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Abstract
In this paper, we study zeroth-order algorithms
for stochastic minimax optimization problems
that are nonconvex in one variable and strongly-
concave in the other variable. Such minimax opti-
mization problems have attracted significant atten-
tion lately due to their applications in modern ma-
chine learning tasks. We design and analyze the
Zeroth-Order Stochastic Gradient Descent Ascent
(ZO-SGDA) algorithm, and provide improved re-
sults compared to existing works, in terms of or-
acle complexity. Next, we propose the Zeroth-
Order Stochastic Gradient Descent Multi-Step As-
cent (ZO-SGDMSA) algorithm that significantly
improves the oracle complexity of ZO-SGDA. Nu-
merical results are presented.

1. Introduction
Algorithms for solving optimization problems with only ac-
cess to noisy evaluations of the objective function are called
zeroth-order algorithms. Such zeroth-order optimization
algorithms have been studied for decades in the optimiza-
tion literature; see, for example, (Conn et al., 2009; Rios
& Sahinidis, 2013; Audet & Hare, 2017) for a detailed
overview of the existing approaches. Recently, the study
of zeroth-order optimization algorithms has gained signif-
icant attention also in the machine learning literature, due
to several motivating applications, for example, in design-
ing black-box attacks to deep neural networks (Chen et al.,
2017), hyperparameter tuning (Snoek et al., 2012), rein-
forcement learning (Moriarty et al., 1999; Salimans et al.,
2017) and bandit convex optimization (Bubeck et al., 2017).

1Department of Mathematics, University of California, Davis,
CA, USA 2Department of Statistics, University of California,
Davis, CA, USA 3Departments of Industrial and Systems Engi-
neering, University of Southern California, CA, USA. Correspon-
dence to: Krishnakumar Balasubramanian <kbala@ucdavis.edu>,
Shiqian Ma <sqma@ucdavis.edu>.

Presented at the workshop on “Beyond First-Order Methods in
Machine Learning Systems” hosted by the 38th International Con-
ference on Machine Learning (ICML). Copyright 2021 by the
author(s).

In this work, we study zeroth-order algorithms for solving
the following stochastic nonconvex minimax problems:

min
x∈Rd1

max
y∈Y

f(x, y) = Eξ∼PF (x, y, ξ). (1)

Here, F (x, y, ξ) and hence f(x, y) are assumed to be suffi-
ciently smooth functions, Y ⊂ Rd2 is a closed and convex
constraint set, and P is a distribution characterizing the
stochasticity in the problem. We allow for the function
f(·, y) to be nonconvex for all y ∈ Rd2 but require f(x, ·)
to be strongly-concave for all x ∈ Rd1 .

Our main motivation for studying zeroth-order algorithms
for nonconvex minimax problems is its application in de-
signing black-box attacks to deep neural networks. By now,
it is well established that care must be taken when designing
and training deep neural networks as it is possible to design
adversarial examples that would make the deep network to
misclassify, easily. Since the intriguing works of (Szegedy
et al., 2013; Liu et al., 2017), the problem of designing
such adversarial examples that transfer across multiple deep
neural networks models, has been studied extensively. As
the model architecture is unknown to the adversary, the
problem could naturally be formulated as a minimax opti-
mization problem under the availability of only noisy objec-
tive function evaluation. We refer the reader to (Liu et al.,
2020) for details regarding such formulations. Moreover, we
note that zeroth-order minimax optimization problems also
arise in multi-agent reinforcement learning with bandit feed-
back (Wei et al., 2017; Zhang et al., 2019), robotics (Wang &
Jegelka, 2017; Bogunovic et al., 2018) and distributionally
robust optimization (Namkoong & Duchi, 2016).

Recently, there has been an ever-growing interest in an-
alyzing first-order algorithms for the case of nonconvex-
concave objective and nonconvex-nonconcave objectives,
motivated by its applications in training generative adver-
sarial networks (Goodfellow et al., 2014), AUC maximiza-
tion (Ying et al., 2016), designing fair classifiers (Agarwal
et al., 2018), robust learning systems (Madry et al., 2017)
fair machine learning (Zhang et al., 2018; Xu et al., 2018;
Baharlouei et al., 2019), and reinforcement learning (Pfau
& Vinyals, 2016; Dai et al., 2018; Neyman et al., 2003; Fi-
lar & Vrieze, 2012). Specifically, (Lu et al., 2019; Rafique
et al., 2018; Nouiehed et al., 2019; Sanjabi et al., 2018; Lin



et al., 2020; Thekumparampil et al., 2019), proposed and
analyzed variants of gradient descent ascent for nonconvex-
concave objectives. Very recently, under a stronger mean-
squared Lipschitz gradient assumption, (Luo et al., 2020)
obtained improved complexity for stochastic nonconvex-
concave objectives. Furthermore, (Daskalakis et al., 2018;
Daskalakis & Panageas, 2018; Hsieh et al., 2018; Mer-
tikopoulos et al., 2018; Piliouras & Schulman, 2018; Gidel
et al., 2018; Oliehoek et al., 2018; Jin et al., 2019; Flokas
et al., 2019) studied general nonconvex-nonconcave objec-
tives. Compared to first-order algorithms, zeroth-order al-
gorithms for minimax optimization problems are underde-
veloped. Motivated by the need for robustness in optimiza-
tion, (Menickelly & Wild, 2018) proposed derivative-free
algorithms for saddle-point optimization. However, they
do not provide non-asymptotic oracle complexity analysis.
Bayesian optimization algorithms and evolutionary algo-
rithms were proposed in (Bogunovic et al., 2018; Picheny
et al., 2019) and (Bertsimas & Nohadani, 2010; Al-Dujaili
et al., 2018) respectively for minimax optimization, tar-
geting robust optimization and learning applications. The
above works do not provide any oracle complexity analysis.
Recently, (Roy et al., 2019) studied zeroth-order Frank-
Wolfe algorithms for strongly-convex and strongly-concave
constrained saddle-point optimization problems and pro-
vided non-asymptotic oracle complexity analysis. Further-
more, (Liu et al., 2020) studied zeroth-order algorithms for
nonconvex-concave minimax problems, similar to our set-
ting. More recently, (Anagnostidis et al., 2021) proposed a
stochastic direct search method for (1) under the assumption
of the Polyak-Łojasiewicz (PL) condition. (Xu et al., 2021)
and (Huang et al., 2020) also studied zeorth-order meth-
ods for (1), where they required mean-squared smoothnesss
assumption, which is stronger than our assumptions.

Our Contributions. The contributions of this paper lie in
two folds. First, we propose a zeroth-order stochastic gradi-
ent descent ascent algorithm (ZO-SGDA) for solving (1) and
analyze its oracle complexity. Second, we propose a novel
zeroth-order stochastic gradient descent multi-step ascent
(ZO-SGDMSA) algorithm, which is motivated by (Nouiehed
et al., 2019). This algorithm performs multiple steps of
gradient ascent followed by one single step of gradient de-
scent in each iteration. Its oracle complexity is significantly
better than that of ZO-SGDA in terms of condition number
dependency. The oracle complexity of both algorithms is
better than (Liu et al., 2020). A detailed comparison of our
results to existing results is provided in Table 1.

2. Preliminaries
The following assumptions are made throughout the paper.

Assumption 2.1. The objective function f(x, y) and the
constraint set Y have the following properties:

(i). f(x, y) is continuously differentiable in x and y, and
f(·, y) is nonconvex for all y ∈ Y and f(x, ·) is τ -strongly
concave for all x ∈ Rd1 .

(ii). Function g(x) := maxy∈Y f(x, y) is lower bounded.
We use Lg to denote the Lipschitz constant of g.

(iii). When viewed as a function in Rd1+d2 , f(x, y) is `-
gradient Lipschitz. We use κ := `/τ to denote the problem
condition number throughout this paper.

(iv). The constraint set Y ⊂ Rd2 is bounded and convex,
with diameter D > 0.

We also make the following standard assumptions on the
stochastic zeroth-order oracle (Nesterov & Spokoiny, 2017;
Ghadimi & Lan, 2013; Balasubramanian & Ghadimi, 2019).

Assumption 2.2. For any x ∈ Rd1 and y ∈ Y ,
the stochastic zeroth-order oracle outputs an estimator
F (x, y, ξ) of f (x, y) such that Eξ[F (x, y, ξ)] = f (x, y)
and Eξ[∇xF (x, y, ξ)] = ∇xf (x, y), Eξ[∇yF (x, y, ξ)] =
∇yf (x, y), Eξ[‖∇xF (x, y, ξ) − ∇xf(x, y)‖22] ≤ σ2

1 , and
Eξ[‖∇yF (x, y, ξ)−∇yf(x, y)‖22] ≤ σ2

2 .

2.1. Zeroth-order gradient estimator
We now discuss the idea of zeroth-order gradient esti-
mator based on Gaussian Stein’s identity (Nesterov &
Spokoiny, 2017). We denote u1 ∼ N(0, 1d1), u2 ∼
N(0, 1d2), where 1d is d × d identity matrix. We de-
fine the Gaussian smoothed functions as fµ1

(x, y) :=
Eu1,ξF (x + µ1u1, y, ξ), fµ2(x, y) := Eu2,ξF (x, y +
µ2u2, ξ), and the zeroth-order stochastic gradient esti-
mators as: Gµ1

(x, y,u1, ξ) = F (x+µ1u1,y,ξ)−F (x,y,ξ)
µ1

u1,

Hµ2
(x, y,u2, ξ) = F (x,y+µ2u2,ξ)−F (x,y,ξ)

µ2
u2, where µ1 >

0 and µ2 > 0 are smoothing parameters. One can show
that the zeroth-order gradient estimators provide unbi-
ased estimates to the gradients of the Gaussian smoothed
functions, i.e., Eu1,ξGµ1(x, y,u1, ξ) = ∇xfµ1(x, y), and
Eu2,ξHµ2

(x, y,u2, ξ) = ∇yfµ2
(x, y).

2.2. Complexity Measure

Recall that the minimax problem (1) is equivalent
to the following argmin-type minimization problem:
minx{g(x) := maxy f(x, y)}. Following (Lin et al., 2020),
we define the ε-stationary point of (1) as follows.

Definition 2.1. We call x̄ an ε-stationary point of (1) if
E[‖∇g(x̄)‖22] ≤ ε2.

3. Zeroth-order Algorithms for Stochastic
Minimax Problems

Our ZO-SGDA algorithm for solving (1) is presented in
Algorithm 1, which is similar to the first-order approach
analyzed in (Lin et al., 2020) with a few crucial differences.



Algorithm Order Complexity Objective Constraint
GDmax ((Lin et al., 2020)) 1st O(κ2ε−2) NC-SC U,C
SGDmax ((Lin et al., 2020)) 1st O(κ3(σ2

1 + σ2
2)ε−4) NC-SC U,C

Multi-step GDA((Nouiehed et al., 2019)) 1st Õ(log(ε−1)ε−2) NC-PL C,U
Multi-step GDA ((Nouiehed et al., 2019)) 1st Õ(log(ε−1)ε−3.5) NC-C C,C
ZO-min-max((Liu et al., 2020)) 0th Õ((d1 + d2)ε−6) NC-SC C,C
ZO-SGDA (this work) 0th O(κ5(σ2

1d1 + σ2
2d2)ε−4) NC-SC U,C

ZO-SGDMSA (this work) 0th O(κ(d1σ
2
1 + κd2σ

2
2 log(ε−1))ε−4) NC-SC U,C

Table 1. Comparison of different algorithms. The first four algorithms are first-order, and the last three algorithms are zeroth-order.
Complexity refers to calls to the gradient oracle for first-order algorithms and calls to the zeroth-order oracle for the zeroth-order
algorithms. We use Õ to hide the κ dependency, as it was not explictly tracked and stated in the work of (Liu et al., 2020; Nouiehed et al.,
2019). In the “Objective” column, “NC-SC” denotes the objective function is nonconvex for x and strongly concave for y. “C” means
concave, and “PL” denotes PL condition. In the “Constraint” column, “C” denotes “constrained” and “U” denotes “unconstrained”.

Specifically, we require a mini-batch gradient estimator with
the batch size depending on the dimensionality of the prob-
lem and the noise variance parameter σ2. The complexity
result of Algorithm 1 is provided in Theorem 3.1.

Algorithm 1 Zeroth-Order Stochastic Gradient Descent
Ascent (ZO-SGDA)

Initialization: (x0, y0), step sizes (η1, η2), iteration limit
S > 0, smoothing parameters µ1 and µ2. Indices sets
M1 andM2.
for s = 0, . . . , S do

Sample u1,i ∼ N(0, 1
¯d1

) and compute

xs+1 ← xs − η1
1

|M1|
∑
i∈M1

Gµ1
(xs, ys,u1,i, ξi) .

Sample u2,i ∼ N(0, 1
¯d2

) and compute

ys+1 ← ProjY
[
ys+η2

1

|M2|
∑
i∈M2

Hµ2
(xs, ys,u2,i, ξi)

]
.

end for
Return (x1, y1), . . . , (xS , yS).

Theorem 3.1. Let ε ∈ (0, 1). Under Assumptions 2.1 and
2.2, by setting the parameters η1 := 1

4×124κ2(κ+1)2(`+1) ,

η2 := 1/(6`), S := O(κ5ε−2), µ1 := O(εd
−3/2
1 κ−2),

µ2 := O(εd
−3/2
2 κ−2), |M1| = 4(d1 + 6)(σ2

1 + 1)ε−2, and
|M2| = 4(d2 + 6)(σ2

2 + 1)ε−2, ZO-SGDA (Algorithm 1)
returns iterates (x1, y1), . . . , (xS , yS) such that there exists
an iterate which is an ε-stationary point for (1) as defined in
Definition 2.1. That is, ZO-SGDA (Algorithm 1) returns iter-
ates that satisfy mins∈{1,...,S} E[‖∇g(xs)‖22] ≤ ε2. More-
over, the total number of calls to the stochastic zeroth-order
oracle, KSZO is given by:

KSZO = S(|M1|+ |M2|) ∼ O
(
κ5(d1σ

2
1 + d2σ

2
2)ε−4

)
.

We now show that the dependence of the complexity on
the condition number κ could be reduced significantly (i.e.,
from κ5 to κ2) by making a simple modification to the
ZO-SGDA algorithm. Specifically, we run T steps of the as-
cent part, for every descent step. The approach is presented
formally in Algorithm 2 and the corresponding complexity
results are provided in Theorem 3.2. The main idea behind
running multiple ascent steps is to better approximate the
maximum of the stongly-concave function in each step. Sub-
sequently, picking the number of inner iterations T appro-
priately, helps us obtain improved dependence on κ while
still maintaining the same dependency on ε. We empha-
size that (Nouiehed et al., 2019) used the multi-step ascent
approach to handle certain non-convex minimax optimiza-
tion problems that satisfy the so-called Polyak-Łojasiewicz
condition in the first-order setting.

Algorithm 2 Zeroth-Order Stochastic Gradient Multi-Step
Descent (ZO-SGDMSA)

Initialization: (x0, y0), step sizes (η1, η2), iteration lim-
its S > 0 and T > 0, smoothing parameters µ1 and µ2.
Indices setsM1 andM2.
for s = 1, . . . , S do

Set y0(xs)← ys
for t = 1, . . . , T do

Sample u2,i ∼ N(0, 1
¯d2

) and compute

yt(xs)←ProjY [yt−1(xs)+

η2
1

|Mt
2|
∑
i∈Mt

2

Hµ2
(xs, yt−1(xs),u2,i, ξi)]

end for
ys+1 ← yT (xs)
xs+1 ← xs − η1

1
|Ms

1|
∑
i∈Ms

1
Gµ1(xs, ys+1,u1,i, ξi)

with u1,i ∼ N(0, 1
¯d1

)
end for
Return (x1, y1), . . . , (xS , yS).



Theorem 3.2. Let ε ∈ (0, 1). Under Assumptions
2.1 and 2.2, by setting the parameters as η1 =
1/(12Lg), η2 = 1/(6`), T = O(κ log(ε−1)), S =

O(κε−2), µ1 = O(εd
−3/2
1 ), µ2 = O(κ−1/2d

−3/2
2 ε),

|M1| = 4(d1 + 6)(σ2
1 + 1)ε−2, and |M2| = 4(d2 +

6)(σ2
2 + 1)ε−2,ZO-SGDMSA (Algorithm 2) returns iter-

ates (x1, y1), . . . , (xS , yS) such that there exists an iterate
which is an ε-stationary point for (1) as defined in Defi-
nition 2.1. That is, ZO-SGDMSA returns iterates satisfy-
ing mins∈{1,...,S} E[‖∇g(xs)‖22] ≤ ε2. Moreover, the total
number of calls to the zeroth-order oracle is given by:

KSZO = S|M1|+ TS|M2|

= O
(
κε−4(d1σ

2
1 + κd2σ

2
2 log(ε−1))

)
.

4. Numerical Results
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Figure 1. Performance of ZO-SGDA and ZO-SGDMSA in compar-
ison to their first-order counterparts. Both figures are for the Colon
Cancer dataset. The result corresponds to average over 500 trails.
More results on other datasets are provided in Section D.

We now compare ZO-SGDA and ZO-SGDMSA with their
first order methods (i.e., SGDA and SGDMSA) on the dis-
tributionally robust optimization problem (Namkoong &
Duchi, 2016). For simplicity, we present the formulation of

the problem in the finite-sum setting as:

min
x∈Rd

max
y∈Y

n∑
i=1

yi`i(x)− r(y)

where Y = {y ∈ Rn;
∑n
i=1 yi = 1, yi ≥ 0} is the prob-

ability simplex; r(y) = 10
∑n
i=1(yi − 1/n)2 is a diver-

gence measure; `i(x) = f1(f2(x, si, zi)) where f1(x) =

log(1 + x), f2(x) = log
(

1 + exp[−zi(xT si)]
)

, (si, zi)

is the feature and label pair of a sample i in the dataset.
It is easy to see that the above problem is a nonconvex-
strongly concave problem with d1 = d, d2 = n. For the
tuning parameters, motivated by our theoretical results, we
set the batch size |M1| = d1/ε

2 and |M2| = d2/ε
2 with

ε = 0.01. For ZO-SGDA, we choose η1 = η2 = 0.01.
For ZO-SGDMSA, we choose η1 = 0.01 and η2 = 0.001.
For SGDA and SGDMSA, we choose the same stepsize as
ZO-SGDA and ZO-SGDMSA and set |M1| = 1/ε2 and
|M2| = 1/ε2. We stop the iteration when ‖∇g(x)‖2 ≤ ε,
based on our theoretical analysis. We test our algorithm
on datasets from UCI ML-repository (Dua & Graff, 2017)
and LIBSVM (Chang & Lin, 2011). All the experiments
were run on Google Colab Python 3.5 Notebook. We also
remark that we cannot compare empirically to (Liu et al.,
2020) as they consider constrained minimax optimization
problems. In Figure 1, we plot the value of the objective
versus iteration count and the value of gradient size versus it-
eration count, in the top and bottom rows respectively. From
the results we find that the proposed zeroth-order methods
perform favorably to their respective first-order counterparts
in terms of both the objective value and the norm of the gra-
dient of the function g, in terms of iteration count. It should
be noted that to obtain this comparable behavior, the zeroth-
order method uses a mini-batch of samples that depends on
the dimension in each iteration (as expected), which results
in the number of calls to the zeroth-order oracle of the order
as illustrated in our theoretical results.

5. Conclusions
In this paper, we analyzed zeroth-order algorithms for
stochastic nonconvex minimax optimization problems.
Specifically, we considered two types of algorithms: stan-
dard single-step gradient descent ascent algorithm and a
modified version with multiple ascent steps following each
descent step. We obtain oracle complexities for both algo-
rithms that match the performance of comparable first-order
algorithms, up to unavoidable dimensionality factors.

Acknowledgements. This work was supported in part by
NSF grants DMS-1953210, CCF-2007797, and UC Davis
CeDAR Innovative Data Science Seed Funding Program.



References
Agarwal, A., Beygelzimer, A., Dudik, M., Langford, J., and

Wallach, H. A reductions approach to fair classification.
In International Conference on Machine Learning, pp.
60–69, 2018.

Al-Dujaili, A., Srikant, S., Hemberg, E., and O’Reilly, U.-M.
On the application of danskin’s theorem to derivative-free
minimax optimization. arXiv preprint arXiv:1805.06322,
2018.

Anagnostidis, S., Lucchi, A., and Diouane, Y. Direct-search
methods for a class of non-convex min-max games. In
AISTATS, 2021.

Audet, C. and Hare, W. Derivative-Free and Blackbox
Optimization. Springer, 2017.

Baharlouei, S., Nouiehed, M., and Razaviyayn, M. Rényi
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