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Abstract: Segmenting unseen object instances in cluttered environments is an
important capability that robots need when functioning in unstructured environ-
ments. While previous methods have exhibited promising results, they still tend to
provide incorrect results in highly cluttered scenes. We postulate that a network
architecture that encodes relations between objects at a high-level can be beneficial.
Thus, in this work, we propose a novel framework that refines the output of such
methods by utilizing a graph-based representation of instance masks. We train
deep networks capable of sampling smart perturbations to the segmentations, and a
graph neural network, which can encode relations between objects, to evaluate the
perturbed segmentations. Our proposed method is orthogonal to previous works
and achieves state-of-the-art performance when combined with them. We demon-
strate an application that uses uncertainty estimates generated by our method to
guide a manipulator, leading to efficient understanding of cluttered scenes. Code,
models, and video can be found at https://github.com/chrisdxie/rice.
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Figure 1: High-level overview of our proposed method. Given an initial segmentation, we encode it
as a graph, sample perturbations, then score the resulting segmentation graphs. The highest scoring
graph and/or contour uncertainty is output. Best viewed in color and zoomed in.

1 Introduction

Perception lies at the core of the ability of a robot to function in an unstructured environment. A
critical component of such a perception system is its capability to solve Unseen Object Instance
Segmentation (UOIS), as it is infeasible to assume all possible objects have been seen in a training
phase. Proper segmentation of these unseen instances can lead a better understanding of the scene,
which can then be exploited by algorithms such as manipulation [1, 2, 3] and re-arrangement [4].

Many methods for UOIS directly predict segments from raw sensory input such as RGB and/or depth
images. While recent methods have shown strong results for this problem [5, 6, 7, 8], they still tend
to fail when dealing with highly cluttered scenes, which are common in manipulation scenarios.
A natural thought is that an architecture with relational reasoning can benefit the predictions. For
example, it can potentially learn to recognize common object configurations (e.g. realizing that one
object is stacked on top of another). While relational inductive biases have shown to be useful for
problems such as scene graph prediction [9, 10, 11], it remains to be seen whether it can be useful in
identifying objects in dense clutter. In this work, we investigate the use of graph neural networks,
which can encode relations between objects, for segmenting densely cluttered unseen objects.
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In this paper, we propose a novel method for Refining Instance masks in Cluttered Environments,
named RICE. Given an initial instance segmentation of unseen objects, we encode it into a segmen-
tation graph, where individual masks are encoded as nodes and connected with edges when they
are close in pixel space. Starting from this initial graph, we build a tree of sampled segmentation
graphs by perturbing the leaves in a CEM-style (Cross Entropy Method) framework, where example
perturbations include splitting and merging. We learn Sampling Operation Networks (SO-Nets) that
sample efficient and smart perturbations that generally lead to better segmentations. The perturbed
segmentation graphs are scored with a graph neural network, denoted Segmentation Graph Scoring
Network (SGS-Net). Finally, we can return the highest scoring segmentation or compute contour
uncertainties, depending on the application. Figure 1 provides a high-level illustration of our method.

RICE is able to improve the results of existing techniques to deliver state-of-the-art performance
for UOIS. An investigatory analysis reveals that applying SGS-Net on top of the SO-Nets results
in more accurate and consistent predictions. In particular, we find that SGS-Net learns to rank
segmentation graphs better than SO-Nets alone. Additionally, we provide a proof-of-concept efficient
scene understanding application that utilizes uncertainties output by RICE to guide a manipulator.

In summary, our main contributions are: 1) We propose a novel framework that utilizes a new
graph-based representation of instance segmentation masks in cluttered scenes, where we learn
deep networks capable of suggesting smart perturbations and scoring of the graphs. 2) Our method
achieves state-of-the-art results for UOIS when combined with previous methods. 3) We demonstrate
that uncertainty outputs from our method can be used to perform efficient scene understanding.

2 Related Work

Instance Segmentation Traditional methods for 2D instance segmentation include GraphCuts [12],
Connected Components [13], and LCCP [14]. Recently, learning-based approaches have provided
more semantic solutions. For example, top-down solutions combine segmentation with object
proposals in the form of bounding boxes [7, 15, 16, 17]. Mask R-CNN [7] predicts a foreground
mask for each proposal produced by its region proposal network (RPN). However, when bounding
boxes contain multiple objects (e.g. cluttered robot manipulation setups), the true instance mask is
ambiguous and these methods struggle. Recently, a few methods have investigated bottom-up methods
which assign pixels to object instances [18, 19, 20, 21, 22]. Some examples of this include contrastive
losses [18] and unrolling mean shift clustering as a neural network to learn pixel embeddings [22].

Most of the afore-mentioned algorithms provide instance masks with category-level semantic labels,
which do not generalize to unseen objects in novel categories. Class-agnostic methods [23, 24, 25, 26]
and motion segmentation [27, 28, 29] methods have been investigated for this problem. In robotic
perception, Xie et al. [30] proposed to separate the processing of depth and RGB in order to generalize
their method from sim-to-real settings and provide sharp masks. Their follow-on work [5] proposed a
3D voting method to overcome the limitations of their earlier 2D method. Xiang et al. [6] showed that
training a network on RGB-D with simulated data and a simple contrastive loss [18] can demonstrate
strong results for this problem. While these methods show promise, they are not perfect and still
admit mistakes in cluttered scenes, which can hamper downstream robot tasks that rely on such
perception. Our method is orthogonal to these works, and is designed to refine their outputs by
sampling perturbations to result in better instance segmentations in the cluttered environments.

Graph Neural Networks Graph neural networks (GNN) in vision and robotics have recently
become a useful tool for learning relational representations. They have found applications in many
standard computer vision tasks such as image classification [31, 32], object detection [33], semantic
segmentation [34], and question answering [35]. GNNs have also been used to perform “scene
graph generation”, which requires predicting not just object detections, but also the relations between
the objects [9, 10, 11]. The resulting scene graphs have been used for applications such as image
retrieval [36]. GNNs have also been used to learn object dynamics, properties, and relations for
applications such as differential physics engines [37, 38]. Our proposed work represents instance
segmentation masks as graphs and utilizes this architecture in order to refine the predicted masks.
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3 Method

Our method, RICE, is designed to Refine Instance masks of unseen objects in Cluttered Environ-
ments. Given an initial segmentation mask S ∈ NH×W of unseen objects, we first encode this
as a segmentation graph GS , which is described in Section 3.1. Then, in Section 3.2, we build a
tree T of sampled segmentation graphs by perturbing the leaves in a CEM-style [39] framework.
Section 3.3 details the sampling operations, which are parameterized by our Sampling Operation
Networks (SO-Nets). Each candidate graph (tree node) is scored by a GNN named Segmentation
Graph Scoring Network (SGS-Net), introduced in Section 3.4. Finally, the highest scoring graph in T
and/or contour uncertainties are returned. Figure 1 provides a high-level illustration of RICE, and
pseudocode can be found in the Supplement (Algorithm 2).

3.1 Node Encoder
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Figure 2: Given an initial instance segmentation
mask (left), our segmentation graph representa-
tion encodes each individual mask as a graph node
(red dots) with a corresponding feature vector vi
(yellow bar) output by the Node Encoder (right).
Edges (blue lines) connect nearby masks.

Given a single instance mask Si ∈ {0, 1}H×W
for instance i, we crop the RGB image I ∈
RH×W×3, an organized point cloud D ∈
RH×W×3 (computed by backprojecting a depth
image with camera intrinsics), and the mask Si
with some padding for context. We then resize
the crops to h× w and feed these into a multi-
stream encoder network which we denote as the
Node Encoder. This network applies a separate
convolutional neural network (CNN) to each
input, and then fuses the flattened outputs to
provide a feature vector vi for this node. See
Figure 2 for a visual illustration of the network.
Note that we also encode the background mask
as a node in the graph. This gives the segmenta-
tion graph GS = (V,E), where each vi ∈ V corresponds to an individual instance mask, and nodes
are connected with undirected edges e = (i, j) ∈ E if their set distance is less than a threshold.

3.2 Building the Sample Tree

Our sample tree-building procedure operates in a CEM-style fashion. CEM [39] is an iterative
sampling-based optimization algorithm that updates its sampling distribution based on an “elite set”
of the top k (or top percentile) samples. For more details, we refer the reader to [39]. Following this
terminology, our elite set consists of the leaves of our sample tree T , each of which are guaranteed
to be better with respect to our proxy objective function, SGS-Net. Then, the sampling distribution
is implicitly defined by the SO-Nets; while we cannot explicitly write out the distribution, we can
certainly sample from it with our sampling operations described in Section 3.3.

Our sample tree T starts off with the root GS . We expand the tree from the leaves with K expansion
iterations. For each expansion iteration, we iterate through the current leaves of T . For a leaf G, we
randomly choose a sample operation from Section 3.3 and apply it to G to obtain candidate graph
G′. We then compare the scores sG, sG′ output by SGS-Net, and add G′ to T as a child of G if
sG′ > sG. Thus, any leaf of T is guaranteed to be at least as good as the root GS w.r.t. our proxy
objective function SGS-Net. We apply this procedure B times for G, such that each tree node can
have a maximum of B children. Thus, B is a branching factor. Finally, due to constraints of limited
GPU memory, we exit the process in an anytime fashion whenever we exceed a budget of maximum
graph nodes and/or graph edges (not to be confused with tree nodes/edges). See the Supplement for
pseudocode (Algorithm 2) and an example of the sample tree-building procedure (Figure 12).

It is important to note that while we utilize our learned SO-Nets and SGS-Net to build the sample
tree T , they are applied in different manners (although they are trained on the same dataset). In order
to add a candidate graph to the tree, they must both agree in the sense that the perturbation must
be suggested via an SO-Net and SGS-Net must approve of the candidate graph via its score. This
redundancy offers a level of robustness, Section 4.4 shows that the combination of these leads to
more accurate performance with lower variance.
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(a) Split (b) Merge (c) Delete (d) Add

Figure 3: We show real-world examples of the sampling operations and how they can refine the
original segmentation. Best viewed in color on a computer screen and zoomed in.

3.3 Sampling Operations

We consider four sampling operations: 1) splitting, 2) merging, 3) deleting, and 4) adding. However,
randomly performing these operations leads to inefficient samples which wastes computation time
and memory. For example, it is not clear how to split or add an instance mask randomly such that
it may potentially result in a better segmentation. Thus, we introduce two networks for these four
operations, SplitNet and DeleteNet, which comprise our SO-Nets. They are learned to suggest smart
perturbations to bias the sampling towards better graphs, lowering the amount of samples needed in
order to favorably refine the segmentation. Examples of each operation can be found in Figure 3.

Split It is not clear how to randomly split a mask such that it provides an effective split. For
example, a naive thing to do is to sample a straight line to split the mask, however in many cases
this will not result in a reasonable split (see Figure 3a for an example). Thus, we propose to learn a
deep network denoted SplitNet to handle this. SplitNet takes the output of the Node Encoder (before
flattening), fuses them with concatenation followed by a convolution, then passes them through a
single decoder with skip connections. Essentially it is a multi-stream encoder-decoder U-Net [40]
architecture, much like Y-Net [27], except that it has three streams for RGB, depth, and the mask. The
output of SplitNet is a pixel-dense probability map pi ∈ [0, 1]h×w of split-able object boundaries. To
sample a split for instance mask Si, we first sample two end points on the contour of the original mask
Si, and calculate the highest probability path from the end points that travels through pi, resulting
in a trajectory τ = {(ut, vt)}Li

t=1 of length Li. We score the split with sτ = 1
Li

∑
t pi[ut, vt] ∈ R,

which is the average probability along the sampled path. More details can be found in the Supplement
(Section A.2).

Merge We exploit the fact that merging is the opposite of splitting and adapt SplitNet for this
operation. For each pair (i, j) of neighboring masks, we take their union Sij and pass it through
SplitNet to get pij . Note that we do not consider merging disjoint masks that may belong to the
same instance, which is a limitation of this work. To compute the merge score mij , we first compute
the union of the boundaries of Si and Sj , denoted Bij ∈ {0, 1}h×w. Then, we calculate the merge
score as mij = 1− (pij �Bij/(1ᵀpij1)) where � is element-wise multiplication, 1 is a vector of
ones. This is essentially a weighted average of Bij with weights pij .This score indicates how likely
SplitNet thinks Si and Sj correspond to different objects. Figure 3b shows an ideal merge operation.

Delete We design a network, DeleteNet, to provide delete scores di ∈ R for every instance (graph
node) i. This network is also built on top of the Node Encoder: it computes the difference vi − vbg ,
where vbg is the feature vector for the background node output by the Node Encoder. This difference
is then provided as input to a multi-layer perceptron (MLP) which outputs a scalar di. See Figure 3c
for an example of how DeleteNet can help remove false positives from the segmentation.

Add Similarly to merging, we can exploit the fact that adding is the opposite of deleting. Given a
candidate mask SN+1 to add to the graph, we can use DeleteNet to compute its delete score dN+1. If
dN+1 is below a threshold, we successfully add the mask to the graph. However, the question remains
of how to generate such candidate masks. Given an external foreground mask F ∈ {0, 1}H×W
(provided by UOIS-Net-3D [5]), we run connected components on F \{∪iSi}, and use the discovered
components as potential new masks. A successful addition operation can be seen in Figure 3d.
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Figure 4: A high-level illustration of our Segmentation Graph Scoring Network (SGS-Net). It is
composed of a Node Encoder (see Figure 2), multiple Residual GraphNet Layers, and an output layer.
We borrowed elements from Figure 3 of Battaglia et al. [41].

3.4 Segmentation Graph Scoring Network

While our sample operations provide efficient samples that typically lead to better segmentation
graphs, they can also suggest samples that worsen the segmentation. Thus, we learn SGS-Net
which acts as a proxy for the objective function in the CEM framework. Our proposed SGS-Net
learns to score a segmentation graph by considering the fused feature vectors vi in context of their
neighboring graph nodes (masks). We posit that this context will aid SGS-Net in predicting whether
the perturbations improve the segmentation. For example, it can potentially learn to recognize
common object configurations from the training set, and score such configurations higher.

A high-level illustration of SGS-Net can be found in Figure 4. The initial node features v
(0)
i are

given by the Node Encoder, and we obtain initial edge features e(0)ij by running the Node Encoder on
all neighboring union masks Sij . Then, we pass them through multiple Residual GraphNet Layers
(RGLs), which are essentially GraphNet Layers [41] with a residual connection. We refer readers to
Battaglia et al. [41] for details of GraphNet Layers, and also provide a full mathematical specification
of RGLs in the Supplement (Section B) for completeness. The output of SGS-Net is a scalar score in
[0, 1].

3.5 Training Procedure

For SplitNet, we apply a weighted binary cross entropy (BCE) loss to the probability map p: `split =∑
u wu `bce (pu, p̂u) where u ranges over pixels, p̂ ∈ {0, 1}h×w is ground truth boundary, and `bce

is the binary cross entropy loss. The weight wu is inversely proportional to the number of pixels with
labels equal to p̂u. DeleteNet is also trained with standard BCE loss. SGS-Net is trained with `bce to
regress to .8F + .2F@.75, where F is the Overlap F-measure [30] and F@.75 is the Overlap F@.75
measure [42]. The latter measures the percentage of correctly segmented instances. Thus, SGS-Net
learns to predict a score based on the number of correctly identified pixels and instances. Note that
this regression problem is very difficult to solve. However, the scores do not actually matter as long
as the relative scoring is correct, since building the sample tree relies only on this (Section 3.2). In
Section 4.5 we show that while SGS-Net may not solve the regression problem well, it learns to
rank graphs accurately. Further training and implementation details can be found in the Supplement
(Section C).

4 Experiments

4.1 Encoding RGB and Modality Tuning

We use ResNet50 [43] with Feature Pyramid Networks [44] (FPN) to encode RGB images before
passing them to the Node Encoder. However, since we are training with (a more cluttered version
of) the non-photorealistic synthetic dataset from Xie et al. [30], we perform modality tuning [45],
where we fine-tune earlier convolutional layers of ResNet50 during training, and use the COCO [46]
pretrained weights during inference. For all experiments, we modality tune the conv1 and conv2_1
blocks of ResNet. We provide an experiment in the Supplement (Section E.1) that shows this setting
is optimal.
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Figure 5: Applying RICE to refine results from state-of-the-art instance segmentation methods leads
to improved performance across the board. Note that standard deviation bars are shown, but are very
tight and difficult to see.

4.2 Datasets and Metrics

We evaluate our method on two real-world datasets of challenging cluttered tabletop scenes: OCID
[47] and OSD [48], which have 2346 images of semi-automatically constructed labels and 111
manually labeled images, respectively. Our SO-Nets and SGS-Net are trained on a more cluttered
version of the synthetic Tabletop Object Dataset (TOD) [30], where each scene has anywhere between
20 and 30 ShapeNet [49] objects. We use 20k scenes in total, with 5 images per scene.

Xie et al. [30] introduced the Overlap P/R/F and Boundary P/R/F measures for the problem of UOIS.
However, these metrics do not weight objects equally; they are dependent on the size and larger
objects tend to dominate the metrics. Thus, we introduce a variation to these metrics that equally
weights the errors of individual objects regardless of their size. Given a Hungarian assignment A
between the predicted instance masks {Si}Ni=1 and the ground truth instance masks {Ŝj}Mj=1, we
compute our Object Size Normalized (OSN) P/R/F measures as follows:

Pn =

∑
(i,j)∈A

Pij

N
, Rn =

∑
(i,j)∈A

Rij

M
, Fn =

∑
(i,j)∈A

Fij

max(M,N)
, Fn@.75 =

∑
(i,j)∈A

1{Fij >= 0.75}

max(M,N)
,

where Pij , Rij , Fij are the precision, recall, and F-measure of Si, Ŝj . Note that the Fn@.75 penalizes
both false positive and false negative instances, as opposed to the normal F@.75, which does not
penalize false positives. Similarly to Xie et al. [30], we can apply the OSN metrics to the pixels and
boundaries, giving us Overlap and Boundary Pn/Rn/Fn measures. For comparison, we also show
results with the normal Overlap and Boundary P/R/F measures in the appendix.

We run each experiment 5 times and show means and standard deviations for all metrics.

4.3 SOTA Improvements

We demonstrate how RICE can improve upon predicted instance segmentations from state-of-the-art
methods. In particular, we apply it to the results of Mask R-CNN [7], PointGroup [8], UOIS-Net-
3D [5], and UCN [6]. We employ RICE by returning the best segmentation from the leaves as scored
by SGS-Net. For brevity, we only show Overlap Fn, Boundary Fn, F@.75, and Fn@.75 in Figure 5
on both OCID and OSD. The light orange bars show the additional performance that RICE provides
over the output of the methods. Standard deviations are shown as error bars, but are in general
very narrow, showing that our method provides consistent results despite its stochasticity. RICE
provides substantial improvements to all methods. The largest gains occur in Mask R-CNN and
PointGroup, with 21.6% and 32.3% relative gain in Fn@.75 on OCID, respectively. Additionally, on
the already strong results from UOIS-Net-3D and UCN, RICE achieves 11.0% and 4.0% relative gain
in Fn@.75 on OCID, respectively. These results are similar on OSD, with the gains being slightly
less pronounced, which we believe is due to OSD being a smaller dataset with less clutter. Note
that applying RICE increases both F@.75 and Fn@.75, indicating that not only is it capturing the
object identities correctly, it is not simultaneously predicting more instances (false positives). In the
appendix, we show full results for all metrics including Pn, Rn, and normal P/R/F metrics.
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SO-Nets SGS-Net Overlap Boundary
Pn Rn Fn Pn Rn Fn F@0.75 Fn@0.75

7 7 85.1 (–) 83.0 (–) 77.8 (–) 84.6 (–) 76.5 (–) 75.0 (–) 78.2 (–) 77.0 (–)
3 7 84.7 (1.23) 89.4 (0.19) 82.3 (1.09) 82.7 (1.37) 82.8 (0.19) 78.7 (1.10) 89.0 (0.26) 84.2 (1.26)
3 3 86.3 (0.03) 89.1 (0.01) 83.6 (0.05) 84.5 (0.04) 82.5 (0.04) 80.0 (0.04) 88.5 (0.02) 85.5 (0.05)

Table 1: Ablation to test the utility of SO-Nets and SGS-Net on OCID [47] starting from UOIS-Net-
3D [5] masks. Only using the sample operator networks (SO-Nets) in an iterative sampling scheme
already provides an increase in performance, showing that the smart samples are generally improving
the initial segmentations. However, the standard deviations (shown in parentheses) are relatively high.
Adding in SGS-Net boosts performance while drastically lowering the variance, demonstrating the
efficacy of SGS-Net in consistently filtering out bad suggestions by the SO-Nets.

4.4 Ablation Study

We aim to answer two questions with this study: 1) how good are the samples suggested by our
SO-Nets, and 2) to what degree does SGS-Net increase performance and robustness? We study these
questions on the larger OCID.

Since the SO-Nets alone do not provide scores of the perturbed segmentation graphs, we structure
our ablation such that this is not needed in order to answer 1). Our SO-Nets are trained to provide
smart perturbations that are closer to the ground truth segmentation, so every sample is supposed
to be better than the original graph. With this insight, we design an experiment where we run
RICE with branch factor B = 1 and K = 5 iterations, always add the candidate graph to the tree
without consulting SGS-Net, and return the final graph. Essentially, this can be seen as an iterative
segmentation graph refinement procedure where the sampled graph should be better than the previous
in every iteration. Starting from initial masks provided by UOIS-Net-3D [5], we see in Table 1 that
applying this iterative sampling scheme with SO-Nets only provides better results on almost all
metrics than without. However, adding SGS-Net back into the procedure results in better Overlap Fn,
Boundary Fn, and Fn@.75, while significantly reducing the standard deviation of the results by two
orders of magnitude. This demonstrates that having SGS-Net in RICE delivers not only more accurate
performance, but also more robust performance with relatively small variance, which answers 2).
Note that F@.75 is slightly lower with Fn@.75 higher, indicating that SO-Nets are suggesting more
samples that better capture the objects, but are suggesting too many instance segments.

4.5 SGS-Net Ranking

GT Score: 0.820 GT Score: 0.848

Figure 6: Can you spot the differences
between the segmentations?

Figure 6 shows an example of how difficult scoring the
segmentations graphs is; the two slightly different segmen-
tations have a significant difference in their ground truth
scores. In fact, SGS-Net does a poor job at scoring the
graphs, with a mean absolute error (MAE) of 0.184 and
even higher standard deviation shown in Table 2. These
values are high given that the scores are in the range [0, 1].
Then, this begs the question, why does SGS-Net work
well within our proposed RICE framework? Recall that
the score magnitudes do not matter, only the relative scoring (Section 3.2). We claim that SGS-Net
learns to rank the graphs accurately, and design an experiment to test this hypothesis.

MAE nDCG
Minimum – 0.844 (0.196)
SO-Nets – 0.944 (0.098)
SGS-Net 0.184 (0.212) 0.952 (0.095)

Table 2: Ranking study on OCID and OSD.

We leverage the normalized Discounted Cumula-
tive Gain (nDCG) [50] which is a popular ranking
metric in the information retrieval community. The
DCG is computed as

∑p
i=1

2reli−1
log2(i+1) where reli is

the numerical relevance of the item at position
i (higher is better). This essentially computes a
weighted sum of the relevance with a discount fac-
tor for further items, which places more emphasis on the high-ranking predictions. The normalized
version divides DCG by the “ideal” version, i.e. the DCG of the correct ranking. This results in
nDCG ∈ [0, 1] with higher being better. We compute nDCG of the ranking of the iterative sampling
experiment in Section 4.4, with relevance values in {0, ...,K}. The ranking for SO-Nets is given
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Figure 7: We demonstrate successful refinements (left, green box) for each of the sampling operations.
Failure modes (right, red box) include textured objects and non-neighboring masks that belong to the
same object. Best viewed in color and zoomed in on a computer screen.

by the order of the predicted graphs, and we use SGS-Net scores to compute its ranking/relevance.
We also compute the nDCG of the worst ranking, denoted “minimum”. In Table 2, we see that both
SO-Nets and SGS-Net perform significantly better than the worst ranking. SGS-Net provides better
ranking than SO-Nets with slightly lower variance, which helps to explain its effectiveness in RICE.

4.6 Visualizing Refinements

In the left side of Figure 7 (green box), we qualitatively demonstrate successful refinements from
applying RICE to instance masks provided by state-of-the-art methods. The first column shows an
example where many nearby objects are under-segmented. Indeed, RICE manages to find all of the
necessary splits except for one. In general, RICE is quite adept at splitting under-segmented instance
masks. This is quantitatively confirmed in an additional ablation in the Supplement (Section E.2) that
studies the usefulness of each sampling operation. Column two shows an initial mask that is fixed
with a merge operation. Column three shows a false positive mask on the textured background, which
is suppressed by RICE’s deletion sampling operation. In the fourth column, the initial mask is missing
quite a few objects, and RICE is able to not only recover them but also correctly segment them,
resulting in an almost perfect instance segmentation. In the last column, the bottom left segment is
bleeding into a neighboring segment, which is fixed through multiple perturbations (i.e. split, then
merge).

4.7 Failures and Limitations

In the right side of Figure 7 (red box), we discuss some failure modes and limitations. The first
column demonstrates a failure mode where RICE tends to over-segment objects with a lot of texture
(e.g. cereal box). We believe that this is due to TOD lacking texture on many of its objects [5]. The
second column shows a limitation: since RICE only considers merging neighboring masks, it cannot
merge non-neighboring masks that belong to the same object. RICE does nothing and the book is
still incorrectly segmented in two pieces. We leave this as an interesting avenue for future work.

4.8 Guiding a Manipulator with Contour Uncertainties for Efficient Scene Understanding

Fully segmenting and understanding a scene of cluttered objects is necessary for various manipulation
tasks, such as counting objects or re-arranging and sorting them. One way for doing this is to actively
singulate each object [51]. However, such an approach can be extremely inefficient. Here we show
how contour uncertainties extracted from RICE can help to solve this problem with potentially far
less interactions. Specifically, we extract contour uncertainties by computing the standard deviation
of the mask contours of each leaf graph. These uncertainties let us distinguish between objects that
are already confidently segmented and those that require physical interaction to resolve segmentation
uncertainty. We grasp [52] any object that has uncertain contours in order to determine its correct
segmentation, and repeat this until no more uncertainty persists. Thus, interactions are only required
to resolve the uncertain portions of the scene, which can potentially be much less than the number of
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UCN Masks

Contour

Uncertainty

Interactions t = 0 t = 1 t = 2

Figure 8: UCN masks [6] (top row) and contour uncertainties from RICE (bottom row, uncertainties
are shown in red with average contours in green) in a trial of our scene understanding experiment.
After grasping the milk carton and red cup, the scene is segmented with full certainty, indicating that
the scene is fully understood. Thus, the algorithm terminates without having to singulate each object.

objects, leading to a more efficient scene understanding method. For example, in Figure 8, only two
grasps are required to fully understand the scene. See the Supplemental video for more results.

5 Conclusion and Future Work

We have proposed a novel framework that utilizes a graph-based representation of instance segmenta-
tion masks. It incorporates deep networks capable of sampling smart perturbations, and a graph neural
network that exploits relational inductive biases. Our experimental analysis revealed insight into why
our method achieves state-of-the-art performance when combined with previous methods. We further
demonstrated that our uncertainty outputs can be utilized to perform efficient scene understanding.

A main limitation of our work is the computational burden; the algorithm runs at 10-15 seconds per
frame, depending on the expansion of the sample tree. Additionally, it is GPU-memory intensive as
the sample tree must be stored in GPU memory. Future work will explore how to make the method
more computationally efficient, along with solving the inherent limitations mentioned in Section 4.7.
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Algorithm 1 Sampling a Split

Require: Segmentation mask S ∈ {0, 1}h×w, SplitNet output p ∈ [0, 1]h×w, boundary threshold ν.

1: Compute contour of S.
2: Threshold p by ν, and compute the connected components. Create an image p̃ ∈ Zh×w where p̃i

is the size (in pixels) of the component at pi for pixel i.
3: Compute contour probabilities for each contour pixel by weighted average of p̃ with Gaussian

weights.
4: Sample start and end points on contour from contour probabilities.
5: Compute highest probability path from start to end through p, resulting in trajectory τ =
{(ut, vt)}Lt=1.

6: Compute score sτ = 1
Li

∑
t pi[ut, vt].

7: return τ, sτ

A Sampling Operation Networks details

A.1 Architecture Details

Node Encoder The Node Encoder consists of three separate CNN encoders, which consume RGB
features (output by Resnet50+FPN [43, 44]), a backprojected XYZ point cloud (from a depth map
and known camera intrinsics), and the mask, respectively. Each CNN encoder has 3 blocks of 2
3x3 convolutions followed by a 2x2 max pooling for resolution reduction. Lastly, there is a 7th

convolution layer. Each convolution is immediately followed by a GroupNorm layer [53] and ReLU.
The resulting features are 2x2 averaged pooled, flattened, then put through an MLP with 2 hidden
layers of dimension 1024 and 512 and an output dimension of 128 (except for SplitNet, which directly
consumes the fully convolutional output after the 7th conv layer).

SplitNet SplitNet builds off of the multi-stream CNN encoders from the Node Encoder. Given the
outputs after the 7th conv layer of the Node Enocder, these are then concatenated and passed through
another conv layer for fusion. Next, this fused output is passed to a U-Net [40] style decoder. Skip
connections are fed from the multi-stream CNN encoders to the decoder. Essentially, the overall
architecture (including the Node Encoder) is a multi-stream encoder-decoder UNet architecture. This
is similar to Y-Net [27], except that it has three streams instead of two. Weights of the Node Encoder
(multi-stream encoders) are shared with DeleteNet.

DeleteNet DeleteNet also builds off of the Node Encoder (off of the MLP outputs). In particular,
for each node, it computes the difference between the Node Encoder output vi − vbg , where vbg is
the Node Encoder output of the background node. This difference is then passed through an MLP
with 2 hidden layers of dimension 512 and output dimension of 1. The score is passed through a
sigmoid to be in the range [0, 1]. Weights of the Node Encoder are shared with SplitNet.

A.2 Sampling a Split from SplitNet

We provide pseudocode of how to sample a split of mask S ∈ {0, 1}h×w given the output of SplitNet,
which is a pixel-dense probability map p ∈ [0, 1]h×w in Algorithm 1. At a high level, we essentially
compute a probability distribution over the contour of S by seeing which pixels on the contour is
close to split-able boundaries given by p (more weight is given to split-able boundaries that are large
components, since it is likely to find a path through that boundary). Then, start and end points are
sampled and the lowest cost (where cost is 1 - p) is computed, scored and returned.

B Segmentation Graph Scoring Network Details

A high-level illustration of SGS-Net can be found in Figure 4. The initial node features v
(0)
i are

given by the Node Encoder, and we obtain initial edge features e(0)ij by running the Node Encoder on
all neighboring union masks Sij . Then, we run multiple Residual GraphNet Layers (RGLs). Our
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Residual GraphNet Layer is an adaptation of a GraphNet Layer [41] with residual connections. Our
RGL first applies an edge update:

e
(l+1)
ij = e

(l)
ij + φ(l)e

(
v
(l)
i ,v

(l)
j , e

(l)
ij

)
, (1)

where φ(l)e is an MLP, and l describes the layer depth. This is followed by a node update:

E(l)i =
{
φ(l)v1

(
e
(l+1)
ij ,v

(l)
j

)
: (i, j) ∈ E

}
(2)

v
(l+1)
i = v

(l)
i + φ(l)v2

(
E(l)i ,v

(l)
i

)
, (3)

where A is the mean of all elements in the set A, and φ(l)v1 , φ
(l)
v2 are MLPs. We additionaly apply

ReLUs after the residual connections. After passing through L levels of RGLs, we end up with the
set of node and edge feature vectors V =

{
v
(L)
i

}
, E =

{
e
(L)
ij

}
. We pass these through an output

layer that aggregates these features:

sG = σ
(
φo
(
V, E

))
∈ [0, 1], (4)

where φo is yet another MLP and sG is the predicted graph score for segmentation graph G, and σ is
the sigmoid function.

C Implementation Details

Our Node Encoder is shared amongst all of the networks, including SplitNet, DeleteNet, and SGS-Net.
We first jointly train the SO-Nets for 200k iterations, with one segmentation graph per network per
iteration (the batch sizes is the number of instances in the segmentation graph) so that the Node
Encoder contains useful information for both operations. Next, we hold the Node Encoder fixed while
we train SGS-Net for 100k iterations. To train SGS-Net, we take an initial segmentation and perturb
it with the four proposed sampling operations and compute their ground truth scores. However, we do
not use the SO-Nets, instead we randomly split masks with sampled lines, merge neighboring masks,
delete masks, and add masks in the same fashion as Xie et al. [30]. Modality tuning is performed
during training of the SO-Nets, and held fixed during SGS-Net training.

All images have resolution H = 480,W = 640. For our networks, we crop and resize the image,
depth, and masks to h = w = 64. All training procedures use Adam [54] with an initial learning
rate of 1e-4. We use K = 3 sample tree expansion iterations with a branching factor B = 3. Max
nodes and edges are set to mn = 100,me = 300 during training, and mn = 350,me = 1750 during
inference. Undirected edges are handled by including both (i, j) and (j, i) as directed edges in the
graph. For each segmentation graph, edges are connected between nodes if their corresponding masks
are within 10 pixels in set distance. Additionally, when sampling a candidate graph, we first randomly
choose a sampling operation, compute all possible perturbation scores (e.g. split scores sτ for each
mask), and randomly select 3 of these perturbations that have a score of 0.7 or higher. This gives the
opportunity to explore more segmentations within the allotted budget. All experiments are trained
and evaluated on a single NVIDIA RTX2080ti GPU.

D Pseudocode for Building the Sample Tree

We provide pseudocode for building the sample tree in Algorithm 2.

E Additional Experimental Results

E.1 Modality Tuning

Inspired by Aytar et al. [45], we perform an ablation to study how to best generalize from our non-
photorealistic dataset TOD to real-world data. Starting from a ResNet50 pre-trained on COCO [46],
we ablate over tuning the conv1 layer, the conv2_1, conv2_2, conv2_3 bottleneck building
blocks [43], or keeping ResNet fixed. The idea is that by fixing the rest of the layers, we can
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Algorithm 2 RICE

Require: Initial instance segmentation S, RGB image I , organized point cloud D.
1: Build GS with NodeEncoder applied to I,D, S
2: Initialize T = {GS}
3: for k ∈ [K] do
4: for G ∈ T .leaves() do
5: for b ∈ [B] do
6: Randomly choose a sampling operation and apply it to G to get candidate graph G′
7: Apply SGS-Net to obtain sG′ , sG
8: if sG′ > sG then
9: Add G′ to T as a child of G

10: end if
11: if T .exceeds_budget(mn,me) then
12: Return T
13: end if
14: end for
15: end for
16: end for
17: return Highest scoring graph in T and/or contour uncertainties

Figure 9: Modality tuning on OCID [47] and OSD [48] shows that tuning up to conv2_1 when
training on simulated data generalizes best to real data. Note that standard deviation bars are shown,
but are very tight and difficult to see.

encourage ResNet to learn the high level representation it has learned on COCO, on our simulated
dataset. Thus, our SO-Nets and SGS-Net will learn to consume this high-level representation to
provide their predictions. Then, during inference in the real-world, we resort back to the pre-trained
ResNet to extract that representation from real images. In Figure 9, we show the results of our
experiment. Interestingly, only modality-tuning conv1 leads a small dip in performance compared to
no tuning, while the optimal tuning for our scenario is to tune conv1 and conv2_1. For the rest of
this section, all networks will have been trained with this optimal setting.

E.2 Evaluating the Usefulness of Each Sampling Operation

We provide an ablation experiment where we test the efficacy of each sampling operation. In particular,
we test RICE while only using one sampling operation at a time, so that the sample tree is built only
by a particular operation, e.g. splitting. This allows us to determine which of the sampling operations
is most helpful in comparison to the initial instance segmentation method (e.g. UOIS-Net-3D [5],
UCN [6]).

We test Split only, Merge only, and Delete/Add only. Note that we group Delete and Add together
since the Add operation is essentially the Delete operation after extracting connected components
from an external foreground mask F (See Section 3.3). In Table 3, we show the results for F@.75 and
Fn@.75 metrics using UCN [6], UOIS-Net-3D [5], Mask R-CNN [7], and PointGroup [8] as initial
instance segmentation methods. We also show the percentage of increased performance with respect
to the increased performance when using all sampling operations in parentheses. Clearly, we see that
the split operation alone results in most of the performance gain compared to the full RICE method.
This indicates that all four initial instance segmentation methods tend to under-segment, which is a
common failure case in densely cluttered environments. UCN gains a lot from merging; the reason
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Initial Instance Split only Merge only Delete/Add only
Segmentation Method F@.75 Fn@0.75 F@.75 Fn@0.75 F@.75 Fn@0.75

UCN [6] 92.0 (100%) 87.2 (64.7%) 88.8 (-23.1%) 87.5 (73.5%) 89.5 (3.8%) 86.9 (55.9%)
UOIS-Net-3D [5] 88.5 (101%) 84.6 (91.6%) 78.4 (2.1%) 77.4 (4.8%) 78.3 (1.1%) 77.1 (1.2%)
Mask R-CNN [7] 79.7 (60.3%) 75.8 (82.0%) 66.0 (0.0%) 64.6 (1.4%) 69.1 (13.6%) 67.2 (20.1%)
PointGroup [8] 82.4 (86.1%) 77.4 (87.7%) 61.2 (1.6%) 60.7 (2.1%) 64.1 (13.1%) 63.1 (14.4%)

Table 3: Sampling Operation Ablation. We omit standard deviations as they are all less than 0.0005.
We show results on F@.75 and Fn@.75. In parentheses, we show relative gain compared to the full
RICE method (with all sampling operations).

for this is that a common failure case from their pixel-clustering procedure is that the boundaries of
the objects tend to be clustered as a separate object whichh results in over-segmentation. Merging
can easily solve this issue. Lastly, Mask R-CNN and PointGroup also benefit from delete/add, which
suggests that they are either predicting false positives and/or false negatives.

E.3 Full Results on P/R/F

We provide full results on all Object Size Normalized (OSN) metrics for OCID [47] and OSD [48]
in Figures 10a and 10b. For OCID, we can see increases in performance across all metrics in light
orange. When RICE underperforms the initial segmentation, we color the bar underneath as light
orange. On OSD, we can see that overlap Pn and boundary Pn are slightly worse than the initial
method, while the recall Rn and Fn measures are still higher.

Figures 11a and 11b show Overlap and Boundary P/R/F measures on OCID and OSD. They show
similar results to the OSN measures, but the numbers are higher. This suggests that common mistakes
for SOTA methods more commonly occur in smaller objects (investigations of failure cases from
Xie et al. [5], Xiang et al. [6] suggest this is the case). These numbers are directly comparable with
previously published works.

F More Details for: Guiding a Manipulator with Contour Uncertainties for
Efficient Scene Understanding

To extract contour uncertainties, we exploit the fact that RICE is a stochastic algorithm by design.
Each leaf is essentially a sampled trajectory of states (segmentations) and actions (perturbations)
from the initial segmentation S. These trajectories may have explored different parts of the state
space (e.g. perturbed different object masks in the scene). We compute the standard deviation of the
contours of each leaf graph in order to provide contour uncertainty estimates, which are shown in red
in Figure 8 and the Supplemental video. Additionally, we visualize the confident contours (which are
present in each leaf graph) in green.

The contour uncertainties depict certain segmentations that not all of the trajectories explored. It
reflects which objects RICE is not as confident about. If a mask Si in the initial segmentation is split
the same way in all leaf graphs, then RICE is confident that Si should be split, and there will be no
uncertainty. However, if Si is only split in some of the leaf graphs, then RICE is not as confident
about whether Si truly represents more than 1 object, and an interaction is required to resolve such
uncertainty. For example, in Trial 2 in the Supplemental video, the cup and the bowl it is on top of
(far left) are constantly under-segmented together by UCN [6]. RICE splits it correctly each time,
and there is no uncertainty about splitting that mask, as evidenced by the uncertainty contours.

We provide a short description of the grasping algorithm with pseudocode in Algorithm 3.

G Example Sample Tree

In Figure 12, we show an example of a sample tree with branch factor B = 2 and K = 2 expansion
iterations. We also visualize the ground truth score (.8F + .2F@.75) and the predicted score from
SGS-Net. Note that the SGS-Net scores improve as the graph node gets further away from the root. In
this particular example, SGS-Net would return the bottom left graph, which is also the most accurate
graph.
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(a) Results on OCID [47] using OSN metrics.

(b) Results on OSD [48] using OSN metrics.

Algorithm 3 Guiding a Manipulator with RICE
1: repeat
2: Get S from initial instance segmentation method (e.g. UCN [6])
3: Run RICE to get best masks and contour uncertainty
4: if Contour Uncertainty is present then
5: Sample a grasp with Sundermeyer et al. [52] from the uncertain masks, and execute it
6: end if
7: until No Contour Uncertainty
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(a) Results on OCID [47] using Overlap and Boundary P/R/F metrics as defined by Xie
et al. [30]. Note that the UCN [6] numbers are slightly different than in the published
paper, due to the authors finding a bug in the reporting code. This is the case for Xie et al.
[5] as well.

(b) Results on OSD [48] using Overlap and Boundary P/R/F metrics as defined by Xie
et al. [30].
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GT Score: 82.0

SGS-Net Score: 86.5

GT Score: 86.8

SGS-Net Score: 89.7

GT Score: 81.8

SGS-Net Score: 87.1

GT Score: 89.5

SGS-Net Score: 91.2

GT Score: 86.6

SGS-Net Score: 90.1

GT Score: 86.6

SGS-Net Score: 90.0

GT Score: 86.6

SGS-Net Score: 90.0

Split Add

Split Split SplitAdd

Figure 12: Example of a sample tree. Ground Truth and SGS-Net scores are shown, along with the
chosen sampling operations. In this example, all leaves improve upon the initial segmentation graph,
with the highest ranking graph also being the closest to the ground truth segmentation. Very similar
splits and adds are investigated in the leaf trajectories.
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