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Abstract

The establishment of secure secret keys ahead of transmissions is one of the key issues in the field of information security.
The security of traditional cryptographic secret key establishment mechanisms is seriously challenged by computing-
intensive attacks, with the fast growth of high-performance computing. As an alternative, considerable efforts have been
made to develop physical (PHY) layer security measures in recent years, such as link-signature-based (LSB) secret key
extraction techniques. Those mechanisms have been believed secure, based on the fundamental assumption that wireless
signals received at two locations are uncorrelated when separated by more than half a wavelength. However, this
assumption does not hold in some circumstances under latest observations, rendering LSB key extraction mechanisms
vulnerable to attacks. To address this problem, the formal theoretical analysis on channel correlations in both real indoor
and outdoor environments is provided in this paper. Moreover, this paper proposes empirical statistical inference attacks
(STA) against LSB key extraction, whereby an adversary infers the signature of a target link. Consequently, the secret key
extracted from that signature has been recovered by observing the surrounding links. In contrast to prior literature that
assumes theoretical link-correlation models for the inference, our study does not make any assumption on link correlation.
Instead, we employ machine learning (ML) methods for link inference based on empirically measured link signatures. We
further propose a countermeasure against the SIAs, called forward-backward cooperative key extraction protocol with
helpers (FBCH). In the FBCH, helpers (other trusted wireless nodes) are introduced to provide more randomness in the key
extraction. Our experimental results have shown that the proposed inference methods are still quite effective even without
making assumptions on link correlation. Furthermore, the effectiveness of the proposed FBCH protocol is validated by our
experiment results.

Keywords PHY-layer security - Link signature - Key extraction - Channel impulse response - Channel correlation -
Machine learning - Inference attack - Countermeasure

1 Introduction

Secret keys provide confidentiality and integrity in com-
munication. The establishment of secure secret keys ahead
of transmissions is one of the key issues in the field of
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lishing a shared secret over an unsecured communication
channel. The security of Diffie-Hellman protocol is based
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Hellman possibly vulnerable to various computation-in-
tensive attacks.

Realizing the potential vulnerability of Diffie-Hellman,
developing new key extraction mechanisms whose security
does not rely on the computation hardness assumption
receives a lot of attention. One solution is through PHY-
layer security, which extracts symmetric secret keys from
the PHY-layer channel response of the wireless link (i.e.,
the link signature) between the transmitter and the receiver
[1-4]. The channel response or link signature is considered
to be a good pick for secure key establishment because it is
both reciprocal and uncorrelated. It is reciprocal because it
is usually assumed that when the transmitter and receiver,
Alice and Bob, make measurements on the channel state of
the link between them, their measurements are symmetric
(identical). On the other hand, the channel is said to be
uncorrelated because it is usually assumed that the state of
any other link separated by at least half of a wavelength
from Alice and Bob should be independent from that of the
link between Alice and Bob [5]. Based on these assump-
tions, it is commonly believed that common keys can be
extracted by Alice and Bob based on their symmetric
observation of the channel between them, while this
channel is unobservable by a third party separated far
enough (half a wavelength) from Alice and Bob, making
the extracted keys secure and secrete.

While PHY-layer secret key extraction has been used in
many applications such as encryption and authentication,
recent studies have revealed that the uncorrelation
assumption between separated links may not always be
valid [6, 7], especially in many indoor environments where
radio propagation becomes complicated due to signal
reflection and multi-path. This opens the door for the sta-
tistical inference attack (SIA) against the link-signature
based (LSB) key extraction, because the correlation
between links may be exploited by an adversary to prob-
abilistically infer the signature of a target link based on
observations over surrounding links. In light of such a
vulnerability, SIA against LSB key extraction has been
analytically studied in prior work, by assuming a correla-
tion model between neighboring links [6-8]. However, it
remains to be seen, in a realistic wireless environment,
without making assumptions on the link correlation model,
how and to what extent SIA may undermine the security
strength of LSB key extraction.

In this paper, we explore answers to the above questions.
We first discuss the correlation between two wireless
channels in both indoor and outdoor environments. We
build two models, indoor and outdoor communication
models. According to these two models, the formal theo-
retical analysis on the channel correlation is provided.
Using theoretical analysis we find that there are still rela-
tively strong correlations with two links separated by more
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than a half wavelength. Thus, it is possible for the adver-
sary to launch correlation attacks by using the correlation
information between the legitimate links and surrounding
links. Then we propose inference attacks against existing
key extraction schemes in three scenarios by employing
ML approaches. Our proposed inference attacks study does
not rely on any assumption on the link correlation model.
Moreover, the applied ML approaches are able to deal with
time-varying channel conditions and environments (the
dataset used in our ML model is empirically measured at
different times in a real environment where people may be
moving around). In particular, our study roots from the
utah/CIR dataset on CRAWDAD [9], which contains over
9300 measured channel traces for 1892 links in a 44-node
indoor office-type wireless network. Several possible SIA
scenarios are considered. To generalize the evaluation of
our proposal, the statistical inference attacks are validated
on another dataset, called Pozyx CIR and Range With LOS
and NLOS dataset [10] (PCR dataset) as well. For each
scenario, measured link signatures in each dataset are
divided into two datasets: training data and test data. ML-
based channel inference algorithms are developed. We start
our study from establishing neural network models for
inference. In this work, a two-layer feedforward network
with sigmoid hidden neurons and linear output neurons are
used. The network is trained with Levenberg-Marquardt
backpropagation algorithm. After being trained based on
the training data, these algorithms are instructed to infer the
link signatures in the test dataset. The idea of our ML-
based SIAs is independent from the specific key extraction
implementations. For simplicity, we adopt the simple but
well-known methods in [11] to generate keys from the
obtained link signature. Furthermore, we utilize different
ML algorithms, such as ensemble methods, support vector
machine (SVM), and multivariate linear regression to
launch SIA, and compare the inference performances of
different ML algorithms. Our experimental results show
that all these ML algorithms have approximative inference
performance, and thus can effectively reduce the key
search space by many orders of magnitudes compared to a
brutal-force search mechanism.

In light of the above vulnerability, we propose a novel
multi-link Forward-backward Cooperative Key Extraction
Protocol with Helpers (FBCH) in this paper as a counter-
measure to the aforementioned SIA attacks, aiming to
make the LSB key extraction more secure. In particular, by
introducing a set of helpers (these are legitimate nodes
assisting the key extraction process), FBCH allows two
communicating terminals to extract symmetric secret keys
based on the combined channel impulse responses (CIRs)
of several randomly selected links. This is in sharp contrast
to the conventional method where the key extraction is
only dependent on the particular link between the
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transmitter and the receiver. Consequently, the resulting
key extraction becomes less dependent on a particular fixed
channel, making the aforementioned SIA attacks, which
mainly target the channel between the two communicating
terminals, less effective.

As a summary, the main contributions of this work are:
1) We theoretically verify the existence of correlation
between neighboring links in realistic environments, 2) we
suggest empirical methods to exploit the correlation to
launch STA against LSB key extraction, which do not rely
on any assumption on the link correlation model, 3) we
further propose a countermeasure to weaken the effects of
SIA attacks and make LSB key extraction more secure, and
4) we use empirical datasets that are measured in real
(varying) environments at different times to verify our
findings. To the best of our knowledge, this is the first
systematic and empirical study of LSB key extraction from
the SIA perspective in the literature.

Part of this work has been presented previously as a
conference paper in [12]. Comparing to our prior confer-
ence paper, the main differences and contributions of the
journal version are summarized as follows: First, the
journal version provides a formal theoretical verification
for the correlation between neighboring links. Second, in
this journal version, we propose a countermeasure, called
FBCH protocol, to the statistical inference attacks. We also
provide the theoretical verification for the security of the
FBCH protocol. Moreover, it provides more simulation
results and performance evaluation for the proposed FBCH
countermeasure. Third, the journal version provides
extended motivation, more analytical details, and more
elaborations for the problem, and the formulations.

The rest of this paper is organized as follows. We review
related work in Sect. 2. Section 3 presents the background
of LSB key extraction schemes and defines the system
model. Section IV analyzes the correlation between two
wireless channels in both indoor and outdoor environ-
ments. We describe the proposed neural network based SIA
attacks in Sect. 5. Section 6 evaluates the performance and
effectiveness of the proposed attacks. Section 7 presents
the FBCH countermeasures to the inference attacks and we
conclude our work in Sect. 8.

2 Related work

The idea of exploiting wireless channel characteristics for
generating secret keys has received considerable attention
in recent years. A variety of physical layer characteristics-
based key extraction schemes in different application sce-
narios have been proposed [11, 13-31]. For example, in
[20], the authors propose a secret group-key extraction
scheme in physical layer, where an arbitrary number of

multi-antenna lens antennas (LNs) exist in a mesh topology
with a multi-antenna passive eavesdropper. In [21], the
authors establish the key extraction model for high
dynamic wireless networks with a center node and random
arrival users (e.g., roadside units (RSUs) with vehicles) for
the first time. While the security of LSB key extraction
relies heavily on the uncorrelation assumption of channels,
the validity of this assumption has not been evaluated/
verified in these works.

Theoretical analysis on the correlation among links is
conducted in [6, 7, 32]. In particular, these works derive
theoretical link correlation by taking into account the
spatial/geometric relations among the transmitter, receiver,
and signal reflectors. One ring model and the Jakes’s model
are employed to derive the link correlation models under
various scenarios. Their main finding is that the uncorre-
lation-beyond-half-wavelength assumption is not always
valid, and therefore it is necessary to use larger guard zones
around the transmitter and the receiver for secure LSB key
extraction. Unlike [6, 7, 32], our work derives theoretical
link correlation in general indoor and outdoor environ-
ments with the random distributed scatterers.

With the development of a new generation wireless
networks, intelligent physical layer security mechanisms
based on machine learning have attracted researchers’
attention. Machine learning for intelligent authentication in
5G and beyond wireless networks has been studied in [33].
Conventional cryptographic and physical layer authenti-
cation techniques are facing some challenges in complex
dynamic wireless environments. In this article, Fang et al.
envision new authentication approaches based on machine
learning techniques by opportunistically leveraging physi-
cal layer attributes. In [34], Qiu et al. focus on secure
authentication in wireless communication, and use a con-
volutional neural network as an intelligent authentication
process to improve attack detection accuracy. Like
[33, 34], our work applies the machine learning as the new
tool to study the security performance of PHY-layer key
extraction mechanisms.

The research topic of attacks against PHY-layer-based
key extraction systems currently receives limited research
input. Some researchers have reported that the current key
extraction schemes are vulnerable to passive eavesdrop-
ping [8, 35-37], as well as active attacks [38—44].

For the passive attacks scenario, an experimental study
on inference attack against PHY-layer key extraction is
considered in [8], where the key extraction is based on the
value of a received signal strength indicator (RSSI).
Inferences in [8] are mainly based on simple averaging
methods and the RSSI observations used for the inference
are made close to the target link (ranging from 6 cm to at
most 90 cm away from the target receiver). In reality,
making an inference attack based on overhearing the target
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channel at such a close distance may not be practical. Our
work considers a significantly different inference model. In
particular, rather than being a simple averaging of samples,
our inference is based on machine learning models, which
enables a much better inference outcome through training
compared to brute force methods. This has been experi-
mentally validated on the datasets used for our experi-
ments. In particular, machine learning models attempt to
map the patterns/relationships between input variables and
target variables. Conversely, in this specific problem,
simple averaging methods are not able to capture the non-
linear relationship between positions of transmitter/re-
ceivers and channel impulse responses. As a result, our
methods support inference based on observations made
much further away from the target link, ranging from
meters to over ten meters, which is of more interest in
practice. Furthermore, instead of inferring RSSI, we infer
the channel response, which allows faster key extraction.
Steinmetzer et al. [35] also focuses on the passive attacks.
It introduces a new analysis scheme that distinguishes
between jammed and unjammed transmissions based on
the diversity of jammed signals. Liu and Ning [36] studies
the mimicry attack, where an adversary replays or forwards
legitimate responses from the transmitter to the receiver.
The attacker needs to meet two demanding requirement to
launch a mimicry attack: first, he needs to roughly know
the received symbols at the receiver from the transmitter;
second, he needs to manipulate his own symbols, such that
when the manipulated symbols arrive at the receiver, they
are similar to the received symbols from legitimate trans-
mitter. In fact, it is difficult for the attacker to meet these
two requirements in practice. Unlike [36], our proposed
SIA attacks exploit the inherent correlation between nearby
links and apply ML models to infer link signatures, which
do not rely on such demanding assumptions. Moreover,
rather than being a theoretical study, we consider our work
empirical/experimental, as we use ML algorithms to make
inference based on empirically measured link signatures in
a realistic environment.

For the active attack scenario, in [40], Zhou et al.
assume that Eve is active and can send attack signals to
minimize the key extraction rate of the current key
extraction scheme. A formal active adversary model which
takes into account an adversary’s knowledge/control of the
wireless channel is presented in [41]. In [42], Jin et al.
propose a new form of highly threatening active attack,
named signal injection attack. The attacker can inject the
similar signals to both two terminals to manipulate the
channel measurements and compromise a portion of the
key. PHY-UIR as a countermeasure to the signal injection
attack is proposed in this work. In PHY-UIR, both two
terminals introduce randomness into the channel probing
frames. Thus, the random series that are used to extract
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secret keys are the combination of randomness in the
fading channel and the ones introduced by users. Then the
composed series are uncorrelated to the injected signals. As
a result, the attacker is not able to compromise the com-
posed secret keys. Later, in [43], Hu et al. propose a new
kind of key manipulating attack which PHY-UIR can not
prevent, called session hijacking attack. The attacker
hijacks the key agreement by injecting high power signals
and force legitimate devices running PHY-UIR protocol
with the attacker. In such way, the attacker and device
generate the same key. Recently, researchers study a jam-
ming attack on received signal phase-based key extraction
system in [44]. The jammer is an active attacker that tries
to make a disturbance in the key derivation procedure and
changes the phase of the received signal by transmitting an
adversary signal. In contrast to these kinds of active
attacks, our proposed SIA attacks are passive attacks,
which do not try to affect the process of key extraction, but
try to silently infer the key bits that the legitimate users
obtain.

In [45], authors investigate and compare the secret-key
capacity based on the sampling of the entire complex
channel state information (CSI) and the received signal
strength (RSS). The fact that the eavesdropper’s observa-
tions might be correlated has been taken into account in
this work. In the conclusion, the authors find the RSS-based
secret-key generation is heavily penalized as compared to
CSI-based systems. In our work, the study of statistical
inference attacks are based on the CSI-based secret-key
generation systems. Our results show that the CSI-based
systems still have security vulnerability under statistical
inference attacks, even though the eavesdropper’s obser-
vations are not correlated.

Unlike the attacks on physical-layer key extraction
between two ends, in [46], Harshan et al. consider the
attacks on group key extraction systems. They address
insider attacks from the legitimate participants of the
wireless network during the key extraction process. Instead
of addressing conspicuous attacks such as switching-off
communication, injecting noise, or denying consensus on
group keys, they introduce stealth attacks that can go
undetected against state-of-the-art GSK schemes. On a
different track other than security, channel inference/esti-
mation has been extensively studied for efficient radio
resource management in wireless networks, e.g., for MIMO
systems [1, 47]. However, such inference/estimation is
made only for the channel between the target transmitter
and the receiver, rather than for channels beside the target
link.
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3 Model description
3.1 Multi-path effect and link signature

In wireless communications, radio signals generally reach
the receiving antenna by two or more paths due to reflec-
tion, diffraction, and scattering, which is called multipath
propagation. Since different paths have different distances
between transmitter and receiver, a receiver usually
receives multiple copies of the transmitted signal at dif-
ferent time. Different copies have different attenuations
due to the different path losses. The received signal is the
sum of these delayed signal copies.

A radio channel consists of multiple paths from a
transmitter to a receiver, and each path of the channel has a
response (e.g., distortion and attenuation) to the multipath
component traveling on it, which is called a component
response. The superposition of all component responses is
the channel impulse response (CIR). Since the multi-path
effects between different pairs of nodes, as well as channel
impulse responses, are usually different, a channel impulse
response between two nodes is also called a link signature.

3.2 Key extraction from link signature

Once channel impulse responses have been estimated, the
process of key extraction is rather straightforward. First,
channel impulse responses should be quantized for secret
key extraction since they are continuous random variables.
There are several kinds of mechanisms to quantize link
signatures. In this paper, for completeness purposes, we are
taking as an example the uniform quantization, which was
adopted by one of the seminal works on link-signature-
based key extraction [3]. Other quantization methods also
work for the proposed attacks. First, we normalize each
CIR with its maximum element value to obtain vectors of
discrete decimals. Next, the resulting discrete decimals are
multiplied with 32 and then are rounded to the nearest
integers. In this way, we obtain vectors of integers in the
range of [0,31], which are the quantization results of con-
tinuous channel impulse responses in integer representa-
tion. Then, the vectors of integers are converted to their
binary presentation. Lastly, N-bit binary string is cut out
from the whole string as the initial N-bit secret key. Fig-
ure 1 shows the framework to extract key bits.

However, the straightforward quantization mechanism
usually is not sufficient. Due to the variation of real envi-
ronment and hardware differences between two measure-
ment devices, it does not guarantee that the pairwise
measurements from two communication ends (Alice and
Bob) are identical. In this case, the sequences of bit keys
extracted will not be identical. Therefore, we should

Phase 1: Sampling

s(a,b)
Alice o Bob
Phase 2: Quantization l l
01001... 01011...
Phase 3: Error Recon®A /
010 _1...

Fig. 1 Framework to extract key bits from link signature

employ an error reconciliation mechanism to solve this
problem. We still adopt the relative simple error reconcil-
iation mechanism in [10] as an example. For example, we
can apply challenge-response verification protocol. Let K},
Kp are the bit keys extracted by Alice and Bob, respec-
tively, and ¢ is a random number that Alice picked. To
launch the verification protocol, Alice encrypts ¢ by her
secret key Kj, and sends Bob Eg,(¢) and Bob responds
with Eg, (¢ + 1). If Alice gets ¢ + 1 after she decrypts
Bob’s message, she can conclude that Bob obtains the
correct key. Bob can do likewise. Otherwise, Alice and
Bob will extract bit keys from new measurements, and
continue to launch error reconciliation processes until they
obtain the same keys.

4 Theoretical analysis

The existing LSB key extraction schemes have been
believed secure, based on the fundamental assumption that
wireless signals received at two locations are uncorrelated,
when they were separated by more than half a wavelength.
However, some of the latest work has observed that this
assumption does not hold in some circumstances [6, 7]. If
this assumption does not hold, the adversary can infer the
target link signature based on his measurements of the
correlated channels. To investigate the potential vulnera-
bility of existing LSB key extraction system, in this sec-
tion, we provide a formal theoretical verification for the
existence of correlation between neighboring links in both
indoor and outdoor environments. Based on the results of
our theoretical analysis, we will further propose the
methods of inference attacks to LSB key extraction sys-
tems in the next section.

There are various classical channel models, e.g., one
ring model and Jakes’s model, serving for the correlation
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analysis between two adjacent channels [6, 7, 32]. How-
ever, there still exists insufficiency of these classical
models. In practice, the locations of eavesdroppers/attack-
ers are in general unknown, we cannot assume that they are
located on a certain circle, as specified by the one-ring and
Jake’s model. Instead, a more reasonable model is to
assume that these eavesdroppers could be located at arbi-
trary locations within a certain area, which is the feature of
our newly proposed model. In contrast to these classical
channel models, we further popularize a model for Ray-
leigh fading and let the scatterers be randomly distributed
in an area A. Our analysis relies on the assumption that the
two legitimate communication ends are fixed and the
physical environment does not vary dramatically with the
time. The important notations used in our analysis are
defined in Table 1:

4.1 Channel correlation in outdoor environment

First of all, the wireless communication in an outdoor
cellular system is considered, where a mobile user equip-
ped with one antenna communicates with a base station
(BS), as shown in Fig. 2. To simplify the presentation, but
without loss of generality, we only consider the downlink
(i.e., BS transmitting to the user) in the following analysis.
Such consideration is representative, as realistic cellular
communication is usually dominated by downlink traffic.
Moreover, since the distance between the BS and the
mobile user is much greater than the distance between each
antenna element of BS, we will treat the BS as one node in
the following discussion. We assume that there is no
scatterer around the BS, since the BS antennas are typically
installed at a high place. Attack nodes (AN) are placed by
the adversary in any potential location. Moreover, we
assume that scatterers are randomly distributed around the
mobile user, inside a circular area A around the user’s
receiving antenna and the attack node, as illustrated in

BS

Y
|
|
|
|
|
I
|

—_— - - =y

D R

Fig. 2 Geometrical configuration of the channel model in outdoor
environment

Fig. 2. In Fig. 2, the radius of area A is R, and the center of
A is the midpoint of the user and attack node. We further
assume that the number of scatterers is large, and the
mobile user and attack node receive the signal from sur-
rounding scatterers, so the line-of-sight (LOS) paths are not
considered in our discussion. Our derivation is inspired by
the channel correlation analysis in classical MIMO system,
first proposed in [48].

We start our discussion by defining the correlation
coefficient between two neighboring links BS—User and
BS— AN as follows:

Definition IV.1 The normalized cross correlation coeffi-
cient between the neighboring links BS to User and BS to
AN is expressed as:

o _ E{hbu i hza}
bu.ba m ’

where * is the complex conjugate, h;, and hy, denote the
received signal at the user and the attack node, respec-
tively, Q, and Qy, are the received link power at the user
and the attack node, respectively.

(1)

Table 1 Important notations

S; The ith scatterer

Oy The angle of arrival (AOA) of the wave traveling from the scatterer toward the mobile user
R Radius of scatterer area

Q Received link power

fs(S) Probability density function (PDF) of scatterers in an area
dya Distance between the mobile user and attack node

dra Distance between the legitimate receiver and attack node
dys Distance between the attack node and the scatterer

dys Distance between the mobile user and the scatterer

dra Distance between the legitimate receiver and the scatterer
A Wavelength

@ Springer
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The received signal &;, between the mobile user and the
BS is given by [49] (the LOS component is neglected),

1 N
h,,:lim— idBS-iD"’/z

N—o0

(2)
-exp{ji; _ = /1 " (@55 4 dyy) )

where N is the number of scatterers; g; is the amplitude of
the wave scattered by the ith scatterer; 1, is the phase shift
introduced by the ith scatterer, respectively; d** and d,; are
the distances shown in Fig. 2; 4 denotes the wavelength.

The term (d5 - ¢ /D)f"/ ? accounts for the power loss
relative to the distance D between the user and the BS with
path loss exponent n. The total received power €, of this
link is expressed as

= lim — Z E{g?}(d> -

Jim &/D) (3)
We assume all links have equal received power, i.e.,
Qpy = Qp, = Q. By substituting Egs. (2) and (3) into
Eq. (1), the normalized correlation coefficient between the
neighboring links BS— User and BS—AN can be derived
as follows,

pbu,ha =0 hm N Z E{g’ dBS E /D)
- (4)
. exp{fjj (dax - dus)}‘

In particular, we assume the scatterers are independently
distributed according to some 2-D probability density
function (PDF) fs(S) on the circular area A as shown in
Fig. 2. When N becomes large, the diffuse power scattered
by the ith scatterer has quite small contribution out of the
total Q, which is proportional to E{g?}/N. This is equal to
the infinitesimal power coming from the different area ds
with probability fs(S), i.e., E{g?}/N = fs(S)ds. Therefore,
Eq. (4) can be rewritten in the following integral form:

Y 5
~€Xp{*j21 ( as — ué)}fS( )

Since we assume scatterers are randomly distributed inside
the circular area A around the user and attack node, Eq. (5)
can be written as

1 (R = n 27
pbujw :§~/0 [n(dfs ! éz/D) : exp{ _.]7

(s — dus)}f((?s, &) d(05)d(Z,).

where the f(6s, &;) is the PDF of the locations of scatterers
relative to the user and attack node with g and distance &;
and dfs , Os is the angle of arrival (AOA) of the wave
traveling from the scatterer toward the mobile user.
According to the laws of cosine and sine in [50], we get

d2 _d2 /4+f _dUA é, COS(@S—BR)

., (7)
diy = diy /4 + & + dya - & - cos(0s — Og)
and
b _ & _ 4 )
sin(0s — 0g)  sin(0p)  sin(0s)’

where the dy, is the distance between the mobile user and
the attack node.

In the outdoor environment, the assumption of D >
R > dy, is realistic. Therefore, the difference of path

lengths can be approximated as
—(dus — dys) = dya - cos(0s — Or)
S ~D ©)

Substituting the arguments in Eq. (6) with Egs. (7), (8) and
(9) yields

1 R T - .27.5
Pbu,ba :ﬁ/) /77[(@) exp{—] 1 (10)
~dya - cos(0s — Or) }f (05, &;) d(05)d (&)

Since the scatterers are uniformly distributed inside the
circular ring, we can use the PDF as f(0s, &) = 1/2nR.
Then, we obtain

1 R T . .27.[
sl | et
~dya - cos(0s — QR)}— d(0s)d(&)

= _2_
A/ 2R€XP{J7T

* cos(0s — Og)} d(05)d(&;)

pbu,ba =

(11)

We plot the correlation coefficient p,, ,, as a function of
the ratio dys// in Fig. 3, in which we assume the distance
D is fixed. From this numerical result, it can be observed
that there exists correlation, even if the distance dyy
between the mobile user and the attack node is greater than
half wavelength. For instance, py,,, = 0.21 when dy, is
equal to 5 wavelength, and 6 = 1. Moreover, the angle 0
affects the correlation coefficient p,, ,, dramatically in this
model.
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correlation

01

0.05 L L L L L L L
0 0.5 1 1.5 2 25 3 35 4 4.5 5

dya/ A

Fig. 3 Channel correlation coefficient p;,,, versus distance ratio
dUA/},

4.2 Channel correlation in indoor environment

In indoor environments, two communication ends, the
transmitter (Tx) and the receiver (Rx), generally are not far
from each other and surrounded by scatterers nearby. In
this case, we build a model, in which a big scatterer-ring
area A encloses both the transmitter and the receivers (in-
cluding attack nodes), as depicted in Fig. 4. In this circular
area A, the radius is R, and the center O is the midpoint of
the Tx and Ogy4, where Ogy4 is the midpoint of the Rx and
the attack node (AN). In Fig. 4, we follow most of the
notations as those defined in Fig. 2. Comparing to the
outdoor model as shown in Fig. 2, in the indoor model, we
substitute the notations “Tx” and “Rx” for “BS” and
“User”, respectively. Moreover, to facilitate the derivation,
we substitute d’5, dga, d,s and 07 for d?S, dya, d,s and 0,
respectively, and introduce the new variable y to denote the

Y|
S;
7 d,,
ar - AN
i ds Si 0
d s
Tx 0, y 0 _
A4 0 o
o RA
| \ /1\ dry
| R Re®- 1
[ i
|« )
D

Fig. 4 Geometrical configuration of the channel model in indoor
environment
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angle of the scatterer in the polar coordinate system, as
illustrated in Fig. 4.

In Fig. 4, the correlation coefficient between two
neighboring links Tx—Rx and Tx—AN is defined as
follows:

Definition IV.2 The normalized cross correlation coeffi-
cient between the neighboring links 7x to Rx and Tx to AN
is expressed as:

o Elhy by
tr.ta m )

where * is the complex conjugate, h, and h,, denote the
received signal at the receiver and the attack node,
respectively, €. and Q,, are the received link power at the
receiver and the attack node, respectively

(12)

To discuss the correlation between the neighboring links
Tx—Rx and Tx— AN in this model, we still use Eq. (5) to
yield the correlation coefficient function. The Eq. (5) is
rearranged in the indoor model as follows:

I .
plr,ta :ﬁ/A(dzTS ) él/D)

(13)
2
: exp{—j%(das - dm)} <(S)dS,
where Q is the received link power (equal power for all
radio links is assumed).
According to the laws of cosine and sine in [50], we
have
(dP)? = d2 + D? /4 + D - dscos(y) 10
14
5? =d: +D*/4 — D - dscos(y)

and

sin(0r) = dssin(y)/d"®

(15)
= dssin(y)//d} + D*/4 + D - dscos(y)

cos(0r) = (dscos(y) + D/Z)/diTS
= (dscos(y) + D/2)/ (16)
V&2 +D?/4 4 D - dscos(y)
sin(0s) = dssin(y)/&;

= dssin(y)/\/df + D?/4 — R - dscos(7)
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cos(0s) = (dscos(y) — D/2)/¢&;
— (dseos(y) ~ D/2)/ (18)

\/d§ + D?/4 — R - dscos()

By doing the substitution and rearrangements, we obtain
the approximation of —(d,s — d,) as

dga - (dscos(y — Og) — D/2 - cos(0r))

- das - drs ~
( ) \/d%+D2/4 — D - dscos(y)

(19)

Since the scatterers are uniformly distributed inside the
circular ring, we can use the PDF as f5(S) = f(ds,7) = 52z
Substituting the arguments in Eq. (13) yields the correla-
tion coefficient p,, , between neighboring links Tx—Rx
and Tx—AN as

pfr,ta = / / d2 D2/4 Dzdzcos ’}) /2

Cex —j21 - dga(dscos(y — Og) — D/2 - cos(6g))
2nR JA/d% + D*/4 — D - dscos(y)

d.d(ds)s
(20)

The correlation coefficient p,,,, as a function of the ratio
dgra /7 is plotted in Fig. 5. It can be observed that there still
exists correlation, even if the distance drs between the
legitimate receiver and the attack node is greater than half
wavelength. For instance, the correlation coefficient
Puria = 0.26 when dgs is equal to 5 wavelength, and
0Or = 1.2. In contrast to the outdoor model, the correlation
is a decreasing function of the angle O, for a certain dis-
tance ratio dga/A. Moreover, comparing to the outdoor
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Fig. 5 Channel correlation coefficient p,,., versus distance ratio
dRA / A

model, the correlation coefficient p,, ,, is more sensitive to
HR.

In conclusion, the wiretap channel (i.e., Tx—AN) and
the legitimate channel (i.e., Tx—Rx) still have relatively
strong correlation, even if the attack node is far away from
the transmitter and receiver (here the “far away” means
that the distance between the attack node and receiver is
greater than 1/2). Therefore, the adversary can infer the
secret key bits based on his measurements of channel
states, which makes the existing key extraction system
vulnerable. In the following section, we propose a class of
attacks, called statistical inference attacks (SIAs), to reveal
the vulnerability of the LSB key extraction system.

5 Statistical inference attack

In the previous section, we have theoretically verified the
existence of correlation between neighboring links. The
remaining issue is how this correlation may be exploited to
infer secret keys in practice. In this section, we apply
several ML-based algorithms to propose statistical infer-
ence attacks (SIAs) to infer keys by exploiting this corre-
lation. To launch SIAs, we assume the physical
environment does not vary dramatically with the time, e.g,
the relative speed between the Tx and Rx is low, AV = 0,
and the number of high speed obstacles can be neglected.
However, the environments should remain changed over
time. For instance, different people may be moving around
in an office. Depending on the information available for the
training of the ML model, we consider the following three
scenarios for SIAs:

(a) Inference based on links disjoint from the target link
(i.e., links of different transmitters and receivers
from the target link)

(b) Inference based on links sharing the same transmitter
as the target link

(c) Inference based on historical signatures of the target
link

These scenarios are illustrated in Fig. 6, respectively, and

are elaborated as follows.

o o |
e “@ra R @rx

(@) Case I: Using links (b) Case II: Using links (€) Case III: Using sig-

of different tx and rx of the same tx loca- natures of the same

locations. tions. link, but measured at
different times.

Fig. 6 Attacks in three scenarios, solid lines denote the target links,
dotted lines denote the existing links
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5.1 Case I: SIA based on disjoint links

This case is pertinent to the scenario where the adversary
has prior knowledge regarding the area in which the target
(i.e., the transmitter and receiver of the target link) will
appear, but does not know the exact location of the target
until the target appears. In this case, the adversary may
perform a site survey in the area before the target appears.
During the site survey, the adversary may collect sample
signatures of links throughout the area at different times,
and then use these samples to train a model that represents
the signature of an arbitrary link in the area as a function of
the transmitter and receiver locations of the link. The
adversary divides the sample dataset into training and
testing sets for cross-validation. Since the environments are
varying during the site survey, the sample link signatures
are not identical. Later in the online inference phase, the
adversary can observe the location of the target, and supply
this information to the trained model to infer the signature
of the target link. SIA to links in a mobile ad hoc network
is a typical example of this scenario.

We apply the classical topology of ML model for the
above link signature inference is as follows:

Input: S(LT(Z),Ls(l)), LT(Z), Ls(l),
Output: S(Lr(t), Ls(t)),

where

i = the index of surveyed links,

t = the index of the target link,

Lr(i) = the locations of transmitters,

Ls(i) = the locations of receivers,

S(Lr(i),Ls(i)) = link signatures on the links (Lr(i),
Ls(i),

e S(Lr(t),Ls(2)) = link signature on the target link.

5.2 Case lI: SIA based on links sharing the same
transmitter

This case applies to the scenario where the adversary does
not know the exact location of the target until the target
appears, but has prior knowledge of the area in which the
target will appear, and the communication in this area is
through a centralized access point such as a base station or
an access point (AP). Typical examples of such scenarios
include cellular networks and wireless local area networks
(WLAN). In this case, the adversary can also survey the
area before the target appears, during which he collects
sample signatures of various downlinks throughout the
area. These sample signatures are then used to train a
downlink signature model of the area, which represents the
signature of an arbitrary link as a function of the receiver’s
location. In the online inference phase, the adversary
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observes the location of the target (the receiver), and
supply this information to the trained model to infer the
signature of the target downlink.

The topology of the ML model in this case is given as
follows:

Input: S(Ls(i)), Ls(i),
Output: S(Ls(1)),

where

e | = the index of surveyed downlinks,

e ¢ = the index of the target downlink,

e Lg(i) = the receiver location of the ith surveyed
downlink,

e S(Ls(i)) = link signature of the ith surveyed downlink,

e S(Ls(z)) = link signature of the target downlink.

5.3 Case llI: SIA based on historical signatures
of the target link

In this case, we consider the temporal variation of the
signatures of the same link. This case applies to the sce-
nario where the adversary has prior knowledge of the exact
location of the target. Such information can be obtained by
the adversary by peeking into the location privacy of the
target. This is especially true if the target’s activity or
schedule follows a regular rule.

To infer the signature of the target link at a given time,
the adversary may first measure the signatures of the target
link at different times. The sample signatures are then used
to train a model that represents the link signature as a
function of time. In the online inference phase, the adver-
sary simply feeds the desired time into the trained model to
make inference on the signature of the target link at that
time.

The topology of the ML model for this case is given as
follows:

Input: S(z;), t;,
Output: S(z.),
where

i = the index of time,

t; = time t;,

S(#;) = link signature at time #;,

S(t.) = link signature at the target moment.

5.4 Overview of statistical inference attacks

Figure 7 shows the overview of statistical inference
attacks. Specifically, the adversary starts the statistical
inference attacks by collecting sample signatures during
the site survey phase. Once the data are collected, the
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Fig. 7 Flowchart of the statistical inference attacks

adversary labels all the collected data, and feeds the data to
selected machine learning algorithms to train the model.
The input training data is transformed into a feature matrix,
which contains a number of features that are descriptive of
the sample link signatures. In this work, the neural net-
works, support vector machines, linear regression, and
ensemble methods are used as learning algorithms. In the
following, the adversary evaluates the accuracy of the
learned function by using a test set that is separate from the
training set, and tunes the model parameters to improve the
training of the model. Once the training and parameters are
optimized, the adversary uses this predictive model to infer
the signature/CIR on the target link. In the final inferred
key extraction phase, since the estimated channel impulse
responses are continuous variables, they should be quan-
tized to sequences of bits. Due to the variation in the real
environment and hardware differences between two mea-
surement devices, it does not guarantee that the pairwise
measurements from two communication ends are identical.
In this case, the sequences of bit keys extracted will not be
identical. Therefore, the error reconciliation (ER) mecha-
nism should be employed to obtain the inferred secret key,
and complete the inference attack. There are kinds of
existing quantization and ER mechanisms that the adver-
sary can use, which are beyond the scope of this work.

6 Experiment verification

In this section, we evaluate the effectiveness of the above
statistical inference attacks based on the utah/CIR dataset
from CRAWDAD [9] and PCR dataset from the IEEE
dataport [10].

6.1 Dataset

The experiment is based on the utah/CIR dataset on
CRAWDAD [9]. The CRAWDAD is a widely used archive
for sharing wireless network data resources across the
research community. This archive stores wireless trace
data, from real networks under real conditions, from many
contributing locations. There are 125 different datasets in
CRAWDAD so far, and the utah/CIR dataset is the one we
used in this work. In the utah/CIR dataset, over 9300 link
signatures are recorded in a 44-node wireless network,
which are measured in an indoor environment with obsta-
cles and scatters. By moving the transmitter and receiver
between node locations 1 - 44, it gives the number of
transmitter and receiver permutations counted as
44 + 43 = 1892. At each permutation of transmitter and
receiver, 5 link signatures are measured over a period of
about 30 seconds. In this dataset, each link signature is
recorded as a 50-component vector. The campaign mea-
sures the relative static channels, while two or three people
were typically walking in the measurement environment.
The measurements are completed over the course of eight
days, and as a result, the samples vary with time.

To generalize the evaluation of our proposal, the sta-
tistical inference attacks are validated on another dataset,
called Pozyx CIR and Range With LOS and NLOS dataset
(PCR dataset) [10] as well. This dataset includes UWB
range measurements performed with Pozyx devices. The
measurements were collected between two tags placed at
several distances and in two different conditions: with Line
of Sight (LOS) and Non-Line of Sight (NLOS). The
measurements include the range estimated by the Pozyx
tag, the actual distance between devices, the timestamp of
each measurement and the values corresponding to the
samples of the Channel Impulse Response (CIR) after each
transmission.

6.2 SIA results and analysis

We first evaluate how accurately the proposed neural net-
work can infer the signature of a target link using utah/CIR
dataset. To this end, we randomly pick a link (a transmitter-
receiver pair) from utah/CIR dataset as the target link. The
five signatures of the target link are used as ground truth for
testing. Training data is selected from the remaining links
in utah/CIR dataset in the following way. For case-I SIA,
we use all remaining links, in total 9300 —43 %2 %5 =
8870 signatures, as training data. For case-II SIA, we use
all the 43 links that share the same transmitter of the target
link but have a different receiver as the training data. So in
total 43 x5 =215 link signatures are included in the
training dataset for case II. For case III SIA, we randomly
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pick 4 signatures of the target link and use them as training
data, and the remaining link signature is used for testing. In
a nutshell, in this experiment we use all relevant data for
training to avoid the complicated issue of training data
selection. As a baseline of the performance, our goal here is
to see how well the neural network can do without dis-
criminating the available training data. The optimization of
the inference, e.g., through training data filtering, is studied
shortly. The important experiment parameters/hyperpa-
rameters are highlighted in Table 2. In this table, the data
splitting strategy, key parameters/hyperparameters of neu-
ral network, support vector machine (SVM), and linear
regression models, which are used in the experiments, are
listed.

Different target links were inferred in our SIA experi-
ments. Figure 8 plots a typical case for the comparison
between the inferred signature and the ground truth version
for the target link 1 — 4 under the three SIA cases,
respectively. The inferences for other target links present
similar trends, and thus are omitted here due to space limit.
Three observations can be made on Fig. 8. First, in all three
cases there exists significant similarity between the inferred
signature and the ground truth, and the trends of curves
match quite well. This observation implies that there are
indeed correlations between neighboring wireless links,
even when their separation is farther than half a wave-
length, and these correlations are harnessed by neural
network models in the experiments for inference. Second,
the inferred signature presents different accuracy in the
three cases. This is not surprising, because the inferences
are based on different amount of knowledge about the
target. In particular, training data in case III is the closest to
what is being inferred, and therefore the inference accuracy
in that case is the highest among the three cases. Third, the

inferred signature is much smoother than the truth version.
The current neural network models cannot capture enough
high frequency details in the correlation to make a better
inference. This observation suggests that the neural net-
work models we are using may not be the optimal ones and
there is room for improvement from a ML’s point of view.

We study the impact of inference accuracy on the
security strength of LSB key extraction as shown in Fig. 9.
In this experiment, the goal of the adversary is to figure out,
or guess, the secret key extracted from the true link sig-
nature, based on the inferred version of the signature. To
simplify the experiment, but without loss of generality, we
take the quantization method in [10] as an example to
illustrate the idea of the key extraction. In particular, we
assume that each time-series point on the true link signa-
ture is represented as a 5-bit binary number according to
the quantization scheme described in Section III.B (32-
interval quantization). So in total a 250-bit binary string
can be extracted from the 50-point true link signature.
Because of the limitation of our computation resources, to
save time, we pick a short 75-bit string as the true key in
our experiment. To guess the true key, the adversary uses
trial and error, starting from the 75 bits quantization of the
inferred signature (5 bits per point, 15 % 5-bit binaries in
total). In each round of trial and error, the adversary
explores the key search space by incrementing or decre-
menting by one to one of the 15 x 5-bit binaries, where the
exploration is sequential over the 15 * 5-bit binaries. Under
such an inference attack, the security strength of the LSB
key extraction can be measured by the average number of
trials needed to find the true key. Equivalently, this metric
can be normalized on a per-point basis, i.e., measured by
the average number of guesses required to find the true
5-bit quantization for a point on the link signature.

Table 2 Important Parameters

. . Dataset
in Experiments

Neural Networks

SVM

Multivar Linear Regress

Training dataset 70%
Validation dataset 15%
Testing dataset 15%
Number of hidden layers 2
Number of hidden neurons per layer 64
Initial learning rate 1.0
L2 regularization 4 1.0
Activation function Sigmoid
Kernel RBF
C parameter 1.0
Gamma auto
Alpha 1.0
Fit intercept True
Normalize True
N jobs 1
Max iteration 1000
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Figure 9 plots the average required number of guesses
for each of the whole 50 points on a link signature under
the three SIA cases. The average is based on 26 target links
randomly selected from utah/CIR dataset. From this figure,
it can be observed that for cases I and II on average at most
8 guesses are enough to find the true quantization of a point
using the neural network. In contrast, to find a 5-bit
quantization, a brutal force search algorithm needs on
average 16 guesses. Therefore, for the 75-bit key in this
experiment, the key search space of the brutal force algo-
rithm is 16", or 2%°. Using the proposed neural network,
the key search space is at most 8'3, or 2%: a reduction of
215 compared to the brutal force search! On a computer
with a 4-core Intel CPU (2.0 GHz CPU clock speed), it
takes about 4,000 hours to find the correct secret key by
brutal force algorithm, however, it takes only about 1 hour
and 13 minutes to find it by our proposed mechanism. Note
that this is the upper bound (worst case) key search space
for the case I and case II SIAs, because the number of

required guesses per point is much smaller than 8 for the
points on the tail of the link signature. For example, only
one guess is needed for points after index 33. Furthermore,
it can also be observed that SIA in case III is able to
figure out the true key much more efficiently, as 90%
points can be found in just one guess in that case.

To obtain a statistical view about the strength of the
proposed SIAs, Fig. 10 compares the CDF (cumulative
distribution function) of the number of guesses needed per
point under various SIA cases. The CDFs in the figure are
calculated based on the same 26 target links as in Fig. 9.
This figure shows that statistically the relative strength of
SIAs are case III > case II > case 1. For example, case III
can find 90% points in just one round, while 56% points are
found in one round in case II, and only 38% are found in
one round in case I. This trend is aligned with the inference
accuracies as observed in Fig. 8.

Furthermore, we study the optimization of the inference
accuracy through training data selection in Fig. 11.
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Fig. 10 Comparison of inference performance in different cases by
using neural network
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Selecting the right training data is usually vital to ensure a
good performance of a neural network due to the well-
known over-training issue. Because the inference in case
III is very accurate, here we only focus on the optimization
of cases I and II. For each case, we pick k nearest links to
the target link, and use their signatures (5 * k in total) to
train the neural network. Such a treatment is based on the
rationale that a closer link to the target should possess
higher correlation, and thus can provide better training
effects. So now the training data selection is converted to
deciding the optimal size of the training dataset (i.e., the k).
In our experiment we vary the value of k (ranging from 20
to 44) and evaluate the strength of the resulting attacks in
terms of the CDF of the number of guesses needed to find a
point on the link signature.

Figure 11 plots the CDFs under various training sizes. It
shows that the security strength of the SIA in both cases is
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Fig. 11 SIA strength vs. training data size (neural network)
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sensitive to the size of the training data. For example, the
75-percentiles in case II may range from 2 to 5 under
various training data sizes, corresponding to a factor of

(5/2) difference in size of the key search space! This
observation suggests the necessity of optimizing the
training dataset in order to improve the inference accuracy,
and hence enforce the attack strength, of the SIAs. Fig-
ure 11 also suggests that the inference accuracy of the
neural network is a non-monotonic function of the training
data size, and there seems to be an optimal training data
size in each case that maximizes the inference accuracy.
For example, the optimal training data sizes are 30 and 37
for case I and case II, respectively.

To test the inference performances of different ML
algorithms, we utilize more ML algorithms, such as
ensemble methods, support vector machine (SVM), and
multivariate linear regression to launch SIAs in case 1.
Figure 12 plots the CDFs under different ML inference
algorithms. The CDFs in this figure are also calculated
based on the same 26 target links as shown in Fig. 9, and
the training data size is 44. This figures shows that more
than 50% points can be found in just one round by applying
multivar linear regress method. In comparison, less than
40% points can be found in one round by applying neural
network. However, all these ML algorithms can success-
fully guess the truth value of each point within 10 attempts.
Table 3 shows that statistically SVM has the highest
inference accuracy, since in average, it just need 2.9
attempts to reach truth value of each point. However, when
training data size becomes greater, it will not be efficient
enough to launch SIA by using SVM. In this case, SVM
will spend costly computation and memory resources. In
addition, the adversary has to spend a lot of time selecting
an optimal kernel and adjusting the parameters in SVM.
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Table 3 Summary of statistics for accuracy

Mean Standard deviation (SD)
Neural network 3.04 2.3997
SVM 2.90 2.4021
Ensemble method 3.02 2.7018
Mutivar linear regress 2.94 2.6564

Note that the listed number of attempts and SD represents for each
point

To generalize the evaluation of our proposal, the statistical
inference attacks are validated on the PCR dataset as well.
Figure 13 shows the secret key inference accuracies of the
proposed algorithms over this new dataset. In particular, in
Fig. 13, it can be observed that more than 40% of the points
can be found in just one round by applying these models.
Moreover, all these ML algorithms can successfully guess the
truth value of each point within 10 attempts. Comparing this
to Fig. 12, the secret key inference accuracies of our proposed
SIAs are pretty similar on these two different datasets.

From this figure, we can also observe that the trends are
aligned with the inference accuracies as observed in
Fig. 12. These observations validate that the effectiveness
of our proposed SIAs do not depend on a specific dataset.

In our experiment, we apply several general ML algo-
rithms to launch SIAs. How to improve the inference
algorithms, and analytically decide the optimal training
data size, so that the adversary can construct the best site
survey strategy to maximize its attack strength, remain
questions to be explored in our future study.

7 Countermeasure

In this section, we develop a novel LSB key extraction
scheme to defend against the statistical inference attacks.

7.1 Forward-backward cooperative key
extraction protocol with helpers (FBCH)

In conventional LSB key extraction scheme, only the link
between legitimate transmitter and receiver is measured to
obtain CIRs as the random series. Based on the nature of
channel correlation, the adversary can effectively utilize the
channel information of surrounding links to infer CIR of the
target link. Our experiments in Section VI demonstrate the
search space of the secret key has been significantly shrunk
and the inference attacks are feasible. To overcome the
weakness of existing scheme, we propose a novel LSB key
extraction protocol, called forward-backward cooperative key
extraction protocol with helpers (FBCH). In FBCH, helpers
participate in key extraction process to construct several
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channels, and pass the CIR information between transmitter
and receiver by manipulating their transmission power. And
we assume the physical environment is quasi-static as well.
Algorithm 1 describes the procedures of FBCH.

Algorithm 1 FBCH Protocol

Step 1: The Tx randomly picks N helpers H; from all of
the M available relays in its transmission range.

Step 2: The Tx broadcasts training symbols under the
standard transmission power Pr, each helper H; receives
signal from the Tx and measures the channel Tx — H; to
obtain the CIR hy, ;.

Step 3: Each helper H; broadcasts a training symbol under
the standard transmission power Py, the Tx and Rx receive
signals from H; and measure channels H; — Tx and H; —
Rx to obtain the CIRs hy, ;, and h; .., respectively.

Step 4: The Rx broadcasts a training symbol under the
standard transmission power Pr, each helper H; receives
signal from the Rx and measures the channel Rx — H; to
obtain the CIR h; ry.

Step 5: Each helper H; manipulates its transmission power
to Pj; and transmits training symbol to the Tx under the
transmission power Pj;, where Py = %, the Tx

measures the channel H; — Tx to obtain the CIR A/

tx,i”

Step 6: Each helper H; manipulates its transmission power
again to Pj; and transmits training symbol to the Rx under
the transmission power Pj;, where Pj; = PH%}:“; the Rx
measures the channel H; — Rx to obtain the CIR A/ ...
Step 7: Tamper detection : the Tx and Rx calculate sum-
mation Y (hg i + R re). If the summations at two ends are
not equal to each other, they drop the CIRs and go back to
Step 1.

Step 8: The Tx and Rx utilize the summation > (h¢y,; +

hirz) as random series to extract secret keys.
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We now detail our key extraction protocol FBCH, which
consists of the following steps:

Let a transmitter Tx and a receiver Rx be the two parties
that wish to extract a key; when Tx wants to establish a
secret key with Rx, the Tx first determines an integer N as
the number of helpers, and randomly picks N helpers H;
from all of the available relays in its transmission range.
The number of available relays is M. Then the Tx broad-
casts training symbols x7 under the standard transmission
power Pr, the received signal at each helper H; from the Tx
is given by

yi,tx = PThtx,iXT +N (21)

where N is the additive Gaussian white noise. Thus, each
H; can measure the channel Tx — H; and obtain the CIR
hle,i .

Then each helper H; broadcasts a training symbol x;
under the standard transmission power Pg, the Tx and Rx
receive signals from H;, the received signals at the Tx and
Rx are given by

Vi = Puhyixi + N (22)
and
Yrei = PrbhipXi + N (23)

, respectively. The Tx and Rx measure channels H; — Tx
and H; — Rx to obtain the CIRs A,y ;, and h; ,, respectively.

In the next step, the Rx broadcasts a training symbol xg
under the standard transmission power Pg, each helper H;
receives signal from the Rx, the received signals at each
helper H; is given by

Yipe = PrhipnXg + N (24)

Therefore, each helper H; can measure the channel Rx —
H; and obtain the CIR h; .

By using power control technology, each helper H;
manipulates its transmission power to P}, and transmits the
same training symbols x; to the Tx again, where

/ _Pthm
PH_ 7%

; the received signal y;, ; at the Tx is given by
y;,- =P, yhiiXi + N
Pth X

tx,i

htx iXi + N (25)

= Pyh;nx; +N

When the Tx measures the channel H; — Tx again, the CIR

h;,.; that the Tx obtains is given by
/

h;x i 2 );Xﬂ - hi,rx (26)
H

Again, each helper H; manipulates its transmission power
to P}’, and transmits the same training symbols x; to the Rx,

@ Springer

"o PHhm
where P}, =

; the received signal y;, ; at the Rx is
given by
y;x,[ = P;;hi.rxxi +N
_ PHhrx,i
hi‘rx

I’l,‘JxX,' +N (27)

= Pyhyx; + N

When the Rx measures the channel H; — Rx again, the
CIR 7/, . that the Rx obtains is given by

L,rx

h/ Aerl

2 by (28)

Since the Tx and Rx obtain the CIRs £, ; and A; ,, in step 3,
respectively, they have the agreement that

hz T h,

1,rx

hl-’f‘i + h;xt
(29)
= htx,i + hi,rx

Therefore, the Tx and the Rx are able to use the summation

N
> (hw, + hir) as random series to extract secret key bits,
i=1

where N is the number of helpers. We should note that
since the physical environments are quasi-static, the
coherence time of the corresponding channels is relative
large. The procedures of FBCH can be completed within a
very short time window (several millisecond). During such
short time window, the CIRs, e.g, h;,; and h;,., do not
change.

7.2 Security analysis

In this subsection, we discuss the security of the proposed
secret key extraction protocol FBCH under attack models
of SIAs. In practice, the helpers may be compromised by
the adversary and not every helper is trustworthy. So we
discuss the security of FBCH in two scenarios: un-trusted
helpers and trusted helpers.

7.2.1 Un-trusted helpers

In this scenario, we assume that some of helpers can be
compromised by the adversary, so that not every helper is
trustworthy. The un-trusted helpers can act as passive bad
nodes or active bad nodes.

For passive bad nodes, they receive and transfer CIRs as
normal. However, they may reveal the corresponding CIRs
to the adversary. In fact, this leakage of partial information
is not threatening at all, because the adversary cannot
obtain key bits from the partial information and it is dif-
ficult for him to compromise all of the N helpers. As we
described in Algorithm 1, the Tx and the Rx use the
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N
summation of CIRs from N helpers, i.e., > (Ay; + hir), as
i=1

iz
random series to extract secret key bits. Therefore, from the
partial CIR information, which is obtained from compro-

mised helpers, the adversary cannot get the summation
N
> (i + hi ), unless he compromises all of the N helpers.

i=1
However, in the first step of Algorithm 1, the Tx randomly
picks N helpers from M available relays in its transmission
range. When M grows large, the possibility that the com-
promised nodes cover all of the N helpers becomes very
small.

For active bad nodes, they will deny to pass the CIRs
between the two legitimate communication ends or tamper
with the CIR information before its transmission. In this

case, it is easy for the Tx and the Rx to detect the falsifi-
N

cations, because the summations (A ; + h; ) Will not be
i=1

consistent at the two ends. As such, they will simply drop

the obtained random series, and re-pick N helpers to per-

form FBCH protocol again.
7.2.2 Trusted helpers

In this scenario, we assume all helpers are trustworthy.
According to this assumption, first of all, in the FBCH
N
protocol, the Tx and Rx use the summation Y (A ; + f; x)
i=1
to extract key bits (N is the number of helpers), the number
N is secret to the passive adversary, it is hard for the pas-
sive adversary to get this summation of CIRs for key
extraction. Moreover, by introducing helper nodes, the
FBCH protocol hides the relevance between one link sig-
nature and the corresponding two locations of Tx and Rx.
As a result, in the operational phase of SIAs, the ML
models are not able to provide the proper group link sig-
natures, since the adversary has no knowledge about the
construction of new channels during its site survey phase.
Likewise, it is hard for the adversary to infer the key bits in
case II and case III of SIAs by applying ML methods.
Second, we analyze the security strength of FBCH from
the spatial randomness perspective. By launching SIAs, the
adversary has the ability to infer the link signature of any
channel between any two locations. If there exists at least
one attack node that is in close proximity to each helper
node (here the “close” means that the distance between
attack node and helper is smaller than 1/2), the strong
correlation will lead to the accurate inference of link sig-
nature on each legitimate link. Therefore, the close distance
between attack nodes and helpers will threaten the security
of FBCH protocol. We will study the probability that an

attack node is placed very close to a legitimate node by
lucky coincidence.

Since the distributions of attack nodes and legitimate
nodes (i.e., Tx, Rx and helpers) are fully random, the
number of attack nodes that are close to each legitimate
node follows the Poisson distribution. Therefore, we can
apply the spatial Poisson point process to analyze this
probability as follows:

The Poisson point process is defined in the plane R2.
And we consider a circular area B; C R? (i=1..N,and N
is the number of legitimate nodes) for one legitimate node,
which takes the legitimate node as the center and r as the
radius. We treat the attack nodes as points in the plane R2.
The number of points of a point process X existing in this
area B; is a random variable, denoted by X(B;). The points
belong to a Poisson process with parameter A > 0, then the
probability of k points existing in B; is given by
(2B))* .

k!
where |B;| denotes the area of B;, and |B;| = nr?; A is the
density of points in the plane R2.

Given by Eq. (30), the probability that at least one point
existing in B; is given by

1 = P{X(B;) = 0} = 1 — exp(—A[Bi)

P{X(B) = k} = Bil), (30)

exp(—4

(31)

=1 — exp(—Jmr?)

To launch STAs successfully, there should be at least one
attack node existing in B; for every legitimate node. Then
the total probability P that at least one attack node existing
in B; for each legitimate node is given by

P =] (1 —exp(=4Bi]))

i=1 (32)
=(1- exp(—)mrz))N,

N

where N is the number of legitimate nodes.

It can be observed from Eq. (32) that when the number
of helpers N becomes large or the density of attack nodes 4
becomes small, the probability P becomes small.

In particular, if N gets very large, we obtain

T _ a2\
PfA}grolo(l exp(—Anr?)) 0 (33)

Given by Eq. (33), we can observe that when we pick large
enough number of helpers (i.e., N — 00), the probability
that there exists at least one attack node in B; for each
legitimate node is 0, which implies that there is no possible
for the adversary to launch SIAs successfully.

Obviously, FBCH will exponentially increase the over-
head of communication in the number of helpers during the
key extraction process. Nevertheless, it is an effective
countermeasure solution to defend against the SIAs.
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Fig. 14 SIA strength vs. number of helpers (SVM)
7.3 Numerical results

To illustrate the security strength of FBCH, in this sub-
section we study the performance of statistical inference
attacks (SIAs), which we proposed in previous sections, to
the new key extraction scheme. Our experiments are based
on the same setup as in Section VI-B: we use the same
dataset and launch SIAs in 3 cases. As pointed out in
Section VI, support vector machine (SVM) has the highest
inference accuracy in the previous experiments. To make a
fair comparison, we only use SVM as the ML inference
method to launch SIAs.

In this experiment, we first pick N nodes from utah/CIR
dataset as the legitimate Tx, Rx and helpers, respectively.
Furthermore, we randomly pick several links as the trans-
mitter-helpers (Tx-H) links and helpers-receiver (H-Rx)
links. Then we use the summations of CIRs of these several
links, 7+ K + ..., as ground truth to extract secret keys.
Since in each case of SIAs, the adversary has no knowledge
about the helper’ selection, he has to infer CIRs on all links
according to each potential helper (the location of each
helper is known to the adversary). For case I SIA, the
adversary uses all remaining links in utah/CIR dataset to
infer the CIRs of potential Tx-H and H-Rx links and cal-
culate the summation of these CIRs. Then he uses this
summation to guess secret keys, as we mentioned in Sec-
tion III-B. Likewise, for case II SIA, the adversary attempts
to infer each potential Tx-H and H-Rx link using links that
share the same receiver but have a different transmitter.
And for case III SIA, the adversary randomly picks helpers
and infers potential Tx-H and H-Rx links (the locations of
Tx, Rx, and each helper are known).

To obtain the statistical view about the security strength
of the proposed protocol FBCH, we study the percentage of
bits in a secret key string that can be inferred, as a function
of the number of attempts. Figure 14 compares the CDF
(cumulative distribution function) of the number of guesses
needed per point under 3 SIA cases. In each attack case, we
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Number of Attempts

(b) Case II

Number of Attempts

(c) Case III

vary the number of helpers and use different size of
training data to measure the security strength of the pro-
posed scheme. This figure shows that the adversary needs
more attempts to find the true key, and FBCH can expo-
nentially amplify the the adversary’s search space. For
example, in case I SIA, the adversary can find 94% points
in just 6 rounds when Tx and Rx use conventional LSB key
extraction scheme. On the contrary, 38% points are found
in 6 rounds when there is 1 helper, while O point is found in
6 rounds when there are 2 helpers. In particular, FBCH can
significantly increase the adversary’s search space and
effectively prevent the SIA in Case III. For example, when
Tx and Rx use conventional LSB key extraction scheme,
the adversary can find 90% true bits in secret key in just
one round, while they cannot find any true bit in 14 rounds
when two or more helpers are involved.

8 Conclusion and future work

In summary, the formal theoretical analysis in channel
correlations have been done relying on both outdoor and
indoor models. Following the machine learning (ML)
framework, we have studied empirical statistical inference
attacks against LSB key extraction. Different from prior
analytical work that assumes a link-correlation model, our
study is based on from empirically measured channel data
and does not rely on any assumption on the link correla-
tion. We applied several ML-based methods to launch SIA
against LSB key extraction under various scenarios, and
evaluated the effectiveness of these attacks based on the
utah/CIR dataset. Our finding has verified the existence of
correlation between neighboring links in realistic environ-
ments, and also showed that such correlation can be
practically exploited by ML algorithms to undermine the
security strength of PHY-layer security measures. Upon
investigation, we proposed a countermeasure against the
statistical inference attacks called forward-backward
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cooperative key extraction protocol with helpers (FBCH).
Our experiments verify that FBCH is more robust under the
statistical inference attacks.

In future work, how to improve the inference algo-
rithms, and analytically decide the optimal training data
size, so that the adversary can construct the best site survey
strategy to maximize its attack strength, remain questions
to be explored. Moreover, it would be interesting to
incorporate mmWave systems, and study the security and
efficiency of key extraction protocols in mmWave ultra-
dense networks or hybrid networks. It would be another
interesting topic to implement the new robust cooperative
key extraction protocol on real mobile devices. To the best
of our knowledge, there is no secure and efficient LS-based
secret key extraction tool on real mobile devices (e.g.,
smart phone, tablet, etc).
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