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ABSTRACT1
This paper investigate a new last-mile routing problem called capacitated vehicle routing problem2
with drones with stochastic demand (CVRPDSD). CVRPDSD considers the randomness of the3
customers’ demand and aims to find a set of coordinated routes of both the truck and the drone4
while minimizing the total route cost, which consists of the a priori cost and the expected recourse5
cost. To model the recourse action in CVRPDSD, a new recourse strategy is proposed, which is6
modified from the classical recourse policy in stochastic vehicle routing problem. The expected7
recourse cost of each individual route under the new recourse strategy is calculated as a closed form8
mathematical equation. A large neighborhood search method is presented to solve the problem.9
Numerical experiments on public available VRPLIB datasets illustrate that on average the addition10
of UAVs can reduce 21.5% of the total overall cost. Additional sensitivity analyses further indicate11
that UAV capacity has a significant effect on the total cost.12

13
Keywords: VRP with drones, stochastic demand, large neighborhood search14
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INTRODUCTION1
The Covid-19 pandemic is exacting a terrible human toll and menacing the economy in different2
industry sectors. However, the e-commerce industry continues to grow during the pandemic, per-3
haps even accelerating as in-person shopping is restricted. According to (20) and (4), in 2020 there4
has been a 129% year-over-year growth in U.S. & Canadian e-commerce orders as of April 21 and5
an 146% growth in all online retail orders. The growth of these numbers indicates an increasing6
need for efficient goods transportation methods in logistics and reverse logistics that requires no7
human interaction.8

The use of unmanned aerial vehicles (UAVs), or drones (throughout this paper these terms9
are used interchangeably) for this purpose has received increasing attention, and may represent10
the future of the logistics. This newly emerged delivery method uses pilotless aircraft to deliver11
packages autonomously and can be remotely controlled through a ground controlled station. A12
number of large organizations such as Amazon and Google have announced their initiatives in13
drone delivery. According to (10), the global drone market is currently worth 14 billion dollars and14
this number is estimated to grow to 43 billion dollars by 2024.15

Compared to traditional internal combustion engine-based truck delivery, drone delivery16
has the potential to significantly reduce the delivery cost and time. In general, without the costly17
labor, drone delivery can significantly lower the laboring cost. It is also more environmentally18
friendly than petroleum-fuel powered vehicles. However, despite the recently progress and in-19
vestment on drone delivery, several challenges still exist such as the limited flight range, payload20
capacity and safety issue when flying across downtown districts and/or other densely populated21
urban areas. The truck-drone delivery method, which is proposed in (17), provides one solution by22
allowing delivery trucks and drones cooperates and accomplish delivery task independently.23

During the vehicle’s operation, congestion and variability in demand and travel times af-24
fects these industries on three major service dimensions: (i) travel time; (ii) reliability; and (iii)25
cost. For example, traffic condition may vary and cause uncertainty in the travel times. In many26
pick-up services, the demands of the customers are revealed only upon arrival of the vehicles at27
their locations. Taken these factors into the input data of routing problem leads to the so-called28
stochastic vehicle routing problem (SVRP). To model the stochastic VRP, two approaches are com-29
monly used, chance constrained programming (CCP) and stochastic programming with recourse30
(SPR). The CCP versions of the SVRP usually minimizes the sum of planned route costs, while31
ensuring that the probability of route failure does not exceed a given threshold.32

In this paper, we consider a PICK-UP ONLY capacitated vehicle routing problem with33
drones with stochastic demand (CVRPDSD). With a known probabilistic description of the de-34
mand, we aim to design a set of coordinated routes of multiple trucks and drones while mini-35
mizing the total route cost, which consists of the a priori cost and the expected recourse cost.36
Besides, although most of the drone routing problem only involves one single truck and one UAV,37
in this research, multiple trucks, each of which is equipped with one UAV, can be used to fulfill38
the customers demand. Based on the author’s knowledge, this is the first research to address the39
stochastic routing problem with drones. The recourse strategy is also proposed in this research.40
Based on this strategy, this research derives the mathematical formulation of the expected recourse41
cost and adopts a large neighborhood search (LNS) method to obtain the optimal a priori routes42
that minimize the total route cost.43

The main contributions of this paper are:44
• The CVRPDSD is introduced and investigated. It is a pick-up only problem which consid-45



Zhu and Boyles 4

ers uncertainty in customer demand, and the operation of delivery method that involves1
multiple trucks and UAVs. The problem aims to find a set of routes that has the minimal2
overall route cost which includes the a priori planning cost and expected recourse cost.3

• The truck-drone recourse policy during the operation process is proposed, along with4
necessary modifications to the classical VRP recourse strategy. A closed-form mathe-5
matical equation is derived which can be used to calculate the expected recourse cost of6
a truck-drone coordinated route.7

• A hybrid large neighborhood search heuristic, which also integrates constraint program-8
ming (CP) modelling, is proposed to solve CVRPDSD.9

• The numerical analysis based on the tests on public available VRPLIB data sets indicates10
that UAV capacity has a significant effect on the overall route cost.11

LITERATURE REVIEW12
Due to the recent development on related techniques and the urgent desire of a new delivery method13
that is both efficient and environmental friendly, research on the application of UAV in logistics14
is receiving heavy attention in the operations research community. Some of research focuses on15
drone-only delivery such as (30). However, in this section we focus on research into the delivery16
methods combining a truck and a UAV, a so-called truck-UAV tandem delivery method. This17
method not only represents the transition from the traditional truck-only delivery to UAV delivery,18
but in itself is an highly efficient way to accomplish delivery tasks. This method combines the19
strength of truck delivery (high payload, unlimited travel range) and UAV delivery (low labor cost,20
fast and efficient) while addressing their corresponding shortcomings (limited flight range of a21
UAV, volatile travel times of trucks due to congestion).22

(17) introduced a truck-UAV tandem delivery method, the flying sidekick traveling sales-23
man problem (FSTSP). It assumes that the truck serves as a UAV hub that can launch and retrieve24
the UAV at customer nodes while both vehicles deliver parcels independently. A mixed integer lin-25
ear programming (MILP) formulation and a truck-first-drone-second heuristic are also proposed.26
Since then, different exact and heuristic algorithms are presented to solve this problem. (34) pro-27
posed an iterative method to solve FSTSP where the the first stage divides all the nodes into two28
exclusively mutated node set and the second stage optimizes the route by serving nodes in one29
set by truck and serving nodes in another set by UAV, while (7) and (8) present a neighborhood30
search method on FSTSP. There are also several studies on a slightly different problem, the travel-31
ing salesman problem with drones (TSPD) where the UAV could be retrieved at its launched node,32
which is prohibited in FSTSP. Examples include (3) and (19).33

A natural extension of FSTSP or TSPD involves the coordination of multiple trucks and34
drones. This is called vehicle routing problem with drones (VRPD). (5) studied the routing problem35
with a truck and several drones and a cluster-based approach is used to solve this problem. (32)36
proposed a more complicated problem which involves cooperation of multiple trucks and drones.37
In this problem, a drone can travel with the first truck to a drone hub and then travel with a different38
truck to continue its delivery task. This interchangeable property of drones makes the problem39
more challenging to solve. An arc-based integer programming model is proposed and a branch-40
and-price algorithm is used to solve the problem. Due to the complication of this problem, most41
research on this topic uses meta-heuristics, primarily using neighborhood search methods. (27)42
adopts a variable neighborhood search (VNS) while (26) used a hybrid VNS-tabu search to solve a43
variant of VRPD called vehicle routing problem with drones and en route operations (VRPDERO).44
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In VRPDERO drones can be launched and retrieved en route on some discrete points on arc.1
Besides, (23) used a large neighborhood method to solve VRPD.2

(31) is the first paper that addresses the uncertainty of customers’ demands. It considered3
a multi-depot variant of the CVRP with Poisson distributed demands. A modified algorithm origi-4
nally proposed by Clarke and Wright (6) was used to solve the problem. (2) derived a closed form5
expressions to compute the expected length of an a priori route. (14) presented an integer L-shaped6
method for stochastic programs with recourse. The same L-shaped algorithm is also used in (12)7
to solve the single vehicle CVRPSD. A new set of optimality cuts is derived to bound the recourse8
cost. More recently, (21) used a hybrid method that combines local branching and Monte Carlo9
sampling to solve single-vehicle CVRPSD. Several researchers have focused on finding alternative10
recourse policy, such as an optimal restocking policy which enables preventive return trips to the11
depot ((33), (24)), or rule based policy((25)). Most of the research on SVRP with recourse fo-12
cus on the single-vehicle case due to the inherent complexity of the problem. The CCP modeling13
approach is common; see, for instance, (29) and more recently (9) and (18).14

In this paper we focus on multiple vehicle routing, considering stochastic demand with15
restricted return trips. Note that in CVRPDSD a failure does not necessarily mean a return trip;16
when a failure happens at a UAV node the truck need not return to depot. We limit the maximum17
number of return trips to one, while having no limitation on the number of failures along a route.18
We believe this assumption is reasonable, as it makes little managerial sense to plan distribution19
routes that need a large number of return trips, and the total expected demand of a single route20
should not very much exceed the capacity the vehicle. These two properties imply that for an a21
priori planned route, the number of potential return trips is small. Similar assumptions are common22
in the literature, as in (11) or (16).23

To our knowledge, no published research has considered or modeled randomness in cus-24
tomers’ demand in vehicle routing problem with drones. This research fills this gap by first pro-25
pose a modified recourse strategy for VRPD, derives a mathematical formulation of the expected26
recourse cost and then solves the problem within a large neighborhood search framework that27
integrates constraint programming modelling.28

PROBLEM DESCRIPTION AND MATHEMATICAL FORMULATION29
In this section, the problem description and basic assumptions of CVRPDSD are presented first.30
Then the recourse policy in the situation of failure is introduced. Finally, this section presents the31
calculation process of the expected recourse cost and the total route cost32

Problem description33
The CVRPDSD is defined on an undirected, complete graph G = (V,E), with a vertex set V con-34
sisting of a depot site I = {0} and a set of customers J = v1,v2, ...,vc. The vertex set is thus35
V = I∪J. The edge set E = {(vi,v j) : vi,v j ∈V, i < j} contains the edges connecting vertices of V .36
Each edge (vi,v j) is associated with two non-negative travel time τi j and τ ′i j, which corresponds to37
the travel time needed for the truck and UAV to travel from node i to node j, respectively.38

In this paper, the CVRPDSD is defined to be a pick-up only problem where the logistics39
company aims to find a set of coordinated routes such that each customer is served exactly once by40
either a truck or a drone while minimizing the total expected route cost. The customer’s demand41
is stochastic with a given probability distribution, while the actual demand is only revealed when42
the vehicle visit the customer’s location. Thus, a route failure might happens during the delivery43
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FIGURE 1 A simple representation of the a CVRPDSD solution

operation. A "truck route failure" happens when the total actual demand on a route exceeds the1
vehicle’s capacity and a "drone route failure" happens when the total actual demand of a drone2
node exceeds the drone’s capacity. A strategy is required for updating the routes in case of such3
events. The actual action resulting from this strategy is called a recourse action. When truck route4
failure happens, the truck needs to return to the depot to replenish its capacity. In other literature5
this policy is also called a "restocking policy". When drone route failure happens the failed drone6
node needs to be served by the truck instead. In this research, the truck and the drone will adjust7
their route based on the given recourse strategy and the detail of this strategy will be introduced8
later in this section. Some of the additional assumptions of CVRPDSD are:9

1. The demands of customers are identical and independent random variables with known10
discrete or continuous probability distributions. The probability that an individual’s11
demand exceed the vehicle’s capacity is zero.12

2. The demands of customer are only revealed when the truck or drone arrives.13
3. Both the truck and the UAV are capacitated and the UAV has a flight range limit.14
The solution of CVRPDSD consists of a set of coordinated routes s = r1,r2, ...,rm where15

m is the number of available vehicles. For each vehicles i’s route ri = [riT ,rD
i ], rT

i specifies the16
truck i’s route while rD

i specifies all the drone sorties in the truck i’s route, where a sortie includes17
a launch node, a drone node and a retrieve node. For example, assume rT = [0,2,3,8,1,4,5,0] and18
rD = [[2,6,3], [1,7,5]]. rT indicates that the truck starts the trip at the depot, visit customer node19
2,3,8,1,4,5 consecutively and returns to the depot. rD indicates there are two UAV sorties in the20
solution. For the first sortie, the drone is launched at node 2. Then it serves customer node 6 before21
it is retrieved at node 3. The customer nodes that are planned to be served by the truck and drone22
are called truck nodes and drone nodes, respectively. An example of a solution and coordinated23
routes is shown in Figure 1.24

Given a coordinated route r, we can derive several different node sets:25
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1. launch node set Lr: it includes all the customer nodes that serves as a launch node in1
one of the drone sorties2

2. drone node set Dr: it includes all the customer nodes that are served by the drone in one3
of the drone sorties4

3. retrieve node set Rr: it includes all the customer nodes that serves as a retrieve node in5
one of the drone sorties6

4. intermediate node set Ir: it includes all the customer nodes that served by the truck when7
the drone is not on the truck.8

5. normal truck node set Tr: It includes all the customer nodes that are served by the truck9
and not in the set Lr∪Rr10

For the case where rT = [0,2,3,8,1,4,5,0] and rD = [[2,6,3], [1,7,5]], the launch node set11
Lr = [2,1], drone node set Dr = [6,7], retrieve node set Rr = [3,5], intermediate node set Ir = [4]12
and normal truck node set Tr = [8]13

Recourse strategy14
In CVRPDSD, both truck route failure and drone route failure might happen. Thus, in this study we15
adopt a modified version of the classical recourse strategy. The general principles of the modified16
recourse strategy are:17

1. No re-optimization after the failure and the vehicle resumes its deliveries as planned.18
2. The truck cannot returns to the depot without the drone.19
3. When the UAV is retrieved to the truck and find out that the remaining capacity of the20

truck is less than the volume of the item that is being carried on the UAV, the truck needs21
to returns to the depot before serving other customers.22

4. At most one return trip can be made on any route to the depot. This means that the23
solution must be such that the probability of the total demand less than two times the24
truck capacity is close to 1. In this paper, a route is said to be "feasible" if the probability25
of the total demand greater than two times the truck capacity less than a pre-defined26
value α . For the tests conducted in this paper, α is set to be 0.01.27

5. No partial pick-up service is allowed.28
6. Multiple partial recourse trips could be made and failed drone nodes have a higher pri-29

ority than unserved truck nodes. A partial recourse is defined when a drone node cannot30
be served because its demand exceed the drone’s capacity and this node will be served31
first by the truck after the drone is retrieved before truck goes on to its origin planned32
route.33

Based on these assumptions, different recourse actions are deployed when route failure34
happens at customer nodes of different types.35

1. If a drone node fails, it would be served by the truck after the drone is retrieved prior to36
serving other customer nodes along truck’s planned route.37

2. If a launch node fails, the truck and the drone will return to the depot and go back to this38
launch node to launch the UAV and continue on its planned route.39

3. If a retrieve node fails with corresponding drone node served, the truck and the drone40
will return to the depot and travel to this retrieve node or go to next planned node. If a41
retrieve node fails with corresponding drone node NOT served, the truck and the drone42
will return to the depot, serve the drone node and go to next planned node.43

4. If a intermediate node fails, the truck will retrieve the drone at original planned retrieve44
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node, returns to the depot, returns to the intermediate node and proceeds with planned1
route. If the drone node is unserved, the truck will serve it after it serves the retrieve2
node.3

5. If a normal truck node fails, the classical recourse strategy is deployed.4
6. When a node which is both a launch node and a retrieve node fails, it should be treated5

as a retrieve node.6
Based on the given policy, in order to illustrate the potential truck route due to the demand7

uncertainty, a modified truck route r′ is presented by inserting all the drone nodes into the original8
truck’s route rT after the corresponding retrieve node. We do so to account for the possibility that9
if the drone node cannot be served by the drone it would then be served by the truck after the10
retrieve node in rT . For the given example when r = [rT ,rD] where rT = [0,2,3,8,1,4,5,0] and11
rD = [[2,6,3], [1,7,5]], the corresponding r′ = [0,2,3,6,8,1,4,5,7,0]. The modified truck route r′12
is mainly used for calculating the cumulative demand up to a certain node.13

Computation of the total expected cost14
Consider the kth planned route rk as a sequence of vertices: rk = (v0,vk

1,v
k
2, ...,v

k
nk
,v0). Given a

original planned solution s = (r1, ...,rm), the objective function F(s) is the sum of two terms: the
deterministic cost and the expected recourse cost during the operation of all the planned routes in
s. We denote these two terms as φ(s) and E[ψ(s)], respectively. As a result,

F(s) = φ(s)+E[ψ(s)] =
m

∑
i=0

(φ(ri)+E[ψ(ri)]) (1)

In (1), the computation of the deterministic route cost is straightforward. The calculation of the15
expected recourse cost of each individual route will be introduced later in this section.16

Computation of the probability of failure17

Let ξ k
i denote the demand of ith truck node vk

i on route rk′ (Note here rk′ is the modified repre-18
sentation of an individual route) and let Xk

i denotes the cumulative demand up to and including ith19
node vk

i . The random variable that represents the vertex demand could be either discrete or contin-20
uous. Denote PD(t) = P{X = t} as the probability function of a generic discrete random variable21
D. Denote fD(t) as the probability density function of a generic continuous random variable D. In22
this study, the value of PD(t) and fD(t) are known for each vertex in the problem.23

Proposition 1. ((15)) The value of PXk
i
(t) and fXk

i
(t) satisfy the following recursion:

PXk
i
(t) =

t

∑
l=0

PXk
i−1
(t− l)P

ξ k
i
(l) (2)

with the boundary condition PXk
0
(t) = P

ξ k
0
(t),

fXk
i
(t) =

∫ t

l=0
fXk

i−1
(t− l) f

ξ k
i
(l)dl (3)

with the boundary condition fXk
0
(t) = f

ξ k
0
(t),24

Proof. Obviously at the boundary Xk
0 = ξ k

0 holds. As Xk
i is the cumulative demand at vertex vk

i ,25
Xk

i = Xk
i−1 +ξ k

i . As Xk
i−1 and ξ k

i are independent and nonnegative, the probability of Xk
i is the sum26

of the probability of all the discrete cases or the integral of all the continuous case.27
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Computation of the expected cost of recourse1
In this subsection, given a modified route r′, following additional notations are used.2
Q : Capacity of the truck3
D : Capacity of the drone4
d(i, j) : Distance between node i and node j5
π(i, j) : Total travelled distance in truck’s a priori route from node i to node j6
next(i) : Node that is next to node i in r′7
pre(i) : Node that is previous to node i in r′8
dr(i) : The corresponding drone node if i serves as a launch node, intermediate node or retrieve9
node10

Now we are ready to calculate the expected recourse cost of each vehicle’s route by an-11
alyzing customer node of different types. Note that in this process we use the modified route12
representation r′ instead of rT . Some of the notations are shown at the top of this section. Besides,13
denote P{Xi < Q} as the probability of that the cumulative demand in r′ including all the previous14
nodes up to customer i does not exceed Q. If there exists a customer node i such that i ∈ Rr or15
r ∈ Ir (i is a retrieve node or intermediate node), let dr(i) denotes its corresponding drone node.16
Note that dr(i) is the next node in r′ if i is a retrieve node. To better explain the calculation process17
of different cases, we use the above-mentioned route as an example. For now, assume that we have18
a vehicle’s route r = [[0,1,2,3,4,5,6,0], [[0,7,2], [4,8,6]]], which indicates that customer 1-6 is19
served by the truck while the UAV serves customer 7 and 8. The modified route representation is20
r′ = [0,1,2,7,3,4,5,6,8,0].21

Let us start with several simple cases:22
Case 1: The customer node i is planned to be served by the truck and i is a launch node. As23

in our example r, i = 0 or 4. In this case, recourse action only happens when Xpre(i) ≤ Q,Xi ≥ Q24
and the truck would need to go back to the depot first and return to node i so that it can launch the25
UAV. The recourse cost is simply C1 = 2d(0, i). As a result, the expected recourse cost at node i is26

E[C(i)] = P{Xpre(i) ≤ Q,Xi ≥ Q}C1 (4)
Case 2: The customer node i is planned to be served by the truck and i is normal truck node.27

As in our example r, i = 3. In this case, recourse action only happens when Xpre(i) < Q,Xi ≥ Q. If28
Xi = Q, the truck will need to return to the depot after serving customer i and go to node next(i)29
after replenishment. The recourse cost is C2 = d(i,0)+d(0,next(i))−d(i,next(i)). If Xi > Q, the30
truck will need to return to the depot and come back to serve customer i. The recourse cost is31
C3 = 2d(0, i). So the expected recourse cost at node i is32

E[C(i)] = P{Xpre(i) ≤ Q}(P{Xi = Q}C2 +P{Xi > Q}C3) (5)
Case 3: The customer node i is planned to be served by the truck and i is an interme-33

diate node of an UAV sortie. As in our example r, i = 5. Let dr(i) denotes the corresponding34
drone node of the sortie and ret(i) denotes the corresponding retrieve node. In this case, re-35
course action happens when Xpre(i) < Q,Xi ≥ Q. However, different from the first two cases,36
the truck cannot returns to the depot directly because it cannot returns to the depot without the37
drone. So, it needs to retrieve the drone at the retrieve node ret(i) first, returns to the depot38
and come back to serve i or go to next(i). Similarly, if Xpre(i) < Q,Xi = Q, the recourse cost is39
C4 = π(i,ret(i)) + d(ret(i),0) + d(0,next(i))− d(i,next(i). If Xpre(i) < Q,Xi > Q, the recourse40
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FIGURE 2 Illustration of different scenarios in case 4

cost is C5 = π(i,ret(i))+d(ret(i),0)+d(0, i). So the expected recourse cost at node i is1

E[C(i)] = P{Xpre(i) < Q}(P{Xi = Q}C4 +P{Xi > Q}C5) (6)
Now, for the remaining of this subsection, we will consider a more complicate case when2

the recourse action decision is made at a retrieve node. The underlying reason for this complication3
is because we receive more demand information at a retrieve node than nodes of other types.4
Remember that in the truck-UAV delivery method the truck and UAV operates independently and5
we only know the exact demand of a customer after it has been visited. So when we retrieve the6
UAV at a customer node, not only the demand information at the retrieve node is revealed, the7
demand of the UAV node is also revealed. As a result, different scenarios arises with different8
demand values and remaining truck capacity. For the rest of this section, all these scenarios will9
be considered to calculate the expected recourse cost of a retrieve node.10

Case 4: The customer node i is planned to be served by the truck and i is a retrieve node11
of an UAV sortie, e.g. node 6 in the previous example. Remember that in the special cases where12
a node i is both a launch node and a retrieve node, it should be regarded as a retrieve node when13
calculating the recourse cost. The recourse action happens at node i only when Xpre(i) < Q. In14
this case, different recourse actions are taken under different situations. For the normal case where15
i 6= 0, different scenarios arises, as shown in Figure 2:16

• Scenario 1: Xi < Q,Xdr(i) < Q and dr(i) is NOT served successfully. The probability17
of this scenario happens is Ps1 = P{Xi < Q,Xdr(i) < Q,ξdr(i) > D}. In this scenario,18
the truck just needs to serve node dr(i) and going to next(dr(i)). The recourse cost is19
Cs3 = d(i,dr(i))+d(dr(i),next(dr(i)))−d(i,next(dr(i)).20

• Scenario 2: Xi < Q,Xdr(i) = Q and dr(i) is served successfully. The probability of this21
scenario happens is Ps2 = P{Xi < Q,Xdr(i) = Q,ξdr(i) ≤ D}. In this scenario, the truck22
needs to return to depot and goes to next(dr(i)). The recourse cost is Cs5 = d(i,0)+23
d(0,next(dr(i)))−d(i,next(dr(i)).24

• Scenario 3: Xi < Q,Xdr(i) = Q and dr(i) is NOT served successfully. The probability25
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of this scenario happens is Ps3 = P{Xi < Q,Xdr(i) = Q,ξdr(i) > D}. In this scenario, the1
truck needs to serve node dr(i), return to depot and go to next(dr(i)). The recourse cost2
is Cs4 = d(i,dr(i))+d(dr(i),0)+d(0,next(dr(i)))−d(i,next(dr(i)).3

• Scenario 4: Xi < Q,Xdr(i) > Q and dr(i) is served successfully. The probability of this4
scenario happens is Ps4 = P{Xi < Q,Xdr(i) > Q,ξdr(i) ≤ D}. In this scenario, the truck5
needs to return to depot and goes to next(dr(i)). The recourse cost is Cs7 = d(i,0)+6
d(0,next(dr(i)))−d(i,next(dr(i)).7

• Scenario 5: Xi < Q,Xdr(i) > Q and dr(i) is NOT served successfully. The probability8
of this scenario happens is Ps5 = P{Xi < Q,Xdr(i) > Q,ξdr(i) > D}. In this scenario, the9
truck needs to return to depot, serves dr(i) and goes to next(dr(i)). The recourse cost is10
Cs6 = d(i,0)+d(0,dr(i))+d(dr(i),next(dr(i)))−d(i,next(dr(i)).11

• Scenario 6: Xi = Q and dr(i) is served successfully. The probability of this scenario12
happens is Ps6 = P{Xi = Q,ξdr(i) ≤ D}. In this scenario, the truck needs to return to13
the depot first before going back to node next(dr(i)) in r′ and the recourse cost is Cs1 =14
d(i,0)+d(0,next(dr(i)))−d(i,next(dr(i)).15

• Scenario 7: Xi =Q and dr(i) is NOT served successfully. The probability of this scenario16
happens is Ps7 = P{Xi = Q,ξdr(i) > D}. In this scenario, the truck needs to return to17
the depot first before serving node dr(i) and going to next(dr(i)). The recourse cost is18
Cs2 = d(i,0)+d(0,dr(i))+d(dr(i),next(dr(i)))−d(i,next(dr(i)).19

• Scenario 8: Xi > Q and dr(i) is served successfully. The probability of this scenario20
happens is Ps8 = P{Xi > Q,ξdr(i) ≤ D}. In this scenario, the truck needs to return to21
depot and go to next(dr(i)). The recourse cost is Cs9 = d(i,0) + d(0,next(dr(i)))−22
d(i,next(dr(i)).23

• Scenario 9: Xi >Q and dr(i) is NOT served successfully. The probability of this scenario24
happens is Ps9 = P{Xi > Q,ξdr(i) > D}. In this scenario, the truck needs to return to25
depot, goes back to i, serves dr(i) and goes to next(dr(i)). The recourse cost is Cs8 =26
2d(i,0)+d(i,dr(i))+d(dr(i),next(dr(i)))−d(i,next(dr(i)).27

So the expected recourse cost at node i is

E[C(i)] = P{Xpre(i) < Q}
9

∑
j=0

Ps jCs j (7)

where Ps j,Cs j are shown in each scenario j.28
For the special case where the retrieve node i is the depot, recourse only happens when

dr(i) is NOT served successfully and the truck needs to serve dr(i) and returns to depot. The
recourse cost is C6 = 2d(0,dr(i)). So the expected recourse cost is
E[C(i)] = P{Xi > Q}C6 (8)

To summarize this section, the expected cost of recourse of a route is simply the sum of29
the expected recourse cost of all the customers it aims to serve. As a result, we get the following30
proposition:31
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Proposition 2. The expected recourse cost of a cooperated route r is

E[C(r)] =
nr

∑
i=0

E[C(i)] (9)

With Proposition 2, the total route cost of a solution can be calculated using equation (9).1

SOLUTION METHOD2
In this section, an adaptive large neighborhood search framework is proposed to solve CVRPDSD.3

General structure4
The concept of large neighborhood search is brought up by (28). The general framework of the5
algorithm used in this research is similar to that proposed in (22) and (23). Typically in LNS, there6
are sets of destroy and repair methods available. “Destroy” methods eliminate a certain number of7
nodes from a solution, while “repair” methods generate a new feasible solution given the partial8
solution and eliminated nodes from previous step.9

There are two main approaches for destroy and repair methods. The first is to simply choose10
them randomly, while the second one chooses them adaptively. In ALNS, the selection of method11
is based on the roulette wheel selection rule.12

Let A be the set contains of all available destroy methods, and B the set of repair methods.
At the start of iteration j, if the performance score of method i ∈ A∪B is denoted as wi j, then the
probability of method i been chosen is
pi j =

wi j

∑i wi j
(10)

After each iteration, wi j is updated based on performance in the iteration as follows:

wi, j+1 = ρwi j +
λ

τ
(1−ρ) (11)

In the formula, ρ is the score shrinking rate and λ/τ is the score for the method in iteration j,13
where λ is an indication of the fitness of the newly found solution and τ is an indication of the14
computation time of the current iteration. Intuitively, the value of λ/τ is higher if we find a better15
solution with lower cost, or we entered a search space that is not visited before, in a short amount of16
time. In this study, a random number between 1 and the maximum destroy number m j is generated17
as the target number of nodes that would be removed.18

To control the evolution of the solution with regard to its sensitivity to the variations of the
search space, we control the acceptance probability of a new solution with a global time-varying
parameter T , called the temperature. This concept is frequently used in simulated annealing (13).
In this study, if a better solution is found in a iteration, the new solution is always accepted. If the
new solution xt has a higher cost, the probability of it being accepted is

p(xt) = e
f (x)− f (xt )

T (12)
where f (x) denotes the objective value of solution x.19

As the solution space is explored, the value of T gradually decreases from the initial value
to zero. Given a pre-specified time limit for search phase, the value of T is updated as

T = T0

(
1− t

tm

)
(13)

where t is the elapsed search time and tm is the pre-set time limit. The search terminates when the20
value of T is sufficiently small.21

The pseudo-code for the ALNS is given in Algorithm 1.22
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Algorithm 1 ALNS
Input: Instance and preset parameters
Output: CVRPDSD solution

1: s← InitialSolution()
2: s∗← s
3: noImpro← 0
4: while t ≤ tm do
5: Choose a destroy method d and a repair method r
6: s← r(d(s∗))
7: T = T0(1− t/tm)
8: if random(0,1)< exp( f (x)− f (xt)

T ) then
9: s← st

10: end if
11: if f (s)< f (s∗) then
12: s∗← s
13: noImpro← 0
14: else
15: noImpro← noImpro+1
16: if noImpro > noImproMax then
17: s← s∗

18: noImpro← 0
19: end if
20: end if
21: Update performance score
22: end while
23: return s∗
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FIGURE 3 Illustration of case when all UAV sorties has no intermediate nodes

Initial solution1
In this research, the initial solution is generated using the nearest neighbor method from classical2
VRP.3

Removal methods4
In each iteration, the destroy operator removes customer nodes from the current solution and stores5
them in a set P. In this study, a random generated integer β that lies between 1 and b(n−1−m)/2c6
is taken as the target number of customer nodes to be removed from the current coordinated route.7
This process is repeated for each route. After the destroy process, a partial solution sp and node8
set P are obtained.9

In our study, three different destroy methods are available for selection at each iteration:10
Random removal: This method selects customer nodes at random for removal, from the11
coordinated routes of the current solution.12
Nearby removal: In this method, a random customer node is chosen and removed from13
the current routes. The method then recursively removes the customer node closest to the14
last customer node removed, until a target number of customers have been selected.15
Route removal: This method aims to remove a whole coordinated route from the current16
solution.17

Repair Methods18
In each iteration of ALNS, with given partial solution sp and picked node set P, the repair method19
rebuilds the partial solution and returns a new feasible solution s. The three repair methods are:20

Greedy repair: This is the “cheapest” method of all three repair methods. The detailed21
process is shown in Algorithm 2.22
Nearby repair: This method is more costly than the greedy one. It examines all combina-23
tions of launch node and retrieve node in that feasible segment and picks the best one. The24
detailed process is shown in Algorithm 3.25
CP repair: Constraint programming (CP) repair is the most costly methods. In contrast26
with the first two methods, which maintained existing sorties in the partial route while27
searching for new ones, CP repair method begins by eliminating all current sorties. Ad-28
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Algorithm 2 Greedy repair
Input: partial solution sp and picked node set P
Output: an improved feasible solution of sp

1: for node i in P do
2: Find the insert location with least extra cost among all the insertion locations among all

the coordinated routes
3: If after insertion the resulting coordinated route is feasible, adopt the move. Else, check

next insert location.
4: end for
5: for truck route rT in sp do
6: for node i in rT do
7: if i could be served by UAV with sortie s then
8: Add s to the current route
9: Delete i from the turck’s route

10: end if
11: end for
12: end for
13: return sp

Algorithm 3 Nearby repair
Input: partial solution sp and picked node set P
Output: an improved feasible solution of sp

1: for node i in P do
2: Insert node into sp before a customer node that is closest to the chosen node
3: end for
4: for truck route rT in sp do
5: for feasible segment f in rT do
6: for node i in f do
7: Examine every feasible sortie that serves i by UAV
8: Select sortie s with the greatest saving or with lowest traverse node
9: If the resulting route is feasible, add sortie s into sp

10: Break f into two remaining smaller segment and add them into segment set
11: end for
12: end for
13: end for
14: return sp
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ditional nodes are chosen randomly from the truck’s route, and a constraint programming1
solver is used to find an optimal way to serve them. This sub-problem is formulated as a2
scheduling problem in CP and solved by a commercial solver CPLEX. The detailed process3
of this method is shown in Algorithm 4.4

Algorithm 4 CP repair
Input: partial solution sp and picked node set P
Output: an improved feasible solution of sp

1: for node i in P do
2: Insert node into sp before a customer node that is closest to the chosen node
3: end for
4: for coordinated route ri in sp do
5: p′← null set
6: Delete all UAV sorties in rD

i , add UAV nodes into p′

7: Randomly select truck nodes in rT
i and add them into p′

8: rT ′
i ← remaining truck route

9: Solve the CP model or MIP model with rT ′
i and p′

10: end for
11: return sp

NUMERICAL ANALYSIS5
In this section, all the tests are run on a desktop machine with Intel Processor i7-9700K at 3.60GHz6
with 32 GB RAM.7

Experiments on VRPLIB instances8
Publicly available VRPLIB instances are chosen to test the proposed ALNS. In this section, all9
the tested instances are originally created in (1) as instances of classical CVRP. Thus, in the case10
of CVRPDSD, additional parameters and necessary modifications are needed to fit our purpose,11
which are described and summarized below:12

• Rather than being deterministic, customers’ demand was made Poisson, with the original13
deterministic value as mean.14

• The truck’s capacity is unchanged.15
• The UAV’s capacity is chosen as the average of the maximum and median value of all16

the customers’ demand, to create interesting (and more challenging) instances.17
• The UAV’s travel time between two nodes is half of that of the truck, recognizing that its18

flight is unaffected by congestion or traffic control.19
• The UAV’s flight range is 50% more than the greatest distance between any two nodes.20

This means that there are some node pairs that cannot be served by a UAV.21
The other parameters are unchanged from the classical VRP.22

Experimental Setting23
The algorithm parameters are set as follows: initial temperature T = 1000, non-improvement pa-24
rameter noImprovMax = 100, score shrinking rate ρ = 0.9. The initial performance score wi0 for25
each destroy and repair method is set to 100. The time limit of the algorithm is set to be 20026
seconds for small cases, and 400 or 600 seconds for larger instances.27
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TABLE 1 Results of modified CVRPDSD instances

Instance |C| |V | z∗T z∗f z∗r CostT Cost f Costr |V ′| Time
A-n32-k5 32.0 5.0 918.9 787.8 131.1 802.4 610.9 191.5 3.0 400.0
A-n33-k5 33.0 5.0 760.0 662.7 97.2 669.7 523.8 145.9 4.0 400.0
A-n33-k6 33.0 6.0 843.6 742.8 100.8 507.1 471.1 36.0 4.0 400.0
A-n34-k5 34.0 5.0 905.1 781.3 123.8 748.3 569.3 179.0 3.6 400.0
A-n36-k5 36.0 5.0 947.4 802.1 145.3 911.9 574.5 337.4 3.0 400.0
B-n31-k5 31.0 5.0 785.5 676.7 108.8 629.5 490.6 138.9 3.0 400.0
B-n34-k5 34.0 5.0 963.1 791.2 171.9 612.3 575.3 36.9 3.4 400.0
B-n35-k5 35.0 5.0 1223.4 956.3 267.1 1036.7 677.2 359.5 3.0 400.0
B-n38-k6 38.0 6.0 965.7 809.4 156.3 795.2 591.8 203.4 4.0 400.0
P-n16-k8 16.0 8.0 515.6 451.9 63.7 258.9 227.8 31.0 5.0 200.0
P-n19-k2 19.0 2.0 231.0 212.0 18.4 177.0 163.8 13.2 2.0 200.0
P-n20-k2 20.0 2.0 243.0 216.0 27.0 200.2 178.6 21.6 2.0 200.0
P-n21-k2 21.0 2.0 224.8 212.0 12.0 231.1 198.7 32.4 2.0 200.0
P-n22-k2 22.0 2.0 243.4 216.0 25.5 214.7 195.0 19.6 2.0 200.0
P-n22-k8 22.0 8.0 644.4 603.0 43.0 313.2 313.0 0.2 4.6 200.0
P-n23-k8 23.0 8.0 690.0 529.0 158.8 347.5 306.8 40.7 6.0 200.0
P-n40-k5 40.0 5.0 482.3 461.7 20.6 464.2 371.3 92.8 3.8 400.0
P-n45-k5 45.0 5.0 575.6 512.8 62.8 557.9 461.9 95.9 4.0 400.0
P-n50-k7 50.0 7.0 623.6 559.9 63.7 556.3 404.8 151.5 4.8 600.0
P-n50-k8 50.0 8.0 748.5 634.8 113.6 583.9 416.6 167.3 5.4 600.0
Average 31.70 5.20 676.75 580.97 95.57 530.90 416.14 114.74 3.63 350.0

Computational Results1
The computational results are shown in Table 1. In the table, |C| and |V | represent the number2
of nodes and vehicles in the instance, respectively. z∗T , z∗f and z∗r are the route total cost, route3
fixed cost and route expected recourse cost of the classical VRP’s optimal solution, respectively.4
So z∗ equals the minimal route cost of CVRP if the demands are deterministic. Cost, Cost f , Costr5
represent the route total cost, route planned cost and route expected recourse cost, respectively6
found by the proposed algorithm. |V ′| represents the number of vehicles in the final LNS solution.7
Time is the pre-set computational time. For each instance the reported results are the average value8
of at least 5 independent runs of the algorithm.9

As can be seen from Table 1, on average, the CVRPDSD solution has a lower total route10
cost (553.67) than CVRP optimal solution (676.75). In some instances (such as P-n16-k8, P-n22-11
k8 and p-n23-k8) where the number of available vehicles is high, the CVRPDSD solution has much12
lower total route cost than the CVRP optimal solution. There are several reasons for this result.13
First, in these cases the truck’s capacity is usually relatively low and the truck needs to return14
to depot frequently. However, the hard capacity constraint in classical VRP no longer applies in15
CVRPDSD. A route that used to be infeasible in CVRP is now considered to be feasible as long as16
it does not violate the “one return trip assumption.” As a result, the number of vehicles used in the17
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final solution is less than CVRP, especially on the above-mentioned cases. Second, the addition of1
UAVs greatly improves delivery efficiency, as they have a faster travel speed than the truck. This is2
reflected by the CVRPDSD solution fixed route cost (423.42) being lower than that of the CVRP3
optimal solution (580.97).4

Sensitivity analysis on UAV capacity5
In this section, the same experiment setting is adopted as in previous section, but allowing the UAV6
capacity to vary around the default value (the average of the maximum and median of expected7
demand of all the customers). In a low capacity setting, this value is set to be the median value of8
all customers’ expected demand while in high capacity setting this value is the maximum value of9
all customers’ demand. The results of modified VRPLIB instances are shown in Table 2.10

TABLE 2 Route costs comparison under different drone capacity settings

Low capacity Default setting High capacity
Instance CostT Cost f Costr CostT Cost f Costr CostT Cost f Costr
A-n32-k5 948.8 657.7 291.1 802.4 610.9 191.5 749.3 612.1 137.2
A-n33-k5 760.4 542.9 217.5 669.7 523.8 145.9 584.5 456.7 127.8
A-n33-k6 812.0 556.5 255.5 507.1 471.1 36.0 502.6 460.7 41.9
A-n34-k5 880.9 627.4 253.5 748.3 569.3 179.0 700.3 523.6 176.7
A-n36-k5 1039.8 730.0 309.8 911.9 574.5 337.4 791.6 552.1 239.5
B-n31-k5 739.4 504.2 235.3 629.5 490.6 138.9 568.3 470.2 98.1
B-n34-k5 806.4 584.5 221.9 612.3 575.3 36.9 595.6 538.8 56.8
B-n35-k5 1127.8 691.8 435.9 1036.7 677.2 359.5 834.3 665.6 168.7
B-n38-k6 937.8 659.9 277.9 795.2 591.8 203.4 655.1 556.6 98.5
P-n16-k8 339.4 265.5 73.9 258.9 227.8 31.0 226.7 220.3 6.4
P-n19-k2 237.4 209.5 27.9 177.0 163.8 13.2 166.6 160.3 6.3
P-n20-k2 251.6 227.0 24.6 200.2 178.6 21.6 176.5 170.6 5.9
P-n21-k2 252.0 214.6 37.4 231.1 198.7 32.4 197.4 188.4 9.0
P-n22-k2 266.5 227.7 38.8 214.7 195.0 19.6 193.0 183.2 9.8
P-n22-k8 434.4 334.9 99.5 313.2 313.0 0.2 305.9 304.9 1.0
P-n23-k8 485.5 343.7 141.7 347.5 306.8 40.7 310.4 293.2 17.2
P-n40-k5 619.5 448.7 170.9 464.2 371.3 92.8 439.7 347.0 92.7
P-n45-k5 749.3 515.0 234.3 557.9 461.9 95.9 459.8 384.5 75.3
P-n50-k7 713.6 522.0 191.6 556.3 404.8 151.5 515.1 373.3 141.8
P-n50-k8 789.0 567.3 221.7 583.9 416.6 167.3 510.1 419.4 90.7
Average 659.58 471.54 188.04 530.90 416.14 114.74 474.14 394.07 80.06

As can be seen in Table 2, the experiment setting with the lowest UAV capacity has the11
highest overall route cost, which decreases gradually as the UAV capacity increases. Especially12
in instances P-n16-k8, P-n22-k8, P-n23-k8 and P-n50-k8, where the number of available vehicles13
is 8, the total overall route cost CostT with high UAV capacity is only about 62% of that with14
low UAV capacity. This results indicate that the UAV capacity has a significant effect on the total15
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overall route cost in CVRPDSD, as low UAV capacity leads to high probability of drone route1
failure and high recourse cost. As illustrated in Table 2, the recourse cost in capacity setting 2 is2
only half of that in capacity setting 1.3

CONCLUSION4
In this paper, we investigate the capacitated vehicle routing problem with drones and stochastic5
demand. CVRPDSD is a pick-up only problem where it aims to find an a priori route minimizing6
the sum of fixed route cost and expected recourse cost. We propose a new recourse strategy which7
is modified from the classical VRP recourse strategy. A key difference between the new strategy8
and the classical one is that the truck cannot returns to the depot without the drones. Additionally,9
the truck can only returns to the depot at most one time during its route but it can diverts to the10
customers which are not served by the UAV for multiple times. A closed-form mathematical for-11
mulation is proposed to calculate the total overall route cost. A large neighborhood search method12
which integrates constraint programming modelling is presented to solve CVRPDSD. Numerical13
analysis are conducted on public available VRPLIB datasets, which shows that the addition of14
UAV can greatly reduce the total overall cost. Additional sensitivity analyses further indicate that15
UAV capacity has a significant effect on the total cost.16

The future research direction concerning CVRPDSD includes variant which enables mul-17
tiple return trips or that enables the truck to carry multiple drones.18
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