity. However, no work
to date has demonstrated a fully autonomous, un-
tethered tensegrity robot navigating through un-
structured terrain. Many roadblocks to this goal
remain unsolved across the domains of design, lo-
comotion, sensing, and control. Here, we discuss
key challenges and potential solutions, providing
a roadmap for future research.

Automated System Design Building a tenseg-
rity currently requires significant domain knowl-
edge to balance trade-offs between competing per-
formance objectives. Various authors have em-
phasized different objectives in the form of quan-
titative metrics, as we discuss later in this section.
As an initial example, the performance objectives
for a locomoting tensegrity could include high lo-
comotion speed, low mass, and minimized cost
of transport. Even when a tensegrity robot is de-
signed for one specific task—locomotion, manip-
ulation, or load bearing—understanding the inter-
play of topology, materials, and function is crucial
to realizing an effective system. Across all tenseg-
rity applications, future research must prioritize a
co-design of materials and topology, rather than
treating them as independent of one another. An
emerging example of such co-design is incorpo-
ration of variable stiffness material struts, which
have been shown to enhance deployability and
modulate the mechanics of a tensegrity in-situ.131

Another example are interconnections in a tenseg-
rity robot arm that can be adjusted to change the
tensegrity’s topology and adjust stiffness during
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operation.28

Simulators can serve as a practical tool to eval-
uate thousands of different topology-material ar-
rangements in the context of a prescribed func-
tion. Yet, finding an appropriate compromise be-
tween design parameters while ensuring that the
corresponding robot is physically realizeable is
challenging. There is not currently an established,
rigorous way to pre-screen designs for their fea-
sibility as physical hardware. Complicating this
issue is the fact that simulators contain many pa-
rameters that contribute to a gap between simu-
lated and actual performance. The parameters de-
scribing system geometry — such as the length,
radius, mass, and system topology — are easy to
obtain. These parameters could be measured on
a physical robot and hard-coded into the simula-
tion. However, the parameters for the actuation
dynamics and contact forces — such as restitu-
tion, friction coefficient and actuator speed — are
more difficult to measure and model.

Simplifying cable mechanics and soft material
contacts in simulation reduces the number of pa-
rameters to tune, but simultaneously enlarges the
sim2real gap. For example, the simplification of
non-Coulombic friction in cable elements leads to
design outputs that would only be possible with
motors with torques and angular velocities be-
yond what is commercially available. Reducing
the sim2real gap, or at least estimating this gap to
allow informed prototyping and hypothesis test-
ing, would allow faster transfer from simulation to
physical hardware. Possible solutions include in-
jecting noise into the simulator132 and generating a
function to estimate the reality gap.33, 133 As other
promising options, sensor feedback57 and a pre-
trained classifier from sensors134 have been used
to improve sim2real for tensegrity robots. In con-
trast to manually measuring the robot parameters,
data-driven methods such as these may reduce the
human labor requirements in the iterative identifi-
cation process.

Other ways to decrease the sim2real gap in-
clude improving and expanding the tools available
for manufacturing tensegrity robots. Ideal designs
would boast strong, lightweight materials, low
power consumption, light weight, rapid and strong
actuators, high-density power packs, and high-
resolution sensors for state reconstruction and en-

vironmental sensing. Numerous hardware chal-
lenges remain, precluding a simple scale-invariant
design and manufacturing strategy.

One significant challenge is the “curse of di-
mensionality,” whereby the complexity of both
design and assembly increases exponentially with
increased numbers of struts and cables, in addition
to the complexities of designing robots at various
length scales. For example, the power density of
various actuator choices varies significantly at dif-
ferent scales. Winch and cable actuators have an
excellent power density in large (e.g., meter-scale)
tensegrities, but are obstructive in centimeter scale
tensegrities. Conversely, shape memory alloy ac-
tuators have excellent power density at all scales,
but are inefficient relative to rotary motors and
slower at large size scales due to slower heat trans-
fer between the actuator and the environment. An-
other important factor can be that material proper-
ties do not scale with system mass, affecting the
level of engineering required. For example, in
small, low-mass tensegrities, the material choice
for the end caps of the struts is trivial. In contrast,
for heavier, meter scale tensegrities, the end caps
experience higher impact loads and abrasive wear.

Furthermore, tensegrities are notoriously diffi-
cult to assemble and poorly disposed to automated
assembly due to their complex spatial connec-
tions. Recently proposed modular lattices31, 41 and
vibration-driven struts with integrated motors19

reduce assembly times, but much remains toward
developing a streamlined tensegrity robot manu-
facturing process with integrated sensing and ac-
tuation. For example, the number of struts in a
given design has a profound impact on assembly
complexity, which is one of the reasons it is rare
to see rolling tensegrities with more struts than the
canonical six-bar arrangement or crawling tenseg-
rities with more than three or four bars in their ar-
rangements. There are several ways that this chal-
lenge may be addressed in the future. One impor-
tant step toward reducing the complexity of de-
sign and assembly is the reduction of custom de-
signs for each tensegrity robot or making a greater
number of the components digitally manufactured
and/or assembled.

State Estimation & Environmental Sensing
In addition to mechanical design challenges, cur-
rent tensegrity robots are limited by state estima-
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tion inaccuracies on the order of several percent of
the tensegrities’ strut length.25, 26 Such noisy sens-
ing resolution makes closed-loop control difficult,
driving a need for improved sensor fusion algo-
rithms and more stable on-board sensors. For ex-
ample, low-noise strain sensors135 could be inte-
grated into the sensor cables, or a 3D camera136 or
ranging sensors25 could be attached to strategic lo-
cations for tracking node positions. Furthermore,
estimating the state of modular tensegrities has
been unexplored. Once improved sensor suites are
developed, there are likely optimal ways to fuse
sensor data to obtain a full state estimate, and then
use that to produce and control efficient locomo-
tion gaits. Finally, environmental perception is a
largely unexplored domain of tensegrity robotics
research, yet presents immense scientific potential
for exploring extraterrestrial environments. While
the compliant structure of a tensegrity provides a
safe internal space for placing environmental sen-
sors, scant work has dedicated that space to house
scientific payloads. Many open questions thus re-
main, including how to maintain sensor orienta-
tion during rolling, and how to mitigate the occlu-
sions caused by the tensegrity struts.

Autonomous Navigation - To-date, tenseg-
rity locomotion has largely been confined to
laboratories—simplified environments that are but
approximations of real-world scenarios. How-
ever, navigating unstructured environments aut-
nonomously will be essential for future robotic
missions. Improved state estimation could poten-
tially be used in a closed-loop control policy and
integrated into higher-level task planning. For ex-
ample, one possible hierarchical control scheme
would combine advances in polyhedral path plan-
ning, real-time adjustment of found paths, and
machine learning-based dynamic control frame-
works to create a robust, tiered autonomous con-
troller.

Tensegrity planning algorithms could take
advantage of many environmental features that
prove catastrophic to conventional wheeled or
legged robots. Discontinuities, such as as cliffs
and ridges, require traditional robots to search
for a new, safer path. In contrast, a tensegrity
robot could take a shortcut—simply rolling off the
edge. Such an unconventional planning frame-
work could save mission-critical resources like

time and fuel. Recent work has begun to ex-
plore ways to efficiently locomote between ar-
bitrary way-points using symmetry-reduced rein-
forcement learning on the rough terrain and steep
slope,64, 134 but further research is needed to min-
imize power consumption. Overall, with appro-
priately dense and accurate state information and
planning algorithms that embrace discontinuities
rather than avoid them, the next generation of
tensegrities could complete missions rapidly at
lower risk.

Standardized Reporting of Performance Met-
rics - In the course of preparing this review article,
we found that few manuscripts reported the same
sets of system-wide performance metrics beyond
locomotion speed (in addition to measurements
like rod length and robot mass), with many instead
only presenting measurements directly related to
the study’s novel claims. Without standardized
metrics for tensegrity robotics, it will be difficult
for the field to measure progress in an objective
manner. While adoption of metrics is ultimately
up to the research community and warrants fur-
ther debate and standardization, here we outline
a few that we believe are particularly relevant to
tensegrity robots. This list is not exhaustive, and
is meant as a concise starting point for the field to
build and improve upon. Some metrics can be ob-
tained on a static robot, while for others the robot
must be dynamic during measurement. For exam-
ple, potential “static” hardware metrics include:

• Robot density (kg/m3) - the mass of the
tensegrity robot divided by its volume,
where the volume is defined as the the con-
vex hull of the robot when the robot occu-
pies its maximum volume.

• Characteristic rod length (m) - the length of
a tensegrity strut. Since compressive ele-
ments in tensegrities can vary widely, we
define the characteristic length based on one
of several cases as: the minimum or rest
length of actuated rods, the average distance
between the geometric center and the ele-
ment’s multiple ends for compressive ele-
ments with more than two end nodes (e.g.
a tetrahedral element in a tensegrity spine),
or the average strut length in tensegrities
that have struts of different lengths. Having
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characteristic rod length as a reported met-
ric is especially important for comparing
the costs of transport of tensegrity robots at
very different scales.

• Maximum bending, buckling, and crushing
loads (N ) - the load at which a rod expe-
riences plastic deformation in any of these
three load configurations, typically in im-
pact scenarios.

These metrics seek to provide a quantita-
tive depiction of how lightweight, large, and
strong the robot is, while enabling comparison
between robots as different as the 6-bar icosahe-
dron and spine-like robots. Beyond these static,
structurally-oriented metrics, we present potential
locomotion performance metrics including:

• Cost of transport (unitless) - typically de-
fined as CoT = mgv/Pin, where m is the
system mass, g is the gravitational constant,
v is the average velocity, and Pin is the aver-
age power input to the robot. Alternatively,
it can be defined as CoT = mgx/Ein,
where x the distance traveled, and Ein the
energy input. Cost of transport gives the
ratio of energy used in productive motion
to that input to the system. Here, we pro-
pose measuring the cost of transport while
traveling over flat ground without obstacles
at standard atmospheric conditions. Since
it is unitless, cost of transport is an effec-
tive way to make comparisons between dis-
parate tensegrity designs as well as other
robots.

• Characteristic velocity (BL/s) - the robot’s
velocity divided by longest length of the
robot body. In many cases, the longest
length of the body will be approximately the
characteristic rod length.

• Maximum climbable incline (degrees) - the
maximum angle a locomoting robot can
climb in its intended environment.

8. Conclusions
Leveraging their lightweight, resilient bodies,

tensegrity robots have shown great potential to ex-

plore extreme environments. Tensegrities can en-
gage in numerous locomotion modes, including
crawling, rolling, and hopping. Such operational
flexibility enables them to adapt to changing de-
mands, navigate novel terrain, and operate even
after experiencing significant damage. Continued
development of tensegrities could one day allow
us to explore locations inaccessible with existing
technology, such as lava tubes on extraterrestrial
environments.

Beyond the field of robotics, tensegrity struc-
tures have provided simplified models to test
biomechanical theories. Progressing the field of
tensegrity robotics presents a unique opportunity
to build controllable analogs for testing theories
of legged locomotion, the spine’s role in animals’
dynamic stability, the role of passive stabilization
mechanisms in cellular behavior, and the stresses
experienced throughout the human body’s bone-
muscle system.4 Illuminating these dynamics will
lead to more targeted physical therapy, ergonomic
exosuits, and informed biological models. In-
deed, by studying the tensegrity, roboticists have
the chance to increase our knowledge of ourselves
and improve human life.
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