
Robustness Analysis of Loop-Free Floating-Point
Programs via Symbolic Automatic Differentiation

Arnab Das∗, Tanmay Tirpankar†, Ganesh Gopalakrishnan‡
School of Computing

University of Utah
Salt Lake City, Utah, USA

Email:∗arnab.d.88@gmail.com, †tirpankartanmay@gmail.com, ‡ganesh@cs.utah.edu

Sriram Krishnamoorthy
Google1

California, USA

Abstract—Automated techniques for analyzing floating-point
code for roundoff error as well as control-flow instability are
of growing importance. It is important to compute rigorous
estimates of roundoff error, as well as determine the extent
of control-flow instability due to roundoff error flowing into
conditional statements. Currently available analysis techniques
are either non-rigorous or do not produce tight roundoff error
bounds in many practical situations. Our approach embodied in a
new tool called SEESAW employs symbolic reverse-mode automatic
differentiation, smoothly handling conditionals, and offering tight
error bounds. Key steps in SEESAW include weakening condition-
als to accommodate roundoff error, computing a symbolic error
function that depends on program paths taken, and optimizing
this function whose domain may be non-rectangular by paving
it with a rectangle-based cover. Our benchmarks cover many
practical examples for which such rigorous analysis has hitherto
not been applied, or has yielded inferior results.

Index Terms—Floating Point Numbers, Rounding, Symbolic
Automatic Differentiation, Computational Graphs, Optimization

I. INTRODUCTION

Floating-point arithmetic is fundamental to many areas of
computing including HPC and machine learning, geometric
algorithms, and embedded systems. Given that floating-point
code approximates real numbers, the consequences of this ap-
proximation must be rigorously analyzed to be within accept-
able margins. Two of these consequences are studied in this
paper: (1) how much rounding error is introduced, and (2) are
the control flow paths different when a program is studied
under the real number model versus its floating-point model.
The latter is popularly known as control-flow instability. In this
paper, we study these two non-robustness aspects of loop-free
floating-point programs. In other words, the codes analyzed in
our work involve a sequence of assignments and branches,
but not loops. While loop-free programs may strike as a
serious limitation, in reality algorithms found within geometric
libraries such as computing the tightest sphere enclosing a

1Work done while at Pacific Northwest National Laboratory
Supported in part by NSF CISE Grants 1704715, 1917141 and 1918497

cloud of points, the closest point to a line, etc., are of this
nature. There is no point entertaining the added complexity of
loops, given that today’s solutions are inadequate even within
the loop-free class.

The simple example in Figure 1 of a program over two
floating-point inputs x and y in intervals (0.1, 1.0) brings
out the kinds of non-robustness we are after. Imagine running
this program by modeling it under single-precision and later
under double-precision: are there inputs for which the control
flow paths differ? The answer is yes: by sampling the input
space to a fine resolution (purely for demonstration), we can
determine that by feeding x = 9.8153645431765959 and
y = 9.4153646206626345, the truth-value of the program
control-flow predicate P1 changes (also, on either side of these
x and y values, the control flows with respect to P1 agree).
Further, observe that the assignment to g differs in these paths
under P1, meaning that the final result res changes in response
to this control-flow change. We call this the instability jump of
the output. Determining all control-flow instabilities and the
consequent instability jumps clearly requires roundoff error
analysis (it is the rounding error flowing into the conditionals
that causes instabilities).

While we shall present related work in detail later, it
is worth quickly mentioning that three main related efforts
address these correctness issues and offer rigorous solutions—
meaning, solutions across intervals of inputs (not just sam-
plings of input points). Darulova [1] presents a formal ap-
proach to characterize non-robustness of this sort. Ghorbal [2]
introduces constrained affine sets over their Zonotopic ab-
stract domains to handle constraints—an approach that, to
our best knowledge also underlies the closed-source tool
FLUCTUAT [3] (available for experimentation under license).
Finally, the PRECISA [4] tool handles conditionals through a
denotational semantics-based approach.

In comparison, we contribute a rigorous symbolic method of
error analysis embodied in a new tool called SEESAW. Seesaw
builds on the core technology of our recent tool SATIRE [5]
(namely, symbolic reverse-mode automatic differentiation or

1

1 inputs { x fl64 : (0.1, 1.0);
2 y fl64 : (0.1, 1.0); }
3 outputs { res; }
4 // Program definition
5 exprs {
6 h = (y/x) + x ;
7 g = x + x*y ;
8 if (x − y < 0.4) then // P1
9 g = 1 + 1/g ;

10 else
11 if ((x*x > 0.25) && (y*h <= x*x))

then // P2
12 g = h + x*y ;
13 endif
14 endif
15 res = g + y ; }

Fig. 1: For this running example, its output
res is plotted in Figure 2 as follows. The top
plot shows x and y over the input intervals
(0, 10). The zoomed versions show the func-
tion behaviour at the lower and higher ends of
the input interval (notice the instability jumps
shown).

 0 2 4 6 8 10x
 0

 2
 4

 6
 8

 10

y

 0

 40

 80

 120

 0.4 0.6 0.8 1x

 0.2

 0.4

y

 0
 1
 2
 3
 4

 8 8.5 9 9.5 10x
 8

 8.5
 9

 9.5
 10

y

 0

 40

 80

 120

Fig. 2: Function plot of output res; Top: x, y ∈ [0.01, 10.0]; Bottom-left: x ∈ [0.4, 1.0], y ∈
[0.1, 0.5]; Bottom-right:x, y ∈ [8.0, 10.0]

“AD”) that can scale error analysis to expressions with over 2
million operator nodes. Key contributions that SEESAW makes
over SATIRE are an extension of AD to handle conditionals,
calculating instability jumps, handling the global optimization
problem over non-rectangular domains through “paving” (all
to be elaborated later).

For codes without any conditionals, SEESAW offers the
same level of scalability as SATIRE. For codes with a few
conditionals, this level of scalability is retained. For codes
with many conditionals, SEESAW will suffer from path ex-
plosion. Fortunately, many practical programs contain largely
conditional-free portions and a few “top level” governing
conditionals.

Comparable open-source rigorous tools do not attain this
level of scalability as well as the tightness of error estimates.
When applied to the example in Figure 1, PRECISA reports an
instability jump of 1003 with a rounding error bound of 8.72e-
09. FLUCTUAT only reports the existence of instability, with-
out giving a magnitude for it. FLUCTUAT reports a rounding
error bound of 3.22e-10 over the entire domain. FLUCTUAT
reports the existence of instability without calibrating instabil-
ity jump magnitudes. SEESAW, on the other hand, reports the
instability jump to be of magnitude 105.9 and the rounding-
error bound to be 5.5e-14. Overall, across our benchmarks,
SEESAW has obtained tighter bounds than PRECISA and
FLUCTUAT. The relative tightness of roundoff error bounds
estimated by SEESAW has been confirmed through shadow
value calculations.

In terms of novelty, SEESAW accommodates conditional
programs smoothly in a symbolic AD framework built using
Python and SymEngine [6]. SEESAW handles optimization
over non-rectangular constraint regions by paving the domain

with a collection of minimally overlapping rectangular regions
using the off-the-shelf tool Realpaver [7], allowing the use of
efficient rectangular domain solvers.
Key Contributions:
• SEESAW provides rigorous estimates of the roundoff

errors on outputs as well as instability jump values. It
also ranks the instability bounds, helping the designer
address the most significant ones first.

• SEESAW includes a statistical analysis method that in-
volves sampling the symbolic error expression generated.
This approach helps pragmatically calibrate the severity
of worst-case error bounds.

• We also contribute a benchmark suite of loop-free pro-
grams to evaluate future tools in this space (such bench-
marks were unavailable before our work), and also release
the tool (https://github.com/arnabd88/Seesaw.git).

Roadmap: §II provides relevant background. §III provides
a complete walk-through through our running example. §IV
provides all the rigorous steps involved in our symbolic
reverse-mode AD, computing error expressions, and calculat-
ing instability jumps. §V provides our evaluation results. §VI
provides discussions and conclusions.

II. BACKGROUND

Consider a sequential straight-line floating-point expression
of m input variables x = {x1, · · · , xm} executing n floating-
point operations. We present the program in a single static
assignment form si = fi(x1, . . . , xm, s1, s2, . . . , si−1). Here,
fi denotes the arithmetic operation being executed in the ith

right-hand side, where fi is an arbitrary arithmetic operation
or elementary function. The final output is sn. Let f̃i denote
the finite precision approximation of fi. Application of f̃i

2

Fig. 3: (a) Example Program with Scopes Illustrated; (b) Translated Conditional Computational Graph (CCG); (c) Overview of Seesaw

will encounter a rounding error (esi) to produce s̃i, such
that s̃i = si + esi . Additionally, input variables may also
contain rounding error from previous stages. We model this
by changing x to x̃ where x̃ = {x1 + ex1 , . . . , xm + exm}.
δi is the floating-point round-off error generated at node i.
The absolute value of δi is bounded by the unit roundoff u (or
machine epsilon) value [8].1Based on first-order error analysis,
one can write the error accumulated at the output, esn , as

esn = sn · δn+
n−1∑
j=1

(∂sn/∂sj) · esj +
m∑
j=1

(∂sn/∂xj) · exj (1)

Here, the term sn · δn models the error generated at the
output node sn. This error is calculated in terms of the
local error esj generated at intermediate nodes (which, in
turn, are calculated using the very same first-order analysis
captured by Equation 1). We also include the effect of the
input errors, summed over the m input nodes. Observe that
sn = fn(x1, . . . , xm, s1, s2, . . . , sn−1). Thus, we must obtain
(∂sn/∂sj) where j is summed over 1 . . . n− 1. This sum-
mation is done using reverse-mode automatic differentiation
(AD) which uses the chain rule. The primary goal of our error
analysis is to obtain a tight bound on the worst-case output
error – specifically, obtain the suprema for the derived error
expression in (1) across intervals of input values.

Reverse Mode AD: Let an n-output computation over m
inputs be modeled via function S, where S : Rm → Rn.
Furthermore, let S(x) = (h ◦ g)(x) capture a decomposition
of S via functions h and g (modeling how computational
DAGs are recursively processed) where g : Rm → Rk and
h : Rk → Rn. Then, the error in S(x) can be computed via

1For operators beyond the basic set such as sin, log, etc., a higher value
of u is typically used [9].

reverse-mode AD by computing a Jacobian, J , where the Jij
component is

Jij =
∂Si
∂xj

=
∂hi
∂g1

∂g1
∂xj

+ · · ·+ ∂hi
∂gk

∂gk
∂xj

(2)

In SEESAW, we extend the efficient dynamic-programming
implementation of this approach introduced in [5] to include
conditional paths, as illustrated in §III and detailed in §IV.

III. A COMPLETE WALKTHROUGH

Figure 3(c) shows the workflow of SEESAW. The input to
SEESAW is a straight-line program with conditionals given
by the command syntax in Figure 4. The whole program
to be analyzed, pgm(V ars; C; out), consists of variable
declarations V ars, a command C, and a single output out
(all outputs handled similarly). The rest of the syntactic cate-
gories are familiar (we assume that negation has been pushed
innermost). SEESAW first obtains a conditional computational
graph (CCG) as illustrated in Figure 3(b). We extract a
computational expression from the CCG and subject it to
reverse-mode AD as will be defined precisely in §IV. We now
walk through each of these phases.

1 E ::= op(E1) | op(E1,E2) | x ∈ V ars | c ∈ Const;
2 BE ::= E1 rel E2 | BE1 bop BE2;
3 C ::= x := E | C1;C2 | if BE then C endif
4 | if BE then C1 else C2 endif | skip;
5 P ::= pgm(Vars; C; out);

Fig. 4: Syntax of Input Programs

Translation of program to CCG: The main idea in this
translation are twofold: (1) build a computational graph of
standard operators such as + (this step is in standard practice);
(2) capture the “if-then-else” nesting within which a variable
is updated (or re-updated) by introducing if graph nodes (there
are two such nodes in Figure 3(b)). This allows us to define AD

3

rules uniformly for both node types. To capture this nesting,
we introduce the notion of a scope function from V ars to
graph nodes where S(x) looks up the value of x in S. Scope
updates are shown as S[x ← E] where S[x ← E](y) is E if
x = y else S(y). Let Sinit be the initial scope consisting of
graph nodes for all items in Vars. We also maintain a predicate
context p with rules that deal with commands, C; it is a
Boolean graph node for the Boolean expression representing
the path under which command C is executed. The overall
effect of compiling pgm(V ars; C; x) in predicate-context p
and scope Sinit is to first compile the command C starting
with Sinit, returning a final scope Sfinal, and then looking up
x in it.

In our running example, variables h and g are first assigned
in the initial predicate scope of predicate “True” at lines
6 and 7, generating CCG nodes n4 and n2. Later, line 8
containing the “if” condition creates a new predicate scope S1
having predicate P1. Scope S1 updates the variables in the
following command block. Similarly, line 10 containing the
“else” creates a new predicate scope S2 having predicate !P2
which updates the variables in the “else” command block. Line
13 marks the end of the inner “if-then” block which causes
the predicate scope S3 to merge into its parent scope S2. This
results in the creation of node n9. Similarly, line 14 marks
the end of the “if-then-else” block causing first S1 and S2
to merge together, followed by a merge into the parent scope
Sinit creating the node n10. Finally line 15 creates the node
res which is the output variable which we want to analyze.
This procedure of translating programs to CCGs is formally
defined in Appendix A.
Generating and Accumulating Error Expressions: This is
the central phase in SEESAW, and consists of these sub-
phases:

(a) local error analysis,
(b) instability analysis and predicate weakening, and
(c) conditional (./) accumulation.

We now illustrate each of these sub-phases:
(a) Local Error Analysis: Consider how the local error gen-
erated at node n1, written E lr(n1) = (x · y) · u, gets
propagated to the output node res. First, observe that this
local error term gets propagated to the output along two
paths, namely: (1) σ1 : (n1,n2,n5,n6,n10, res), and
(2) σ2 : (n1,n2,n9,n10, res). Denote the worst case impact
of E lr(n1) on res, by Etr(res|n1). To calculate this, we need
to evaluate the partial derivative res with respect to n1 along
each of these two paths and add them (this is a conservative
over-approximation that ignores error cancellation which can-
not be modeled during symbolic analysis). Essentially, these
derivatives describe the path strength for this propagation.
However, we need to obtain path-precise derivatives, and these
would be modeled by a predicated expression that determine
whether these conditional paths are “available” (turned on). In
this expression, we will use the notation [[P → E]] to denote
the expression “if P then E.”

In more detail, consider path σ1 and apply reverse-mode
differentiation starting from output res and flowing back to

n1 along this path as shown by Equation (3):

∂res

∂n1

∣∣∣∣
σ1

=
∂res

∂n10
· ∂n10
∂n6

· ∂n6
∂n5

· ∂n5
∂n2

· ∂n2
∂n1

= [[T → 1]] · [[P1→ 1]] · [[T → 1]]

· [[T → −1
(x+ xy)2

]] · [[T → 1]]

= [[P1→ −1
(x+ xy)2

]]

(3)

Here, T denotes “True”. Similarly, the derivative along path

σ2 is obtained as ∂res
∂n1

∣∣∣∣
σ2

= [[(¬P1 ∧ ¬P2)→ 1]]. Note here

that we cannot accumulate the error terms along these two
paths using standard conditional addition since these paths are
mutually exclusive. One could argue that this simple example
itself might be rescued by analyzing the impacts of the paths
separately and considering the maximum error over each of
the paths. However, this approach is unsatisfactory, leading to
the next sub-phase of our approach now explained.
(b) Instability Analysis and Predicate Weakening: The insta-
bility region created by these two paths in our running example
under floating-point semantics must be smoothly handled. The
higher level idea is that when rounding error flows into two
otherwise mutually exclusive predicates P and ¬P , the predi-
cates develop an “overlap region.” We will model this overlap
by weakening these predicates to Pw and (¬P)w. Intuitively,
weakening takes predicate expressions such as E1 < E2 and
converts it to (E1−errE1

) < (E2+errE2
) where errE1

is the
rounding error associated with E1 and errE2 is the rounding
error associated with E2. This models the fact that rounding
errors of expressions E1 and E2 affect a conditional. The exact
manner in which weakening is defined during error analysis
is involved, and hence formally described in §IV. In a sense,
after weakening, we will find that Pw ∧ (¬P)w is not false; it
can be satisfiable by the overlap region of the “error-infused”
predicate expression.
(c) Conditional Accumulation: To model accumulation over
predicated paths, we introduce a new conditional accumulation
operator, written ./, formally defined as follows:

[[Predi → PExpri]] ./ [[Predj → PExprj]] =

[[(Predi ∧ Predj)→ PExpri ./ PExprj

| (Predi ∧ ¬Predj)→ PExpri

| (¬Predi ∧ Predj)→ PExprj

| (¬Predi ∧ ¬Predj)→ 0]]

(4)

The ./ operator, in effect, partitions the solution domain based
on the constraints involved. It takes the Boolean combinations
of the predicates involved, choosing PExpri ./ PExprj
for those cases where the predicates Predi and Predj have
an overlap. It chooses PExpri for points in Predi not in
Predj , and PExprj for points in Predj not in Predi. For
points outside of Predi and Predj , 0 is chosen (modeling the
absence of a path contribution).

Notice that in practice, typically Predi and Predj begin as
mutually exclusive arms of an “if-then-else”, thus modeling

4

the real-valued semantics. After weakening, Predi and Predj
develop an overlap (modeling the floating-point semantics),
thus making all the cases of ./ interesting. In a sense, both
the “then” and “else” develop a small overap region, thus
contributing a “sneak path” to the output. In a sense, the
error accumulated under the then-branch and else-branch are
summed up for this overlap region. This is a conservative over-
approximation of how “if-then-else” behaves under floating-
point semantics.

With these changes, we can write Etr(res|n1) as follows:

Etr(res|n1) = E lr(n1)
(
∂res

∂n1

∣∣∣∣
σ1

./
∂res

∂n1

∣∣∣∣
σ2

)
= (xy) · u ·

(
[[P1w → −1

(x+ xy)2
]]

./ [[(¬P1)w ∧ (¬P2)w → 1]]

)
= [[(P1w ∧ (¬P1)w ∧ (¬P2)w)→

xy

(
1− 1

(x+ xy)2

)
· u]]

| [[(¬P1)w ∧ (¬P2)w → − xy

(x+ xy)2
· u]]

| [[P1w ∧ (P1w ∨ P2w)→ (xy) · u]]

(5)

Paving Intervals, Optimization for Error and Instability:
The final phase of error analysis is global optimization. Given
that the final output error expression will be in terms of the
input variables, we must maximize this error expression over
the input domain. Finding this maximum is made difficult by
the fact that in general this maximization must occur over
a non-rectangular domain. To see this fact via an example,
consider Figure 3(a) where the error generated at line 12 at
node g is constrained by the values for which the conditional
at line 11 (which involves non-linear comparisons) is true; and
the set of these values does not span a rectangular domain.

To facilitate the use of Gelpia [9], an efficient rectangular
domain optimizer, we pave the constraint domain using rect-
angular tiles using Realpaver. This covers the non-rectangular
domain with a user-specified number of rectangular tiles
“optimally” after such tiling, Gelpia can be invoked over each
tile separately. This procedure helps determine the rounding
error as well as instability jumps.

Using the ideas introduced thus far in this walk-through, we
can obtain the following results. First, the absolute error value
we get for res on running the example program through our
tool with x, y∈[0.01, 10.0] is 3.69e−14. Second, the instability
jump value of 7.81 for res can also be obtained.

IV. FORMAL DETAILS OF ROBUSTNESS ANALYSIS

We now describe SEESAW’s algorithms rigorously, be-
ginning with how a CCG is processed. The syntax-directed
compilation of a given program to CCG is described formally
in Appendix A.

We employ n and n to denote a functional (output value-
oriented) graph node or variable, respectively, and p and p to

denote a Boolean graph node or variable, respectively. Compu-
tational graphs n have the following syntax: they are a single
variable node n0 for n0 in V ars, an operator op applied to
two graphs n1 and n2, or conditional nodes if(p,n1,n2).
The Boolean expressions themselves have a Boolean compu-
tational graph p given by p0 for p0 in BV ar, a Boolean
operator bop applied to p1 and p2, or a relational operator
rel applied to n1 and n2.

1 function gexp(node type)
2 switch node type:
3 case n: return n;
4 case p: return p;
5 case !p: return ¬p;
6 case op(n1,n2):
7 return op(gexp(n1), gexp(n2))
8 case if(p,n1,n2):
9 return

10 [[wexpr(p)→ gexp(n1)]] ./ [[wexpr(!p)→ gexp(n2)]]

Listing 1: CCG to Expression Compilation

CCG to Expression Compilation: A given CCG is inter-
preted as a predicated expression as described by Listing 1.
We begin with a CCG node, interpret it as an operator, and
recursively interpret the node’s children via a recursive gexp
call. We interpret an if node through a conditional sum (./)
of the “then” and “else” expressions.

Original Canonical

Precondition: nonPred(E)

E [[T → E]]

op [[P → E]] [[P → op(E)]]

[[P1 → E1]] op [[P2 → E2]] [[(P1 ∧ P2)→ (E1 op E2)]]

Precondition:
nonPred(E1) ∧ nonPred(E2)

[[T → E1]] ./ [[T → E2]] E1 + E2

[[P1 → E1]] ./ [[P2 → E2]] [[(P1 ∧ P2)→ (E1 ./ E2)

|(P1 ∧ ¬P2)→ E1

|(¬P1 ∧ P2)→ E2

|(¬P1 ∧ ¬P2)→ 0]]

TABLE I: Canonicalization rules

Canonicalization rules: We canonicalize predicated expres-
sions into a standard form so that error analysis rules can
then be defined on the canonicalized expressions. The canon-
icalization process is captured by the rules in Table I. The
first rule says that under the precondition that E is a non-
predicated expression (not of the form [[P → E]]), then it can
be treated as a predicated expression by adding a predicate
T . The second rule says that a unary operator applied to a
predicated expression is the same as the operator applied to E
under predicate P . The third case shows how to apply a binary
operator op to two predicated expressions. The fourth case
models predicate accumulation when the predicates are both
T (True). It says that when E1 and E2 themselves are non-

5

predicated expressions, then bowtie summation under True
predicates becomes ordinary addition. The last case defines
./ (the definition in Equation 4 is repeated for completeness).

In a sense, these canonicalization rules help us simplify
predicated paths upon which reverse-mode AD is being per-
formed. In our approach, partial derivatives can also be applied
to if nodes, as will soon be presented in Table II. When we
do that, predicated expressions are generated.

1 function wexpr(op(n1,n2))
2 switch op:
3 case rel: // rel ∈ {<,≤, >,≥}
4 return gexp(n1) − err(n1) rel gexp(n2) + err(n2);
5 case bop: // bop ∈ {∨,∧}
6 return bop(wexpr(p1), wexpr(p2));

Listing 2: Weakening Predicated Expressions via function wexpr

Weakening Predicated Expressions: Weakening of predicate
expressions is captured by Listing 2. It essentially modifies
Boolean relational expressions formed by inequalities <, ≤,
> and ≥ by padding error terms around the inequalities so
as to conservatively capture the effects of floating-point error.
For this to occur, error analysis at node n1 and n2 must be
done (captured by err(n1) and err(n2), respectively). (The
error analysis underlying err(. . .) is presented later in this
section.) The inequalities are then suitably “corrected” (in the
conservative direction) with the floating-point error. We handle
= and 6= by converting them to suitable Boolean combinations
of basic relational operators. For ordinary Boolean operations
such as conjunction and disjunction, weakening is recursively
applied to both operands. Negation is handled by flipping
the inequality suitably (in our program syntax, all Boolean
expressions BE are conjunctions and disjunctions of relational
inequalities).

Graph Node Derivative w.r.t. Value

+(n1,n2) n1 1

∗(n1,n2) n1 gexp(n2)

/(n1,n2) n1 1/gexp(n2)

/(n1,n2) n2 -gexp(n1)/(gexp(n2))
2

if(p,n1,n2) n1 [[gexp(p)→ 1]]

if(p,n1,n2) n2 [[gexp(!p)→ 1]]

TABLE II: Partial Derivative Rules

Partial Derivative Rules: Building error expressions using
the CCG and Equation 1 requires calculating partial deriva-
tives. The derivative rules employed to calculate the partial
derivatives of CCG graph nodes are summarized in Table II.
Most of the derivative rules are familiar from calculus. The
last two rules show how we treat if nodes as if they are
operator nodes. In a sense, if nodes are like multiplexors.
When a “conducting path” is available, the derivative strength
is 1 (values are passed as such). However, the path is available
only when the predicate is true. This is the reason why we
model the partial derivative via a predicated expression. The

“then” path retains the predicate p while the “else” path retains
the negated expression ¬p.

1 function PS(no,ni)
2 if (ni == no) then return 1;
3 else
4 psacc := 0; // Path strength accumulator
5 for nt ∈ children(no) do
6 psacc := psacc ./ (PS(nt,ni) · ∂no/∂nt);
7 return psacc;

Listing 3: Path Strength Accumulation via function PS

Path Strength Accumulation: We now define the path-
strength of a node ni targeting (flowing into) a node no via
PS (Listing 3). Basically, “path strength” is the summation
of all derivative chains. More specifically, when we perform
reverse-mode AD, multiple paths can backtrack from output
node no to an intermediate node ni.

When no = ni, PS(no,ni) = 1; i.e., the backtracking
terminates. Otherwise, recursively backtrack from no by iter-
ating over all children nt of no. We first compute the path
strengths PS(nt,ni), and multiplying it with ∂ no / ∂ nt
using the chain rule. This procedure is carried out using a
dynamic programming-style approach as in [5].

1 function err(n)
2 valueacc := 0; // Error Value Accumulator
3 for ni ∈ support(n) do //support(n) are nodes whose values

flow into n
4 valueacc := valueacc ./ |PS(n,ni)| · gexp(ni) · u;
5 return valueacc;

Listing 4: Error Value Accumulation via function err

Error Value Accumulation: Listing 4 describes error com-
putation at any node n (including the final output res): the
symbolic output error is bounded by an expression obtained
through the ./ accumulation process. Each of the accumulated
quantities represent the product of the local error at node
ni, namely gexp(ni) · u, and PS(n,ni). In a sense, we
are multiplying local errors with path strengths and bowtie-
summing (via ./) over all available paths.

1 function maxInstability(res)
2 δ := 0; // Max Instability Initialized
3 for pathi ∈ pathsres do //pathsres is the set of all paths from

leaves to the output root node.
4 for pathj ∈ pathsres AND j > i do
5 tδ := |(gexp(res, pathi)− gexp(res, pathj))|;
6 if(tδ > δ) δ := tδ ;
7 return δ;

Listing 5: Max Instability Jump Calculation

Max Instability Jump: Intuitively, the max instability is the
amount by which the final output res jumps when we switch
from one conditional path to another. This is rigorously defined
by the function maxInstab(res) in Listing 5. Let pathsres be
the set of all paths leading up to the root from the leaves.
Let gexp(res, pathi) be an overloaded version of gexp(res)
specific to path i and denote the absolute value attained by
the output node res when pathi is “driven” (across all inputs
for which the predicates along pathi are true).

6

V. EVALUATION

Experimental Setup: SEESAW is a Python based framework.
Its symbolic data types are derived from Symengine. All
benchmarks were executed using Python-3.8.0 on a dual 14-
core Intel Xeon CPU E5-2680v4 2.60GHz CPUs (total 28
cores) with 128GB of RAM. The core analyses in SEESAW
were executed without multicore parallelism (same for FPTAY-
LOR and PRECISA) to obtain comparable timings (the global
optimizer Gelpia [10] may internally spawn multiple threads).
Gelpia was used in FPTAYLOR as well as in SEESAW in an
identical manner. Version v4.1406 of FLUCTUAT was used.
Benchmarks: Our benchmark suite covers a wide variety of
examples with special focus on cases involving floating-point
expressions impacting the control flow. Such algorithms (com-
mon in computational geometry [11] and collision detection
problems [12]) are typically designed under an assumption of
computations being performed in exact real arithmetic. Given
the numerical and geometrical nature of these algorithms, they
are particularly sensitive to numerical robustness problems.
Additionally, we include benchmarks involving convergence
testing such as in partial differential equation solving, Con-
jugate Gradient methods and Gram-Schmidt orthogonaliza-
tion. We have also ported additional existing benchmarks for
straight-line codes with and without branches from other tools
suites such as PRECISA and FPTAYLOR.

Our evaluation of SEESAW emphasizes the following key
aspects that are important when analyzing floating-point pro-
grams:

A. Worst case error bounds
We report the bounds on the maximum absolute roundoff

error that can be observed at the program output(s). This
analysis does not suppress inputs that fall into instability
regions (constraints are comprised of weakened predicates).2

We support a basic Optimizer and a Preconditioned Opti-
mizer. The predicates defining the function domains are set
to ‘True’ in the basic Optimizer. This allows us to obtain
a baseline where we revert back to rectangular domains
encompassing the actual function domains. This is guaranteed
to be a sound (if quite loose) over-approximation. To include
constraints, we have experimented with two SMT solvers,
namely Dreal and Z3, that can filter out boxes as needed
(for reasons of space, these results are not reported). Owing
to their wide spread use in Floating Point Error Analysis
related projects [13], [14], our choice of SMT solvers for
handling non-rectangular domains in SEESAW were Z3 and
Dreal. In the Preconditioned Optimizer, we report results from
a second approach called Preconditioning (or “paving” using
RealPaver): we filter out invalid intervals a priori and feed
smaller intervals that contain the valid solution space.

Table III summarizes the evaluation of benchmarks involv-
ing straight-line codes with conditionals for the two solver
types. Across all benchmarks, the order of absolute error

2SEESAW also supports the option to suppress such inputs; keeping these
inputs gives nearly the same—and more conservative—results.

bounds reported are within one order of magnitude for each
of the solver type. However, the basic Optimizer obtains near
optimal answers with a short execution time in most cases,
however trading off bound tightness. This trade-off is more
pronounced when performing the instability analysis because
the order of the function jumps are affected if solved without
sufficiently tight domain constraints. We ran each solver with
the same ‘timeout’ parameter of 10 seconds per query (1000s
of optimizer queries made).

B. Empirical testing and statistical profiling
To empirically calibrate the tightness of our error estimates,

we cross-checked it through shadow value calculations at
higher precision over a million samples per benchmark. Also,
after obtaining a predicated expression representing rounding
error, we statistically sample this function over a population of
intervals, thus providing an alternate view of the error unbiased
by potential over-approximations that solvers can introduce.

Column ‘shadow profiling’ in Table III summarizes the
results of the empirical testing. SEESAW’s bounds were found
to be always conservative and in many case within the same
order of magnitude of the observed empirical bound while
being on average no worse than two orders of magnitude
across all solver types (except in specific cases of the basic
Optimizer, which being oblivious to the domain constraints,
may result in ‘inf’).

Instead of performing global optimization of the symbolic
error expression, one can also statistically sample it. This
provides a reasonable view of the underlying error symbolic
expression unaffected by overapproximations introduced by
optimizers. A large variation between rigorous worst-case error
bound and sampled error bound during statistical evaluation
can provide valuable insight to the user—especially if the
worst-case is caused by a few outlier values. In particular,
the bounds obtained through sampling the error expressions
must lie between the rigorous worst-case bounds and the exact
runtime error on concrete data points. This is because the
error expressions themselves are over-approximations of true
runtime rounding errors. The difference between “Prof Error
Expr” and “Shadow profiling” captures the amount by which
our rigorous error analysis tends to be conservative. In almost
all cases, the worst-case rigorous bound is within one order
of magnitude of the shadow value error bound.

In Table III, column ‘Prof Error Expr’ summarizes the error
estimates obtained by sampling the rigorous error expression
bound. Such sampling methods are often preferred to shadow-
value based error estimation, which requires the same code to
be instantiated in two different precisions—not always easy.
Our sampling methods follow a user-specified strategy (the
default being uniform sampling).

C. Instability analysis
We report the maximal potential output result-jump caused

by instability. Additionally, SEESAW can sweep across all
potential instability sites and rank order the amount of result
jump that can potentially be introduced at those sites.

7

Benchmarks
Worst case absolute error estimation Instability

Jump
Empirical
ProfilingOptimizer Preconditioned Optimizer

Error ExecTime Error ExecTime Optimizer
Preconditioned

Optimizer
Prof

Error Expr
Shadow
profiling

Instability
jump

Barycentrica 1.04e-15 39.00s 1.04e-15 38.00s 7.81 7.81 8.24e-16 4.6e-16 0.93
SymSchura 4.13e-16 5.50s 4.02e-16 44.00s 0.42 0.02 8.56e-17 2.3e-17 1.48e-08

DistSinusoida inf – 7.17e-06 23.40s inf 3.17 2.56e-16 2.18e-15 0.05
Interpolatorc 7.49e-14 1.34s 1.47e-14 0.58s 225.00 33.25 1.14e-14 5.32e-15 11.25

Nonlin-Interpol 2.24e-14 0.40s 4.44e-16 1.12s 101.00 2.93 2.77e-16 3.9e-16 2.9
EnclosingSpa 4.41e-15 1.67s 4.41e-15 7.31s 12.63 4.19 1.89e-15 5.10e-16 4.74e-07
cubicsplinec 8.88e-15 1.60s 4.16e-16 1.32s 27.00 0.25 1.94e-16 2.7e-17 0.25

linearfit 3.07e-16 1.02s 3.07e-16 1.04s 1.08 0.318 7.5e-17 2.58e-16 0.13
jetApproxc 7.45e-15 3.45s 7.04e-15 3.16s 15.13 5.79 1.90e-15 1.64e-15 0.20

SqDistPtSega 6.81e-13 7.50s 5.60e-13 42.16s 317.58 150.63 5.9e-14 7.13e-14 7.14
Squarerootb 1.77e-15 1.28s 1.77e-15 0.18s 2.68 2.68 6.10e-16 3.06e-17 –
Styblinskic 4.09e-14 2.01s 2.02e-14 1.31s 51.62 0.01 7.25e-15 3.30e-16 3.21e-07

Test2a 7.90e-14 2.34s 7.65e-14 15.00s 101.90 3.02 2.43-14 2.07e-14 0.69
ClosestPointa 9.98e-16 6.30s 9.15e-16 24.00s 4.59 1.45 5.56e-16 5.15e-16 2.6e-07

SpherePta 6.43e-15 66.00s 6.16e-e15 255.00s 0.87 0.82 1.71e-15 1.87e-16 1.02e-06
lead-lagb 2.49e-16 6.98s 2.49e-16 12.50s 0.04 0.14 8.23e-17 3,21e-18 1.51e-04

EigenSpherea 1.67e-15 480.00s 1.67e-15 540.00s 2.16 2.16 6.09e-16 4.4e-16 1.37e-07
Jacobia 4.82e-13 22.00s 4.09e-13 151.00s 81.33 55.50 5.69e-14 2.96e-14 –

Mol-Dyna 2.94e-15 138.00s 2.94e-15 137.00s 2.11 2.11 1.39e-15 1.22e-15 5.67e-06
Gram-Schmidtb 2.42e-16 99.00s 2.42e-16 226.00s 0.02 0.02 3.97e-17 3.88e-17 8.37e-04
Ray Tracinga 4.70e-14 331.00s 4.65e-14 317.00s 87.70 0.129 1.42e-14 1.59e-16 2.90e-08
ExtremePointa 1.69e-14 30.00s 1.69e-14 33.00s 115.50 115.50 1.68e-14 1.0e-19 4.52e-06

SmartRootb inf – 2.44e-15 0.89s inf 0.52 3.90e-16 0 1.26e-07
Poissona 1.0e-17 120.00s 1.0e-18 121.00s 0.97 0.97 3.7e-18 2.33e-19 –

a New benchmarks introduced with SEESAW for conditional codes
b Benchmarks ported from FPBench
c Benchmarks ported from PRECiSA

TABLE III: SEESAW evaluation for worst case error bounds and instability reporting.

While SEESAW’s CCG generation facilitates obtaining
guarded path constraints identifying valid program paths,
the path conditions may end up containing many atomic
inequalities containing large floating-point expressions. We
rigorously analyze each of these Boolean predicates involved
in path conditions and weaken each individual constraints by
including the instability region (“gray zone”) introduced due to
roundoff errors using the wexpr rule in Listing 2. Suppose P
represents the original atomic inequality and P ′ denotes the
weakened constraint obtained by ‘weakening’ P to include
the rounding error. Under this transformation, (P ′ ∧ ¬P ′)
does not evaluate to ‘False’. Instead, it identifies exactly the
instability region in which the real execution and the floating-
point executions may diverge and cause instability.

For a Boolean predicate composed of many such inequali-
ties, obtaining the cover for the combined instability region
is in general non-trivial. However, applying our predicate
weakening approach to every atomic formula lends itself easily
to being incorporated in the most general manner as part of
the domain constraints. We solve for the function difference
along each program path pairs in these instability regions
and report the maximum for instability quantification. The
instability expression must be solved only for the instability
constraint, otherwise it would be reporting bloated results over
the entire interval as shown in Table III. In fact, we observe
that the instability values become orders of magnitude tighter
even with RealPaver guided PreConditioned intervals.

We also performed empirical testing to explore the input

domain over randomly sampled points to hit regions that
trigger these instabilities. In Table III, the last column lists
the maximum instability jump observed empirically using 10M
tests per benchmark. The ‘-’ entries did not hit any instability
issues in our empirical tests.

a) Instability Bound Ranking: SEESAW also reports
the program path pairs that resulted in control flow diver-
gence, and hence helping root-cause the source of maximum
instability. Although SEESAW reports the instability bound for
the output node, it additionally tracks the localized instability
information at every internal node of the conditional graph.
It can yield additional analytical information on instability by
rank-ordering these bounds for every node and extracting out
the corresponding path predicates. For example, consider the
‘Barycentric benchmark’ which computes triples of numbers
that defines the position of a point in reference to a triangle
containing the point. In [12], the code for Barycentric
coordinates requires evaluating two predicates. We list the
outer predicate P1 and the inner predicate as P2. Each of
these predicates makes decisions on the dot-product evaluation
for pairs of sides of the reference triangle – making them
susceptible to floating-point inaccuracies. SEESAW estimates
an instability bound at the output of 7.81 if the control-flow
traverses the instability region. This analysis also exposes the
predicates causing instability of internal nodes, giving a chance
for the user to rewrite these predicates in their code. Table IV
shows the rank-ordering of predicate combinations based on
the maximum instability variations seen across every internal

8

and output node.

Impacted Node Predicates Instability

Internal [P2′,¬P2′] 215.2665

Internal
[P2′ ∧ ¬P1′ ∧ (P2′ ∨ ¬P2′) ,
P1′ ∧ ¬P2′ ∧ (P2′ ∨ ¬P2′)] 215.2665

Output [P1′, P2′ ∧ ¬P1′] 7.81
Internal [¬P1′ ∧ ¬P2′, P2′ ∧ ¬P1′] 2.74
Internal [P1′,¬P1′ ∧ ¬P2′ ∧ (P2′ ∨ ¬P2′)] 0.058

TABLE IV: Instability Bound Ranking: All impacted nodes are listed with
the associated predicates and the instability values. In particular, the output
node res is driven by 2 paths δ1 and δ2.

D. Comparative analysis

In Table V we present comparative results for SEESAW,
PRECISA and FLUCTUAT for benchmarks containing straight-
line codes with conditions. Comparison is presented for the
total execution time, absolute error bounds and the bounds
obtained on the output instability. We report statistics obtained
when using the ‘Preconditioned Optimizer’ solver type for
SEESAW.

We observe that while PRECISA obtains better runtimes
in few of the benchmarks in comparison to SEESAW, it is
more efficient only for smaller examples (it times out on
many of SEESAW’s larger examples). In contrast, SEESAW
obtains tight error bounds for all benchmarks except in one
(Barycentric)3.

FLUCTUAT reports the best execution times across this set
of benchmarks. This is one of the best aspects of FLUCTUAT
which is designed to handle larger pieces of codes. SEESAW’s
focus is on scaling adequately while offering rigorous and
tighter bounds.

In examples such as Symmetric Schur (SymSchur) de-
composition, SEESAW produces bounds that are 2 orders of
magnitude tighter than obtained by FLUCTUAT, and 10 orders
of magnitude tighter than produced by PRECISA. SEESAW is
able to handle larg and complex benchmarks with thousand of
operators and multiple conditionals nests.

We ran a memory profiler on the benchmarks when run-
ning both PRECISA and SEESAW. Memory profiling of
SEESAW and PRECISA over Barycentric, Gram-Schmidt and
Spherepoint revealed that SEESAW had a consistent memory
usage, averaging 80MB over the entire execution. PRECISA’s
memory requirements went up from 150 MB for Barycentric
to 4GB (spiking to over 8GB) for Gram-Schmidt, and 1GB to
5GB for Spherepoint, terminating in both cases.

We also performed a tool comparison amongst SEESAW,
PRECISA, FPTAYLOR and FLUCTUAT to ascertain perfor-
mance consistency over straight-line programs without con-
ditionals. PRECISA obtains better execution times in about
50% of the cases in which it completes, particularly those with
few dozen operators. However, for large straight-line codes
(>100 operators), both PRECISA and FPTAYLOR run into

3These bounds get tightened when used with constrained solver options
– using Z3/Dreal with increased query limit

scalability issues. SEESAW performs consistently well, in ex-
ecution speed and bound tightness across all these benchmarks
and produces the tightest bounds. FLUCTUAT has the best
overall execution speed. However, it bottlenecks for larger and
complex programs (the FFT benchmark in our case), quitting
unexpectedly. As said earlier, FLUCTUAT is a closed-source
tool whose innards are unknown to us. FLUCTUAT only reports
the presence of instability jumps—not its magnitude.

VI. DISCUSSIONS, RELATED WORK, CONCLUSIONS

While many automatic differentiation approaches exist for
error analysis [15], [16] that achieve significant scalability,
our symbolic automatic differentiation is based on symbolic
analysis, and thus able to handle intervals of input values (
[15], [16] work over specific values). Being able to provide
analysis results over intervals of inputs is basic to providing
rigorous guarantees.

Many other rigorous analysis tools for floating-point error
analysis have recently been proposed including Gappa [17],
Real2Float [18], Rosa [13], FPTAYLOR [9], Numerors [19],
and even specialized tools for cyberphysical systems [20],
[21]. The importance of offering formally certified bounds
using theorem proving is also well-recognized [9], [22].

Coming to programs that contain loops, FLUCTUAT does
include support for conditionals and loops. However, this
comes with the obligation of users having to define abstract
domains to assist the tool. Darulova [1] gives methods to
handle loops; however this work has not handled programs
containing loop-bodies as involved as those in our benchmarks.

Handling loops while generating tight and meaningful error
bounds is a significant item of future work that remains in front
of the community. This may require non-trivial loop invariant
estimation methods as well as fixpoint computing methods
based on policy iterations [23].

SEESAW efficiently handles examples involving a variety
of complex calculations such as computing EigenSpheres.
Internally, such examples require computing covariance ma-
trices and the Symmetric Schur decomposition. SEESAW
reports much tighter bounds for both floating-point errors
and instability jumps with an efficient memory usage profile.
It offers practical levels of scalability as is clear from our
benchmarking. The work in [20], [21] offers another rigorous
approach supported by theorem-proving.

Many tools (e.g., FPTAYLOR [9], SATIRE [5], PRE-
CISA [4]) in this area use a global optimizer to estimate
the upper bound of roundoff error. These optimizers work
over rectangular input domains using variants of branch-and-
bound [9], [10], [24].

For loop-free programs with conditionals, input domains
are, in general, non-rectangular, and their shape is dictated
by the nature of the conditional expressions. Work based on
Zonotopes (e.g., FLUCTUAT) tends to lose precision in case the
conditionals contain non-linear predicates (which they often
do in most of our benchmarks). SEESAW’s symbolic reverse-
mode AD smoothly handles this situation through its idea of

9

Benchmarks OPs Conds Absolute Error Exec Time[n] Instability

SEESAW PRECISA FLUCTUAT SEESAW PRECISA SEESAW PRECISA FLUCTUAT

squarerootb 5 1 1.77e-15 4.20e-08 1.11e-16 0.18s 0.01s 2.68 2.70 Y
Barycentrica 83 2 1.04e-15 1.05e-14 2.67e-15 39.00s 30.00m 3.93 4.26 Y
SymSchura 23 2 4.02e-16 1.30e-04 2.21e-14 44.00s 1750.00s 0.02 0.44 Y

DistSinusoida 32 2 7.17e-06 NA 1.27 23.40s – 3.17 – Y
Interpolatorc 22 4 1.47e-14 3.07e-14 1.51e-14 1.34s 0.10s 33.25 225.00 Y

Nonlin-interpolc 6 1 4.44e-16 3.19e-14 3.19e-14 1.12s 0.08s 2.9 101.01 Y
EnclosingSpherea 35 3 4.41e-15 1.67e-07 9.77e-15 7.00s 9.80s 4.19 9.18 Y

Test2a 19 3 7.65e-14 3.53e-08 6.55e-12 18.00s 0.60s 3.02 51.80 Y
Closestpt2a 31 2 9.15e-16 4.24e-14 4.06e-15 24.00s 31.00s 1.45 17.35 Y

Cubicsplinec 44 4 2.66e-15 1.33e-14 1.99e-15 1.60s 0.40s 0.25 27.00 Y
Styblinskic 55 3 7.32e-15 4.04e-14 2.91e-14 1.90s 43.00s 0.01 93.40 Y
SpherePta 75 3 1.76e-15 – 1.78e-14 40.00s – 0.36 – Y
lead-lagb 46 8 2.93e-17 – 2.81e-16 11.00s – 0.01 – Y

RayTracinga 119 8 1.46e-15 – inf 331.00s – 0.12 – Y
EigenSpherea 334 13 6.36e-16 – 2.07 438.00s – 2.16 – Y

Jacobia 170 2 1.15e-13 – 8.10e-12 138.00s – 55.50 – Y
Mol-Dyna 179 6 1.42e-15 – 6.21e-15 – – – – Y

Gram-Schmidtb 471 19 7.95e-17 – 1.44e-16 115.00s – 0.02 – Y
Poissona 2736 4 1.00e-19 – – 20.00s – 0.97 – –

CGa 210K 4 1.86e-18 – – 3142.00s – – – –
a New benchmarks introduced with SEESAW for conditional codes
b Benchmarks ported from FPBench
c Benchmarks ported from PRECISA

TABLE V: Comparative analysis with PRECISA for codes with conditional branches. [n]: FLUCTUAT took < 0.1 sec for all the rows. ’-’ denotes
program timed out.

predicate weakening, and our results corroborate this tightness
advantage.

Our work is the first we know that employs the idea of
paving to deal with non-rectangular domains and still be able
to use a backend rectangular domain optimizer. In terms of
solver technologies, Rosa [13] propagates errors in numeric
affine form and uses SMT solvers to obtain tight bounds.

The idea of weakening predicates is mentioned in previous
work (e.g., Darulova [1]). However, in our work, we provide
the first implementation (we know) of these ideas within a
symbolic reverse-mode AD framework.

VII. CONCLUDING REMARKS

Scalable and rigorous analysis of floating-point code is of
increasing importance in a number of application domains. In
this paper, we plug one major hole in this area: the lack of a
scalable open-source tool for this task applicable to codes com-
ing from practical domains. We provide a rigorous definition
of reverse-mode automatic differentiation with conditionals
naturally incorporated. We provide thorough empirical testing
of our results and also a statistical profiling method for error
expressions.

In conclusion, SEESAW is a rigorous robustness analysis
tool that can play a central role during the design of critical
software systems that include conditionals. These could for
instance be geometrical libraries that employ different algo-
rithms to compute the same quantity for different input ranges.
A designer can also use SEESAW to analyze the many codes
already in the field where one uses ad hoc methods such
as “self-adjusting paddings.” An example one often finds is
an expression such as x < y being into another expression
such as x < (y + f(x, y)). The rationale is to make the

separation between x and y get adjusted by a “fudge factor”
captured by the expression f(x, y). Today, there aren’t any
tools one can readily use to assess the gains of (or problems
due to) such fudge-factors. Tools such as SEESAW can help
designers arrive at such heuristic code adjustments backed with
the reassurance of robustness analysis. In fact, designers will
be able to publish rigorous specifications including rounding
errors and instability jumps for their codes, thanks to the use
of tools such as SEESAW. This practice can go a long way
toward supporting code reuse and portability [25].

REFERENCES

[1] “Programming with Numerical Uncertainities,” 2014. [Online].
Available: https://people.mpi-sws.org/∼eva/papers/thesis.pdf

[2] K. Ghorbal, E. Goubault, and S. Putot, “A Logical Product Approach
to Zonotope Intersection,” in Proceedings of the 22nd International
Conference on Computer Aided Verification, ser. CAV’10. Berlin,
Heidelberg: Springer-Verlag, 2010, p. 212–226. [Online]. Available:
https://doi.org/10.1007/978-3-642-14295-6\ 22

[3] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine,
“Towards an Industrial Use of FLUCTUAT on Safety-Critical Avionics
Software,” in Formal Methods for Industrial Critical Systems, FMICS
2009, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2009, vol. 5825, pp. 53–69.

[4] L. Titolo, M. A. Feliú, M. Moscato, and C. A. Muñoz, “An
Abstract Interpretation Framework for the Round-Off Error Analysis
of Floating-Point Programs,” in Lecture Notes in Computer Science.
Springer International Publishing, Dec. 2017, pp. 516–537. [Online].
Available: https://doi.org/10.1007/978-3-319-73721-8\ 24

[5] A. Das, I. Briggs, G. Gopalakrishnan, S. Krishnamoorthy, and
P. Panchekha, “Scalable yet Rigorous Floating-Point Error Analysis,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’20. IEEE Press,
2020.

[6] “SymEngine,” https://github.com/symengine/symengine/, 2019.
[7] L. Granvilliers and F. Benhamou, “Algorithm 852: RealPaver: An

Interval Solver Using Constraint Satisfaction Techniques,” ACM Trans.
Math. Softw., vol. 32, no. 1, p. 138–156, Mar. 2006. [Online]. Available:
https://doi.org/10.1145/1132973.1132980

10

[8] D. Goldberg, “What Every Computer Scientist Should Know About
Floating-Point Arithmetic,” ACM Computing Surveys, vol. 23, no. 1,
pp. 5–48, Mar. 1991. [Online]. Available: http://doi.acm.org/10.1145/
103162.103163

[9] A. Solovyev, M. S. Baranowski, I. Briggs, C. Jacobsen, Z. Rakamarić,
and G. Gopalakrishnan, “Rigorous Estimation of Floating-Point
Round-Off Errors with Symbolic Taylor Expansions,” ACM Trans.
Program. Lang. Syst., vol. 41, no. 1, Dec. 2018. [Online]. Available:
https://doi.org/10.1145/3230733

[10] “Gelpia: A Global Optimizer for Real Functions,” 2017. [Online].
Available: https://github.com/soarlab/gelpia

[11] M. Berg, O. Cheong, M. Kreveld, and M. Overmars, Computational
Geometry: Algorithms and Applications, 3rd ed. Santa Clara, CA,
USA: Springer-Verlag TELOS, 2008.

[12] C. Ericson, Real-Time Collision Detection. USA: CRC Press, Inc.,
2004.

[13] E. Darulova and V. Kuncak, “Sound Compilation of Reals,” in Proceed-
ings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL). ACM, 2014, pp. 235–248.

[14] S. Gao, S. Kong, and E. M. Clarke, “dReal: An SMT Solver for Non-
linear Theories over the Reals,” in Proceedings of the 24th International
Conference on Automated Deduction, CADE 2013, 2013, pp. 208–214.

[15] H. Menon, M. O. Lam, D. Osei-Kuffuor, M. Schordan, S. Lloyd,
K. Mohror, and J. Hittinger, “ADAPT: Algorithmic Differentiation
Applied to Floating-Point Precision Tuning,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage, and Analysis, ser. SC ’18. IEEE Press, 2018.

[16] M. O. Lam, T. Vanderbruggen, H. Menon, and M. Schordan, “Tool
integration for source-level mixed precision,” in 2019 IEEE/ACM 3rd
International Workshop on Software Correctness for HPC Applications
(Correctness), 2019, pp. 27–35.

[17] M. Daumas and G. Melquiond, “Certification of Bounds on Expressions
Involving Rounded Operators,” ACM Transactions on Mathematical
Software, vol. 37, no. 1, pp. 1–20, 2010.

[18] V. Magron, G. Constantinides, and A. Donaldson, “Certified Roundoff
Error Bounds Using Semidefinite Programming,” ACM Transactions
on Mathematical Software, vol. 43, no. 4, pp. 34:1–34:31, Jan. 2017.
[Online]. Available: http://doi.acm.org/10.1145/3015465

[19] M. Jacquemin, S. Putot, and F. Védrine, “A Reduced Product
of Absolute and Relative Error Bounds for Floating-Point
Analysis,” in Static Analysis - 25th International Symposium,
SAS 2018, Freiburg, Germany, August 29-31, 2018, Proceedings,
ser. Lecture Notes in Computer Science, A. Podelski, Ed.,
vol. 11002. Springer, 2018, pp. 223–242. [Online]. Available:
https://doi.org/10.1007/978-3-319-99725-4\ 15

[20] M. M. Moscato, L. Titolo, M. A. Feliú, and C. A. Muñoz, “Provably
correct floating-point implementation of a point-in-polygon algorithm,”
in Formal Methods – The Next 30 Years, M. H. ter Beek, A. McIver,
and J. N. Oliveira, Eds. Cham: Springer International Publishing, 2019,
pp. 21–37.

[21] R. Salvia, L. Titolo, M. A. Feliú, M. M. Moscato, C. A. Muñoz,
and Z. Rakamarić, “A Mixed Real and Floating-Point Solver,”
in NASA Formal Methods - 11th International Symposium, NFM
2019, Houston, TX, USA, May 7-9, 2019, Proceedings, ser. Lecture
Notes in Computer Science, J. M. Badger and K. Y. Rozier,
Eds., vol. 11460. Springer, 2019, pp. 363–370. [Online]. Available:
https://doi.org/10.1007/978-3-030-20652-9\ 25

[22] H. Becker, N. Zyuzin, R. Monat, E. Darulova, M. Myreen, and A. Fox,
“A Verified Certificate Checker for Finite-Precision Error Bounds in Coq
and HOL4,” in FMCAD, 10 2018, pp. 1–10.

[23] A. Costan, S. Gaubert, E. Goubault, M. Martel, and S. Putot, “A
policy iteration algorithm for computing fixed points in static analysis
of programs,” in Computer Aided Verification, K. Etessami and S. K.
Rajamani, Eds. Springer Berlin Heidelberg, 2005.

[24] J.-M. Alliot, N. Durand, D. Gianazza, and J.-B. Gotteland, “Finding
and Proving the Optimum: Cooperative Stochastic and Deterministic
Search,” in Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI). ACM, 2012, pp. 55–60.

[25] D. H. Ahn, A. H. Baker, M. Bentley, I. Briggs, G. Gopalakrishnan,
D. M. Hammerling, I. Laguna, G. L. Lee, D. J. Milroy, and
M. Vertenstein, “Keeping Science on Keel When Software Moves,”
Commun. ACM, vol. 64, no. 2, p. 66–74, Jan. 2021. [Online]. Available:
https://doi.org/10.1145/3382037

APPENDIX
FORMAL GENERATION OF CCG FROM SOURCE CODE

The rules in Figure 5 underlying SEESAW’s program syntax
guide the translation of program to CCG. Exp1, Exp2 and Exp3
define the generation of operator nodes (n1) and input nodes
(x) in the CCG (likewise BExp1 and BExp2). Rules Cmd1,
Cmd2, Cmd3, Cmd4 and Cmd5 are command rules that are
fired in response to the program structure such as assignment
operation, “if-then” or “if-then-else” structures and define the
updates to the scope. The Merge rule defines the scope update
when the program switches from a child scope to the parent
scope. The command C is the program to be compiled, and
is handled by rule Exp1, generating the root of the CCG n.
This command is analyzed by rules Cmd1 through Cmd5,
appealing to the expression rules Exp and BExp as is the
case. Rule Merge helps create if nodes.

(Exp1)

(p, C, Sinit) =⇒∗ (p, skip, Sfinal)
Sfinal(out) = n

(pgm(V ars;C; out), Sinit) =⇒∗ n
(Exp2) true

(x, S) =⇒ S(x)

(Exp3)
(E1, S) =⇒ n1, (E2, S) =⇒ n2

(E1 op E2, S) =⇒ op(n1,n2)

(BExp1)

(E1, S) =⇒ n1
(E2, S) =⇒ n2
p = rel(n1,n2)

(E1 rel E2, S) =⇒ p

(BExp2)

(BE1, S) =⇒ p1
(BE2, S) =⇒ p2
p = bop(p1,p2)

(BE1 bop BE2, S) =⇒ p

(Cmd1)
(E,S) =⇒ n

(p, x := E,S) −→ (p, skip, S[x← n])

(Cmd2)
(p, C1, S) =⇒ (p, C1

′
, S

′
)

(p, C1;C2, S) −→ (p, C1
′
;C2, S

′
)

(Cmd3) true
(p, skip;C2, S) −→ (p, C2, S)

(Cmd4)

(BE,Smain) =⇒ p1, p2 = and(p1,p)

(p2, C, Smain) −→∗ (p2, skip, S
′
)

(p, if BE then C, Smain) −→∗

(p, skip,merge(p1, S
′
, Smain))

(Cmd5)

(BE,Smain) =⇒ p1
p2 = and(p1,p), p3 = and(!p1,p)

(p2, C1, Smain) −→∗ (p2, skip, S
′
)

(p3, C2, Smain) −→∗ (p3, skip, S
′′
)

(p, if BE then C1 else C2, Smain) −→∗

(p, skip,merge(p1, S
′
, S

′′
))

(Merge)
S1(x) = n1 and S2(x) = n2

if(p,n1,n2) ∈ merge(p, S1, S2, x)

Fig. 5: Translation of Programs to CCGs

11

