FLOAT: Framework for Workflow Analysis and
Transformation

John Jacobson,
Michael Bentley,
Ganesh Gopalakrishnan
School of Computing
University of Utah
Salt Lake City, USA

Dong H. Ahn,
Gregory L. Lee
Lawrence Livermore National Laboratory
Livermore, CA
ahnl @llnl.gov, lee218 @lInl.gov

john.jacobson @utah.edu, mbentley @cs.utah.edu, ganesh@cs.utah.edu

Abstract—New abstractions and frameworks are born when
one creates hard-coded solutions to important tasks, regardless of
whether they scale or result in software that can be meaningfully
released. This paper describes our experience creating such a
light-weight framework out of a previous tool effort FLiT for
detecting compiler-induced numerical variability. The resulting
framework FLOAT has already helped us better understand and
fix performance bugs in FLiT. Our design of FLOAT and the
ways in which we anticipate it enabling the adoption and re-
purposing of FLiT, though likely not exhaustive, are described.
We also express our views on the appropriate scope of such an
approach, especially given that variations of compilation, linking,
and execution abound, and specializing in that domain may be
advantageous in the long-term as opposed to investing in an
overly generalized paradigm.

Index Terms—suitable

I. INTRODUCTION

With the increasing scale and heterogeneity of HPC soft-
ware, the process of producing an executable binary file for a
complex application has become quite involved. A designer
frequently ends up compiling and linking 1000’s of files
with various libraries, running the resulting executable across
numerous inputs, and then validating the results in a variety of
ways. The goal is usually to situate the code at its fastest oper-
ating point while also minimizing rounding errors, ultimately
to retain confidence in the output with new optimizations. This
involves tuning a number of compilation settings, sometimes
even at source-file granularity, as well as designing build sys-
tems, and reserving the necessary computational resources for
both compilation and execution. This workflow becomes even
more complicated when porting applications across machines
and compilers. Here, result reproducibility (agreement with
prior results) would be an additional acceptance requirement.
In our previous work [1] we identify reproducibility concerns
using bisection methods which require many levels of compi-
lation, execution, and diagnosis, adding a new dimension of
complexity to this standard workflow. Further, with increasing
use of GPUs and other accelerators, these workflows will enter
into the murkier territory of multiple vendor-provided GPUs
and their looser and highly varied numerical specifications [2].

What stands out from this discussion is that in many
instances of creating an executable, there is an initially planned
workflow—an execution model—and the resulting concrete
code—an implementation—that is quite involved. Addition-
ally, automated testing frameworks generate their own com-
plex (and often recursive) workflows that add many ‘“hidden
details” to the implemented workflow. Many things can (and
do) go wrong in the face of such complexity. Accomplishing
a satisfactory final executable is now the culmination of a
complex collection of tasks orchestrated by a concrete work-
flow designed from a model that lies implicit within the build
system code.

Another aspect to workflows is that the computing envi-
ronments as well as humans are imperfect. One might have
the right mental model to accomplish a compilation/build but
write the wrong Makefile; one might forget to state some
dependencies; or at build-time, some of the compilations might
silently fail resulting in an unintended binary having been
created and run. Bugs may creep in (unstated dependencies,
duplicated executions, build sub-calls silently dying, etc.)
Clearly there is need for automation.

There are two directions to take when considering automa-
tion: (1) take an existing workflow system (e.g., [3]) and adapt
it to one’s needs, or (2) organically “grow” a customized
workflow system for the immediate needs, and allow it to
generalize it to the correct level (overly generalized systems
often fail to address specific domain needs well). Taking the
latter direction, our contribution is FLOAT, a framework under
construction for the capture, analysis, and transformation of
workflows manifested during the build, run, test, and debug
processes within complex heterogeneous workflows. There are
systems out there (e.g., Spack [4] for package management
and associated installation challenges) that tend to reinforce
the virtues of not over-generalizing.

The need for our framework FLOAT was highlighted by our
experience with FLiT [1], [S]—a tool for multi-level analysis
of compiler-induced variability and performance tradeoffs.
FLiT has been applied to many in-house applications at LLNL.
Recently it was applied to an important application with over
1 million lines of code where it managed to identify files (and

functions within the files) subject to numerical variability.

Through all this, it became clear to us that offering FLiT
without a complementary tool such as FLOAT would be a
poor decision. The main impediment is that FLiT would be
difficult meaningfully to hand over to others: the adopters
would want to customize it for their uses, and unfortunately
FLiT does not truly expose its inner workings in a manner that
can be captured through dependency annotations. It also does
not report the details of the work it carries out nor provide
opportunities for intervention, repair, and resumption. FLOAT
on the other hand reveals exactly what the internal activities
of a tool such as FLiT are, and this knowledge can help
understand and adapt to a local context.

While developing FLOAT, we find a significant perfor-
mance bug in FLiT’s implementation of the conceptual model.
We detail this in §IV, but briefly it amounted to redundant
program executions lurking within FLiT (its discovery was
facilitated by FLOAT). This experience definitely helped ce-
ment the importance of FLOAT in our minds. Given that we
now are in the process of creating a tool for GPUs similar to
FLIiT, we are even more convinced about the value of FLOAT,
as the process is fairly similar to that used for CPUs.

At this juncture it has become clear that developing a tool

such as FLOAT would actually help elevate the activities of
FLiT to a useful level of abstraction. For instance, adopters
of FLiT (via FLOAT) might then begin taking these tools in
completely expected (and very impactful) new directions. They
might use it for developing new fuzz-testing methods for HPC
software, bringing in static analysis methods, etc. It is unclear
whether our force-fitting of FLiT into existing workflow
schemes might have such an outcome. We are more hopeful
that FLOAT would be better-able to allow customization plus
adaptation to tools in the immediate vicinity of compilation
and executable file creation.
Roadmap: In this paper, we will primarily take the point of
view of FLOAT serving the needs of a tool such as FLiT.
§II presents background and related work. §III presents the
overall design of FLOAT, walking through an example. §IV
presents some results obtained using FLOAT. Conclusions and
future work are in §V, where we also touch on the higher level
perspective of FLOAT.

II. BACKGROUND, RELATED WORK

FLOAT was motivated by the need for further development
on the FLiT tool. FLiT is a testing framework for identifying
floating-point variability caused by compiler optimizations or
changes in hardware and execution environments. In particular,
FLiT’s bisection search allows the user to isolate such vari-
ability to symbol (or function) granularity, greatly reducing
the scope of troubleshooting large applications.

FLiT is realized as a ”meta-build system” in which the target
application is built and tested under any number of conditions
specified by the user. These conditions are specified by the
user in the form of a TOML configuration file enumerating
the desired build parameters and their own test functions to
define the specific inputs and execution parameters. Provided

Compare Results

end

Figure 1. Abstract model of FLiT control flow, capturing all high-level tasks
which form a basic FLiT run. Although the implementation involves the use
of 3 languages to dynamically create and execute build systems, these few
tasks are sufficient for a useful analysis of the programs design.’

these files, FLiT creates a search space of compilation param-
eters (here a compilation is defined as a triple of [compiler,
optimization level, compiler flags]) and generates a (recursive)
GNU Make build system for generating and executing all
defined variations of the target application. The user-defined
test cases are executed under each compilation, and results
are compared with a trusted baseline execution to determine
variability in floating-point results and performance.

Variability within a compilation of interest identified
through a FLiT execution may then be further dissected with
FLiT bisect. Using a variation of delta-debugging, FLiT bisect
links object files from a “trouble compilation” with other files
from the baseline compilation, creating mixed-compilation
executables which are tested for variability from the trusted
results. The results guide the search through continued re-
linking of trouble and baseline object files until individual
variability-inducing files are isolated.

Once a single file is found to induce variability, the bi-
sect search proceeds with another round of delta-debugging
inspired search by creating a mixed-compilation object file.
This is achieved by linking two variations of the trouble file;
one file from the trouble compilation, and one from the trusted
baseline. Each symbol within both files is marked as weak
within one copy, and conversely as strong within the other
file. When linked, the resulting executable will retain only
strong symbols from each file, and variability in the resulting
executable is blamed on the set of strong symbols from the
trouble compilation file. This leads to further bisection of the
set of blamed symbols, and the search continues until blame is
assigned to individual symbols from the original trouble file.

As all of these steps are achieved through dynamically gen-

4

6

def match_Linking (e, p):

return p['obj'] in [f for f in e['src']l.split()] \
and e['compiler'] == p['compiler'] \
and e['opt'] == p['opt'] \
and e['switches'] == p['switches']
link_def = {
"Nested Parent" : ['root'],
"Parent Name" ['Compile', 'Baseline Compile',

'Compile fPIC']

"Matching" : match_Linking

}

event_definitions['Linking'] = link_def

Figure 2. Python code to define the ‘Link’ task represented in Fig. 1. It is not
a sub-task of any other defined task, thus is nested within the root. Linking
object files depends on the compilation of those files into object files, hence the
possible parent events. Lastly, the “Matching” function is used to determine
exact parents of a unique Link event.

erated build systems, the resulting execution trace of FLiT runs
quickly become complex and difficult to analyze, particularly
for large applications. Further, the trusted build system profile
for target applications often require significant time on their
own so the FLiT search through multiple builds has significant
performance concerns for adoption on large HPC applications,
where the tool is most needed. FLOAT was developed in order
to understand the performance bottlenecks within FLiT and
guide further development of the application in the face of
this complexity.

Instead of targeting statement or function level analysis
within FLiT, FLOAT aims to model the underlying conceptual
model of a test framework and project this model onto actual
execution traces to verify implementation of the conceptual
model, as well as to identify higher-level design enhance-
ment opportunities within the application. This methodology
greatly eases the burden of analyzing interoperable programs
like FLiT since little to no communication between separate
language components is necessary. Also, by tracing execu-
tion at a higher level of abstraction, the volume of data is
significantly reduced and their mapping to well-understood
design abstractions allows for more natural digestion and
processing by the developer, and suggests a number of pre-
defined visualizations and results to be provided to the user.
As stated earlier, workflow management systems such as
Pegasus [3] and FLUX [6] are popular in scientific computing,
and one can image their use in our context. For reasons stated
earlier, taking such an approach would not result in a light-
weight and domain-focused framework.

III. DESIGN OF FLOAT

FLOAT is designed to represent a high-level abstraction of
a programs design for analyzing performance and correctness
from an overall design perspective. The user models their
application as a task dependency graph, where tasks are arbi-
trary blocks of functionality within the application which are
not necessarily tied to the structure of code implementation.
This model is then mapped to the code by instrumentation of
log calls, after which the resulting logs are processed into a

10

"date": "Tue Aug 10 13:41:18 MDT 2021",
"time" : 1628624478570859473,
"name" : "Compile",
"type" : "stop",
"properties" : {
"file" : "tests/Mfeml3.cpp",
"obj" : "obj/GCC_MFMA_03/Mfeml3.cpp.o",
"compiler" : "g++-7",
"switches" : "-mfma",
"opt" : "-0O3"

Figure 3. Sample event, capturing a specific ‘Compile’ task instance. The top
layer of items are required for all events, while the contents of the “properties”
object allow capture of arbitrary fields. These fields are primarily used for
building unique event relationships.

DAG data structure guided by the abstract model. This process
allows a high-level view of the implementations conformity to
the defined model, concurrency potential and utilization, and
critical path analysis.

The model is initially defined by a Python dictionary as
shown in Fig. 2.! The model defines a set of events by unique
string identifiers, each representing a unique task within the
application design. (See Fig. 3.)

For example, within the FLiT framework the complete
compilation of an executable may be defined as one task in-
cluding pre-processing, compilation, assembly, and linking as
a single event. Alternatively, these sub-tasks may be modeled
as individual tasks (as determined by the user.) Our actual
implementation in FLiT tracks two tasks within compilation;
pre-processing, compilation, and assembly of an object file are
treated as a single task, while linking is tracked as a second
independent task. This particular definition was important in
our use-case for FLiT Bisect where initially each file is com-
piled in two variants (unoptimized versus optimized), but later
linked in multiple combinations to detect non-reproducible
situations (e.g., one file has a function whose numerical
behavior changes unacceptably upon optimization). While a
logarithmic search might require only log(N) linkages, a true
delta-debug session might potentially require an exponential
number of linkages (/V being the number of files). The latitude
to define sub-tasks flexibly may prove to be important for
adopters of FLOAT. Here are additional details of our design:

a) Event Hierarchy: For each event defined in our frame-
work, a list of parent events and a “Matching” function
containing logic for matching this event to its parent event(s)
is expected. As an example, within the FLiT framework
source files are compiled multiple times, using different flags,
to produce multiple executables. As such, there are several
object file linking tasks performed (one for each produced
executable), but each linking task depends only on source files
compiled with the relevant flags. As such, it is necessary in
both the linking and its parent compilation events to capture

ITechnically the model is not required, but any events not included in
the model will be collected as an unorganized set of events, i.e. plain json
logs with no additional functionality.

unique identifiers (in this case compilation optimization level
plus all flags and switches.) The function shown in Fig. 2
demonstrates the logic necessary to identify which source
compilation tasks are linked by a specific linking instance
during runtime.

b) Event Structure: Each of these events is then captured
by instrumenting logging within the source files. JSON format
is used (somewhat arbitrarily) for its human-readability and
ubiquity. The captured logs require only (1) their unique
event identifier (such as “Compilation” within FLiT), (2) a
timestamp, (3) a start/end identifier, and (4) a JSON string
containing relevant properties for uniquely identifying each
separate instance of this event and to match this event to its
parent(s) and/or children, as shown in Fig. 3.

c) Log-file Structure and Visual Elements: Once the
event definitions and collected logfiles have been provided,
FLOAT parses the logs and generates a DAG data structure
using the Python NetworkX library [7]. During parsing, any
events not conforming to the provided model will be explicated
to the user. The generated DAG is available to the user for
manual processing, as well as a number of built-in analyses. A
Gantt chart demonstrating relative runtimes of captured events,
such as in Fig. 6, provides an at-a-glance view of utilized
concurrency and bottleneck tasks. A graph visualization of the
entire graph structure for the underlying model is available,
as well as a similar representation including actual runtime
event details captured, as shown in Fig.’s 1 & 5. Event specific
details captured within the logs are also queryable for isolating
runtime variability.

d) Use-case: FLiT applied to MFEM: We now walk
through the use of FLOAT using an example of FLiT as
applied to MFEM [8], a popular finite-element library. MFEM
was one of the examples analyzed using FLiT [5S]; in the
following, we highlight the added insights to FLiT offered
by FLOAT.

The first step in application of FLOAT is design of the
abstract model underlying the target application (in this case
the FLiT testing framework.) Despite the inherent complexity
of the recursive build system FLiT utilizes to explore the
compilation search space, the framework relies on a simple
conceptual model. As shown in Fig. 1, FLiT may be under-
stood as a simple workflow for compiling and executing the
test application. Using this abstraction, a FLiT run may be
modeled by only seven unique tasks (and five distinct tasks
suffice as ground truth processing may be identified from only
one unique task in the compilation branch.)

With the model defined conceptually, we translate to a
specification for automated processing. FLOAT works from
a Python dictionary whose keys represent unique task names,
and associated values are dictionaries of dependency relation-
ship information (see Fig. 2.) Dependency relationships are
defined by three parameters:

1) A unique “Nested Parent” - This is a super-task which
encapsulates the defined task. This allows for isolated
analysis of tasks by relating them to sub-tasks defined
within their scope (nested within” the scope of their

FLIiT Bisect

Trouble Compilation

Intel trouble
comp only

Compile

- Library Bisect
Ground Tfuth Compilation

Compile GT
wi Intel Libs

® | @

Run Test

jon-Intel Intel
Compare Results (trouble)

File Bisect

Compare Results (lib)

Compare Results

Intel Lib

Trouble File Found
rouble File Founc [Failed to run

Synjbol Bisect

Weaken Symbols

Bisect Search o File Found

Compare Results

o Symbol Found

Trouble Symbol Found

end

Figure 4. Abstract model of FLiT Bisect control flow. 2 layers of bisection
search increase the model complexity a small amount relative to the necessary
implementation intricacy.

Nested Parent.) All tasks are nested within the overall
execution (defined in the DAG as the root node, or "FLiT
Run” in Fig. 1.)

2) A list of "Parents” - These are tasks on which the defined
task depend logically. For example, in Fig. 1 Compile
tasks are parents of Link tasks, since the linkage phase
of compilation depends on compiled object files from the
Compile task.

3) A ”Matching” function - This function takes an instance
of the defined task (an event) and an instance of a
potential parent task, and determines whether the event
defined logically depends on the potential parent. For
example, in 1 the trouble compilation Link task depends
only on Compile tasks for the trouble compilation and not
on Compile tasks for the ground truth compilation. The
”Match” function distinguishes this relationship using
data captured within specific log events.

This specification is defined by a Python script containing the
necessary definitions in a dictionary; our implementation of
the “Link” task is shown in 2.

With the abstract model specified in this way, we instrument
the capture of log events representing each logical task defined.
Log events are captured in JSON format conforming to a
simple specification (as seen in Fig. 3.)

« Date (string)

« Time (integer), a timestamp for performance analysis

o Name (string), a unique task identifier for each task
within the model

o Type (string), “start” or “stop” for event duration de-
markation

« Properties (JSON string), a JSON object containing arbi-
trary fields deemed necessary by the user. These should
capture necessary runtime details for relating specific
events to their runtime dependencies.

The instrumentation of logging in the target application
is left to the user. FLiT is implemented using 3 distinct
languages; Python is utilized for the command-line interface
(as well as implementing the dynamic build system in FLiT
Bisect), GNU Make is used to build the test application,
and C++ is used for test implementation and floating-point
code. As such, our logs for capturing runtime event data were
defined with a simple logging function in each language and
calls to these functions were manually placed within the source
code.”

Finally, with a collection of logfiles captured from an
execution of FLiT on the MFEM tool, along with the model
definition dictionary, FLOAT parses the logs and constructs
a NetworkX DAG data structure. The provided model guides
the creation of the data structure, so ill-defined dependency
relationships are identified and flagged to the user as excep-
tions. The resulting object is provided to the user for manual
analysis, alongside a number of built-in functions for analyzing
the data.

2Practices such as Aspect-Oriented Programming might help automate
this in future.

Figure 5. After the user instruments logs to capture run-time events for each
task described within the abstract model, the logs are read into FLOAT. An
implementation DAG is generated using Gephi displaying unique event rela-
tionships for analysis. All other event details captured by user-implemented
logs are available within the data structure provided by FLOAT.

In this example test case, we compare the results
of executing MFEM’s example Test-13 under two com-
pilers (g++ and clang), with 3 flags (-—-ffast_math,
—--funsafe-math-optimizations, and —--mfma) all
under —-0O3 forming a small search space of six distinct
compilations, alongside a ground truth compilation using g++
in —02. In Figure 5 one may see the six distinct compilation
branches. This concrete execution trace DAG is provided
in the form of a Gephi graph specification for interactive
visualization and graph processing.

Additionally, Figures 6 & 7 show relative execution time
for all events captured in the execution using —j4 and —3j
respectively.

IV. RESULTS
Our use of FLOAT yielded a few interesting results:

1) Defining the abstract model and workflow dependencies
becomes more difficult with added functionality as com-
pared to the original design.

2) Capturing the defined model required only a handful of
log capture points, but these points were enough to iden-
tify a significant performance bug in the implementation.

3) Applying FLOAT even to very simple, pathological test
cases for the FLiT tool are enough to identify, and quan-
tify, performance bottlenecks within the implementation
and guide future development.

4 - Compile

] Name
7-compite [N W compile 170 - Compile | Name
5-compile I M Linking 167 - Compile | W Compile
6-Compile [N W Run Test 174 -Compilc G W Linking
11 - Compile [M Make Run Tests 165 - Compile W RunTest
10 - Compile - W Make Run Tests Baseline 166 - Compile M Make Run Tests Baseline
15 - Compile] M TestResultCompare 169 -Comple G = Make Run Tests
13 - Compile | W riake Compare Tests 168 - Compile M TestResultCompare
root M Make Compare Tests
17 - Compile [177-Compile o~
19 - Compile - 182-Compile [
21 - Compile [| 183 -compie |
23 - Compile | 178 -compiie |
27 - Compile [] 181 -compie |
26 - Compile | 186 - Compilc |
29 - Compile [| 171 -Compilc G
31 - Compile [| 176 - Compile
39 - Compile [163-Compile
41 - Compile] 164 -compile
47 - Compile [] 169 -compile |
43 - Compile | 175 - Compile ——
51 - Compile [| 184 -compie
49 - Compile | 180 - Compile
55 - Compile _— 179 - Compile [
53 - Compile 1 162 - Compiic |
57 - Compile [173 - compic
59 - Compile [| 187-Compile |
61 - Compile] 188 -Compile |
65 - Compile I 185-Compile
33 - tinking 1 172 -conplc
35 - Linking 1 208 - Linking]
37 - Linking, 1 211 - Linking [|
45 - Linking 1 214 - Linking | |
63 - Linking 1 219 - Linking [
69 - Linking | 216 - Linking n
72 - Linking 1 227 - Linking 1
124 - Run Test 220 - Linking []
102 - Run Test 28 - Run Test
186 - Run Test 120 - Run Test
230 - Run Test 142 - Run Test
130 - Run Test - 74 - Run Test
236 - Run Test - 50 - Run Test
192 - Run Test | 96 - Run Test
108 - Run Test. [| 2 - Run Test
H 238 - Run Test. || 80 - Run Test [|
& 132 - Run Test [}] 148 - Run Test. [|
194 - Run Test [| @ 8 - Run Test: [|
110 - Run Test] 14 - Run Test
240 - Run Test [126 - Run Test —
246 - Run Test 34 - Run Test |
134 - Run Test - 56 - Run Test |
140 - Run Test 102 - Run Test |
146 - Run Test 82 - Run Test [}
208 - Run Test 150 - Run Test]
196 - Run Test] 128 - Run Test []
202 - Run Test 36 - Run Test]
168 - Run Test 58 - Run Test "]
112 - Run Test (] 104 - Run Test [}
118 - Run Test 84 - Run Test [
152 - Run Test | 90 - Run Test
214 - Run Test] 152 - Run Test —_—
174 - Run Test [| 158 - Run Test
180 - Run Test 130 - Run Test [
154 - Run Test - 136 - Run Test
216 - Run Test] 38 - Run Test _—
156 - Run Test [44 - Run Test
162 - Run Test 60 - Run Test _—
218 - Run Test - 66 - Run Test
224 - Run Test 106 - Run Test |]
77 - Make Run Tests I 112 - Run Test
74 - Make Run Tests] 238 - Make Run Tests Baseline I
76 - Make Run Tests I 236 - Make Run Tests]
75 - Make Run Tests I 233 - Make Run Tests |
79 - Make Run Tests. |] 234 - Make Run Tests]
81 - Make Run Tests |] 232 - Make Run Tests]

83 - Make Run Tests Baseline] 235 - Make Run Tests |
250 - TestResultCompare | 237 - Make Run Tests |
252 - TestResultCompare | 22 - TestResultCompare 1
256 - TestResultCompare | 116 - TestResultCompare |

2 - TestResultCompare | 18 - TestResultCompare 1
254 - TestResultCompare | 70 - TestResultCompare 1
0 - TestResultCompare | 24 - TestResultCompare 1
87 - Make Compare Tests | 20 - TestResultCompare |
86 - Make Compare Tests | 241 - Make Compare Tests 1
91 - Make Compare Tests | 243 - Make Compare Tests 1
90 - Make Compare Tests | 247 - Make Compare Tests 1
95 - Make Compare Tests | 249 - Make Compare Tests 1
98 - Make Compare Tests. | 253 - Make Compare Tests.]
258 - root 256 - Make Compare Tests |
10:40:45 10:140:50 104055 10:141:00 10: 258 - root
Aug 10,2021 22:37:35 22:37:40 22:37:45 22:37:50

Aug 18, 2021

Figure 6. Event timing from a FLiT run using ‘-j4’ to limit to 4 jobs. A
missing bar represents a duration smaller than the charts resolution; this is
caused by some tests being disabled in the test run.

Figure 7. The same FLiT run represented in Fig. 6, this time using ‘-j’ for
unlimited jobs.

The FLiT framework follows a fairly simple model; search
over the space of compilations and run an executable for each.
FLiT’s Bisect functionality isn’t much more complex from this
level and can be viewed as adding two layers of bisection
search. Despite this, the implementation required changes to
the underlying model which are in some ways unnecessarily
complicated. In the case of FLiT Bisect, many components
of FLiT testing are reused, but to expedite the search process
a number of branch conditions are created which change the
dependencies of certain events. As an example, in a single
FLiT Bisect run it is necessary to compile files using the
——fPIC flag for the symbol bisect stage. Depending on
whether Bisect is run on a single compilation or against a set
of compilations these compilations may depend on different
tasks within the FLiT model, where logically the compilation
of these files has no dependency within the other defined tasks.

With the model constructed, implementing data capture
necessary to feed FLOAT is quite simple; since the captured
tasks are high-level abstractions there is generally no need to
search through complex stack traces or nested functions and
definitions as they are usually launched from top-level function
calls. Once captured we immediately found a violation of our
constructed model for FLiT in that the ground-truth test compi-
lation was being executed (unnecessarily) multiple times. Due
to the complexity of the implemented recursive Make build
system, a small technical oversight caused the executable to
be forcibly run each time a separate test executable was run.
Aside from doubling the number of tests being run, the ground
truth executable is compiled as a trusted baseline usually with
with fewer compiler optimizations so that it is generally one
of the worst-performing compilations in the search space.

By only tracing high-level tasks we were able to quickly
identify a general performance model for the FLiT tool. With
a goal of improving the overall design of the FLiT framework
one may quickly analyze the critical path of a particular
execution, or verify at-a-glance in the provided visualizations
the tasks which occupy significant runtime. This allows a small
team to isolate those tasks which deserve deeper analysis,
and targeted profiling of these tasks can take place in a more
narrow scope for higher return on invested development time.

V. CONCLUSIONS, FUTURE WORK

We have motivated the need for a flexible and customizable
workflow analysis and transformation framework. In addition
to helping enhance one’s trust placed on a complex set of
tasks and helping others adopt and customize a tool, FLOAT
also helps reveal the deficiencies of an existing workflow
and improve it. FLOAT has already played an important
role in enhancing the FLiT tool as well as detecting se-
rious performance bugs lurking within it. From our walk-
through in §III, additional insights provided by FLOAT in
enhancing a user’s trust must be apparent: capturing abstract
models, providing an event-relationship view for debugging
implementation-level behaviors, providing a Gantt chart view
for planning workflow enhancements, etc. As we gain more
experience with FLOAT, we will be making improvements to

its specification mechanisms and validation mechanisms, as
outlined under future work.

Future Work

Some of the anticipated future directions of FLOAT are as

follows:

« As mentioned earlier, compilation of codes targeting
different GPUs naturally creates a search space of op-
timizations.

« We are developing ways to optimize floating-point codes
through precision tuning (e.g., [9]) and selective expres-
sion rewriting (e.g., [10]). The search-space in these cases
will be the execution differences between the original
(say, higher) precision code and the new (lower precision)
code.

« We are interested in input (test) generation for CPU and
GPU codes. In this case, the search-space will be the
behavior under the initial tests, and (after monitoring cov-
erage) additional tests administered to enhance coverage.

As we gain more experience with these projects, possible
future directions of FLOAT will become clearer. Given that
compilation itself is a rich domain, we may decide not to
generalize beyond it. For instance, if static analysis methods
were to be used to augment dynamic analysis, additional
tasks as well as dependences and event-types will have to be
accommodated. In all these cases, having a framework similar
to FLOAT will retain the advantages of workflow analysis and
improvement.

REFERENCES

[1] D. H. Ahn, A. H. Baker, M. Bentley, 1. Briggs, G. Gopalakrishnan,
D. M. Hammerling, I. Laguna, G. L. Lee, D. J. Milroy, and
M. Vertenstein, “Keeping Science on Keel When Software Moves,”
Commun. ACM, vol. 64, no. 2, p. 6674, Jan. 2021. [Online]. Available:
https://doi.org/10.1145/3382037

[21 M. a. d. H. N. Fasi, M. Mikaitis, and P. S, “Numerical
behavior of nvidia tensor cores,” 2021. [Online]. Available: https:
//doi.org/10.7717/peerj-cs.330

[3] E. Deelman, R. F. da Silva, K. Vahi, M. Rynge, R. Mayani,
R. Tanaka, W. R. Whitcup, and M. Livny, “The pegasus workflow
management system: Translational computer science in practice,”
J. Comput. Sci., vol. 52, p. 101200, 2021. [Online]. Available:
https://doi.org/10.1016/j.jocs.2020.101200

[4] G. Becker, P. Scheibel, M. P. LeGendre, and T. Gamblin, “Managing
combinatorial software installations with spack,” in 2016 Third
International Workshop on HPC User Support Tools, HUST@SC
2016, Salt Lake City, UT, USA, November 13, 2016. 1EEE
Computer Society, 2016, pp. 14-23. [Online]. Available: https:
//doi.org/10.1109/HUST.2016.007

[5] M. Bentley, I. Briggs, G. Gopalakrishnan, D. H. Ahn, I. Laguna, G. L.
Lee, and H. E. Jones, “Multi-Level Analysis of Compiler-Induced
Variability and Performance Tradeoffs,” in Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed
Computing, ser. HPDC 19. ACM, June 2019, pp. 61-72. [Online].
Available: http://doi.acm.org/10.1145/3307681.3325960

[6] D. H. Ahn, N. Bass, A. Chu, J. Garlick, M. Grondona, S. Herbein,
J. Koning, T. Patki, T. R. W. Scogland, B. Springmeyer, and M. Taufer,
“Flux: Overcoming scheduling challenges for exascale workflows,”
in 2018 IEEE/ACM Workflows in Support of Large-Scale Science
(WORKS), 2018, pp. 10-19.

[71 NetworkX. [Online]. Available: https://networkx.org/

[8] “MFEM: Modular finite element methods library,” mfem.org, 2018.

[9]

[10]

C. Rubio-Gonzélez, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough, “Precimonious: tuning
assistant for floating-point precision,” in International Conference

for High Performance Computing, Networking, Storage and Analysis,

SC’13, Denver, CO, USA - November 17 - 21, 2013, W. Gropp and
S. Matsuoka, Eds. ACM, 2013, pp. 27:1-27:12. [Online]. Available:
https://doi.org/10.1145/2503210.2503296

P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock,
“Automatically improving accuracy for floating point expressions,”
SIGPLAN Not., vol. 50, no. 6, p. 1-11, Jun. 2015. [Online]. Available:
https://doi.org/10.1145/2813885.2737959

