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Abstract
The establishment of secure secret keys ahead of transmissions is one of the key issues in the field of information security.

The security of traditional cryptographic secret key establishment mechanisms is seriously challenged by computing-

intensive attacks, with the fast growth of high-performance computing. As an alternative, considerable efforts have been

made to develop physical (PHY) layer security measures in recent years, such as link-signature-based (LSB) secret key

extraction techniques. Those mechanisms have been believed secure, based on the fundamental assumption that wireless

signals received at two locations are uncorrelated when separated by more than half a wavelength. However, this

assumption does not hold in some circumstances under latest observations, rendering LSB key extraction mechanisms

vulnerable to attacks. To address this problem, the formal theoretical analysis on channel correlations in both real indoor

and outdoor environments is provided in this paper. Moreover, this paper proposes empirical statistical inference attacks

(SIA) against LSB key extraction, whereby an adversary infers the signature of a target link. Consequently, the secret key

extracted from that signature has been recovered by observing the surrounding links. In contrast to prior literature that

assumes theoretical link-correlation models for the inference, our study does not make any assumption on link correlation.

Instead, we employ machine learning (ML) methods for link inference based on empirically measured link signatures. We

further propose a countermeasure against the SIAs, called forward-backward cooperative key extraction protocol with

helpers (FBCH). In the FBCH, helpers (other trusted wireless nodes) are introduced to provide more randomness in the key

extraction. Our experimental results have shown that the proposed inference methods are still quite effective even without

making assumptions on link correlation. Furthermore, the effectiveness of the proposed FBCH protocol is validated by our

experiment results.

Keywords PHY-layer security � Link signature � Key extraction � Channel impulse response � Channel correlation �
Machine learning � Inference attack � Countermeasure

1 Introduction

Secret keys provide confidentiality and integrity in com-

munication. The establishment of secure secret keys ahead

of transmissions is one of the key issues in the field of

information security. The Diffie-Hellman key agreement

protocol (1976) was the first practical method for estab-

lishing a shared secret over an unsecured communication

channel. The security of Diffie-Hellman protocol is based

on the discrete logarithm problem, whose solution is

assumed to be hard to compute. However, with the fast

growth of high-performance computing, the above

assumption is seriously challenged, rendering Diffie-
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Hellman possibly vulnerable to various computation-in-

tensive attacks.

Realizing the potential vulnerability of Diffie-Hellman,

developing new key extraction mechanisms whose security

does not rely on the computation hardness assumption

receives a lot of attention. One solution is through PHY-

layer security, which extracts symmetric secret keys from

the PHY-layer channel response of the wireless link (i.e.,

the link signature) between the transmitter and the receiver

[1–4]. The channel response or link signature is considered

to be a good pick for secure key establishment because it is

both reciprocal and uncorrelated. It is reciprocal because it

is usually assumed that when the transmitter and receiver,

Alice and Bob, make measurements on the channel state of

the link between them, their measurements are symmetric

(identical). On the other hand, the channel is said to be

uncorrelated because it is usually assumed that the state of

any other link separated by at least half of a wavelength

from Alice and Bob should be independent from that of the

link between Alice and Bob [5]. Based on these assump-

tions, it is commonly believed that common keys can be

extracted by Alice and Bob based on their symmetric

observation of the channel between them, while this

channel is unobservable by a third party separated far

enough (half a wavelength) from Alice and Bob, making

the extracted keys secure and secrete.

While PHY-layer secret key extraction has been used in

many applications such as encryption and authentication,

recent studies have revealed that the uncorrelation

assumption between separated links may not always be

valid [6, 7], especially in many indoor environments where

radio propagation becomes complicated due to signal

reflection and multi-path. This opens the door for the sta-

tistical inference attack (SIA) against the link-signature

based (LSB) key extraction, because the correlation

between links may be exploited by an adversary to prob-

abilistically infer the signature of a target link based on

observations over surrounding links. In light of such a

vulnerability, SIA against LSB key extraction has been

analytically studied in prior work, by assuming a correla-

tion model between neighboring links [6–8]. However, it

remains to be seen, in a realistic wireless environment,

without making assumptions on the link correlation model,

how and to what extent SIA may undermine the security

strength of LSB key extraction.

In this paper, we explore answers to the above questions.

We first discuss the correlation between two wireless

channels in both indoor and outdoor environments. We

build two models, indoor and outdoor communication

models. According to these two models, the formal theo-

retical analysis on the channel correlation is provided.

Using theoretical analysis we find that there are still rela-

tively strong correlations with two links separated by more

than a half wavelength. Thus, it is possible for the adver-

sary to launch correlation attacks by using the correlation

information between the legitimate links and surrounding

links. Then we propose inference attacks against existing

key extraction schemes in three scenarios by employing

ML approaches. Our proposed inference attacks study does

not rely on any assumption on the link correlation model.

Moreover, the applied ML approaches are able to deal with

time-varying channel conditions and environments (the

dataset used in our ML model is empirically measured at

different times in a real environment where people may be

moving around). In particular, our study roots from the

utah/CIR dataset on CRAWDAD [9], which contains over

9300 measured channel traces for 1892 links in a 44-node

indoor office-type wireless network. Several possible SIA

scenarios are considered. To generalize the evaluation of

our proposal, the statistical inference attacks are validated

on another dataset, called Pozyx CIR and Range With LOS

and NLOS dataset [10] (PCR dataset) as well. For each

scenario, measured link signatures in each dataset are

divided into two datasets: training data and test data. ML-

based channel inference algorithms are developed. We start

our study from establishing neural network models for

inference. In this work, a two-layer feedforward network

with sigmoid hidden neurons and linear output neurons are

used. The network is trained with Levenberg-Marquardt

backpropagation algorithm. After being trained based on

the training data, these algorithms are instructed to infer the

link signatures in the test dataset. The idea of our ML-

based SIAs is independent from the specific key extraction

implementations. For simplicity, we adopt the simple but

well-known methods in [11] to generate keys from the

obtained link signature. Furthermore, we utilize different

ML algorithms, such as ensemble methods, support vector

machine (SVM), and multivariate linear regression to

launch SIA, and compare the inference performances of

different ML algorithms. Our experimental results show

that all these ML algorithms have approximative inference

performance, and thus can effectively reduce the key

search space by many orders of magnitudes compared to a

brutal-force search mechanism.

In light of the above vulnerability, we propose a novel

multi-link Forward-backward Cooperative Key Extraction

Protocol with Helpers (FBCH) in this paper as a counter-

measure to the aforementioned SIA attacks, aiming to

make the LSB key extraction more secure. In particular, by

introducing a set of helpers (these are legitimate nodes

assisting the key extraction process), FBCH allows two

communicating terminals to extract symmetric secret keys

based on the combined channel impulse responses (CIRs)

of several randomly selected links. This is in sharp contrast

to the conventional method where the key extraction is

only dependent on the particular link between the
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transmitter and the receiver. Consequently, the resulting

key extraction becomes less dependent on a particular fixed

channel, making the aforementioned SIA attacks, which

mainly target the channel between the two communicating

terminals, less effective.

As a summary, the main contributions of this work are:

1) We theoretically verify the existence of correlation

between neighboring links in realistic environments, 2) we

suggest empirical methods to exploit the correlation to

launch SIA against LSB key extraction, which do not rely

on any assumption on the link correlation model, 3) we

further propose a countermeasure to weaken the effects of

SIA attacks and make LSB key extraction more secure, and

4) we use empirical datasets that are measured in real

(varying) environments at different times to verify our

findings. To the best of our knowledge, this is the first

systematic and empirical study of LSB key extraction from

the SIA perspective in the literature.

Part of this work has been presented previously as a

conference paper in [12]. Comparing to our prior confer-

ence paper, the main differences and contributions of the

journal version are summarized as follows: First, the

journal version provides a formal theoretical verification

for the correlation between neighboring links. Second, in

this journal version, we propose a countermeasure, called

FBCH protocol, to the statistical inference attacks. We also

provide the theoretical verification for the security of the

FBCH protocol. Moreover, it provides more simulation

results and performance evaluation for the proposed FBCH

countermeasure. Third, the journal version provides

extended motivation, more analytical details, and more

elaborations for the problem, and the formulations.

The rest of this paper is organized as follows. We review

related work in Sect. 2. Section 3 presents the background

of LSB key extraction schemes and defines the system

model. Section IV analyzes the correlation between two

wireless channels in both indoor and outdoor environ-

ments. We describe the proposed neural network based SIA

attacks in Sect. 5. Section 6 evaluates the performance and

effectiveness of the proposed attacks. Section 7 presents

the FBCH countermeasures to the inference attacks and we

conclude our work in Sect. 8.

2 Related work

The idea of exploiting wireless channel characteristics for

generating secret keys has received considerable attention

in recent years. A variety of physical layer characteristics-

based key extraction schemes in different application sce-

narios have been proposed [11, 13–31]. For example, in

[20], the authors propose a secret group-key extraction

scheme in physical layer, where an arbitrary number of

multi-antenna lens antennas (LNs) exist in a mesh topology

with a multi-antenna passive eavesdropper. In [21], the

authors establish the key extraction model for high

dynamic wireless networks with a center node and random

arrival users (e.g., roadside units (RSUs) with vehicles) for

the first time. While the security of LSB key extraction

relies heavily on the uncorrelation assumption of channels,

the validity of this assumption has not been evaluated/

verified in these works.

Theoretical analysis on the correlation among links is

conducted in [6, 7, 32]. In particular, these works derive

theoretical link correlation by taking into account the

spatial/geometric relations among the transmitter, receiver,

and signal reflectors. One ring model and the Jakes’s model

are employed to derive the link correlation models under

various scenarios. Their main finding is that the uncorre-

lation-beyond-half-wavelength assumption is not always

valid, and therefore it is necessary to use larger guard zones

around the transmitter and the receiver for secure LSB key

extraction. Unlike [6, 7, 32], our work derives theoretical

link correlation in general indoor and outdoor environ-

ments with the random distributed scatterers.

With the development of a new generation wireless

networks, intelligent physical layer security mechanisms

based on machine learning have attracted researchers’

attention. Machine learning for intelligent authentication in

5G and beyond wireless networks has been studied in [33].

Conventional cryptographic and physical layer authenti-

cation techniques are facing some challenges in complex

dynamic wireless environments. In this article, Fang et al.

envision new authentication approaches based on machine

learning techniques by opportunistically leveraging physi-

cal layer attributes. In [34], Qiu et al. focus on secure

authentication in wireless communication, and use a con-

volutional neural network as an intelligent authentication

process to improve attack detection accuracy. Like

[33, 34], our work applies the machine learning as the new

tool to study the security performance of PHY-layer key

extraction mechanisms.

The research topic of attacks against PHY-layer-based

key extraction systems currently receives limited research

input. Some researchers have reported that the current key

extraction schemes are vulnerable to passive eavesdrop-

ping [8, 35–37], as well as active attacks [38–44].

For the passive attacks scenario, an experimental study

on inference attack against PHY-layer key extraction is

considered in [8], where the key extraction is based on the

value of a received signal strength indicator (RSSI).

Inferences in [8] are mainly based on simple averaging

methods and the RSSI observations used for the inference

are made close to the target link (ranging from 6 cm to at

most 90 cm away from the target receiver). In reality,

making an inference attack based on overhearing the target
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channel at such a close distance may not be practical. Our

work considers a significantly different inference model. In

particular, rather than being a simple averaging of samples,

our inference is based on machine learning models, which

enables a much better inference outcome through training

compared to brute force methods. This has been experi-

mentally validated on the datasets used for our experi-

ments. In particular, machine learning models attempt to

map the patterns/relationships between input variables and

target variables. Conversely, in this specific problem,

simple averaging methods are not able to capture the non-

linear relationship between positions of transmitter/re-

ceivers and channel impulse responses. As a result, our

methods support inference based on observations made

much further away from the target link, ranging from

meters to over ten meters, which is of more interest in

practice. Furthermore, instead of inferring RSSI, we infer

the channel response, which allows faster key extraction.

Steinmetzer et al. [35] also focuses on the passive attacks.

It introduces a new analysis scheme that distinguishes

between jammed and unjammed transmissions based on

the diversity of jammed signals. Liu and Ning [36] studies

the mimicry attack, where an adversary replays or forwards

legitimate responses from the transmitter to the receiver.

The attacker needs to meet two demanding requirement to

launch a mimicry attack: first, he needs to roughly know

the received symbols at the receiver from the transmitter;

second, he needs to manipulate his own symbols, such that

when the manipulated symbols arrive at the receiver, they

are similar to the received symbols from legitimate trans-

mitter. In fact, it is difficult for the attacker to meet these

two requirements in practice. Unlike [36], our proposed

SIA attacks exploit the inherent correlation between nearby

links and apply ML models to infer link signatures, which

do not rely on such demanding assumptions. Moreover,

rather than being a theoretical study, we consider our work

empirical/experimental, as we use ML algorithms to make

inference based on empirically measured link signatures in

a realistic environment.

For the active attack scenario, in [40], Zhou et al.

assume that Eve is active and can send attack signals to

minimize the key extraction rate of the current key

extraction scheme. A formal active adversary model which

takes into account an adversary’s knowledge/control of the

wireless channel is presented in [41]. In [42], Jin et al.

propose a new form of highly threatening active attack,

named signal injection attack. The attacker can inject the

similar signals to both two terminals to manipulate the

channel measurements and compromise a portion of the

key. PHY-UIR as a countermeasure to the signal injection

attack is proposed in this work. In PHY-UIR, both two

terminals introduce randomness into the channel probing

frames. Thus, the random series that are used to extract

secret keys are the combination of randomness in the

fading channel and the ones introduced by users. Then the

composed series are uncorrelated to the injected signals. As

a result, the attacker is not able to compromise the com-

posed secret keys. Later, in [43], Hu et al. propose a new

kind of key manipulating attack which PHY-UIR can not

prevent, called session hijacking attack. The attacker

hijacks the key agreement by injecting high power signals

and force legitimate devices running PHY-UIR protocol

with the attacker. In such way, the attacker and device

generate the same key. Recently, researchers study a jam-

ming attack on received signal phase-based key extraction

system in [44]. The jammer is an active attacker that tries

to make a disturbance in the key derivation procedure and

changes the phase of the received signal by transmitting an

adversary signal. In contrast to these kinds of active

attacks, our proposed SIA attacks are passive attacks,

which do not try to affect the process of key extraction, but

try to silently infer the key bits that the legitimate users

obtain.

In [45], authors investigate and compare the secret-key

capacity based on the sampling of the entire complex

channel state information (CSI) and the received signal

strength (RSS). The fact that the eavesdropper’s observa-

tions might be correlated has been taken into account in

this work. In the conclusion, the authors find the RSS-based

secret-key generation is heavily penalized as compared to

CSI-based systems. In our work, the study of statistical

inference attacks are based on the CSI-based secret-key

generation systems. Our results show that the CSI-based

systems still have security vulnerability under statistical

inference attacks, even though the eavesdropper’s obser-

vations are not correlated.

Unlike the attacks on physical-layer key extraction

between two ends, in [46], Harshan et al. consider the

attacks on group key extraction systems. They address

insider attacks from the legitimate participants of the

wireless network during the key extraction process. Instead

of addressing conspicuous attacks such as switching-off

communication, injecting noise, or denying consensus on

group keys, they introduce stealth attacks that can go

undetected against state-of-the-art GSK schemes. On a

different track other than security, channel inference/esti-

mation has been extensively studied for efficient radio

resource management in wireless networks, e.g., for MIMO

systems [1, 47]. However, such inference/estimation is

made only for the channel between the target transmitter

and the receiver, rather than for channels beside the target

link.
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3 Model description

3.1 Multi-path effect and link signature

In wireless communications, radio signals generally reach

the receiving antenna by two or more paths due to reflec-

tion, diffraction, and scattering, which is called multipath

propagation. Since different paths have different distances

between transmitter and receiver, a receiver usually

receives multiple copies of the transmitted signal at dif-

ferent time. Different copies have different attenuations

due to the different path losses. The received signal is the

sum of these delayed signal copies.

A radio channel consists of multiple paths from a

transmitter to a receiver, and each path of the channel has a

response (e.g., distortion and attenuation) to the multipath

component traveling on it, which is called a component

response. The superposition of all component responses is

the channel impulse response (CIR). Since the multi-path

effects between different pairs of nodes, as well as channel

impulse responses, are usually different, a channel impulse

response between two nodes is also called a link signature.

3.2 Key extraction from link signature

Once channel impulse responses have been estimated, the

process of key extraction is rather straightforward. First,

channel impulse responses should be quantized for secret

key extraction since they are continuous random variables.

There are several kinds of mechanisms to quantize link

signatures. In this paper, for completeness purposes, we are

taking as an example the uniform quantization, which was

adopted by one of the seminal works on link-signature-

based key extraction [3]. Other quantization methods also

work for the proposed attacks. First, we normalize each

CIR with its maximum element value to obtain vectors of

discrete decimals. Next, the resulting discrete decimals are

multiplied with 32 and then are rounded to the nearest

integers. In this way, we obtain vectors of integers in the

range of [0,31], which are the quantization results of con-

tinuous channel impulse responses in integer representa-

tion. Then, the vectors of integers are converted to their

binary presentation. Lastly, N-bit binary string is cut out

from the whole string as the initial N-bit secret key. Fig-

ure 1 shows the framework to extract key bits.

However, the straightforward quantization mechanism

usually is not sufficient. Due to the variation of real envi-

ronment and hardware differences between two measure-

ment devices, it does not guarantee that the pairwise

measurements from two communication ends (Alice and

Bob) are identical. In this case, the sequences of bit keys

extracted will not be identical. Therefore, we should

employ an error reconciliation mechanism to solve this

problem. We still adopt the relative simple error reconcil-

iation mechanism in [10] as an example. For example, we

can apply challenge-response verification protocol. Let KA,

KB are the bit keys extracted by Alice and Bob, respec-

tively, and / is a random number that Alice picked. To

launch the verification protocol, Alice encrypts / by her

secret key KA, and sends Bob EKA
ð/Þ and Bob responds

with EKB
ð/þ 1Þ. If Alice gets /þ 1 after she decrypts

Bob’s message, she can conclude that Bob obtains the

correct key. Bob can do likewise. Otherwise, Alice and

Bob will extract bit keys from new measurements, and

continue to launch error reconciliation processes until they

obtain the same keys.

4 Theoretical analysis

The existing LSB key extraction schemes have been

believed secure, based on the fundamental assumption that

wireless signals received at two locations are uncorrelated,

when they were separated by more than half a wavelength.

However, some of the latest work has observed that this

assumption does not hold in some circumstances [6, 7]. If

this assumption does not hold, the adversary can infer the

target link signature based on his measurements of the

correlated channels. To investigate the potential vulnera-

bility of existing LSB key extraction system, in this sec-

tion, we provide a formal theoretical verification for the

existence of correlation between neighboring links in both

indoor and outdoor environments. Based on the results of

our theoretical analysis, we will further propose the

methods of inference attacks to LSB key extraction sys-

tems in the next section.

There are various classical channel models, e.g., one

ring model and Jakes’s model, serving for the correlation

Fig. 1 Framework to extract key bits from link signature
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analysis between two adjacent channels [6, 7, 32]. How-

ever, there still exists insufficiency of these classical

models. In practice, the locations of eavesdroppers/attack-

ers are in general unknown, we cannot assume that they are

located on a certain circle, as specified by the one-ring and

Jake’s model. Instead, a more reasonable model is to

assume that these eavesdroppers could be located at arbi-

trary locations within a certain area, which is the feature of

our newly proposed model. In contrast to these classical

channel models, we further popularize a model for Ray-

leigh fading and let the scatterers be randomly distributed

in an area A. Our analysis relies on the assumption that the

two legitimate communication ends are fixed and the

physical environment does not vary dramatically with the

time. The important notations used in our analysis are

defined in Table 1:

4.1 Channel correlation in outdoor environment

First of all, the wireless communication in an outdoor

cellular system is considered, where a mobile user equip-

ped with one antenna communicates with a base station

(BS), as shown in Fig. 2. To simplify the presentation, but

without loss of generality, we only consider the downlink

(i.e., BS transmitting to the user) in the following analysis.

Such consideration is representative, as realistic cellular

communication is usually dominated by downlink traffic.

Moreover, since the distance between the BS and the

mobile user is much greater than the distance between each

antenna element of BS, we will treat the BS as one node in

the following discussion. We assume that there is no

scatterer around the BS, since the BS antennas are typically

installed at a high place. Attack nodes (AN) are placed by

the adversary in any potential location. Moreover, we

assume that scatterers are randomly distributed around the

mobile user, inside a circular area A around the user’s

receiving antenna and the attack node, as illustrated in

Fig. 2. In Fig. 2, the radius of area A is R, and the center of

A is the midpoint of the user and attack node. We further

assume that the number of scatterers is large, and the

mobile user and attack node receive the signal from sur-

rounding scatterers, so the line-of-sight (LOS) paths are not

considered in our discussion. Our derivation is inspired by

the channel correlation analysis in classical MIMO system,

first proposed in [48].

We start our discussion by defining the correlation

coefficient between two neighboring links BS!User and

BS! AN as follows:

Definition IV.1 The normalized cross correlation coeffi-

cient between the neighboring links BS to User and BS to

AN is expressed as:

qbu;ba ¼
Efhbu � h�bag

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xbu � Xba

p ; ð1Þ

where � is the complex conjugate, hbu and hba denote the

received signal at the user and the attack node, respec-

tively, Xbu and Xba are the received link power at the user

and the attack node, respectively.

Table 1 Important notations
Si The ith scatterer

hS The angle of arrival (AOA) of the wave traveling from the scatterer toward the mobile user

R Radius of scatterer area

X Received link power

fSðSÞ Probability density function (PDF) of scatterers in an area

dUA Distance between the mobile user and attack node

dRA Distance between the legitimate receiver and attack node

das Distance between the attack node and the scatterer

dus Distance between the mobile user and the scatterer

dRA Distance between the legitimate receiver and the scatterer

k Wavelength

Fig. 2 Geometrical configuration of the channel model in outdoor

environment
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The received signal hbu between the mobile user and the

BS is given by [49] (the LOS component is neglected),

hbu ¼ lim
N!1

1
ffiffiffiffi

N
p

X

N

i¼1

giðdBSi � ni=DÞ�n=2

� expfjwi � j
2p
k
ðdBSi þ dasÞg:

ð2Þ

where N is the number of scatterers; gi is the amplitude of

the wave scattered by the ith scatterer; wi is the phase shift

introduced by the ith scatterer, respectively; dBSi and das are

the distances shown in Fig. 2; k denotes the wavelength.

The term ðdBSi � ni=DÞ�n=2
accounts for the power loss

relative to the distance D between the user and the BS with

path loss exponent n. The total received power Xbu of this

link is expressed as

Xbu ¼ lim
N!1

1

N

X

N

i¼1

Efg2i gðdBSi � ni=DÞ�n ð3Þ

We assume all links have equal received power, i.e.,

Xbu ¼ Xba ¼ X. By substituting Eqs. (2) and (3) into

Eq. (1), the normalized correlation coefficient between the

neighboring links BS! User and BS!AN can be derived

as follows,

qbu;ba ¼
1

X
lim
N!1

1

N

X

N

i¼1

Efg2i gðdBSi � ni=DÞ�n

� expf�j
2p
k
ðdas � dusÞg:

ð4Þ

In particular, we assume the scatterers are independently

distributed according to some 2-D probability density

function (PDF) fSðSÞ on the circular area A as shown in

Fig. 2. When N becomes large, the diffuse power scattered

by the ith scatterer has quite small contribution out of the

total X, which is proportional to Efg2i g=N. This is equal to
the infinitesimal power coming from the different area dS
with probability fSðSÞ, i.e., Efg2i g=N ¼ fSðSÞdS. Therefore,
Eq. (4) can be rewritten in the following integral form:

qbu;ba ¼
1

X

Z

A

ðdBSi � ni=DÞ�n

� expf�j
2p
k
ðdas � dusÞgfSðSÞdS;

ð5Þ

Since we assume scatterers are randomly distributed inside

the circular area A around the user and attack node, Eq. (5)

can be written as

qbu;ba ¼
1

X

Z R

0

Z p

�p
ðdBSi � ni=DÞ�n � exp

�

� j
2p
k

� ðdas � dusÞ
�

f ðhS; niÞ dðhSÞdðniÞ:
ð6Þ

where the f ðhS; niÞ is the PDF of the locations of scatterers

relative to the user and attack node with hS and distance ni
and dBSi , hS is the angle of arrival (AOA) of the wave

traveling from the scatterer toward the mobile user.

According to the laws of cosine and sine in [50], we get

d2as ¼ d2UA=4þ n2i � dUA � ni � cosðhS � hRÞ

d2us ¼ d2UA=4þ n2i þ dUA � ni � cosðhS � hRÞ
ð7Þ

and

D

sinðhS � hBÞ
¼ ni

sinðhBÞ
¼ dBSi

sinðhSÞ
; ð8Þ

where the dUA is the distance between the mobile user and

the attack node.

In the outdoor environment, the assumption of D �
R � dUA is realistic. Therefore, the difference of path

lengths can be approximated as

�ðdas � dusÞ � dUA � cosðhS � hRÞ

dBSi � D
ð9Þ

Substituting the arguments in Eq. (6) with Eqs. (7), (8) and

(9) yields

qbu;ba ¼
1

X

Z R

0

Z p

�p
ðniÞ�nexpf�j

2p
k

� dUA � cosðhS � hRÞgf ðhS; niÞ dðhSÞdðniÞ:
ð10Þ

Since the scatterers are uniformly distributed inside the

circular ring, we can use the PDF as f ðhS; niÞ ¼ 1=2pR.
Then, we obtain

qbu;ba ¼
1

X

Z R

0

Z p

�p
ðniÞ�nexpf�j

2p
k

� dUA � cosðhS � hRÞg
1

2pR
dðhSÞdðniÞ

¼ 1

X

Z R

0

Z p

�p

ðniÞ�n

2pR
expf�j2p

dUA
k

� cosðhS � hRÞg dðhSÞdðniÞ

ð11Þ

We plot the correlation coefficient qbu;ba as a function of

the ratio dUA=k in Fig. 3, in which we assume the distance

D is fixed. From this numerical result, it can be observed

that there exists correlation, even if the distance dUA
between the mobile user and the attack node is greater than

half wavelength. For instance, qbu;ba ¼ 0:21 when dUA is

equal to 5 wavelength, and hR ¼ 1. Moreover, the angle hR
affects the correlation coefficient qtr;ta dramatically in this

model.
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4.2 Channel correlation in indoor environment

In indoor environments, two communication ends, the

transmitter (Tx) and the receiver (Rx), generally are not far

from each other and surrounded by scatterers nearby. In

this case, we build a model, in which a big scatterer-ring

area A encloses both the transmitter and the receivers (in-

cluding attack nodes), as depicted in Fig. 4. In this circular

area A, the radius is R, and the center O is the midpoint of

the Tx and ORA, where ORA is the midpoint of the Rx and

the attack node (AN). In Fig. 4, we follow most of the

notations as those defined in Fig. 2. Comparing to the

outdoor model as shown in Fig. 2, in the indoor model, we

substitute the notations ‘‘Tx’’ and ‘‘Rx’’ for ‘‘BS’’ and

‘‘User’’, respectively. Moreover, to facilitate the derivation,

we substitute dTSi , dRA, drs and hT for dBSi , dUA, dus and hB,
respectively, and introduce the new variable c to denote the

angle of the scatterer in the polar coordinate system, as

illustrated in Fig. 4.

In Fig. 4, the correlation coefficient between two

neighboring links Tx!Rx and Tx!AN is defined as

follows:

Definition IV.2 The normalized cross correlation coeffi-

cient between the neighboring links Tx to Rx and Tx to AN

is expressed as:

qtr;ta ¼
Efhtr � h�tag

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xtr � Xta

p ; ð12Þ

where � is the complex conjugate, htr and hta denote the

received signal at the receiver and the attack node,

respectively, Xtr and Xta are the received link power at the

receiver and the attack node, respectively

To discuss the correlation between the neighboring links

Tx!Rx and Tx!AN in this model, we still use Eq. (5) to

yield the correlation coefficient function. The Eq. (5) is

rearranged in the indoor model as follows:

qtr;ta ¼
1

X

Z

A

ðdTSi � ni=DÞ�n

� exp �j
2p
k
ðdas � drsÞ

� �

fSðSÞdS;
ð13Þ

where X is the received link power (equal power for all

radio links is assumed).

According to the laws of cosine and sine in [50], we

have

ðdTSi Þ2 ¼ d2S þ D2=4þ D � dScosðcÞ

n2i ¼ d2S þ D2=4� D � dScosðcÞ
ð14Þ

and

sinðhTÞ ¼ dSsinðcÞ=dTSi

¼ dSsinðcÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2S þ D2=4þ D � dScosðcÞ
q ð15Þ

cosðhTÞ ¼ ðdScosðcÞ þ D=2Þ=dTSi
¼ ðdScosðcÞ þ D=2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2S þ D2=4þ D � dScosðcÞ
q

ð16Þ

sinðhSÞ ¼ dSsinðcÞ=ni

¼ dSsinðcÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2S þ D2=4� R � dScosðcÞ
q ð17Þ
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Fig. 3 Channel correlation coefficient qbu;ba versus distance ratio

dUA=k

Fig. 4 Geometrical configuration of the channel model in indoor

environment

Wireless Networks

123



cosðhSÞ ¼ ðdScosðcÞ � D=2Þ=ni
¼ ðdScosðcÞ � D=2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2S þ D2=4� R � dScosðcÞ
q

ð18Þ

By doing the substitution and rearrangements, we obtain

the approximation of �ðdas � drsÞ as

�ðdas � drsÞ �
dRA � ðdScosðc� hRÞ � D=2 � cosðhRÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2S þ D2=4� D � dScosðcÞ
p

ð19Þ

Since the scatterers are uniformly distributed inside the

circular ring, we can use the PDF as fSðSÞ ¼ f ðdS; cÞ ¼ 1
2pR.

Substituting the arguments in Eq. (13) yields the correla-

tion coefficient qtr;ta between neighboring links Tx!Rx

and Tx!AN as

qtr;ta ¼
Dn

X

Z R

0

Z p

�p
ððd2S þ D2=4Þ2 � D2d2Scos

2cÞ�n=2

1

2pR
� exp �j2p � dRAðdScosðc� hRÞ � D=2 � cosðhRÞÞ

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2S þ D2=4� D � dScosðcÞ
p

( )

dcdðdSÞs
ð20Þ

The correlation coefficient qtr;ta as a function of the ratio

dRA=k is plotted in Fig. 5. It can be observed that there still

exists correlation, even if the distance dRA between the

legitimate receiver and the attack node is greater than half

wavelength. For instance, the correlation coefficient

qtr;ta ¼ 0:26 when dRA is equal to 5 wavelength, and

hR ¼ 1:2. In contrast to the outdoor model, the correlation

is a decreasing function of the angle hR, for a certain dis-

tance ratio dRA=k. Moreover, comparing to the outdoor

model, the correlation coefficient qtr;ta is more sensitive to

hR.
In conclusion, the wiretap channel (i.e., Tx!AN) and

the legitimate channel (i.e., Tx!Rx) still have relatively

strong correlation, even if the attack node is far away from

the transmitter and receiver (here the ‘‘far away’’ means

that the distance between the attack node and receiver is

greater than k=2). Therefore, the adversary can infer the

secret key bits based on his measurements of channel

states, which makes the existing key extraction system

vulnerable. In the following section, we propose a class of

attacks, called statistical inference attacks (SIAs), to reveal

the vulnerability of the LSB key extraction system.

5 Statistical inference attack

In the previous section, we have theoretically verified the

existence of correlation between neighboring links. The

remaining issue is how this correlation may be exploited to

infer secret keys in practice. In this section, we apply

several ML-based algorithms to propose statistical infer-

ence attacks (SIAs) to infer keys by exploiting this corre-

lation. To launch SIAs, we assume the physical

environment does not vary dramatically with the time, e.g,

the relative speed between the Tx and Rx is low, DV � 0,

and the number of high speed obstacles can be neglected.

However, the environments should remain changed over

time. For instance, different people may be moving around

in an office. Depending on the information available for the

training of the ML model, we consider the following three

scenarios for SIAs:

(a) Inference based on links disjoint from the target link

(i.e., links of different transmitters and receivers

from the target link)

(b) Inference based on links sharing the same transmitter

as the target link

(c) Inference based on historical signatures of the target

link

These scenarios are illustrated in Fig. 6, respectively, and

are elaborated as follows.
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Fig. 5 Channel correlation coefficient qtr;ta versus distance ratio
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(a) Case I: Using links
of different tx and rx
locations.

(b) Case II: Using links
of the same tx loca-
tions.

(c) Case III: Using sig-
natures of the same
link, but measured at
different times.

Fig. 6 Attacks in three scenarios, solid lines denote the target links,

dotted lines denote the existing links

Wireless Networks

123



5.1 Case I: SIA based on disjoint links

This case is pertinent to the scenario where the adversary

has prior knowledge regarding the area in which the target

(i.e., the transmitter and receiver of the target link) will

appear, but does not know the exact location of the target

until the target appears. In this case, the adversary may

perform a site survey in the area before the target appears.

During the site survey, the adversary may collect sample

signatures of links throughout the area at different times,

and then use these samples to train a model that represents

the signature of an arbitrary link in the area as a function of

the transmitter and receiver locations of the link. The

adversary divides the sample dataset into training and

testing sets for cross-validation. Since the environments are

varying during the site survey, the sample link signatures

are not identical. Later in the online inference phase, the

adversary can observe the location of the target, and supply

this information to the trained model to infer the signature

of the target link. SIA to links in a mobile ad hoc network

is a typical example of this scenario.

We apply the classical topology of ML model for the

above link signature inference is as follows:

Input: SðLTðiÞ; LSðiÞÞ, LTðiÞ, LSðiÞ,
Output: SðLTðtÞ; LSðtÞÞ,

where

• i = the index of surveyed links,

• t = the index of the target link,

• LTðiÞ = the locations of transmitters,

• LSðiÞ = the locations of receivers,

• SðLTðiÞ; LSðiÞÞ = link signatures on the links (LTðiÞ,
LSðiÞ),

• SðLTðtÞ; LSðtÞÞ = link signature on the target link.

5.2 Case II: SIA based on links sharing the same
transmitter

This case applies to the scenario where the adversary does

not know the exact location of the target until the target

appears, but has prior knowledge of the area in which the

target will appear, and the communication in this area is

through a centralized access point such as a base station or

an access point (AP). Typical examples of such scenarios

include cellular networks and wireless local area networks

(WLAN). In this case, the adversary can also survey the

area before the target appears, during which he collects

sample signatures of various downlinks throughout the

area. These sample signatures are then used to train a

downlink signature model of the area, which represents the

signature of an arbitrary link as a function of the receiver’s

location. In the online inference phase, the adversary

observes the location of the target (the receiver), and

supply this information to the trained model to infer the

signature of the target downlink.

The topology of the ML model in this case is given as

follows:

Input: SðLSðiÞÞ, LSðiÞ,
Output: SðLSðtÞÞ,

where

• i = the index of surveyed downlinks,

• t = the index of the target downlink,

• LSðiÞ = the receiver location of the ith surveyed

downlink,

• SðLSðiÞÞ = link signature of the ith surveyed downlink,

• SðLSðtÞÞ = link signature of the target downlink.

5.3 Case III: SIA based on historical signatures
of the target link

In this case, we consider the temporal variation of the

signatures of the same link. This case applies to the sce-

nario where the adversary has prior knowledge of the exact

location of the target. Such information can be obtained by

the adversary by peeking into the location privacy of the

target. This is especially true if the target’s activity or

schedule follows a regular rule.

To infer the signature of the target link at a given time,

the adversary may first measure the signatures of the target

link at different times. The sample signatures are then used

to train a model that represents the link signature as a

function of time. In the online inference phase, the adver-

sary simply feeds the desired time into the trained model to

make inference on the signature of the target link at that

time.

The topology of the ML model for this case is given as

follows:

Input: SðtiÞ, ti,
Output: SðtcÞ,

where

• i = the index of time,

• ti = time ti,

• SðtiÞ = link signature at time ti,

• SðtcÞ = link signature at the target moment.

5.4 Overview of statistical inference attacks

Figure 7 shows the overview of statistical inference

attacks. Specifically, the adversary starts the statistical

inference attacks by collecting sample signatures during

the site survey phase. Once the data are collected, the
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adversary labels all the collected data, and feeds the data to

selected machine learning algorithms to train the model.

The input training data is transformed into a feature matrix,

which contains a number of features that are descriptive of

the sample link signatures. In this work, the neural net-

works, support vector machines, linear regression, and

ensemble methods are used as learning algorithms. In the

following, the adversary evaluates the accuracy of the

learned function by using a test set that is separate from the

training set, and tunes the model parameters to improve the

training of the model. Once the training and parameters are

optimized, the adversary uses this predictive model to infer

the signature/CIR on the target link. In the final inferred

key extraction phase, since the estimated channel impulse

responses are continuous variables, they should be quan-

tized to sequences of bits. Due to the variation in the real

environment and hardware differences between two mea-

surement devices, it does not guarantee that the pairwise

measurements from two communication ends are identical.

In this case, the sequences of bit keys extracted will not be

identical. Therefore, the error reconciliation (ER) mecha-

nism should be employed to obtain the inferred secret key,

and complete the inference attack. There are kinds of

existing quantization and ER mechanisms that the adver-

sary can use, which are beyond the scope of this work.

6 Experiment verification

In this section, we evaluate the effectiveness of the above

statistical inference attacks based on the utah/CIR dataset

from CRAWDAD [9] and PCR dataset from the IEEE

dataport [10].

6.1 Dataset

The experiment is based on the utah/CIR dataset on

CRAWDAD [9]. The CRAWDAD is a widely used archive

for sharing wireless network data resources across the

research community. This archive stores wireless trace

data, from real networks under real conditions, from many

contributing locations. There are 125 different datasets in

CRAWDAD so far, and the utah/CIR dataset is the one we

used in this work. In the utah/CIR dataset, over 9300 link

signatures are recorded in a 44-node wireless network,

which are measured in an indoor environment with obsta-

cles and scatters. By moving the transmitter and receiver

between node locations 1 - 44, it gives the number of

transmitter and receiver permutations counted as

44 � 43 ¼ 1892. At each permutation of transmitter and

receiver, 5 link signatures are measured over a period of

about 30 seconds. In this dataset, each link signature is

recorded as a 50-component vector. The campaign mea-

sures the relative static channels, while two or three people

were typically walking in the measurement environment.

The measurements are completed over the course of eight

days, and as a result, the samples vary with time.

To generalize the evaluation of our proposal, the sta-

tistical inference attacks are validated on another dataset,

called Pozyx CIR and Range With LOS and NLOS dataset

(PCR dataset) [10] as well. This dataset includes UWB

range measurements performed with Pozyx devices. The

measurements were collected between two tags placed at

several distances and in two different conditions: with Line

of Sight (LOS) and Non-Line of Sight (NLOS). The

measurements include the range estimated by the Pozyx

tag, the actual distance between devices, the timestamp of

each measurement and the values corresponding to the

samples of the Channel Impulse Response (CIR) after each

transmission.

6.2 SIA results and analysis

We first evaluate how accurately the proposed neural net-

work can infer the signature of a target link using utah/CIR

dataset. To this end, we randomly pick a link (a transmitter-

receiver pair) from utah/CIR dataset as the target link. The

five signatures of the target link are used as ground truth for

testing. Training data is selected from the remaining links

in utah/CIR dataset in the following way. For case-I SIA,

we use all remaining links, in total 9300� 43 � 2 � 5 ¼
8870 signatures, as training data. For case-II SIA, we use

all the 43 links that share the same transmitter of the target

link but have a different receiver as the training data. So in

total 43 � 5 ¼ 215 link signatures are included in the

training dataset for case II. For case III SIA, we randomly

Fig. 7 Flowchart of the statistical inference attacks
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pick 4 signatures of the target link and use them as training

data, and the remaining link signature is used for testing. In

a nutshell, in this experiment we use all relevant data for

training to avoid the complicated issue of training data

selection. As a baseline of the performance, our goal here is

to see how well the neural network can do without dis-

criminating the available training data. The optimization of

the inference, e.g., through training data filtering, is studied

shortly. The important experiment parameters/hyperpa-

rameters are highlighted in Table 2. In this table, the data

splitting strategy, key parameters/hyperparameters of neu-

ral network, support vector machine (SVM), and linear

regression models, which are used in the experiments, are

listed.

Different target links were inferred in our SIA experi-

ments. Figure 8 plots a typical case for the comparison

between the inferred signature and the ground truth version

for the target link 1 ! 4 under the three SIA cases,

respectively. The inferences for other target links present

similar trends, and thus are omitted here due to space limit.

Three observations can be made on Fig. 8. First, in all three

cases there exists significant similarity between the inferred

signature and the ground truth, and the trends of curves

match quite well. This observation implies that there are

indeed correlations between neighboring wireless links,

even when their separation is farther than half a wave-

length, and these correlations are harnessed by neural

network models in the experiments for inference. Second,

the inferred signature presents different accuracy in the

three cases. This is not surprising, because the inferences

are based on different amount of knowledge about the

target. In particular, training data in case III is the closest to

what is being inferred, and therefore the inference accuracy

in that case is the highest among the three cases. Third, the

inferred signature is much smoother than the truth version.

The current neural network models cannot capture enough

high frequency details in the correlation to make a better

inference. This observation suggests that the neural net-

work models we are using may not be the optimal ones and

there is room for improvement from a ML’s point of view.

We study the impact of inference accuracy on the

security strength of LSB key extraction as shown in Fig. 9.

In this experiment, the goal of the adversary is to figure out,

or guess, the secret key extracted from the true link sig-

nature, based on the inferred version of the signature. To

simplify the experiment, but without loss of generality, we

take the quantization method in [10] as an example to

illustrate the idea of the key extraction. In particular, we

assume that each time-series point on the true link signa-

ture is represented as a 5-bit binary number according to

the quantization scheme described in Section III.B (32-

interval quantization). So in total a 250-bit binary string

can be extracted from the 50-point true link signature.

Because of the limitation of our computation resources, to

save time, we pick a short 75-bit string as the true key in

our experiment. To guess the true key, the adversary uses

trial and error, starting from the 75 bits quantization of the

inferred signature (5 bits per point, 15 � 5-bit binaries in

total). In each round of trial and error, the adversary

explores the key search space by incrementing or decre-

menting by one to one of the 15 � 5-bit binaries, where the
exploration is sequential over the 15 � 5-bit binaries. Under
such an inference attack, the security strength of the LSB

key extraction can be measured by the average number of

trials needed to find the true key. Equivalently, this metric

can be normalized on a per-point basis, i.e., measured by

the average number of guesses required to find the true

5-bit quantization for a point on the link signature.

Table 2 Important Parameters

in Experiments
Dataset Training dataset 70%

Validation dataset 15%

Testing dataset 15%

Neural Networks Number of hidden layers 2

Number of hidden neurons per layer 64

Initial learning rate 1.0

L2 regularization k 1.0

Activation function Sigmoid

SVM Kernel RBF

C parameter 1.0

Gamma auto

Multivar Linear Regress Alpha 1.0

Fit intercept True

Normalize True

N jobs 1

Max iteration 1000
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Figure 9 plots the average required number of guesses

for each of the whole 50 points on a link signature under

the three SIA cases. The average is based on 26 target links

randomly selected from utah/CIR dataset. From this figure,

it can be observed that for cases I and II on average at most

8 guesses are enough to find the true quantization of a point

using the neural network. In contrast, to find a 5-bit

quantization, a brutal force search algorithm needs on

average 16 guesses. Therefore, for the 75-bit key in this

experiment, the key search space of the brutal force algo-

rithm is 1615, or 260. Using the proposed neural network,

the key search space is at most 815, or 245: a reduction of

215 compared to the brutal force search! On a computer

with a 4-core Intel CPU (2.0 GHz CPU clock speed), it

takes about 4,000 hours to find the correct secret key by

brutal force algorithm, however, it takes only about 1 hour

and 13 minutes to find it by our proposed mechanism. Note

that this is the upper bound (worst case) key search space

for the case I and case II SIAs, because the number of

required guesses per point is much smaller than 8 for the

points on the tail of the link signature. For example, only

one guess is needed for points after index 33. Furthermore,

it can also be observed that SIA in case III is able to

figure out the true key much more efficiently, as 90%

points can be found in just one guess in that case.

To obtain a statistical view about the strength of the

proposed SIAs, Fig. 10 compares the CDF (cumulative

distribution function) of the number of guesses needed per

point under various SIA cases. The CDFs in the figure are

calculated based on the same 26 target links as in Fig. 9.

This figure shows that statistically the relative strength of

SIAs are case III[ case II[ case I. For example, case III

can find 90% points in just one round, while 56% points are

found in one round in case II, and only 38% are found in

one round in case I. This trend is aligned with the inference

accuracies as observed in Fig. 8.

Furthermore, we study the optimization of the inference

accuracy through training data selection in Fig. 11.
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Selecting the right training data is usually vital to ensure a

good performance of a neural network due to the well-

known over-training issue. Because the inference in case

III is very accurate, here we only focus on the optimization

of cases I and II. For each case, we pick k nearest links to

the target link, and use their signatures (5 � k in total) to

train the neural network. Such a treatment is based on the

rationale that a closer link to the target should possess

higher correlation, and thus can provide better training

effects. So now the training data selection is converted to

deciding the optimal size of the training dataset (i.e., the k).

In our experiment we vary the value of k (ranging from 20

to 44) and evaluate the strength of the resulting attacks in

terms of the CDF of the number of guesses needed to find a

point on the link signature.

Figure 11 plots the CDFs under various training sizes. It

shows that the security strength of the SIA in both cases is

sensitive to the size of the training data. For example, the

75-percentiles in case II may range from 2 to 5 under

various training data sizes, corresponding to a factor of

ð5=2Þ50 difference in size of the key search space! This

observation suggests the necessity of optimizing the

training dataset in order to improve the inference accuracy,

and hence enforce the attack strength, of the SIAs. Fig-

ure 11 also suggests that the inference accuracy of the

neural network is a non-monotonic function of the training

data size, and there seems to be an optimal training data

size in each case that maximizes the inference accuracy.

For example, the optimal training data sizes are 30 and 37

for case I and case II, respectively.

To test the inference performances of different ML

algorithms, we utilize more ML algorithms, such as

ensemble methods, support vector machine (SVM), and

multivariate linear regression to launch SIAs in case I.

Figure 12 plots the CDFs under different ML inference

algorithms. The CDFs in this figure are also calculated

based on the same 26 target links as shown in Fig. 9, and

the training data size is 44. This figures shows that more

than 50% points can be found in just one round by applying

multivar linear regress method. In comparison, less than

40% points can be found in one round by applying neural

network. However, all these ML algorithms can success-

fully guess the truth value of each point within 10 attempts.

Table 3 shows that statistically SVM has the highest

inference accuracy, since in average, it just need 2.9

attempts to reach truth value of each point. However, when

training data size becomes greater, it will not be efficient

enough to launch SIA by using SVM. In this case, SVM

will spend costly computation and memory resources. In

addition, the adversary has to spend a lot of time selecting

an optimal kernel and adjusting the parameters in SVM.
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Fig. 11 SIA strength vs. training data size (neural network)
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To generalize the evaluation of our proposal, the statistical

inference attacks are validated on the PCR dataset as well.

Figure 13 shows the secret key inference accuracies of the

proposed algorithms over this new dataset. In particular, in

Fig. 13, it can be observed that more than 40% of the points

can be found in just one round by applying these models.

Moreover, all these ML algorithms can successfully guess the

truth value of each point within 10 attempts. Comparing this

to Fig. 12, the secret key inference accuracies of our proposed

SIAs are pretty similar on these two different datasets.

From this figure, we can also observe that the trends are

aligned with the inference accuracies as observed in

Fig. 12. These observations validate that the effectiveness

of our proposed SIAs do not depend on a specific dataset.

In our experiment, we apply several general ML algo-

rithms to launch SIAs. How to improve the inference

algorithms, and analytically decide the optimal training

data size, so that the adversary can construct the best site

survey strategy to maximize its attack strength, remain

questions to be explored in our future study.

7 Countermeasure

In this section, we develop a novel LSB key extraction

scheme to defend against the statistical inference attacks.

7.1 Forward-backward cooperative key
extraction protocol with helpers (FBCH)

In conventional LSB key extraction scheme, only the link

between legitimate transmitter and receiver is measured to

obtain CIRs as the random series. Based on the nature of

channel correlation, the adversary can effectively utilize the

channel information of surrounding links to infer CIR of the

target link. Our experiments in Section VI demonstrate the

search space of the secret key has been significantly shrunk

and the inference attacks are feasible. To overcome the

weakness of existing scheme, we propose a novel LSB key

extraction protocol, called forward-backward cooperative key

extraction protocol with helpers (FBCH). In FBCH, helpers

participate in key extraction process to construct several

channels, and pass the CIR information between transmitter

and receiver by manipulating their transmission power. And

we assume the physical environment is quasi-static as well.

Algorithm 1 describes the procedures of FBCH.

Table 3 Summary of statistics for accuracy

Mean Standard deviation (SD)

Neural network 3.04 2.3997

SVM 2.90 2.4021

Ensemble method 3.02 2.7018

Mutivar linear regress 2.94 2.6564

Note that the listed number of attempts and SD represents for each

point
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Fig. 13 Comparison between different ML inference algorithms in

CDF representation on the PCR dataset
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We now detail our key extraction protocol FBCH, which

consists of the following steps:

Let a transmitter Tx and a receiver Rx be the two parties

that wish to extract a key; when Tx wants to establish a

secret key with Rx, the Tx first determines an integer N as

the number of helpers, and randomly picks N helpers Hi

from all of the available relays in its transmission range.

The number of available relays is M. Then the Tx broad-

casts training symbols xT under the standard transmission

power PT , the received signal at each helper Hi from the Tx

is given by

yi;tx ¼ PThtx;ixT þ N ð21Þ

where N is the additive Gaussian white noise. Thus, each

Hi can measure the channel Tx ! Hi and obtain the CIR

htx;i.

Then each helper Hi broadcasts a training symbol xi
under the standard transmission power PH , the Tx and Rx

receive signals from Hi, the received signals at the Tx and

Rx are given by

ytx;i ¼ PHhtx;ixi þ N ð22Þ

and

yrx;i ¼ PHhi;rxxi þ N ð23Þ

, respectively. The Tx and Rx measure channels Hi ! Tx

and Hi ! Rx to obtain the CIRs htx;i, and hi;rx, respectively.

In the next step, the Rx broadcasts a training symbol xR
under the standard transmission power PR, each helper Hi

receives signal from the Rx, the received signals at each

helper Hi is given by

yi;rx ¼ PRhi;rxxR þ N ð24Þ

Therefore, each helper Hi can measure the channel Rx !
Hi and obtain the CIR hi;rx.

By using power control technology, each helper Hi

manipulates its transmission power to P0
H and transmits the

same training symbols xi to the Tx again, where

P0
H ¼ PHhi;rx

htx;i
; the received signal y0tx;i at the Tx is given by

y0tx;i ¼ P0
Hhtx;ixi þ N

¼ PHhi;rx
htx;i

htx;ixi þ N

¼ PHhi;rxxi þ N

ð25Þ

When the Tx measures the channel Hi ! Tx again, the CIR

h0tx;i that the Tx obtains is given by

h0tx;i,
y0tx;i
PH

¼ hi;rx ð26Þ

Again, each helper Hi manipulates its transmission power

to P00
H and transmits the same training symbols xi to the Rx,

where P00
H ¼ PHhtx;i

hi;rx
; the received signal y0rx;i at the Rx is

given by

y0rx;i ¼ P00
Hhi;rxxi þ N

¼ PHhtx;i
hi;rx

hi;rxxi þ N

¼ PHhtx;ixi þ N

ð27Þ

When the Rx measures the channel Hi ! Rx again, the

CIR h0i;rx that the Rx obtains is given by

h0i;rx,
y0rx;i
PH

¼ htx;i ð28Þ

Since the Tx and Rx obtain the CIRs htx;i and hi;rx in step 3,

respectively, they have the agreement that

htx;i þ h0tx;i ¼ hi;rx þ h0i;rx

¼ htx;i þ hi;rx
ð29Þ

Therefore, the Tx and the Rx are able to use the summation

P

N

i¼1

ðhtx;i þ hi;rxÞ as random series to extract secret key bits,

where N is the number of helpers. We should note that

since the physical environments are quasi-static, the

coherence time of the corresponding channels is relative

large. The procedures of FBCH can be completed within a

very short time window (several millisecond). During such

short time window, the CIRs, e.g, htx;i and hi;rx, do not

change.

7.2 Security analysis

In this subsection, we discuss the security of the proposed

secret key extraction protocol FBCH under attack models

of SIAs. In practice, the helpers may be compromised by

the adversary and not every helper is trustworthy. So we

discuss the security of FBCH in two scenarios: un-trusted

helpers and trusted helpers.

7.2.1 Un-trusted helpers

In this scenario, we assume that some of helpers can be

compromised by the adversary, so that not every helper is

trustworthy. The un-trusted helpers can act as passive bad

nodes or active bad nodes.

For passive bad nodes, they receive and transfer CIRs as

normal. However, they may reveal the corresponding CIRs

to the adversary. In fact, this leakage of partial information

is not threatening at all, because the adversary cannot

obtain key bits from the partial information and it is dif-

ficult for him to compromise all of the N helpers. As we

described in Algorithm 1, the Tx and the Rx use the
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summation of CIRs from N helpers, i.e.,
P

N

i¼1

ðhtx;i þ hi;rxÞ, as

random series to extract secret key bits. Therefore, from the

partial CIR information, which is obtained from compro-

mised helpers, the adversary cannot get the summation

P

N

i¼1

ðhtx;i þ hi;rxÞ, unless he compromises all of the N helpers.

However, in the first step of Algorithm 1, the Tx randomly

picks N helpers from M available relays in its transmission

range. When M grows large, the possibility that the com-

promised nodes cover all of the N helpers becomes very

small.

For active bad nodes, they will deny to pass the CIRs

between the two legitimate communication ends or tamper

with the CIR information before its transmission. In this

case, it is easy for the Tx and the Rx to detect the falsifi-

cations, because the summations
P

N

i¼1

ðhtx;i þ hi;rxÞ will not be

consistent at the two ends. As such, they will simply drop

the obtained random series, and re-pick N helpers to per-

form FBCH protocol again.

7.2.2 Trusted helpers

In this scenario, we assume all helpers are trustworthy.

According to this assumption, first of all, in the FBCH

protocol, the Tx and Rx use the summation
P

N

i¼1

ðhtx;i þ hi;rxÞ

to extract key bits (N is the number of helpers), the number

N is secret to the passive adversary, it is hard for the pas-

sive adversary to get this summation of CIRs for key

extraction. Moreover, by introducing helper nodes, the

FBCH protocol hides the relevance between one link sig-

nature and the corresponding two locations of Tx and Rx.

As a result, in the operational phase of SIAs, the ML

models are not able to provide the proper group link sig-

natures, since the adversary has no knowledge about the

construction of new channels during its site survey phase.

Likewise, it is hard for the adversary to infer the key bits in

case II and case III of SIAs by applying ML methods.

Second, we analyze the security strength of FBCH from

the spatial randomness perspective. By launching SIAs, the

adversary has the ability to infer the link signature of any

channel between any two locations. If there exists at least

one attack node that is in close proximity to each helper

node (here the ‘‘close’’ means that the distance between

attack node and helper is smaller than k=2), the strong

correlation will lead to the accurate inference of link sig-

nature on each legitimate link. Therefore, the close distance

between attack nodes and helpers will threaten the security

of FBCH protocol. We will study the probability that an

attack node is placed very close to a legitimate node by

lucky coincidence.

Since the distributions of attack nodes and legitimate

nodes (i.e., Tx, Rx and helpers) are fully random, the

number of attack nodes that are close to each legitimate

node follows the Poisson distribution. Therefore, we can

apply the spatial Poisson point process to analyze this

probability as follows:

The Poisson point process is defined in the plane R2.

And we consider a circular area Bi � R2 (i ¼ 1:::N, and N

is the number of legitimate nodes) for one legitimate node,

which takes the legitimate node as the center and r as the

radius. We treat the attack nodes as points in the plane R2.

The number of points of a point process X existing in this

area Bi is a random variable, denoted by XðBiÞ. The points
belong to a Poisson process with parameter k[ 0, then the

probability of k points existing in Bi is given by

PfXðBiÞ ¼ kg ¼ ðkjBijÞk

k!
� expð�kjBijÞ; ð30Þ

where jBij denotes the area of Bi, and jBij ¼ pr2; k is the

density of points in the plane R2.

Given by Eq. (30), the probability that at least one point

existing in Bi is given by

1� PfXðBiÞ ¼ 0g ¼ 1� expð�kjBijÞ

¼ 1� expð�kpr2Þ
ð31Þ

To launch SIAs successfully, there should be at least one

attack node existing in Bi for every legitimate node. Then

the total probability P that at least one attack node existing

in Bi for each legitimate node is given by

P ¼
Y

N

i¼1

ð1� expð�kjBijÞÞ

¼ ð1� expð�kpr2ÞÞN ;

ð32Þ

where N is the number of legitimate nodes.

It can be observed from Eq. (32) that when the number

of helpers N becomes large or the density of attack nodes k
becomes small, the probability P becomes small.

In particular, if N gets very large, we obtain

P ¼ lim
N!1

ð1� expð�kpr2ÞÞN ¼ 0 ð33Þ

Given by Eq. (33), we can observe that when we pick large

enough number of helpers (i.e., N ! 1), the probability

that there exists at least one attack node in Bi for each

legitimate node is 0, which implies that there is no possible

for the adversary to launch SIAs successfully.

Obviously, FBCH will exponentially increase the over-

head of communication in the number of helpers during the

key extraction process. Nevertheless, it is an effective

countermeasure solution to defend against the SIAs.
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7.3 Numerical results

To illustrate the security strength of FBCH, in this sub-

section we study the performance of statistical inference

attacks (SIAs), which we proposed in previous sections, to

the new key extraction scheme. Our experiments are based

on the same setup as in Section VI-B: we use the same

dataset and launch SIAs in 3 cases. As pointed out in

Section VI, support vector machine (SVM) has the highest

inference accuracy in the previous experiments. To make a

fair comparison, we only use SVM as the ML inference

method to launch SIAs.

In this experiment, we first pick N nodes from utah/CIR

dataset as the legitimate Tx, Rx and helpers, respectively.

Furthermore, we randomly pick several links as the trans-

mitter-helpers (Tx-H) links and helpers-receiver (H-Rx)

links. Then we use the summations of CIRs of these several

links, hþ h0 þ :::, as ground truth to extract secret keys.

Since in each case of SIAs, the adversary has no knowledge

about the helper’ selection, he has to infer CIRs on all links

according to each potential helper (the location of each

helper is known to the adversary). For case I SIA, the

adversary uses all remaining links in utah/CIR dataset to

infer the CIRs of potential Tx-H and H-Rx links and cal-

culate the summation of these CIRs. Then he uses this

summation to guess secret keys, as we mentioned in Sec-

tion III-B. Likewise, for case II SIA, the adversary attempts

to infer each potential Tx-H and H-Rx link using links that

share the same receiver but have a different transmitter.

And for case III SIA, the adversary randomly picks helpers

and infers potential Tx-H and H-Rx links (the locations of

Tx, Rx, and each helper are known).

To obtain the statistical view about the security strength

of the proposed protocol FBCH, we study the percentage of

bits in a secret key string that can be inferred, as a function

of the number of attempts. Figure 14 compares the CDF

(cumulative distribution function) of the number of guesses

needed per point under 3 SIA cases. In each attack case, we

vary the number of helpers and use different size of

training data to measure the security strength of the pro-

posed scheme. This figure shows that the adversary needs

more attempts to find the true key, and FBCH can expo-

nentially amplify the the adversary’s search space. For

example, in case I SIA, the adversary can find 94% points

in just 6 rounds when Tx and Rx use conventional LSB key

extraction scheme. On the contrary, 38% points are found

in 6 rounds when there is 1 helper, while 0 point is found in

6 rounds when there are 2 helpers. In particular, FBCH can

significantly increase the adversary’s search space and

effectively prevent the SIA in Case III. For example, when

Tx and Rx use conventional LSB key extraction scheme,

the adversary can find 90% true bits in secret key in just

one round, while they cannot find any true bit in 14 rounds

when two or more helpers are involved.

8 Conclusion and future work

In summary, the formal theoretical analysis in channel

correlations have been done relying on both outdoor and

indoor models. Following the machine learning (ML)

framework, we have studied empirical statistical inference

attacks against LSB key extraction. Different from prior

analytical work that assumes a link-correlation model, our

study is based on from empirically measured channel data

and does not rely on any assumption on the link correla-

tion. We applied several ML-based methods to launch SIA

against LSB key extraction under various scenarios, and

evaluated the effectiveness of these attacks based on the

utah/CIR dataset. Our finding has verified the existence of

correlation between neighboring links in realistic environ-

ments, and also showed that such correlation can be

practically exploited by ML algorithms to undermine the

security strength of PHY-layer security measures. Upon

investigation, we proposed a countermeasure against the

statistical inference attacks called forward-backward
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Fig. 14 SIA strength vs. number of helpers (SVM)
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cooperative key extraction protocol with helpers (FBCH).

Our experiments verify that FBCH is more robust under the

statistical inference attacks.

In future work, how to improve the inference algo-

rithms, and analytically decide the optimal training data

size, so that the adversary can construct the best site survey

strategy to maximize its attack strength, remain questions

to be explored. Moreover, it would be interesting to

incorporate mmWave systems, and study the security and

efficiency of key extraction protocols in mmWave ultra-

dense networks or hybrid networks. It would be another

interesting topic to implement the new robust cooperative

key extraction protocol on real mobile devices. To the best

of our knowledge, there is no secure and efficient LS-based

secret key extraction tool on real mobile devices (e.g.,

smart phone, tablet, etc).
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