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Making a Synthesis of FDTD and DGTD Schemes
for Computational Electromagnetics

Dinshaw S. Balsara and Jamesina J. Simpson

Abstract—A novel class of discontinuous Galerkin time-domain
(DGTD) schemes, invented by the first author, are presented that
are capable of globally preserving the constraints that are inherent
in Maxwell’s equations. The methods share the same Yee-type mesh
structure as finite-difference time-domain (FDTD) schemes for
computational electrodynamics. Since FDTD schemes also preserve
global constraints, the novelty of this work consists of making
a synthesis of FDTD and DGTD schemes. While previous DG
methods were based on applying identities involving Gauss’ law in
weak form to the volumetric elements of a mesh, the newer methods
are based on applying identities involving Stokes’ law in weak form
to the facial elements of the mesh. This fundamental paradigm
shift is crucial for obtaining the globally constraint-preserving
DGTD methods in this paper. The new DGTD methods meet their
design accuracies. The more accurate schemes are indeed more
accurate even at the lowest resolutions. Moreover, as the mesh
is refined, the schemes reach their design accuracies much faster.
These benefits are all attributable to the subcell resolving ability of
the DGTD schemes presented here. The higher order methods offer
the lowest time to solution, especially when very high accuracies are
demanded. Excellent scalability is also demonstrated.

Index Terms—Computational electromagnetics, discontinuous
galerkin time-domain (DGTD), electromagnetic propagation,
finite-difference time-domain (FDTD), finite volume time-domain
(FVTD).

1. INTRODUCTION

AXWELL’S equations comprise the foundation of com-

putational electrodynamics (CED). The accurate solu-
tion of Maxwell’s equations is vital to science and engineering
endeavors involving electromagnetic waves across the spectrum,
ranging from ultralow frequencies (where geophysical electro-
dynamic phenomena interact with Planet Earth at multimega-
meter length scales), to hundreds of terahertz (where visible
light interacts with complex material structures at nanometer
length scales). Example of scientific and engineering endeavors
include: understanding the effects (and mitigation thereof) of
solar storms upon power grids; further reductions of the radar
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cross-section of military platforms; improvements in wireless
communications and sensing by incorporating millimeter wave
and terahertz technologies; sophisticated first-principles analy-
sis and design of nanoscale plasmonics-based technologies for
ultrafast optical computers and ultra-efficient photovoltaics; and
even the development of novel optical microscopy techniques
to reliably detect deadly human cancers at the earliest possible
stage.

The finite-difference time-domain (FDTD) method [1]-[5]
has been one of the leading methods in CED for over half a
century. FDTD relies on the staggering of the components of
the electric and magnetic field vectors, which provides a direct
interpretation of the two curl-type equations given by Faraday’s
Law and the generalized Ampere’s Law.

Maxwell’s equations are a hyperbolic system, and there have
been significant advances in the numerical solution of hyperbolic
systems in the last few decades. A very incomplete list of ad-
vances that are relevant to CED include [6]-[13]. Some of these
methods are based on finite volume (FV) approaches, they are
often referred to as finite volume time-domain (FVTD) methods.
Discontinuous Galerkin time-domain (DGTD) methods may be
viewed as extensions of FVTD methods and provide another
approach to attaining high-order accuracy.

Perhaps the best motivation for making such a synthesis of
the best aspects of FDTD and FVTD/DGTD is provided by a
quick example. Fig. 1(a) shows a cylindrical annulus with an
inner radius of 0.15 and an outer radius 0.25 that is set up on
a 2-D Cartesian mesh spanning [—0.5, 0.5] x [—0.5, 0.5] and
having 250 x 250 zones. The permittivity in the ring is 10 times
larger than the exterior, as shown in Fig. 1(a). Electromagnetic
radiation with a wavelength of 0.1 is allowed to impinge on
the ring from the left. Fig. 1(b) and (c) shows the x- and y-
components of the electric displacement and Fig. 1(d) shows the
z-component of the magnetic induction after the incident radia-
tion has crossed the computational domain five times. Because
the interior of the ring acts as a resonant cavity, and because of
total internal refraction at the inner boundary of the ring, there are
plenty of opportunities for resonances to build up. Fig. 1(b)—(d)
shows results from a fourth-order, face-centered FVTD scheme
(i.e., primal variables located on the faces of each grid cell)
that preserves the divergence constraint; i.e., the divergence is
held down to machine precision. We see the formation of all
the anticipated resonances in the interior of the ring and the
evidence for total internal refraction on the shadow side of
the ring.
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Fig. 1.
accurate FVTD results for the x-direction component of the electric displacement
after the electromagnetic radiation impinging from the left on the dielectric
annulus traverses the domain five times. (c) Same as (b) but for the y-direction
component of the electric displacement. (d) Same as (b) but for the z-direction
component of the magnetic induction.

(a) Schematic of the dielectric annulus. (b) Face-centered, fourth-order

Fig. 2 shows the same simulation, on the same mesh, but
this time using a grid cell-centered, second-order scheme that
is free to build up divergence in the electric displacement (i.e.,
primal variables located on the cell-centers of each grid cell).
Fig. 2(a) shows the fractional divergence that is built up (i.e., the
undivided discrete divergence divided by the magnitude of the
field in the grid cell of interest and its immediate neighbors). The
divergence is seen to reach as much as 60% and is concentrated
in exactly those regions of the simulation where the results are
the most interesting. Increasing the resolution does not cause the
divergence to diminish in magnitude. Fig. 2(b) and (c) shows the
x- and y-components of the electric displacement and Fig. 2(d)
shows the z-component of the magnetic induction at the same
time as in Fig. 1. The color table is the same across Figs. 1 and
2 to facilitate a direct comparison.

Comparing the results in Figs. 1 and 2, the lower order scheme
of Fig. 2 fails to capture much of the wave resonance within the
annulus; neither does it capture the total internal reflection on
the shadow side of the annulus. This shows the value of having
a higher order scheme that exactly preserves the divergence
constraint. In other numerical experiments, it can be shown
that even a very high-order grid cell-centered scheme that is
not designed to be divergence-free from the ground-up will
build up as much divergence as in Fig. 2(a). (It is important to
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Fig.2. SameproblemasinFig. 1, butsolved using a grid cell-centered, second-
order accurate FVTD scheme. (a) Divergence in the electric displacement at the
end of the simulation. (b) Results for the x-direction component of the electric
displacement after the electromagnetic radiation impinging from the left on the
dielectric annulus traverses the domain five times. (c) Same as (b) but for the
y-direction component of the electric displacement. (d) Same as (b) but for the
z-direction component of the magnetic induction.

understand that if this electric field is used in a plasma physics
problem, this divergence can cause unphysical electric forces
via Gauss’ Law.) In other words, the desideratum is a high order
of accuracy in conjunction with constraint preservation. That
is indeed the motivation of this article that synthesizes FDTD,
which has optimal preservation of global constraints, with FVTD
and DGTD, which offer high orders of accuracy.

While FVTD schemes reconstruct all the higher order mo-
ments of the primal variables, DGTD schemes take all these
higher order moments and endow them with time-evolution
based on the governing equations. Therefore, it is widely be-
lieved that increasingly higher order DGTD schemes might
become almost spectrally accurate in their ability to propa-
gate electromagnetic radiation. However, previous generations
of DGTD schemes for CED were not globally constraint-
preserving (meaning Gauss’ Laws were not simultaneously
satisfied throughout the computational grid; violating these con-
straints results in a loss of fidelity with Maxwell’s equations)
[14]-[23]. There have been, however, a few exceptions where
curl- and div-conforming vector bases were used [24]-[26], and
we will compare and contrast our methods with them later. For
now, we point out thatin [25] and [26] the computational domain
is divided up into multiple regions so that the FDTD method
is used in regions where FDTD is more advantageous and the

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 06,2020 at 20:42:14 UTC from IEEE Xplore. Restrictions apply.



BALSARA AND SIMPSON: MAKING A SYNTHESIS OF FDTD AND DGTD SCHEMES FOR COMPUTATIONAL ELECTROMAGNETICS 101

finite element time-domain or the spectral element time-domain
methods are used in other regions, particularly to discretize
complicated geometries provides. On the other hand, the goal of
this article is to introduce a synthesis between FDTD and DGTD
methods for CED that includes the advantages of both.

An examination of FDTD and DGTD methods shows they
have mutually complementary strengths and weaknesses.

1) Because of the staggered arrangement of the electric and
magnetic field vector components in the Yee mesh, FDTD
globally preserves the divergence constraints. While some
efforts have been made to locally preserve constraints
within each element, DGTD methods do not globally
preserve constraints.

2) At least when material media are present, FDTD is re-
stricted to second-order accuracy, whereas DGTD can
extend to higher orders of accuracy even in the presence
of material media.

3) FDTD schemes operate with a robust Courant-Friedrichs-
Lewy (CFL) limit, whereas DGTD schemes with increas-
ing order of accuracy suffer from a diminishing CFL.

4) FDTD schemes exhibit substantial numerical dispersion,
whereas higher order DGTD schemes can minimize
dispersion.

5) FDTD schemes do not incorporate the physics of wave
propagation, whereas DGTD schemes closely incorporate
the hyperbolic system and include the physics of wave
propagation.

6) FDTD schemes are blindingly fast; whereas DGTD
schemes are much slower, though efficient use of GPUs
may offset this imbalance.

7) FDTD schemes do not accommodate complex geometries
very well, whereas DGTD schemes do.

The previous seesaw of mutually complementary strengths
and weaknesses in the points above suggest that a cross-
fertilization of ideas, and a synthesis of strengths, is highly
desirable. The first author of this article has led a sequence
of articles in recent years that shows that such a synthesis has
emerged [27]-[33]. Most of these advances have been cataloged
in the Journal of Computational Physics, with the result that
they may not be familiar to electrical engineers engaged in CED
work.

The twin purposes of this article are: first, to make a synthesis
between FDTD and DGTD methods and second, to point to the
literature while showing engineers how this synthesis has been
affected via the simplest examples. The foundational innova-
tions on which these advances are based are also documented,
since many of these innovations were initially made in the field
of magnetohydrodynamics (MHD) [34] and have since been
engrafted into the field of CED. Some of these ideas are very
novel to CED and so, by necessity, this article is designed to
be light and intuitive. However, it points to more mathematical
detail in the cited literature.

Section II introduces the two important building blocks of
the new constraint-preserving DGTD schemes. Section III pro-
vides details of the first building block, which is the constraint-
preserving reconstruction of the vector fields in CED (meaning
Gauss’ Laws are satisfied and used to generate the vector fields

within each grid cell). Section IV describes the second build-
ing block, which is the multidimensional Riemann solver for
CED. Section V shows how the two building blocks are com-
bined to obtain globally constraint-preserving DGTD schemes.
Section VI discusses higher order time-stepping and presents
the dissipation and dispersion properties of the resulting DGTD
schemes. Section VII presents some results and Section VIII
concludes this article.

II. OVERVIEW OF THE CONSTRAINT-PRESERVING
DGTD SCHEMES FOR CED

Maxwell’s equations consist of a pair of curl-type, time-
evolutionary, hyperbolic partial differential equations (PDEs)
and a pair of constraints. The full equation set is written as

oD
E*VXH—*J (1a)
0B
E-I—VXE—O (1b)
V-D=pg (Ic)
V-B=0. (1d)

Equations (1a) and (1b) are the time-dependent Ampere’s and
Faraday’s laws with curl operators on the magnetic and electric
field intensities, H and E, respectively. Equations (1c) and (1d)
are the Gauss’ Law constraints on the electric and magnetic
flux densities, D and B, which constitute the primal variables
of the new method. The first two equations ensure that if the
latter two constraint equations are satisfied at the initial time,
they are satisfied forever. Thus, CED has two constraints, (1c)
and (1d), which are linear in the primal variables. The system
is closed by the constitutive relations D = ¢E and B = tH
and also J = oE, where ¢ is the material permittivity, 4 is the
permeability and o is the conductivity.

Fig. 3(a) shows the arrangement of primal variables (taken
to be H and E) on a staggered pair of control volumes in
FDTD. Fig. 3(a) therefore illustrates why FDTD is constraint-
preserving. Fig. 3(b) shows an alternative arrangement of primal
variables (taken to be D and B) on the same control volume in the
new, globally constraint-preserving FVTD and DGTD schemes.
In more pedestrian language, Fig. 3(a) and (b) shows one pair
of staggered cells of FDTD and one cell of the newly proposed
DGTD schemes, respectively.

The arrangement of variables in Fig. 3(b) could also preserve
the global constraints on the FV shown. It does so because
the constraints are linear in the choice of primal variables.
A beneficial aspect of this choice of primal variables is that
the constraints are satisfied even if there are spatially-varying
material properties. However, the arrangement of variables in
Fig. 3(b) introduces nuances that are addressed in the next two
paragraphs.

First, note that the placement of primal variables in Fig. 3(b)
is different from FDTD and also different from the traditional
DGTD schemes. In a traditional DGTD scheme for CED, one
would place the primal variables at the center of the grid cell.
This may seem reasonable because Maxwell’s equations are
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Fig. 3. (a) Grid-cell arrangement (Yee scheme) for the FDTD scheme. H and
E fields are the primal variables. (b) Grid-cell arrangement for FVTD, DGTD,
or PNPM schemes (courtesy of [28]). The D and B flux densities through each
face of the cubic grid cell are the primal variables. The x, y, and z superscripts
on the D and B flux densities denote the direction of the flux through the x, y,
and z faces / sides of the grid cell. The ** superscripts on the E and H fields
along the edges of the grid cell are in reference to the strongly interacting state
between grid cells and are explained in Section IV. They are obtained from a
multidimensional Riemann solver.

3-D and having all the variables at the same location permits
the exploitation of the 3-D gradients [10]-[13], [15]. However,
following traditional DGTD schemes too closely does not yield
a globally constraint-preserving scheme — i.e., a scheme that
satisfies the discrete constraints for each grid cell as well as
satisfying the constraints pointwise at each location within each
grid cell.

For the new constraint-preserving DGTD scheme, the colloca-
tion of variables in Fig. 3(b) is preferred. But if the components
of the electric displacement and magnetic induction fields are
colocated at the faces of the mesh, then a strategy is needed
for retrieving these variables within the interior of the control
volume shown in Fig. 3(b). (In other words, the time-evolution

of the PDE relies on 3-D gradients, therefore the vector fields for
the primal variables must be represented three-dimensionally.)
Furthermore, the retrieval of these variables within the interior
of the control volume must be done in a fashion that fully
respects the constraints in (1c) and (1d). In other words, we need
a constraint-preserving reconstruction of vector fields. Such a
constraint-preserving reconstruction of the vector fields forms
the first important building block of the globally constraint-
preserving DGTD schemes discussed here. It will be presented
in detail in Section II.

To introduce the second building block, the CED equations
form a hyperbolic system that are written in the following flux
form (the subscripts denote the Cartesian orientation of the
corresponding component):

D, 0 —B./p
D, B./u 0
Vo R I R
B, —D., /e 0
B, Dy /e —D, /e )
By/n —o (Dy/e)
—Ba/p —0 (Dy/e)
+% DO _ —o (D:/e)
—Dy/e 0
D, /e 0
0 0

Note that the x-flux mediates the propagation of electromag-
netic waves in the x-direction. Similarly, the y- and z-fluxes
mediate the propagation of electromagnetic waves in the y- and
z-directions, respectively. The characteristic matrix derived from
the x-flux provides the eigenvalues (wave speeds) and eigenvec-
tors (which provide the correct polarization of the waves that
propagate in the x-direction). The characteristic matrices from
the y- and z-fluxes provide analogous information for the wave
speeds and eigenvectors for the y- and z-directions, respectively.
Note that the second and fifth components of the x-flux are equal
and opposite to the first and fourth components of the y-flux.
Other symmetries are apparent in (2).

Examining Fig. 3(b), to have a constraint-preserving update,
E. and H, at the z-directed edges of the grid cell must be
uniquely specified. However, if the waves are propagating in the
x-direction, then £, and H,should be chosen from the x -flux.
And, if the waves are propagating in the y-direction then £, and
H ,should be chosen from the y-flux. Which choice is correct?
The answer is that in a full 3-D computation a priori knowledge
of the wave propagation direction is not known. Therefore,
the correct answer is that we should use a multidimensional
Riemann solver (see Section IV) to obtain E, and H,. The
multidimensional Riemann solver resolves the correct wave
propagation in the general case. The multidimensional Riemann
solver forms the second important building block of the globally
constraint-preserving DGTD schemes discussed here. It will be
discussed in detail in Section III.
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With these two building blocks in place, we are ready to get our
first glimpse of the difference between a traditional DG scheme
and the new, globally constraint-preserving DGTD scheme. The
difference is fundamental because it pertains to the very starting
point from which the schemes are formulated. Traditional DG
schemes start from the conservation law in (2) which has a
divergence form. As a result, the resulting scheme can never
retrieve the constraints inherent in the curl form in (1). Earlier
generations of DGTD [15] derive from such a starting point. In
the design of traditional DG schemes, one then applies Gauss’
Theorem to (2), viewed volumetrically, thereby relinquishing all
hope of global constraint preservation from the very onset. The
novel DGTD schemes presented here derive from the more natu-
ral curl form that is inherent in (1) for Maxwell’s equations. The
formulation respects the fact that Stokes law lives on manifolds
(surfaces). Therefore, within the x-faces of Fig. 3(b), Stokes’
theorem can be applied to the x-component of the evolutionary
equations. Similar treatment is given to the y- and z-faces. If the
electric and magnetic fields are uniquely specified at the edges
of the cell in Fig. 3(b) (which is possible thanks to our two
building blocks) then the constraint preservation in FDTD [see
Fig. 3(a)] is also retrieved in our new DGTD [see Fig. 3(b)].
It is by matching the correct mathematical theorem (Stokes
theorem) to the curl form of Maxwell’s equations that our new
DGTD scheme retains the advantages that are inherent in the
physics of Maxwell’s equations, (1). Such a program plan for
globally constraint-preserving DG schemes has been evolved for
MHD [31], [32], [35], [36]. This will be discussed in detail in
Section IV. The resulting DGTD schemes, especially at higher
orders, have extremely low dissipation and dispersion and robust
CFL numbers as shown in [31] and [33]. We present some of
the most prominent results from that work in Section V.

III. FIRST BUILDING BLOCK: CONSTRAINT-PRESERVING
RECONSTRUCTION OF VECTOR FIELDS FOR CED

Details of the constraint-preserving reconstruction of the
vector fields are now provided. For simplicity, a 2-D mesh is
considered. The goal is to retain the divergence-free constraint
for the magnetic induction [see (1d)]. Fig. 4(a) schematically
shows a first-order accurate, constraint-preserving specification
of the magnetic induction components on the faces on the sides
of one grid cell (x- and y-sides of the shaded square since there is
no variation in the z-direction). The components have constant
values, making them first-order accurate. Let B, and B, denote
the x-components of the magnetic induction at the right and left
x-faces of the shaded grid cell in Fig. 4(a). Let B; and By
denote the y-components of the magnetic induction at the top
and bottom y-faces of the shaded grid cell. If the dimensions
of the grid cell are Az and Ay in the x- and y-directions,
the discrete divergence-free constraint applied to the whole
grid cell is written as (B;f — B, )Ay + (B, — B, )Az = 0.
Thus, the boundaries of the grid cell in Fig. 4(a) contain only
three independent pieces of information, since the fourth facial
component may always be satisfied by invoking the constraint
equation.

B, profile = constant field

B, profile = constant field

(@

B, profile = mean field
+ slope

B, profile = mean field
+ slope

il

—

X

(b)

Fig. 4. Horizontal xy-slice of the grid cell of Fig. 3(b) (depicted as a shaded
square). Profiles for the B flux densities through each face (side) of the cubic grid
cell are shown. (a) First-order accurate profiles on each face (x- and y-sides of the
grid cell) are assumed to be constant and constraint-preserving. (b) Second-order
accurate, constraint-preserving profiles on each face (x- and y-sides of the grid
cell) are assumed to vary linearly along each side.

For our purposes, the constraint-preserving reconstruction is
the act of starting with the limited information in the faces of
Fig. 4(a) and using it to obtain the field in the entire interior of the
grid cell. For first-order accurate reconstruction, it is important to
specify the magnetic induction over the entire shaded cell in such
a way that it continuously matches the constant profiles along
all of the faces on the sides of the grid cells. This is achieved by
the following [mean fields + slopes, as labeled in Fig. 4(b)]:

Br(lay) = ag + azx By(‘Lay) =bg + byy 3)

The divergence constraint, applied in differential form is then
written as

0. By (x,y) + 0,By(z,y) = ay + b, = 0. )
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Taking (z,y) = (0, 0) to be at the center of the cell, yields
ap = (B; —|—BI_)/2; Gy = (B;' —B;)/Aa:
b= (B) +B,)/2b, = (B ~B,) /Ay, ©

It turns out that a,. 4+ b, = 0 is exactly equivalent to the discrete
divergence constraint. However, (3) is only first-order accurate
because B, (x,y) lacks linear variation in the y-direction and
B, (z, y) lacks linear variation in the x-direction.

Fig. 4(b) schematically illustrates how a constraint-
preserving, specification may be extended to second-order ac-
curacy by allowing the components of the magnetic induction
to vary linearly in a direction transverse to the corresponding
face on the side of the grid cell. Again, for our purposes, the
constraint-preserving reconstruction is the act of starting with
the limited information in the faces of Fig. 4(a) and using it to
obtain the field in the entire interior of the grid cell; but this
time we do it with second-order accuracy. Again, it is impor-
tant to specify the magnetic induction over the entire shaded
grid cell in such a way that it continuously matches the linear
profiles along all of the faces on the sides of the grid cell. Let
Bl + (A,Bf)(y/Ay) and B, + (A, B, )(y/Ay) denote the
linear profiles for the x-components of the magnetic induction
on the right and left x-faces on the sides of the shaded grid cell
in Fig. 4(b); notice that they vary linearly in the y-direction. Let
B + (A. B} )(x/Ax) and B, + (A, B, )(x/Az) denote the
linear profiles for the y-components of the magnetic induction
on the top and bottom y-faces of the shaded grid cell; notice that
they vary linearly in the x-direction. The specification within
the cell should be second-order accurate and should satisfy the
divergence-free aspect inherent in the Gauss’ law constraint.

Initially, it may seem that there are eight independent pieces
of information at the faces on the sides of the grid cell shown in
Fig. 4(b) (four mean values for the field components and four
slopes). However, the mean values are not independent. They
are related by the discrete divergence constraint. As a result, the
faces on the sides of the grid cell in Fig. 4(b) actually have seven
independent pieces of information. To reconstruct components
in the interior that match the values along the faces on the sides of
the grid cell, polynomials of the following form are inadequate:

By (,y) = ag + azx + ayy

The reason is, after applying the divergence constraint in (4), the
above-mentioned polynomials only have five truly independent
coefficients. With these five coefficients, the seven independent
pieces of information will not be matched at the faces on the
sides of the grid cell. Thus, the polynomials should be en-
riched. It turns out the following second-order polynomials are
appropriate:

Bl.(ilf, y) =ap+ a,T + ayy + awwa + agyxy
By (w,y) = bo + by + byy + bzyTy + byy7J2- (7

Equation (7) has ten coefficients, however, not all of them
are independent as is seen by applying the constraint in the

differential form to the above-mentioned equations:

4z + by = 0; 2044 + byy = 0; agy +2by, =0.  (8)

Out of the ten coefficients in (7), only seven are independent
after taking into account the three constraint equations in (8).
Therefore, the number of truly independent coefficients in the re-
construction exactly matches the number of independent pieces
of information contained on the faces on the sides of the grid
cell of Fig. 4(b). Matching the polynomials in the interior from
(7) to the linear variation along the faces on the sides of the grid
cell yields an exact solution for these coefficients:

ag = (B, + B ,)/2—amA2% /4,0, = (BT, — B™,)/Ax
ay = (AyBT, +AyB,)/(2Ay)
Qg = —(AIBer — A,B™ )/ (2AzAY); azy = —2by,
bo = (BY, + B ,)/2 — by, Ay?/4;
b, = (A,BT, +A,B™,)/(2Az)
b, = (BT, — B ,)/Ay
byy = —(AyBT, — AyB™ )/ (2A2AY): byy = —2a4,.  (9)

This completes our description of the constraint-preserving re-
construction of vector fields. Recall that we started with the
facial information for the vectorial components in Fig. 4(b) and
obtained the entire vector field in (7) and (9) in a fashion that
satisfies the constraint at all points, (8). Because we retained
the linear variation in the faces, this is a second-order accurate
reconstruction.

There is a wealth of content along these lines in the literature.
Constraint-preserving reconstruction strategies for vector fields
were first invented within the context of MHD [37]-[41] and
then transported over to CED [27]-[31]. Balsara and Dumbser
[40] showed that these ideas extend to unstructured tetrahedral
meshes at high orders. Balsara et al. [42] showed that these ideas
work even for isoparametrically mapped, boundary-conforming
meshes, also at high orders. Balsara et al. [27]-[29] extended
these ideas to include Gauss’ law for the electric displacement
constraint equation in (1c) and [32] showed that these ideas
work within the context of globally constraint-preserving DGTD
schemes for CED. For the sake of completeness, it is also worth
pointing out that these high-order reconstruction strategies were
inspired by allied work in higher order schemes [43]-[45].

For the interested reader, there are additional computational
costs resulting from the constraint-preserving reconstruction.
However, the constraint-preserving reconstruction adds only
~5% to the cost of the algorithm. This is because all the linear
algebra that needs to be done to enforce the linear divergence-
constraints has indeed been done analytically and it has been
documented in several articles [27]-[29], [39].
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IV. SECOND BUILDING BLOCK: MULTIDIMENSIONAL
RIEMANN SOLVERS FOR CED

A Riemann problem is an initial value problem comprised of
a conservation equation along with piecewise initial data that
has a discontinuity in the domain of interest (here, between
grid cells). Although the Riemann problems in the grid evolve
over time, initially the 1-D Riemann problems exist along the
faces between two grid cells and multidimensional Riemann
problems exist along the edges of grid cells bordering multiple
grid cells. The multidimensional Riemann problem was first
studied within the context of computational fluid dynamics
(CFD) in [46]. Since CFD is just another prototypical hyperbolic
system, as are Maxwell’s equations, the insights drawn in CFD
are transportable to Maxwell’s equations.

A multidimensional Riemann problem is formed when four
states (expressions) for a component converge at the edges of
multiple grid cells. Fig. 5(a) shows four states for the D and
B components that converge at a z-directed edge shared by
four grid cells. The four states are labeled using the following
subscripts: RU (for Right-Upper state), LU (for Left-Upper
state), LD (for Left-Down state), and RD (for Right-Down state).
Four 1-D Riemann problems form naturally between each pair of
states, as shown schematically by the four arrows in Fig. 5(b).
An x-directional Riemann problem develops between the RU
and LU states and between the RD and LD states. Analogously,
y-directional Riemann problems develop between the RU and
RD states and between the LU and LD states.

A strongly-interacting state, appears in the shaded square
of Fig. 5(b). In this region, the four 1-D Riemann problems
intersect. As time evolves, the 1-D Riemann problems evolve
self-similarly, as does the strongly-interacting state. For exam-
ple, as time evolves, the strong-interacting state, which starts at
the center black dot in Fig. 5(a), expands outward over time in
the form of the shaded rectangle shown in Fig 5(b).

The study of the multidimensional Riemann problem is de-
voted to understanding the structure and evolution of the strongly
interacting state. In general, not all of the detail in the strongly
interacting state must be retained in the computation, however,
some approximate cognizance of its existence is very important.
Approximate, multidimensional Riemann solvers have been de-
signed to model the essentials of this strongly interacting state.
They were first invented within the context of MHD [47]—[54]
and then transported over to CED [27]-[33]. By now, such
Riemann solvers have been used in the study of nonrelativistic
Euler flow; nonrelativistic MHD, relativistic Euler flow, and
relativistic MHD; and they work very well for all of those
hyperbolic PDE systems. It was, therefore, natural to also draw
on these insights for CED, as was done in [27]-[29]. The multi-
dimensional Riemann solver is also referred to as the MuSIC
Riemann solver; standing for Multidimensional, Self-similar
Riemann Solver, based on a strongly Interacting state that is
Consistent with the governing hyperbolic law.

The MuSIC Riemann solver is used to obtain the magnetic
and electric fields along the edges of the grid cells of a 3-D grid.
For example, imagine a 3-D grid comprised of the grid cells
shown in Fig. 3(b). In particular, the following components exist

N
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Dip,Bip ! prp I Drp,Brp
(b)

Fig. 5. (a) Four grid cells in an xy-plane of a 3-D grid that converge at the z-
directed edge shared by the four grid cells. The z-directed edge is indicated by the
center black dot, and the four abutting grid cells are shown as four squares. The
four states have subscripts given by “RU” for right-upper; “LU” for left-upper;
“LD” for left-down, and “RD” for right-down. The situation before the four states
start interacting is shown. The arrows indicate that higher order reconstruction
within each of the four grid cells is used to obtain the four input states along
the z-edge. (b) Same situation as in (a), but after the four states start interacting
with each other. Four 1-D Riemann problems, bounded by dashed lines and
labeled with single-starred states (components with * superscripts), develop
(expand outward in the direction of the arrows). The shaded region with the
double-starred states (components with #x superscripts) depicts the strongly
interacting state that arises when the four 1-D Riemann problems interact with
one another. Courtesy of [28].

along the front-left, z-directed edge of the grid cell in Fig. 3(b):

izj*l/?,jfl/lk and Effl/Qﬂ.fl/Zk. The MuSIC Riemann solver
solves for these two components using a physically meaningful
understanding of the different directions in which the electro-
magnetic waves might be propagating. Specifically, the MuSIC
Riemann solver takes as input the state values from the four
grid cells that surround that z-edge. It returns as output the
resolved magnetic and electric fields along that z-edge. Similar
considerations apply to the x- and y-edges in Fig. 3(b).

For structured mesh calculations, the MuSIC Riemann solver
for CED has been turned into simple plug-and-play technology
in of [28, Sec. V] and [32, Appendix C]. For unstructured
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meshes, Balsara er al. [51] and Balsara and Dumbser [52]
provide the necessary details about the construction of such
MuSIC Riemann solvers. For this reason, further mathematical
details are not provided here.

V. FORMULATION OF CONSTRAINT-PRESERVING
DGTD SCHEMES

A. Starting Point for the New Constraint-Preserving
DGTD Scheme

There is a fundamental difference between a traditional
DGTD scheme and the new constraint-preserving DGTD
scheme. The difference is fundamental because it pertains to
the starting point from which each of the two schemes are
formulated. The next two paragraphs should be read together
and cross-compared to appreciate the parallels as well as the
differences between the traditional DGTD and newer DGTD
schemes. They are intentionally written in a style that highlights
the parallels and yet brings out the differences.

Traditional DGTD is considered first. Traditional DG
schemes take the conservation law in (2) as their starting point.
A traditional DG scheme for conservation laws is derived from
the Gauss law-based vector identity

V. (¢F)=¢V-F+F Vo (10)

The primal variables reside within the volume of each grid
cell and are then endowed with higher moments in that same
volume. As the space of volumetric moments within each cell is
enriched, the scheme becomes more spectrally accurate. These
moments are derived from suitable polynomial basis functions
(also referred to as trial functions) of increasing order in each
cell. It is important to note that the polynomial basis functions
reside in the volume of the grid cell being considered, since
Gauss’ Law is also applied to the grid cell volume. By definition,
any Galerkin scheme involves a Galerkin projection step. As a
result, a set of test functions are chosen in the same cell; these
usually coincide with the trial functions in the grid cell. The
conservation law in (2) is then projected within each cell on
to the space of test functions—this is basically a volumetric
convolution of the governing equation with the test functions.
Note that the flux form in (2) satisfies Gauss’ law and, as a result,
Gauss’ theorem is used to convert divergences over volumes
into area integrals over the faces of the volume. A weak form
imposition of the fluxes at the faces, using 1-D Riemann solvers,
then completes the scheme. Unfortunately, this is a poor starting
point, since a traditional DG scheme will never be globally
constraint-preserving.

Now consider the new DGTD scheme. Equation (1) in curl
form is taken as the starting point. The primal variables reside
on the faces of each grid cell, and they are endowed with higher
moments on those faces. Then, Recall that Stokes’ law applies to
surfaces. As a result, the DG-like scheme for updating curl-type
equations is derived from the Stokes Law-based vector identity

V x (¢D) = (V¢) x D + ¢V x D. (11)

Thus, in a 3-D code, the x-components of D and B will take
on higher moments in the y- and z-directions on the x-faces

of the grid cells. Similarly, the y-components of D and B will
take on higher moments in the x- and z-directions on the y-
faces of the grid cells. Likewise, the z-components of D and B
will take on higher moments in the x- and y-directions on the
same z-faces of the grid cells. As the facial moments on the
faces of each grid cell is enriched, the scheme becomes more
spectrally accurate. These moments are derived from suitable
polynomial basis functions (also referred to as trial functions)
of increasing order on each face. It is important to note that the
polynomial basis functions reside on the faces of the grid cell
being considered, since Stokes’ law is also applied to the grid cell
faces. By definition, any Galerkin scheme involves a Galerkin
projection step; except that this time the projection is enforced
on the faces of Fig. 3(b). As a result, a set of test functions
are chosen on the same faces; these usually coincide with the
trial functions on the faces. The curl-type update in (1) is then
projected on each face on to the space of test functions—this
is an areal convolution of the governing equation with the test
functions. Note that the curl form in (1) satisfies Stokes’ law
and, as a result, Stokes’ theorem is used to convert curls over
facial areas into line integrals over the edges that bound the
face; see Fig. 3(b). A weak form imposition of the electric and
magnetic field components along the edges that bound the faces,
using multidimensional Riemann solvers, then completes the
scheme. The electric and magnetic fields along each edge are
uniquely defined by the multidimensional Riemann solver in
a way that encapsulates the physics of multidimensional wave
propagation. This is a better starting point, since such a DG
scheme will always be globally constraint-preserving. This will
be emphasized in the following text.

The connection between FDTD and the new generation of
DGTD schemes is, therefore, tightly established at least at an
intuitive level in the previous paragraph. The mathematical
details are developed in subsequent parts of this Section. To keep
the discussion simple, a second-order, 2-D case is considered.
Further details for higher order, globally constraint-preserving
DGTD schemes have been explicitly cataloged in [31] and [32].

The method presented here is not a traditional DG scheme for
conservation laws. It shares several features with a traditional
DG scheme, which is why it is a DG-like scheme. However,
it also shares many aspects with an FDTD scheme. Balsara
and Kippeli [35, Sec. II] provides a precise comparison and
contrast between the DG-like schemes that we formulate here
and a traditional DG scheme.

B. Formulation

Even though a 2-D scheme is initially of interest, it is most
beneficial to realize that (1a) and (1b) are actually 3-D and to
consider the DG formulation on a 3-D mesh. Specifically, let
us first focus on (1a). One grid cell of a 3-D mesh is shown in
Fig. 3(b). The mesh is Cartesian and has uniform grid cells with
size Az, Ay, and Az in the x-, y-, and z-directions. For sim-
plicity, the grid cell in Fig. 3(b) extends over [—~Ax /2, Az /2] x
[—Ay/2, Ay /2] x [—-Az/2, Az/2],although it turns out that Az
does not play a role in the update equations that will be derived.
However, since a 2-D scheme will be described, there will only
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be spatial variations only in the x-direction or in the y-direction.
The focus is also restricted to TE, modes.

Let 1 be the unit outward pointing normal to one grid cell.
Let A,, be the area of the face of the grid cell to which 1i is the
unit normal. First take i = X in Fig. 3(b). In that case, the area
A,, is the right x-face which contains the field component D,
that will be evolved via (1a). Now take i = ¥ in Fig. 3(b); in
that case, the area A,, is the upper y-face, which contains the
field component D,, that we are interested in evolving via (1a).
We wish to project (1a) into a space of test functions. The test
functions will be identical to the trial functions, which will be
explicit. To make the DG-like projection, (1a) is first multiplied
by the test function ¢. Next, the dot product of A,, with the unit
normal 1 to that face is taken. Integrating over that face and
using the vector identity in (11) yields

%(/An(ﬁ-nmmn> —/M (¢H) - dl

n

+ / B (Vo) x H]dA, = — / J6dA,.  (12)
An An
Equation (12) is the first master equation that stems from the
extended Ampere’s law. (The D terms in the above-mentioned
equation indicate that these are the facial primal variables; the H
terms are obtained at the edges of the grid cells by application of
a multidimensional Riemann solver; the H terms are obtained
within the faces of the grid cells by the application of a 1-D
Riemann solver; and the current density within each face is
obtained via an implicit treatment of the stiff source terms.) The
boundary of the face under consideration is denoted by 0 A,,.The
infinitesimal vector d in the middle term of (12) runs along 0A,,
and denotes the length of the grid cell. The existence of a unit
normal, 1, lends a right-handed directionality to dr.

Equation (12) provides the desired Galerkin projection strat-
egy; but it is applied to a curl-type equation on the faces of the
grid cells. The first term in (12) provides successive moments
of the facial primal variable. Note that the second term in
(12) is interpreted in a weak form using a multidimensional
Riemann solver and is analogous to the flux term in a traditional
DG method for conservation laws. The third term in (12) is
analogous to the volume term in a traditional DG method for
conservation laws. Equation (12) even holds if the face/manifold
that is integrated over is curved as long as 1 is locally normal
to the manifold and as long as the test function ¢ resides in that
manifold. The next few paragraphs will show how it is to be
used to design a DG scheme at the second order.

Applying (12), on the right x-face of the grid cell shown in
Fig. 3(b), i.e., the face with 2 = Ax/2, the second-order accu-
rate evolution of the x-component of the electric displacement
vector is asserted to be of the form

D=5+ o50 (L)
)

The x superscript indicates the component of the electric flux
density. The subscript O denotes the mean D, value on that face.
The y subscript denotes the direction in which D, is allowed to
vary over time on the x-face of the grid cell.

Note that the z-variation in the above-mentioned equation has
been suppressed because a 2-D scheme is being presented. The
trial functions are ¢(y) = 1 and ¢(y) = (y/Ay). Using L = X
and the test function ¢(y) = 1, (12) then yields

dDE (t) 1

dt Ay

H* (v = Az/2,y = Ay/2) -
H* (x = Ax/2,y = —Ay/2)

=0. (14)

Using fi = X and the test function ¢(y) = (y/Ay) in (12)
yields:

1dDy (1) 1 [ HT (2= Aaj2,y = Ay/2)
12 dt 20y |+H*" (x = Az/2,y = —Ay/2)
1 Z%
+ A_y<H (1’ - A‘T/2' y)>line avg = 0 (15)

Equation (12) is crucially important for deriving the above-
mentioned two equations. Here, the double-starred H* (z =
Az/2,y = Ay/2)and H* (v = Ax /2,y = —Ay/2) are mag-
netic field components that are obtained at two edges of the
right x-face in Fig. 3(b). They are obtained by applying a 2-D
Riemann solver at the edges of the mesh. The factor (1/12) in
(15) is the analog of a mass matrix. Because the Cartesian mesh
(in this case centered locally in the middle of each grid cell) has
orthogonal bases, the mass matrix is diagonal. Also note that
the terms within angled brackets, i.e., terms with { ), represent
suitably high-order line averages on a face; these terms with an
angled bracket should be obtained with a suitably high-order
quadrature along the faces of the each grid cell. In this work,
since the z-variation is suppressed, the well-known 1-D Gauss-
Legendre quadrature is used to carry out the facial integrals.
1-D Riemann problems on the right face being considered to
furnish the single-starred H**(x = Az/2,y) component of the
magnetic field that is to be used in the angled brackets. These 1-D
Riemann problems are solved at each of the quadrature points
on the x-face.

Using an analogous approach on the back y-face of the grid
cell shown in Fig. 3(b) (i.e., on the face with y = Ay/2) yields

1dDY(t) 1
12 dt

H*" (z = Az/2,y = Ay/2)
2Rs |+H (@ = —Aw/2,y = Ay/2)

H* (2,y = Ay/2)) 0. (16)

- E< line avg —
Here again, the double-starred H* (v = Az /2,y = Ay/2)and
H*" (x = —Ax/2,y = Ay/2) are magnetic field components
that are obtained at the edges of the back y-face in Fig. 3(b).
They are obtained by the application of a 2-D Riemann solver
at the edges of the mesh. 1-D Riemann solvers on the back face
being considered furnish the single-starred H**(z,y = Ay/2)
component of the magnetic field that is to be used in the angled
brackets. These 1-D Riemann problems are solved at each of the
quadrature points on the y-face. Equation (14) and the analogous
equation in the y-direction taken together also ensure that the
mean electric displacement field components on the faces of
the grid cells preserve the constraint-preserving property at a
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discrete level. In other words, the traditional, globally constraint-
preserving, Yee-type update that has always been built into
FDTD is retrieved!

Next, consider (1b). Equation (1b) provides the evolution of
the z-component of the magnetic induction. This component
resides on the z-faces in Fig. 3(b). Because a 2-D formulation is
considered, either of the two z-faces in Fig. 3(b) may be chosen.
Consider a case where i1 = Z is taken. In that case, the area A,,
will be the far z-face which contains the field component B, that
we are interested in evolving via (1b). A procedure is followed
that is analogous to the one that provided (12). However, this
time the starting point is (1b), yielding

% < /A @B) gbdAn) + /a | (m)-dl

—/ i [(Vo) x E]dA,, =0. 17)
An

The above-mentioned equation is the second master equation
that stems from Faraday’s law. (The B terms in the above
equation indicate that these are the facial primal variables; the E
terms are obtained at the edges of the mesh by application of a
multidimensional Riemann solver; and the E terms are obtained
within the faces of the grid cells by the application of a 1-D
Riemann solver.)

As asidenote, as for (12), (17) is true for any general manifold
and even holds if the face/manifold that is integrated over is
curved as long as 1i is locally normal to the manifold and as long
as the test function ¢ resides in that manifold. The formulation,
therefore, applies naturally to elements with isoparametrically
mapped curved surfaces. In other words, globally constraint-
preserving DGTD schemes for CED on general curvilinear
meshes are easily available.

Continuing with the case of i = Z, the second term is an
integral over the entire boundary of the z-face of the grid cell
in Fig. 3(b). This integral picks up contributions from E, and
I, at the boundary. These contributions are obtained from a
one-dimensional Riemann solver. Note that the third term in
(17) requires that the components of £, and E,, at all locations
on the z-face are known. In other words, even though (13) and the
analogous equation in the y-direction only provide the compo-
nents of the electric displacement at the boundaries, a strategy is
needed for reconstructing the electric displacement vector field
atall locations in the grid cell. In other words, it is apparent that a
volumetric reconstruction strategy for the electric displacement
vector field that is consistent with the boundary values in (13)
and the analogous equation in the y-direction as well as the
constraints in (1c) is an essential ingredient in any DG scheme for
CED. Such second order, constraint-preserving reconstruction
with nontrivial charge densities has been described in [28]. Also,
Balsara et al. [29, Sec. III] reports higher order extensions of
the same constraint-preserving reconstruction with nontrivial
charge densities. The next few paragraphs will show how (17)
is used to design a DG scheme at the second order.

Now let us be specific with respect to (17). On the bottom
z-face of Fig. 3(b), the second-order accurate evolution of the
z-component of the magnetic induction vector is asserted to be

of the form
B (ent) = B 0+ B2 ) () + B 0 () - )

Note that suppressing the z-variation implies that both the
bottom and top z-faces of Fig. 3(b) have the same z-component of
the magnetic induction vector, thus ensuring that the constraint
in (1d) is always satisfied for the magnetic induction.

The trial functions are ¢(z,y) = 1, ¢(z,y) = (v/Az) and
o(z,y) = (y/Ay). Using it = Z and the test function ¢(z,y) =
11in (17) then yields

ng (t) L <Ey* (I = ALE/Q, y)>linc avg
dt Az —<Ey* (x = —A:r/2,y)>1ine ave
o L <E€L’* (X'T’ y= Ay/2)>linc avg =0
Ay 7<EJIC (I7 Y= 7Ay/2)>line avg .

19)

Using fi = Z and the test function ¢(z,y) = (z/Az) in (17)
yields

1 dB; (IL) 1 <Ey‘ (ZE = A'I/2’ y)>line avg
12 dt 28z [+(BY (2= —AT/2,9)) 100 e
_ L <(J)/AZ’) ET* (x’y:Ay/2)>lincavg ‘|
Ay —<(1’/Al’) Ez* (CIJ, Y= _Ay/2)>line avg

1 ,
- E{Ey ($, y)}arca avg 0.

Using fi = Z and the test function ¢(z,y) = (y/Ay) in (17)
further yields

(20)

1 dB: (1)
12 dt
1 (@A) BV (2= A2/2,9)),0 e 1
Az *<(U/A1/) Ey* (‘L = 7ALL./2’ y)>linc avg
_L <EL* ({E, y= A:y/2)>line avg ]
2Ay +<Em (z7 Y= _Ay/2>>line avg

1 .
+A_y{EdL (‘T?y)}areaavg =0. Q1)
From the above-mentioned three equations, the angled brackets
again represent suitably high-order line averages along the edges
that surround the z-face. Note that the angled brackets in the
above-mentioned three equations only contain the electric fields
obtained from 1-D Riemann solvers. This is because the 2-D
Riemann solver applied to the x-edges and y-edges of Fig. 3(b)
reduces to a 1-D Riemann solver when the entire z-variation
is suppressed. Also, note the introduction of curly brackets,
i.e., {}, in (20) and (21). These curly brackets denote suitably
high-order area averages within the z-face. As always, they must
be obtained via a suitably high-order 2-D quadrature formula.
Alternatively, since F*(z,y) and EY(z,y) are expressed in
terms of an orthogonal basis set, the curly brackets may usually
be evaluated analytically on a Cartesian mesh. Equations (20)
and (21) indicate that the facial variation from (13) and the
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analogous equation in the y-direction should be used to obtain
a second-order, constraint-preserving reconstruction within the
element to obtain the electric fields E(x, y) and E¥(x, y). This
completes the description of the second order, P = 1, DGTD
scheme for CED.

Note that (14) and the analogous equation in the y-direction
ensure that the evolution of the electric displacement is
constraint-preserving and follows the same Yee type update. As
aresult, a DGTD scheme for CED has been obtained that is the
closest analogue of FDTD. The higher order modes, i.e., (15)
and (16) for the displacement vector, do not contribute to the
constraint-preservation as long as the mean flux contributed by
those higher modes averages to zero.

Equations (19)—(21) indicate something else that is also very
interesting. Observe that for a TE, mode, that has been focused
on here, the evolution equation for B,reduces to a traditional
conservation law. Applying traditional DG formulations to the
evolution equation for B, [i.e., to the last row of (2)] would
also yield (19)—(21). This establishes a very nice consistency
between the new DG-like schemes and traditional DG schemes.
In the limit where both are expected to yield the same result,
they indeed do yield the same result!

There is literature, though it is not usually accessed by the
CED community, that shows that when constraints are ignored
in the solution of a PDE, they produce spurious effects in the
solution; see [55] and [56]. The previous references show this
for MHD and general relativity; but the example in Section I
drives home the point that the same is true for CED. The globally
constraint-preserving DGTD method of this article will now be
compared and contrasted to other variants of the DGTD method
with vector fields [24]-[26]. The DGTD scheme in [24]-[26]
is developed with curl-conforming basis functions for E and
div-conforming basis functions for B. Because E is used as the
primal variable, instead of D, the scheme would not precisely
satisfy Gauss’ law for the charge density, especially in regions
of spatially-varying permittivity (though it may be possible to
design the Hodge projection more carefully so that it does).
Because in the scheme of this article the div-conforming recon-
struction is used, for D and B, the exact satisfaction of both forms
of Gauss’ law is automatic. Besides, the basis functions of [24]
reside in the volume of the element, whereas the basis functions
in this work reside in the faces of each element. Because the basis
functions here have simpler support, they are easier to extend to
higher orders. The use of the multidimensional Riemann solver
also helps to stabilize this article’s DGTD scheme.

VI. HIGHER ORDER TIME-STEPPING DISSIPATION AND
DISPERSION PROPERTIES OF DGTD SCHEMES

There are two challenges in any time-stepping scheme for
CED. First, the time-stepping should be high-order in time.
Second, stiff source terms, which usually arise by way of large
material conductivities, should be handled. To tackle the first
challenge, FDTD uses not just a spatially staggered pair of
meshes, but it also staggers the temporal update in time. As a
result, in the first half-step, the E field contributes to the update
of the H field; whereas, in the second half-step, the just-updated

H field contributes to the update of the E field. This results
in a leap-frog time-stepping that is only second-order accurate
in time. Since leap-frog time-stepping is symplectic, FDTD
conserves electromagnetic energy in a medium with constant
material properties, though the same cannot be proven for a
general medium. Despite that seeming advantage, the restriction
of the time-stepping to second order also makes the FDTD
scheme significantly dispersive. In general, a working applica-
tion may trade spatial and temporal accuracies, with the result
that temporal accuracy is usually desired in a numerical scheme
that matches the spatial accuracy. Since the DGTD schemes
described here have higher order extensions in space, they should
be matched with similar higher order accuracies in time. In CED
there may also be materials with large conductivities, which
results in a PDE system with stiff source terms. To tackle this
second challenge, and because of its very design, FDTD uses
a half-implicit treatment of stiff source terms (think of large
conductivities in metals). Since half-implicit methods are not
very stable in the presence of very stiff source terms, i.e., in the
presence of highly conductive metals, it may limit some FDTD
applications.

Two well-known, modern, time-stepping strategies for PDEs
show a pathway to higher order temporal accuracy whilst also
providing for a more stable treatment of stiff source terms. The
first strategy is based on Runge-Kutta time-stepping [57]-[62]
with variants that handle stiff source terms in a fully implicit
fashion being presented in [63] and [64]. Runge-Kutta schemes
have a multi-stage structure, and each stage looks much like
the other stage, which makes them easy to implement in code.
Runge-Kutta time-stepping with better than fourth-order accu-
rate time-stepping involves the use of additional intermediate
stages to overcome the Butcher barriers; which makes these
schemes inefficient at very high orders. Furthermore, the variants
of Runge-Kutta schemes that can handle stiff source terms are
limited to the third order of accuracy in the treatment of source
terms. Runge-Kutta time-stepping that is adapted to CED with
stiff source terms has been presented in [27]. For the sake of
completeness, it must also be mentioned that exponential time
differencing-based Runge-Kutta methods (known as ETDRK
methods) have also been introduced [65]—-[67] and those meth-
ods can go beyond third order, albeit with restrictions being
placed on the structure of the source terms. For certain classes
of CED problems, where the source terms are linear, but stiff,
these ETDRK methods might prove adequate.

The second strategy, involving Arbitrary DERivatives in space
and time (ADER) schemes offer a way out while overcoming
the limitations of Runge-Kutta time-stepping. ADER schemes
may be thought of as higher order extensions of Lax-Wendroff
schemes; therefore, they offer the convenience of a single-stage
time update. Early variants of ADER time-stepping [68]-[73],
has found plenty of popular use. An accessible review of ADER
schemes has been given in [74]. Such ADER schemes have
been specialized for CED in [28] and [29] and they prove to
be faster than Runge-Kutta schemes. ADER schemes may be
extended to any order of accuracy in time and the fully implicit
treatment of stiff source terms is equally accurate. When the
ADER schemes are coupled to higher order FVTD or DGTD
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schemes, they also offer the advantage of the subcell resolution
of variation in material properties. For situations where the two
alternative time-stepping strategies are equally functional, they
offer roughly similar dissipation and dispersion.

For CED simulations, propagation of numerical electromag-
netic waves in a mesh with a minimum of dissipation and
dispersion is desired. Here, it is very valuable to carry out a von
Neumann stability analysis of globally constraint-preserving
DGTD schemes where the spatial and temporal orders of accu-
racy are matched. Such a study is carried out in [31]. This article
provides a considerable amount of detail and only a couple of
illustrative examples are provided here.

In a von Neumann stability analysis, one starts with a time-
harmonic plane wave and analyzes its dissipation and dispersion
properties. Fig. 6 presents such a von Neumann stability anal-
ysis. Similar analyses have been carried out for FDTD in [3]
and such analyses have provided very valuable insights into the
fidelity with which FDTD propagates electromagnetic radiation.
Fig. 6(a) from [31] shows the amplification factor for wave
propagation in various directions relative to the mesh for waves
that have a wavelength of five grid cells. Results are provided
for the second-order P = 1 DGTD scheme, the third-order
P = 2 DGTD scheme, the fourth-order P = 3 DGTD scheme
and the Yee scheme. The temporal accuracy of the Runge-Kutta
time-stepping matches the spatial accuracy of the DG scheme.
Fig. 6(b) shows the phase velocity, normalized to unity, for the
same four schemes.

Focusing first on Fig. 6(a), which pertains to dissipation, the
second order, P = 1, DGTD scheme has an amplification factor
that is smaller than unity by a substantial amount. As a result, it
is rather dissipative when waves with a wavelength of five grid
cells are represented on the computational mesh. The third-order,
P = 2, DGTD scheme already shows a considerably reduced
dissipation. The fourth-order, P = 3, DGTD scheme is almost
free of dissipation and comparable to the Yee scheme, which is
fully nondissipative on account of it being a symplectic scheme.

Focusing on Fig. 6(b), which pertains to dispersion, both the
second-order, P = 1, DGTD scheme as well as the second-order
Yee scheme are rather dispersive. By contrast, the third-order,
P =2, DGTD scheme exhibits substantially improved dispersion
that lies much closer to the ideal value of unity for all directions
of wave propagation. The fourth-order, P = 3, DGTD scheme
shows an even more appealing result because the dispersion
is practically perfect. Thus, with increasing order of accuracy,
the DGTD schemes become closer to the ideal limit in their
dissipation as well as their dispersion. Balsara and Képpeli [31,
Tables IIT and TV] provide further quantitative detail about the
dissipation and dispersion characteristics of the schemes shown
here; and Table I of that article shows their limiting Courant
numbers.

One of the vexing features of all DG schemes is that their
limiting Courant number decreases with increasing order of
accuracy. In [71], only the first few moments in a DG scheme are
seen to yield a majority of the accuracy improvement. In other
words, the higher moments may be reconstructed without any
significant loss of accuracy. This gave rise to the nomenclature
of a PNPM scheme. (PNPM schemes evolve an Nth order
spatial polynomial, while spatially reconstructing higher order
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Fig. 6. (a) Amplification factor for wave propagation in various directions

relative to the mesh for waves that have a wavelength of five grid cells. The green,
red, cyan, and blue curves show the results for the second-order P = 1 DGTD
scheme, the third-order P = 2 DGTD scheme, the fourth-order P = 3 DGTD
scheme and the Yee scheme, respectively. The temporal accuracy matches the
spatial accuracy of the scheme. (b) The phase velocity, normalized to unity, for
the same four schemes using the same color coding. With increasing order of
accuracy, the schemes become closer to the ideal limit. The results correspond
to a CFL that is 95% of the maximum. “SSP-RK” in the legend stands for
strong-stability preserving Runge-Kutta time-stepping. Figure courtesy of [31].

terms up to Mth order. For example, POPM schemes yield the
finite-volume class of schemes with Mth order of accuracy; while
PMPM schemes are identical to DG schemes with Mth order of
accuracy. For 0 < N < M, new classes of schemes emerge.)
The major advantage of PNPM schemes is that their limiting
CFL is usually identical to the limiting CFL of an Nth order
scheme; therefore, with N < M there is an improvement in the
limiting CFL. The dispersion and dissipation characteristics of a
PNPM scheme remain comparable to the corresponding charac-
teristics of a PMPM scheme; yielding a very accurate family of
schemes with improved CFL numbers compared to DG schemes.
The result in [71] pertains to FV-based schemes for PDEs. An
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Fig. 7. Analogous to Fig. 6, except that it pertains to the wave propagation at

various angles for POP1, POP2, P1P2, and P2P2 scheme for CED. The waves
span five grid cells. The P2P2 scheme is just the P = 2 DGTD scheme and
is shown for reference. The vertical scales in Fig. 7 are different from Fig. 6.
(a) Amplification factor for wave propagation on various directions relative to
the mesh for waves that have a wavelength of five grid cells. The blue, green,
red, and cyan curves show the results for the second-order POP1 scheme, the
third-order POP2 scheme, the third-order P1P2 scheme and the P2P2 schemes,
respectively. (b) Phase velocity, normalized to unity, for the same four schemes
using the same color coding. Figure courtesy of [31].

interesting question is, do the same twin advantages of large
CFL without much degradation in dissipation and dispersion
extend to constraint-preserving PNPM schemes? This question
was answered in the affirmative in [31]. We provide details in
the next paragraph.

Fig. 7 is analogous to Fig. 6, except that it pertains to the
wave propagation at various angles for order POP1, POP2, P1P2,
and P2P2 schemes for CED. The waves span five grid cells. The
P2P2 scheme is just the P = 2 DGTD scheme and is shown
for reference. The vertical scales in Fig. 7 are different from
Fig. 6. The POP1 and POP2 schemes are second and third-order

weighted essentially nonoscillatory schemes [43]-[45]. When
the wavelength spans just five grid cells, there are deficiencies
in these schemes because they try to reconstruct all the moments
at each timestep. A comparison of the third-order P1P2 and
P2P2 schemes shows a very interesting result. The P1P2 scheme
provides almost the same high quality of wave propagation as
the P2P2 scheme. This is because most of the variation within a
grid cell is carried by the linear modes, which are indeed evolved
consistently with the governing equations in the P1P2 scheme.

Consider the maximal CFL for both schemes when they are
used along with a third order in time Runge-Kutta time-stepping
strategy. Data for this case are available in [31, Tables I and II].
The P1P2 scheme sustains a maximal CFL of 0.3141, which
is considerably larger than the maximal CFL of 0.1623 for the
P2P2 scheme. Similar results have been reported for fourth-order
accurate P1P3 schemes in [31], showing that a wealth of very
favorable CED schemes exist that were hitherto fore unknown
to the CED community!

In CED, there has been a substantial literature on time-
stepping schemes that minimize dissipation and dispersion. Such
attempts to obtain low dissipation and low dispersion schemes
have indeed been presented within the context of Runge-
Kutta time-stepping [75]-[78]. In a major recent breakthrough,
Kiéppeli et al. [33], Chan and Tsai [79], and Grant et al. [80] real-
ized that it is possible to not just evaluate the fluxes but also their
time-derivatives. The article [33] is especially relevant because it
is directly focused on DG schemes for CED. Balsara [49] shows
that if the time-derivatives of the edge-centered update terms
are also available then DG schemes for CED that minimize
dissipation and dispersion whilst simultaneously permitting a
larger CFL may be derived. The technology that makes this
major advance possible is the invention of a multidimensional
generalized Riemann problem solver by Balsara et al. [42]. This
advance is pointed out as a way of illustrating to the interested
reader that there is a considerable emergent up-side to the ideas
described here.

VII. RESULTS

Several examples of the resolving abilities of FVTD and
DGTD schemes have been documented in [28], [29], and [32].
Just a few results are highlighted here that emphasize the sub-cell
resolving ability of these schemes. Because of space constraints,
the problem setup is not described in this review paper because
the problems have been documented thoroughly in the original
literature.

The first example highlights the sub-cell resolution of the
DGTD schemes presented here. Fig. 8, from [32], shows the
interaction of an electromagnetic pulse that starts in air and
interacts with a disk of radius 0.75 m having refractive index of
3. The disk is shown by the black circle. A Cartesian mesh was
used even in the area spanned by the disk and no effort was made
to conform the mesh to the disk boundary. This was a deliberate
choice and is intended to show that our methods preserve their
order property even when the problem geometry is not mapped to
the mesh. Fig. 8(a)—(c) shows the z-component of the magnetic
field at initial time, early time, and late time, respectively. The
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Fig. 8. Interaction of an electromagnetic pulse that starts in air and interacts
with a disk having a refractive index of 3. The disk is shown by the black
circle. (a)—(c) z-component of the magnetic field at initial time, early time, and
late time, respectively. The x- and y-axes are in units of meters. (d) Error as a
function of mesh size. Results are plotted for k varying from 1 to 4, where k
refers to the degree of the 1-D polynomial used for reconstruction of the vector
fields. Courtesy of [44].

radiation scatters off the disk and, because the disk and the
wavelength of the radiation have comparable length scales, the
scattering is substantial. Fig. 8(d) shows the error as a function
of mesh size. The DGTD schemes meet their design accuracies
despite the large variation in permittivity over just a few grid
cells. From Fig. 8(d), the more accurate schemes are indeed
more accurate even at the lowest resolutions. Moreover, as the
mesh is refined, the more accurate schemes reach their design
accuracies much faster. This highlights the subscale resolving
abilities of the constraint-preserving DGTD schemes presented
here.

The subscale resolving abilities of globally constraint-
preserving DGTD schemes stem from multiple considerations.
First, notice from the second terms in (12) and (17) that DG
schemes have a very high-order accuracy treatment of the mag-
netic field and electric field along the edges of the mesh. This
means that spatial variations along an edge may be picked up
by these schemes. Second, notice from the third terms in (12)
and (17) that DG schemes also have very high-order accuracy
treatment of the magnetic field and electric field along the
faces of the mesh. This means that the schemes can respond to
even further spatial variations. Third, in addition to the spatial
variation in electric and magnetic fields, the material properties
are also reconstructed with the same order of accuracy as the
underlying method. As a result, the entire spatial discretization
can be responsive to subcell variations in the material prop-
erties. Fourth, the high-order temporal discretization afforded
by ADER methods ensures that the full space-time dynamics
respond to the spatial variation in material properties. For all
these reasons, the FVTD and DGTD have excellent subcell
resolution.

Section IV started by mentioning that with increasing order of
accuracy, i.e., with the inclusion of higher moments, the DGTD
schemes come increasingly close to having spectral accuracy
(providing a “perfect” solution over the frequency range of
interest). This is because all the higher moments are evolved
in a fashion that is consistent with the governing equations, i.e.,
Maxwell’s equations. However, in order for this accuracy to
be closest to its optimum, the moments should evolve entirely
consistently with the governing equations and should not be
interfered with in the course of a time step because of any other
considerations. For CFD applications, the presence of shocks
forces one to interfere with the higher moments using a process
called nonlinear limiting. This degrades the accuracy of CFD
applications that rely on DG methods. For CED applications,
the waves are sufficiently smooth on the mesh with the result
that this process of nonlinear limiting seems to be unnecessary
even when there are substantial spatial variations in permittivity
and permeability. For example, all the tests shown in Fig. 8 were
carried out without the application of a limiter. This has the happy
consequence that CED applications may indeed achieve the full
subcell resolving potential of the underlying DGTD schemes
presented here.

FDTD was shown to use symplectic time-integration, which
ensures energy conservation at least in media with uniform
permittivity and permeability. Fig. 7(a) shows that FDTD is,
therefore, free of dissipation. However, Fig. 7(b) shows the
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disadvantage of a second-order accurate, leap-frog based time-
integration, namely appreciable numerical dispersion, especially
yielding numerical velocity anisotropy. In other words, the elec-
tromagnetic energy is conserved, however, there is no control
over the speed with which it propagates on the computational
mesh. Moreover, the propagation is very anisotropic; which
may be worrisome. The higher order time-integration strate-
gies, especially when they are conjoined to higher order spatial
reconstruction, are intended to fix those problems. This is eas-
ily apparent in the nearly dissipation-free and dispersion-free
properties of the fourth-order DGTD scheme shown in Fig. 7(a)
and (b). However, it is desirable to demonstrate energy conser-
vation on a practical problem, especially one where material
properties vary widely over space.

Fig. 9, from [32], shows the evolution of electromagnetic
energy as a function of time for the compact Gaussian pulse that
is incident on a refractive disk from Fig. 8. Globally constraint-
preserving DGTD schemes were used. Fig. 9(a) shows the
evolution of total energy as a function of time for a 100x 100
grid cell simulation at second (blue curve), third (orange curve),
fourth (green curve), and fifth (red curve) orders of accuracy. At
those very low resolutions, only the fifth-order scheme comes
close to conserving electromagnetic energy. Fig. 9(b) shows the
same for a 200 x 200 grid-cell simulation; and at that resolution,
the fourth-order scheme has almost caught up with the fifth-order
scheme. Fig. 9(c) shows the same for a 400 x 400 grid-cell
simulation; and at this resolution, the fourth- and fifth-order
schemes are practically perfectly energy conserving. Fig. 9(d)
shows the same for an 800 x 800 grid-cell simulation, at which
the third-order scheme has also started catching up with the
fourth- and fifth-order schemes.

Therefore, higher order constraint-preserving DGTD
schemes are very proficient at conserving electromagnetic
energy on meshes with modest resolutions even when there
are subscale variations in the material properties. Moreover,
combining the results from Figs. 6 and 9, this is accomplished
with minimal dissipation and dispersion.

For engineering problems, it is also important to show that
the numerical modeling methods are cost-effective. In other
words, a higher order scheme would indeed cost more per
timestep than a lower order scheme because it evolves more
variables in order to retain its higher accuracy. However, it should
provide some improved advantages. The previous paragraph
documented those advantages in terms of low dissipation and
dispersion and conservation of electromagnetic energy. The next
paragraph documents the advantages in terms of the time to
solution.

Fig. 10, from [32], shows the Log of the error versus the Log
of the relative time to solution for the second-, third-, fourth- and
fifth-order DGTD-based CED schemes. The figure documents
data for the compact Gaussian pulse incident upon the refractive
disk from Fig. 8. If low accuracies are acceptable, the second-
order (blue) or third-order (orange) order schemes are optimal.
However, if high accuracies are desired, the fourth- and fifth-
order schemes (green and red) obtain the most accurate solution
in the least possible time. Extrapolation of the blue and orange
curves in Fig. 10 clearly shows that if the highest orders of

113

1.0
508/
g
= 0.6
&
? 0.4
=
3]

0.2

0.0 0.5 1.0 15 2.0
Time t 1e—8

(@

o
@

Energy(t)/Energy(0)
e o
o 9

o
1]

o
>

le-8

1.000+

0.975
% 0.9501
é 0.925-
% 0.900
5 0.875

0.850-

0.825

0.0 0.5 1.0 15 2.0
1le-8

o
o
&

Energy(t)/Energy(0)

o
i
3

0.975

0.0 0.5 1.0 1.5 2.0
Time £

(d)

le-8

Fig. 9. Evolution of electromagnetic energy as a function of time for the
compact Gaussian pulse that is incident on a refractive disk as seen in Fig. 8.
(a) Evolution of total energy as a function of time for a 100 x 100 grid-cell
simulation at second (blue curve), third (orange curve), fourth (green curve), and
fifth (red curve) orders of accuracy (k refers to the degree of the 1-D polynomial
used for reconstruction of the vector fields). (b) Same for a 200 x 200 grid-cell
simulation. (c) Same for a 400 x 400 grid-cell simulation. (d) Same for an
800 x 800 grid-cell simulation. Courtesy of [44].
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Fig. 10.  Log of the error versus the Log of the relative time to solution for the
second-, third-, fourth-, and fifth-order DGTD-based CED schemes for the case
of a compact Gaussian pulse that is incident on a refractive disk from Fig. 8.
Courtesy of [32].

accuracy are desired, the lower order schemes would take two
or more orders of magnitude more time to the solution than the
higher order schemes! This discussion shows that the higher
order FVTD and DGTD schemes presented here may indeed
justify their higher cost by offering a highly accurate solution at
the lowest possible computational cost.

The beginning of Section V mentioned that any time-stepping
scheme for CED presents two challenges. The first challenge
consists of retaining temporal accuracy that matches the spa-
tial accuracy, and that has been addressed in the preceding
paragraphs of this section. However, the second challenge con-
sists of the treatment of stiff source terms. On this front, the
ADER time-stepping, with its very natural incorporation of fully
implicitly-treated stiff source terms, shows its strengths. This is
addressed next.

Suppose the skin depth in a conductor needs to be resolved.
Some materials, like carbon and copper, have enormously large
conductivities. Therefore, one has to use ADER methods that
are fully implicit in their treatment of the conductivity whilst
also retaining the advantages of high-order of accuracy. Using
an example for electromagnetic wave propagation in carbon
and copper developed in [28] and [29] numerical results that
accurately match the analytic results will be shown, even when
the skin depth is resolved with no more than ten grid cells. A
fourth-order-accurate ADER-FVTD scheme is used. Fig. 11(a)
and (b) shows the variations of B, with radial distance inside
carbon and copper, respectively. The exponentially decaying
envelopes are also over-plotted. Fig. 11(c) and (d) presents
the structure of the numerical envelopes (red crosses) and the
analytical envelopes (blue curve) on a semi-log scale for carbon
and copper, respectively. The numerically obtained envelopes
match extraordinarily well with the analytical envelopes.

Just as with the problem of a Gaussian pulse interacting with
a dielectric disk in Fig. 8, the new higher order methods offer
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Fig. 11. (a) and (b) Radial variations of B, (black lines) and the decaying
envelopes (red lines) inside carbon and copper, respectively. (¢) and (d) Structure
of the numerically obtained envelopes (red crosses) and the analytical envelopes
(blue curve) on a semi-log scale for carbon and copper, respectively. For carbon,
the plane wave has a wavelength of 1.38 x 1072 inside the material. For copper,
the plane wave has a wavelength of 1.3 x 10~ 7 inside the material. Courtesy of
[29].
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lowest time-to-solution for a desired level of accuracy even in
the presence of extremely stiff source terms. Fig. 12, from [28]
and [29], show the Log of the error versus the Log of the relative
time to solution for the second-, third-, and fourth-order ADER-
FVTD-based CED schemes. This figure documents data for the
decaying propagation of electromagnetic waves in copper from
Fig. 11(b). If low accuracies are acceptable, the second-order
(blue) or third-order (green) schemes are optimal. However,
if high accuracies are desired, the fourth-order scheme (red)
obtains the most accurate solution in the least possible time. In
this problem, the ADER time-stepping, with its very high-order
accurate and very stable treatment of stiff source terms, indeed
shows its strengths.

Finally, it is useful to show that the methods presented here
are extremely scalable. This is very timely, as PetaScale super-
computers have become relatively common, and the scientific
community is gearing up for the advent of ExaScale super-
computers. Fig. 13 shows a weak scaling study using the first

author’s RIEMANN code from [81] on NCSA’s Blue Waters
system. The dots show data points. The black line shows an
ideal speedup. The red line is a best fit to our data. The code
scales with almost perfect scalability. While the results shown
are for a constraint-preserving MHD code, it shares all the same
algorithmic and data structures as a constraint-preserving CED
code. As a result, the CED algorithms presented in this article
are expected to have similar scalability.

VIII. CONCLUSION

In this article, which is partially a novel synthesis and partially
areview, a synoptic view of the state of the art in emerging high
order FVTD and DGTD methods was provided. These methods
were invented by the first author within the context of numerical
MHD, which shares the same Yee-type mesh structure as FDTD
schemes for CED. The methods were intended to be the closest
cousins of FDTD methods, in that they preserved all the same
global constraints that are intrinsic to FDTD. The synthesis
presented here was absolutely novel and had never before been
affected.

The major building blocks that go into these methods were
reviewed. The reader has also been pointed to the original source
literature where the first author invented a majority of these
methods. New perspectives were presented on the material that
was reviewed here, so that even those who know the literature
may never have seen it presented from the present perspective.

The first major building block consisted of constraint-
preserving reconstruction. This ensures that the scheme starts
with facial primal fields, just as in FDTD. However, in globally
constraint-preserving FVTD and DGTD methods, the same
control volume was used instead of the pair of staggered control
volumes in FDTD. The use of facial primal fields naturally
leads to the same Yee-type arrangement of variables that was
used in FDTD; although the collocation of primal variables
was different. However, now a high-order constraint-preserving
reconstruction was used so that the entire vector fields for electric
displacement and magnetic induction were reconstructed over
the entire volume of the mesh. This was a crucial step for going to
higher orders because it ensured that the entire governing equa-
tions were applicable at all locations of the computational mesh.
Further, these advances were applicable to both structured and
unstructured meshes, including curvilinear meshes that may be
isoparametrically mapped. This extends the geometric flexibility
of the methods presented here.

Once the constraint-preserving vector fields for electric dis-
placement and magnetic induction were available at all locations
on the mesh, the electric field and magnetic field at the grid
cell edges are needed. This was completed with the help of a
multidimensional Riemann solver. The intuitive ideas behind the
multidimensional Riemann solver were explained in some detail,
and further pointers to the original literature were given. As
before, the multidimensional Riemann solver technology may
be extended to structured and unstructured meshes, including
meshes with curved boundaries. This extends the geometric
flexibility of the methods presented here.
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The globally constraint-preserving DGTD method was de-
scribed in some detail. This included a fundamental paradigm
shift in the development of DG methods. While previous DG
methods were based on applying identities involving Gauss’
law in weak form to the volumetric elements of a mesh, the
newer methods were based on applying identities involving
Stokes’ law in weak form to the facial elements of the mesh.
This fundamental paradigm shift was crucial for obtaining the
globally constraint-preserving DGTD methods in this article.
Moreover, the lowest-order terms in the DGTD methods fol-
lowed the same style of constraint-preserving update that was
present in FDTD. Thus a strong connection between the globally
constraint-preserving DGTD methods and the original FDTD
was established. Pointers to the original literature were also
provided.

Time-stepping schemes were then discussed including ADER
schemes and other modern schemes. By matching the order of
accuracy in the spatial and temporal updates, very high-order
space-time methods were shown for CED. The higher order
methods in this family of methods were shown to be especially
proficient at minimizing, even virtually eliminating, numerical
dispersion, and dissipation errors while conserving electromag-
netic energy.

With the help of a couple of rigorous problems, the new
globally constraint-preserving FVTD and DGTD methods were
shown to meet their design accuracies. The subcell resolving
abilities of the higher order DGTD methods were documented
in considerable detail. The higher order methods were also
demonstrated to offer the shortest time to solution, especially
when very high accuracies are demanded. The exceptional scal-
ability of these methods on modern-day supercomputers was
also documented.
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