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Abstract

This article presents virtual reality software designed to explore the Sol geometry. The simulation is available on
3-dimensional.space/sol.html

Figure 1: Intrinsic view of a Sol manifold built as a torus bundle over the circle with Anosov monodromy.

Geometrization (conjectured by Thurston, proved by Perleman) states that every closed three-dimensional
manifold can be decomposed into elementary “building blocks” each of which is modeled onto a specific ge-
ometry. There are eight such models: R3,S3, H3, H2 xR, S2 xR, Nil, Sol, and the universal cover of SL(2,R).
We developed virtual reality software whose aim is to simulate these eight geometries. We populate each
of these metric spaces X with various objects (spheres, planes, cylinders, lights, lattices, etc.) and compute
what an observer would see if light follows the geodesics of X. Using a virtual reality headset, the user can
walk in these spaces and experience their surprising properties. This paper presents an expository account
of Sol geometry, and stems from a larger project to develop accurate, real time, intrinsic, and mathematically
useful illustrations of homogeneous (pseudo)-riemannian spaces.

Sol Geometry

Definition and metric. There are various ways to describe Sol geometry. It can be seen as a Lie group X
whose underlying space is R with the group law given by

(x1,y1,21) * (X2, ¥2,22) = (€' x2 + X1, ' yo + y1,21 + 22)


http://www.3-dimensional.space/sol.html

The identity element is the point 0 = (0,0,0) which we choose as the origin of the space. Algebraically it is
an extension of R? by R, and is therefore a solvable group, hence the name of the geometry. The space X is
endowed with a riemannian metric. The metric tensor at an arbitrary point p = (x,y, z) is given by

ds® = e 22dx? + *2dy* + d7* [10, Section 1.7]

With this metric, the action of X on itself is an action by isometries. In contrast to other geometries for
which the underlying space is a group, X has only finitely many more symmetries. These corresponds to the
stabilizer of the origin; it acts by the rotations/reflections preserving the union of the x, y axes.

Geodesic flow. In order to compute the trajectory of the light rays in Sol, we need a parametrization of its
geodesics. Using standard tools of riemannian geometry, one can prove that any curve c¢: [0,1] — X is a
geodesic if and only if ¢(r) = (x(¢), y(¢), z(t)) satisfies the following differential equations

X=2xz
y = -2yz
5= _e—2zx2 + 6—22)-]2

This system can be explicitly solved using Jacobi’s elliptic functions and Jacobi’s zeta function [10]. Never-
theless the explicit formulas are not particularly enlightening. Instead, in the next sections we explore a few
interesting features of the Sol geometry.

Figure 2: Geodesics (for the Sol metric) starting at the origin in the R? model.

Shape of the Spheres. Spheres in Sol are quite surprising [2]. To interpret their shapes one needs to keep
the following observation in mind. Let p = (x, y,z) be a point in X, with z > O and c¢: [0,1] — R a geodesic
from the origin o to p. Assume that one wants to extend the path ¢ to move further away from o. Increasing
the x-coordinate by € will move us by a distance of e~ %€ (in the Sol metric). On the other hand, increasing by
€ the y-coordinate will move us by a much larger distance, namely e*e. Hence the upper part of the sphere
(for z > 0) has a tendency to stretch along the y-axis, see Figure 3. The spheres exhibit the Dg-symmetry
(where Dg is the dihedral group of order 8 and the stabilizer of the origin). Hence the lower part of the sphere
is stretched along the x-axis.

Exploration through Virtual Reality

So far, we have reviewed the geometry of Sol extrinsically, e.g. by referencing a model (R3, ds?). We now
explain what an observer living in a “Sol world” would see (the intrinsic point of view). To see in Sol, we



Figure 3: 3D printed models of geodesic spheres in Sol. These models were a helpful tool to interpret the
simulations described below. Photo: © Edmund Harris

imagine our retina (or camera) as a small screen in space, and the image we see on the screen is given by
tracing out along geodesics into the world, until they hit an object.

Hyperbolic foliation and horizontal planes. The Sol geometry has several remarkable two-dimensional
subspaces. Given ¢ € R, the planes {x = ¢} and {y = ¢} are totally geodesic subspaces of Sol, which are
isometric to the standard hyperbolic plane H2. On the other hand, each plane {z = c} is endowed with a
distorted euclidean metric whose unit circle is an ellipse. However it is not totally geodesic. More precisely,
the only geodesics contained in the plane {z = 0} are y.(¢) = (¢,7,0) and y_(¢) = (¢,—t,0). This leads to some
puzzling features.

Imagine that an observer stands in a hot-air balloon looking straight downwards (along the —z-axis) at
the ground (the xy-plane). As the balloon rises up, the plane appears as though it is “rolled into a tube”
instead of extending infinitely far in all directions. See Figure 4 (in the simulation, the plane has been tiled
by small circles to give a sense of scale).

Figure 4: Walking away from the xy-plane in Sol along the z-axis at varying distances (Video Link).

Recall that as we are tracing our lines of sight along Sol geodesics, black points in the image correspond
to directions for which the associated geodesics never reach the xy-plane! Figure 5 shows a cluster of
geodesics starting above the xy-plane. Their tangent vectors all point downwards close to the z-axis. Some
of them, make a “u-turn” and head away in the other direction. Those rays correspond to the dark area in
the intrinsic view. Another curious feature appears if the observer, still located above the xy-plane, looks
through the holes of the circular tilling of the xy-plane. It seems that there is something behind the plane, see
Figure 6. Indeed, as shown on Figure 5, some of the geodesic rays pointing downwards first hit the xy-plane,
make a “u-turn”, then hit the xy-plane again. Thus, the light gray balls pictured in Figure 6 correspond to
the back side of the xy-plane. Imagine now that that the observer flies downwards through the xy-plane. If
their z-coordinate becomes negative, i.e. if the xy-plane is behind them, they will see the back side of the


https://vimeo.com/386630294

Figure 5: A cluster of geodesics whose tangent vectors at time 0 have negative dot product with (0,0, 1).
Green rays hit the plane, red rays do not.

xy-plane in front of them! See Figure 6¢. This is caused again by the tendency of some geodesics to make a
“u-turn”.

(a)

Figure 6: Walking forward through a plane in Sol. (a) About to pass through the plane. (b) Passing
through the plane, the backside is visible through the hole. (c) After passing through, the
backside of the plane still appears "in front". (Video Link)

For more confusing pictures, imagine that the observer stands at the origin o = (0,0,0) “sandwiched”
between two planes {z = —1} and {z = 1}. The foreground plane appears as a rolled up tube, while the plane
behind takes up a large fraction of the observer’s forward-looking field of view, as per above. Moving around
between these planes offers a variety of interesting perspectives, see Figure 7. In particular, when oriented
the correct way the foreground plane may obscure the ‘vanishing line’ of the background plane, giving the
illusion that it is actually toroidal in shape.

Inside Compact Sol Manifolds

The Lie group X admits several uniform lattices. A uniform lattice is a discrete subgroup I' € X whose
corresponding quotient M = ' \ X is compact. An example of such a lattice is the subgroup I" generated by

1 5
v1 =(¢,-1,0) y2=(1,9,0) and vy3=(0,0,2In¢), where ¢ = +V5

is the golden ratio.


https://vimeo.com/388598239

Figure 7: Confusing views when sandwiched between two planes in Sol. (a) Plane behind your head is
visible in front of you, per above. (b) Drawing both the plane 7 = —1 behind you and the plane
z = 1 ahead of you. (c) A new perspective on the two planes. (Video Link)

The corresponding manifold M is an example of one of
the building blocks arising in Thurston’s geometrization. It
has another interpretation, as follows. Consider the matrix

2 1
A=(1 1) )

The action of A on R? preserves the integer points, i.e.
7Z* c R%. Hence A induces a homemorphism f of the two-
dimensional torus 7' (more precisely an Anosov homemor-
phism) see Figure 8. The mapping torus of T by f, denoted
by T, is the quotient of 7' x [0, 1] by the equivalence relation
which identifies each point (x, 1) with (f(x),0). We claim that T can be endowed with a riemannian metric
so that M and T are isometric.

Figure 8: The effect of an Anosov map on
the torus.

Figure 9: A lattice in Sol. (a) Looking in the z direction (mapping torus direction). (b) Looking in direction
of x axis in Sol, and (c) the direction x = y. (Video Link)

Let us give a glimpse of this identification. The action of A on R? stretches/compresses the plane in the
direction of its eigenvectors. Identifying these with the x- and y-axes in Sol shows the tori 7 x {c} C Ty to
be the quotients of horizontal planes by the translations below

gli(x,)’)'—)(x"‘(/’a)’_l)’ g23(x,)’)'—>(x+1,y+¢)- (2)


https://vimeo.com/388610245
https://vimeo.com/388610289

These translations correspond to the elements y; and y;, given above. By construction, the matrix A is
diagonal in the (x,y) coordinates. Hence the map f sends (x,y) to (¢x,$ 2y) which corresponds to the
action of y3.

We may use our technique - rendering images by tracing light rays outward from each pixel along
geodesics - to visualize the interior of M. Nevertheless, since M is compact, any light ray “wraps around”
the space many times. Consequently an inhabitant of M could see infinitely many copies of the same object.
Figure 9 shows several inner views of M, which we populated with a single ball. Equivalently, it can be
understood as a view of Sol where we positioned a ball at every lattice point yo, fory € T

Figure 10 shows another point of view of the lattice I'. We join by a “pillar/beam” any two points x, x’
in Fo C X such that x” = y;x for some i € {1,2,3}. These pillars stake out a fundamental domain of the
action of I' on X and its translates. Alternatively the picture can be interpreted as follows. Let x, be the
image in M of the origin o of X. The lattice I" is also the fundamental group of the quotient M. In particular
each vy; is represented by a simple closed curve ¢; based at x,,. Figure 10 shows what an observer living in M
sees if we thicken the curves ¢; into tubes.

(b) (c)

Figure 10: Inside the Sol manifold with fundamental group drawn above. (a) Looking in the 7 direction. (b)
Looking in direction of x axis in Sol, and (c) the direction x = y. (Video Link)

Implementation Details

We built our virtual reality Sol-simulator by adapting the technique of ray-marching to non-euclidean
homogeneous spaces. This differs from previous work of the authors [5, 6] which compute intrinsic views
by pulling objects back to the tangent space via partial inverses of the riemannian exponential map. Such a
method cannot easily be applied for Sol, as the exponential map is far from being one-to-one. In contrast,
ray-marching, much like ray-tracing, works by flowing outwards from the screen along geodesics into the
scene, and upon intersecting an object computing the color of the relevant pixel using material properties of
that object, and the location / direction of light sources. The precise implementation details are the subject of
a forthcoming paper, and the code (currently a work in progress) is available on GitHub [3]. Other simulations
of Sol geometry include the work of Berger [1], ZenoRogue [7] (both inverse-exponential and ray-tracing
implementations) and MagmaMcFry [8] (ray-marching).


https://vimeo.com/386628225

Producing a fixed image. Imagine that the observer stays at a fixed position in Sol without moving or
rotating. In order to compute the image she would see, we require a few geometric ingredients: a means of
computing the geodesic flow in M, and a signed distance function measuring the distance in M from each
point to the nearest object in the scene (this tells us how far we can safely flow along a geodesic without hitting
an object). As mentioned above, the geodesic flow in Sol can be solved explicitly using Jacobi’s elliptic/zeta
functions [10]. Note that since Sol has no continuous symmetries fixing the origin o, it is not possible to
reduce the dimension of the problem.

Distance functions are extremely difficult to compute explicitly in Sol. This comes from the fact that
many geodesics do not globally minimize distance. Moreover the form of the geodesic flow is complicated.
Nevertheless, the distance function to a plane {z = c} is rather easy: as the vertical geodesics t — (x,y,z+1)
are minimizing, the signed distance from the point (x, y, z) to the xy-plane is simply the z coordinate. This
allows us to accurately render planes of this form in Sol. Other objects are rendered using a “fake distance
function” which approximates the true distance.

Moving in the Space. Imagine now that the observer wants to walk and explore the space around her. In
order to render the image she would see, we need a way to compute her position and facing. We decided that
a straight displacement (if the user holds down the forward key) should move the observer along the geodesic
whose tangent vector is given by the direction she is looking, while her orientation around the geodesic is
updated using parallel transport. In contrast to isotropic spaces (such as the euclidean space) there is no
1-parameter group of isometries realizing both displacement and the parallel transport.

In our software, we encode the displacement using elements of Sol (recall that Sol acts freely transitively
on itself by isometries). As for the parallel transport operator, we use an idea explored by Grayson [4].
Let ¢: Ry — X be a geodesic starting at the origin 0. The parallel transport from ¢(0) to ¢(r) along c is
an isometry T(¢): Tc)X — T.)X. To avoid any confusion we denote by L., the element of Sol (seen
as an isometry of X) sending the origin to ¢(z). This can be used to pull back the parallel transport to
the tangent space at the origin. More precisely we focus on the operator of Q(¢): T,X — T,X defined by
o) = dLC‘(lt)T(t). Identifying T,,X with R3, the operator Q(¢) is a matrix in SO(3) satisfying

0 0 —uy
Q+BQ=0, with B=| 0 0 u |,
uy —uy, 0

-1

~¢(t). In practice, all computations here are made with the
c(®)

where u = (uy,uy,u;) is defined by u(t) = dL
Runge-Kutta method.

Quotient Manifolds. To ray-march in the Sol manifold M = I' \ X depicted above, we identify M with
a fundamental domain D for the action of I' on X. We defined an algorithm, so that every time a light ray
escapes D it is “teleported” back into D using an element of I'. In this way the orbits of our flow in D
map to geodesics in M. In the extrinsic model (R?,ds?) of Sol, the fundamental domain D has the form
Dg % [0,21n ¢), where Dy is a fundamental domain for the action of the translations g; and g» on R?, see
Equation (2). The “teleportation” works as follows. Assume that the point p = (x, y, z) does not belong to D.
Translating p by a suitable power of y3 we can make sure that p belongs R? x [0,2 1n ¢). Then, in either order
(as they commute) we iteratively apply y; and y, (which do not affect z) until the point has been brought
back into D.



Summary and Future Work

In summary, this project has produced a real-time, intrinsic and geometrically correct rendering engine for
Sol geometry and its compact quotients, that has the ability to take movement input from either a keyboard or
headset, and has the ability to render images from two viewpoints simultaneously (for stereoscopic vision).
However, this is still very much a work in progress. The list of features still under development include

1. a good approximation of the Sol distance function to a point, for intrinsic rendering of geodesic spheres,

2. tracking down and cleaning up the sources of noise in the numerical approximation to Jacobi functions
required for the geodesic flow,

3. computational speedup to allow real-time rendering in high-definition, and

4. given two points {p,q}, a procedure for calculating the tangent vectors at p which correspond to
geodesics reaching g (for accurate lighting considerations).

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. DMS-
1439786 while the authors were in residence at the ICERM in Providence, RI, during the semester program
Hllustrating Mathematics. We are thankful to Brian Day in getting things synched up with the virtual reality
headsets. We are additionally grateful to many others at ICERM for interesting conversations about Sol
geometry, including Rich Schwartz, Matei Coiculescu and Jason Manning. The first author acknowledges
support from the Agence Nationale de la Recherche under Grant Dagger ANR-16-CE40-0006-01 as well
as the Centre Henri Lebesgue ANR-11-LABX-0020-01. The second author is grateful to support from the
National Science Foundation DMR-1847172. The third author was supported in part by National Science
Foundation grant DMS-1708239. This project is indebted to a long history of previous work. It is a direct
descendant of the hyperbolic ray-marching program created by Nelson, Segerman, and Woodard [9], which
itself was inspired by previous work in H* and H? x E by Hart, Hawksley, Matsumoto, and Segerman [5, 6],
all of which aim to expand upon the excellent work of Weeks in Curved Spaces [11].

References

[1] P. Berger. Espaces Imaginaires. 2015. http://espaces-imaginaires.fr
[2] M. P. Coiculescu and R. E. Schwartz. The spheres of Sol, 2019. preprint. ArXiv 1911.04003

[3] R. Coulon, E.A. Matsumoto, H. Segerman, S. Trettel. Non-euclidean VR.
https://github.com/henryseg/non-euclidean_VR

[4] M. A. Grayson. Geometry and growth in three dimensions. ProQuest LLC, Ann Arbor, MI, 1983.
Thesis (Ph.D.)—Princeton University.

[5] V. Hart and A. Hawksley and E. Matsumoto and H. Segerman. Non-euclidean virtual reality I:
explorations of H>. Proceedings of Bridges 2017. ArXiv 1702.04004

[6] V. Hart and A. Hawksley and E. Matsumoto and H. Segerman. Non-euclidean virtual reality II:
explorations of H> x E. Proceedings of Bridges 2017. ArXiv 1702.04862

[7] E. Kopczynski and D, Celinska. HyperRogue: Thurston Geometries
http://zenorogue.blogspot.com/2019/09/hyperrogue- 112-thurston-geometries-free.html

[8] MagmaMcFry SolvView https://github.com/MagmaMcFry/SolvView

[9] R. Nelson and H. Segerman and M. Woodard. hypVR-Ray. 2018.
https://github.com/mtwoodard/hypVR-Ray.

[10] M. Troyanov. L’horizon de SOL. Exposition. Math., 16(5):441-479, 1998.
[11] J. Weeks. Curved Spaces. http://www.geometrygames.org/CurvedSpaces.


 http://espaces-imaginaires.fr
https://arxiv.org/abs/1911.04003
https://github.com/henryseg/non-euclidean_VR
https://arxiv.org/abs/1702.04004
https://arxiv.org/abs/1702.04862
http://zenorogue.blogspot.com/2019/09/hyperrogue-112-thurston-geometries-free.html
https://github.com/MagmaMcFry/SolvView
https://github.com/mtwoodard/hypVR-Ray
http://www.geometrygames.org/CurvedSpaces

