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Spectral clustering is one of the fundamental unsupervised learning methods and is widely used in data analysis.
Sparse spectral clustering (SSC) imposes sparsity to the spectral clustering and it improves the interpretability
of the model. One widely adopted model for SSC in the literature is an optimization problem over the Stiefel
manifold with nonsmooth and nonconvex objective. Such an optimization problem is very challenging to
solve. Existing methods usually solve its convex relaxation or need to smooth its nonsmooth objective using
certain smoothing techniques. Therefore, they were not targeting to solve the original formulation of SSC. In
this paper, we propose a manifold proximal linear method (ManPL) that solves the original SSC formulation,
without twisting the model. We also extend the algorithm to solve the multiple-kernel SSC problems, for
which an alternating ManPL algorithm is proposed. Convergence and iteration complexity results of the
proposed methods are established. We demonstrate the advantage of our proposed methods over existing

methods via clustering of several datasets including UCI and single-cell RNA sequencing datasets.

Key words: Riemannian Optimization, Manifold Proximal Linear Method, Sparse Spectral Clustering,

Single-Cell RNA Sequencing Data Analysis

1. Introduction
Clustering is a fundamental unsupervised learning problem with wide applications. The hierarchical
clustering, K-means clustering and spectral clustering (SC) methods are widely used in practice
(Friedman et al. 2001). It is known that interpretation of the dendrogram in hierarchical clustering
can be difficult in practice, especially for large datasets. The K-means clustering, closely related
to Lloyd’s algorithm, does not guarantee to find the optimal solution and performs poorly for
non-linearly separable or non-convex clusters. SC is a graph-based clustering method and it provides
a promising alternative for identifying locally connected clusters (Chung and Graham 1997, Shi
and Malik 2000, Ng et al. 2002).

Given the data matrix X = [xy,...,x,| € RP*" where n is the number of data points and p

is the feature dimension, SC constructs a symmetric affinity matrix S = (s;;) ., where s;; >0

nxn
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measures the pairwise similarity between two samples x; and x; for ¢, =1,...,n. Denote diagonal
matrix D = Diag (dy,...,d,) with d; = Z?Zl s;;. The main step of SC is to compute the following
eigenvalue decomposition:

min (UU',L), s.t., U'U = I, (1.1)

UeRnxC
where L =1, — D~'/28D~'/? is the normalized Laplacian matrix, I~ denotes the C' x C' identity
matrix, and C' is the number of clusters. The rows of U can be regarded as an embedding of the
data X from R? to RY. The cluster assignment is then decided after using a standard clustering
method such as the K-means clustering on the estimated embedding matrix U obtained by solving
(1.1). Ideally, U should be a sparse matrix such that Uij # 0 if and only if sample ¢ belongs to the
j-th cluster. Therefore UUT should be a block diagonal matrix which is also sparse. To this end,
the sparse spectral clustering (SSC) (Lu et al. 2016, 2018, Park and Zhao 2018) is proposed to

impose sparsity on uu T which leads to the following optimization problem:

min (UUT, LY+ A\|UU ||y, s.t., U'U = I, (1.2)

UeRnxC

where || Z|1=3_,; [Zi;| is the entry-wise £; norm of Z and it promotes the sparsity of Z, and A >0
is a weighting parameter.

In practice, the performance of SSC is sensitive to a single measure of similarity between data
points, and there are no clear criteria to choose an optimal similarity measure. Moreover, for
some very complex data such as the single-cell RNA sequencing (scRNA-seq) data (Kiselev et al.
2019), one may benefit from considering multiple similarity matrices because they provide more
information to the data. The next-generation sequencing technologies provide large detailed catalogs
of the transcriptomes of massive cells to identify putative cell types. Clustering high-dimensional
scRNA-seq data provides an informative step to disentangle the complex relationship between
different cell types. For example, it is important to characterize the patterns of monoallelic gene
expression across mammalian cell types (Deng et al. 2014), explore the mechanisms that control

the progression of lung progenitors across distinct cell types (Treutlein et al. 2014), or study the
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functionally distinct lineage in the bone marrow across mouse conventional dendritic cell types
(Schlitzer et al. 2015). To this end, Park and Zhao (2018) suggest the following similarity matrices

which lead to multiple-kernel SSC (MKSSC):

2
26”-

i — ;| _ S i + 145) . ZKGKNN(i) |z — 2|
76i] 2 y Mg — m y

Ké,m(iaj) = exXp <
where KNN(7) represents a set of sample indices that are the top m nearest neighbors of the sample
x;. The parameters 6 and m control the width of the neighborhoods. We use S(J) and S(m) to
denote the sets of possible choices of § and m, respectively. Then the total number of similarity
matrices is equal to T'=|S(d)|-|S(m)|. We denote the normalized Laplacian matrices corresponding

to these T similarity matrices as L), =1,...,T. The MKSSC can be formulated as the following

optimization problem:

T T
min FUw)={(UU",S wLY )Y+ NUUT||, + wy log(w 1.3
i Fw) < SZw ) e NOUT 43 wlogw) (13
T
st. UU=Ig,Y wy=1w>0¢=1,...T,
=1
where wy,¢ =1,...,T are unknown weightings of the kernels, and PEeT:1 wylog(wy) serves as an

entropy regularization term, and A, p are two regularization parameters.

Note that both SSC (1.2) and MKSSC (1.3) are nonconvex and nonsmooth with Riemannian
manifold constraints. Therefore, they are both numerically challenging to solve. In this paper, we
propose a manifold proximal linear (ManPL) method for solving the SSC (1.2), and an alternating
ManPL (AManPL) method for solving the MKSSC (1.3).

Our contributions lie in several folds.

(i) We propose the ManPL method for solving SSC (1.2) and the AManPL method for solving
MKSSC (1.3). To the best of our knowledge, they are the first algorithms solving directly the
original formulations of SSC (1.2) and MKSSC (1.3), without twisting the models.

(ii) We analyze the convergence and iteration complexity of both ManPL and AManPL. Though

the two algorithms are closely related to the manifold proximal gradient (ManPG) algorithm
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(Chen et al. 2020b), ManPL and AManPL deal with more complicated problems where the
objective function involves a composition of a nonsmooth function and a smooth and nonconvex
mapping. As a result, the analysis for ManPL and AManPL is different from that of ManPG
and is new in the literature.

(iii) The subproblem in ManPL and AManPL is convex, but it is challenging to solve for large-scale
problems. We propose a proximal point algorithm based on a semi-smooth Newton method for
solving this subproblem.

(iv) We apply our proposed methods to clustering of scRNA-seq data. Our numerical experiments
indicate that our AManPL algorithm is very suitable for clustering this type of data, and its
advantage over existing methods is very clear.

The rest of this paper is organized as follows. We propose our ManPL method for solving the
SSC (1.2) in Section 2. We provide details of the proximal point method and semi-smooth Newton
method for solving the subproblem of ManPL in Section 3. We propose our AManPL method
for solving the MKSSC (1.3) in Section 4. The numerical results using the proposed methods for
solving clustering problems for UCI data, synthetic data, scRNA-seq data, and some unsupervised
data are reported in Section 5. Finally, we draw some concluding remarks in Section 6. Proofs to
the technical results are provided in the Appendix.

Notation. Throughout this paper, we use M to denote the Stiefel manifold. The smoothness,
convexity, and Lipschitz continuity of a function f are always interpreted as the function is considered
in the ambient Euclidean space. We use S’} to denote the set of n x n positive semidefinite matrices,

and Tr(Z) to denote the trace of matrix Z.

2. A Manifold Proximal Linear Method for SSC

Since SSC (1.2) is both nonsmooth and nonconvex, it is numerically challenging to solve. In the
literature, convex relaxations and smooth approximations of (1.2) have been suggested. In particular,
Lu et al. (2016) proposed to replace UU T with a positive semidefinite matrix P and solve the

following convex relaxation:

(P,LY+ \||P||, s.t., 0= P =<1, Te(P)=C. (2.1)

min
"
PGS+
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This convex problem (2.1) can be solved by classical optimization algorithms such as ADMM. Denote
the solution of (2.1) by P, the solution of (1.2) can be approximated by the top C eigenvectors of
P. In another work, Lu et al. (2018) proposed a nonconvex ADMM to solve the following smooth

variant of (1.2):
min (UUT, L)+ g,(P), st., P=UU",U'U = I, (2.2)
UER"XC,PeSi

where g, (+) is a smooth function with smoothing parameter o > 0 that approximates the ¢; regularizer

Al “|li- In Lu et al. (2018), the authors used the following smooth function:
o
0,(P) = max (P.2) ~ Z|Z[[3. st | Z] < (23

where || Z]|o =max;;|Z;;|. The nonconvex ADMM for solving (2.2) typically iterates as

Ukt :=argmin L(U, P*;A"), sit., UTU = I¢, (2.4a)
UeRnxC
PFli=argmin L(U, P;AY), (2.4Db)
Pesn
AR = AR — (PR - UchrlUkﬂT)7 (2.4c)

where the augmented Lagrangian function £ is defined as
£<U7P7A) = <UUT7L> +g<7(P) - <A7P - UUT> + gHP - UUTH%W

and p >0 is a penalty parameter. The two subproblems (2.4a) and (2.4b) are both relatively easy
to solve. The reason to use the smooth function g,(-) to approximate A|| - ||; in (2.2) is for the
purpose of convergence guarantee. In Lu et al. (2018), the authors proved that any limit point of
the sequence generated by the nonconvex ADMM (2.4) is a stationary point of (2.2). This result
relies on the fact that function g, is smooth. If one applies ADMM to the original SSC (1.2), then
no convergence guarantee is known.

In this section, we introduce our ManPL algorithm that solves the original SSC (1.2) directly,
and unlike (2.1) and (2.2), our ManPL algorithm does not twist the formulation. For the ease of

presentation, we rewrite (1.2) as

min FU)=fU)+h(c(U)), s.t.,, UeM, (2.5)
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where f(U)=(UUT,L), h(:-)=\|| - ||l1, c(U)=UU", M={U e R™C |UTU = I} is the Stiefel
manifold. Moreover, note that f and ¢ are smooth mappings, and h is nonsmooth but convex in the
ambient Euclidean space. Therefore, (2.5) is a Riemannian optimization problem with nonsmooth
and nonconvex objective function. Furthermore, throughout this paper, we use Ly, L., Lj to denote
the Lipschitz constants of V f, V¢, and h, respectively. Riemannian optimization has drawn much
attention recently, due to its wide applications, including low rank matrix completion (Boumal and
Absil 2011), phase retrieval (Bendory et al. 2018, Sun et al. 2018), phase synchronization (Boumal
2016, Liu et al. 2017), and dictionary learning (Cherian and Sra 2017, Sun et al. 2017). Several
important classes of algorithms for Riemannian optimization with a smooth objective function
were covered in the monograph (Absil et al. 2008). On the other hand, there has been very limited
number of algorithms for Riemannian optimization with nonsmooth objective until very recently.
The most natural idea for this class of optimization problems is the Riemannian subgradient method
(RSGM) (Ferreira and Oliveira 1998, Grohs and Hosseini 2016, Hosseini and Uschmajew 2017).
Recently, Li et al. (2021) studied the RSGM for Riemannian optimization with weakly convex
objective. In particular, they showed that the number of iterations needed by RSGM for obtaining
an e-stationary point is O(e~*). Motivated by the proximal gradient method for solving composite
minimization in Euclidean space, Chen et al. (2020b) proposed a manifold proximal gradient method

(ManPG) for solving the following Riemannian optimization problem:
min f(X)+h(X), st.,, XeM, (2.6)

where M is the Stiefel manifold, f is a smooth function, and A is a nonsmooth and convex function.

A typical iteration of ManPG for solving (2.6) is:
1
VF:=argmin (VF(X"), V) +h(X*"+V)+ QHVH%, st., VeTxM, (2.7a)
v
X =Retr yr (ax V"), (2.7b)

where o, > 0 is a step size. Here Ty M denotes the tangent space of M at U, and for the Stiefel
manifold, it is known that Ty M :={V e R"*“ | VU + UV =0}. Moreover, Retr denotes the

retraction operation, whose definition is given below.



Wang et al.: A Manifold Proximal Linear Method for Sparse Spectral Clustering
8 INFORMS Journal on Optimization 00(0), pp. 000-000, (© 0000 INFORMS

DEFINITION 1. A retraction on a differentiable manifold M is a smooth mapping Retr from
the tangent bundle TM onto M satisfying the following two conditions (here Retrx denotes the
restriction of Retr onto Tx.M)

e Retrx(0) =X, VX € M, where 0 denotes the zero element of Tx M.

e For X € M, it holds that

[Retrx (&) — (X +&)llr _

T MBE0 HE

0.

The retraction onto the Euclidean space is simply the identity mapping: Retrx(£) = X +¢. Common

retractions include the polar decomposition:
Retr{?™™ (§) = (X + ) (L, +£7€)7"/,

the QR decomposition:

Retr" = qf(X +¢),

where qf(A) is the @ factor of the QR factorization of A, and the Cayley transformation:

Retr' () = (L — s W(©)) (L4 W (©)x,

where W(&) = (I, — s XX (X T - X¢T(I, -1 XXT).

Comparing with (2.6), we note that (2.5) is more difficult to solve, because of the nonconvex
term ¢(U). In fact, ManPG cannot be used to solve the SSC (1.2) because of the existence of the
nonconvex term UU " composite with the £; norm. As a result, a new algorithm is demanded for
solving SSC (1.2). The iteration complexity of ManPG is proved to be O(e?) for obtaining an
e-stationary point of (2.6) (Chen et al. 2020b), which is better than the complexity of RSGM (Li
et al. 2021). Variants of ManPG have been designed for different applications, such as alternating
ManPG for sparse PCA and sparse CCA (Chen et al. 2020c), FISTA for sparse PCA (Huang
and Wei 2019), manifold proximal point algorithm for robust subspace recovery and orthogonal
dictionary learning (Chen et al. 2019, 2020a), and stochastic ManPG (Wang et al. 2020) for online

sparse PCA. Moreover, ManPG has been extended to more general Riemannian proximal gradient
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method (Huang and Wei 2021). Motivated by the success of ManPG and its variants, we propose a
manifold proximal linear algorithm for solving SSC (2.5).
The proximal linear method has recently drawn great research attentions. It targets to solve the

optimization problem in the form of (2.5) without the manifold constraint, i.e.,

min f(z)+ h(c(z)), (2.8)

TERM

where f:R” — R and ¢: R"” — R™ are smooth mappings, h: R™ — R is convex and nonsmooth. The

proximal linear method for solving (2.8) iterates as follows:
1
2Ft = argmin (Vf(2*),z — 2*) + h(c(@®) + J (") (z — 2¥)) + EHx — "2 (2.9)

where J(z) = Ve(x) is the Jacobian of ¢, and t > 0 is a step size. Note that since h is convex, the
update (2.9) is a convex problem. This method has been studied recently by Lewis and Wright
(2016), Drusvyatskiy and Paquette (2019), Duchi and Ruan (2018) and applied to solving many
important applications such as robust phase retrieval (Duchi and Ruan 2019), robust matrix recovery
(Charisopoulos et al. 2019), and robust blind deconvolution (Charisopoulos et al. 2021).

Due to the nonconvex constraint U € M, solving (2.5) is more difficult than (2.8). Motivated by
ManPG and the proximal linear method (2.9), we propose a ManPL algorithm for solving (2.5). A

typical iteration of the ManPL algorithm for solving (2.5) is:

VFi=argmin (Vf(U*),V) + h(c(U") + J(U*V) + %HVH%, st., VeTyuM, (2.10a)
\4

Ukt = Retrys (o, V). (2.10Db)

Similar to (2.7a), the equation (2.10a) computes the descent direction V' by minimizing a convex
function over the tangent space of M. However, solving (2.10a) is more difficult than (2.7a) because
of the non-trivial affine function, i.e., ¢(U*) + J(U*)V, composite with the nonsmooth function h.
Moreover, the difference of (2.10a) and (2.9) is the constraint in (2.10a), which is needed in the

Riemannian optimization setting. Fortunately, (2.10a) can still be solved efficiently by a proximal
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point algorithm combined with a semi-smooth Newton method, which will be elaborated in Section
3. The retraction step (2.10b) brings the iterate back to the manifold M.

The complete description of the ManPL for solving SSC (2.5) is given in Algorithm 1. The step
(2.11) is a line search step to find the step size ay, such that there is a sufficient decrease on the

function F.

Algorithm 1 The ManPL for SSC (2.5)
Input: initial point U® € M, parameters v € (0,1), t >0

for k=0,1,... do
Calculate V* by solving (2.10a)

Let j, be the smallest non-negative integer such that
irvk k Yk k|2
F(Retrys (v V4)) < FU%) = T |VH (211)

Let o, =7 and compute U™ by (2.10b)

end for

The main convergence and iteration complexity result of ManPL (Algorithm 1) is given in

Theorem 1. Its proof is given in the appendix.

THEOREM 1. Assume F(U) is lower bounded by F*. The limit point of the sequence {U*}
generated by ManPL (Algorithm 1) is a stationary point of (2.5). Moreover, ManPL returns an

e-stationary point of (2.5) in O(e~?) iterations.

3. A Semi-Smooth Newton-based Proximal Point Algorithm for the
Subproblem

In this section, we introduce a proximal point algorithm (PPA) combined with a semi-smooth
Newton method (SSN) for solving the subproblem (2.10a) in ManPL. The notion of semi-smoothness
was originally introduced by (Mifflin 1977) for real valued functions and later extended to vector-
valued mappings by (Qi and Sun 1993). The SSN method has recently received significant amount

of attention due to its success in solving structured convex problems to a high accuracy in problems



Wang et al.: A Manifold Proxzimal Linear Method for Sparse Spectral Clustering
INFORMS Journal on Optimization 00(0), pp. 000-000, © 0000 INFORMS 11

such as LASSO (Li et al. 2018, Yang et al. 2013), convex clustering (Wang et al. 2010), SDP (Zhao
et al. 2010), and convex composite problems (Xiao et al. 2018).
For simplicity of the notation, we omit the index k in (2.10a), and denote Z; := V f(U*),
=c(U%), J=J(U"), and operator A:V — VTU* + (U*)"V. Therefore, (2.10a) reduces to the
following form:

1
min o |V + Zu[[5 + h(Ze+Y), sty AV)=0, Y =JV. (3.1)

Note that we have introduced a variable Y to replace JV. The Lagrangian function for (3.1) is

given by:
1

where I'; and I'y are the Lagrange multipliers associated to the two equality constraints. Therefore,
(3.1) is equivalent to

min{G(V,Y) := max L(V, Y31, Ip) }. (32)

The minimization problem (3.2) can be solved by a PPA, which iterates as:

1
(VHL YR = argmin G(VF, YF) + % IV =VHZ+IY =Y*|%)
V,Y

:=argminmax L(V,Y;T;,T,) + (HV—V’“H%JrHY—Y’“H%), (3.3)

vy Tul2

where >0 is a parameter. The problem (3.3) is equivalent to:

maxmin L(V,Y; Fl,Fg)—I——B(HV VAR + Y =Y*%). (3.4)

1,0y V)Y

Note that the minimization part of (3.4) is strongly convex and admits a closed-form solution given

by:

B

v
t+p

<A*(F1) + JT 2 - *Zl + ka> y Y= PI'OXBh(ZQ + Yk - ﬁrg) - ZQ, (35)

where Prox, denotes the proximal mapping of function g, which is defined as:

1
Prox,(Z) :=argmin g(X)+ §HX —Z|J3.
X
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For simplicity of the notation, we define function E(T'y) := Z, + Y* — ST';. Substituting (3.5) to

(3.4), and using the Moreau identity, we know that (3.4) is equivalent to:

2

1 3
ry,ry) * T .
max@( 1 2 2t—l—BH A( ) J 2 B (36)
+ h(Proxg, B(T2)) + B|[Proxss 5 (E(T2)/B)||7 + (2, Y*) — gHFzH%v
where h* denotes the conjugate function of h. Now by denoting
\I](Fz) —maX@(Fl,FQ) (37)

it is easy to verify that ¥(I'y) is strongly concave and continuously differentiable (Li et al. 2018),

and its unique maximizer is found by solving the following nonsmooth system:
V¥(Iy) =0. (3.8)

Solving (3.8) can be done by using SSN (Li et al. 2018, Xiao et al. 2018). After we obtain the
solution to (3.8), the optimal I'; can be found by solving the maximization problem in (3.7), which
is an easy least-squares problem.

To summarize, the PPA for solving (2.10a) is given by (3.3), and its solution is given by (3.5).
The required I'; in (3.5) is obtained by solving (3.8) using SSN, and I'; in (3.5) is obtained by
solving the least-squares problem in (3.7). The convergence of the PPA and the SSN has been well

studied in the literature (Li et al. 2018, Yang et al. 2013).

4. An Alternating ManPL Method for Multiple-Kernel SSC
In this section, we consider the multiple-kernel SSC (1.3). Park and Zhao (2018) consider to solve
the following relaxation of (1.3) by letting P=UU":
T T
min <P,;w¢L“)> + MNPy +p;wg log(wy) (4.1)

T
st. Tr(P)=C,0=3P =LY wy=1w,>0(=1,... T

{=1

Note that this is still a nonconvex problem due to the bi-linear term in the objective function. Park

and Zhao (2018) suggested to use an alternating minimization algorithm (AMA) to solve (4.1).
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Note that this method is named MPSSC in (Park and Zhao 2018). In the k-th iteration of AMA,
one first fixes w as w* and solves the resulting problem with respect to P to obtain P**! and then
fixes P as P*™! and solves the resulting problem with respect to w to obtain w**!. In particular,

when w is fixed as w*, problem (4.1) reduces to
T
min <P, waL“)> + APy, st., Te(P)=C,0=<P =<1, (4.2)
=1
which is a convex problem and can be solved via convex ADMM algorithm. When P is fixed as

P*+1 problem (4.1) reduces to

T T
min  c¢'w —I—pre log(wy), s.t., Zwe =1l,w,>0,0=1,...,T, (4.3)
b =1 =1
where ¢, = (P**1 L") ¢=1,...,T. This is also a convex problem and it can be easily verified that

(4.3) admits a closed-form solution given by

wy = ®ede) o,y p (4.4)

S i_iexp(—c;/p)’

In summary, a typical iteration of the AMA algorithm proposed by (Park and Zhao 2018) is as

follows:

update P**! by solving (4.2) (45)

update w*! by solving (4.3).
In our numerical experiments, we call this method AMA+CADMM, because (4.2) is solved by a

convex ADMM.
Another approach to approximate (1.3) is to combine the idea of AMA (4.5) and the nonconvex
ADMM for solving the smooth problem (2.2). In particular, one can solve the following smooth

variant of (1.3):

T T
min <UUT,Zw4L(€)> +go(UUT)—|—prglog(wg)

UeRn*C weRT — —
=1 /=1 (46)

T
st. UU=Ic,y wy=1w,>0¢=1,...T,

{=1

where g, (-) is the smooth approximation to A| - ||; defined in (2.3). When fixing w, (4.6) is in the

same form as the smoothed SSC (2.2), so it can be solved by the nonconvex ADMM (2.4). When
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fixing U, (4.6) is in the same form as (4.3), and admits a closed-form solution (4.4). In summary,

the AMA+ADMM algorithm for solving (4.6) works as follows:

update U**! by solving (4.6) with w fixed as w* using nonconvex ADMM (2.4) wn

update w**! by solving (4.6) with U fixed as U**! using (4.4).
To differentiate with the AMA+CADMM algorithm (4.5), we call (4.7) the AMA+NADMM,
because a nonconvex ADMM is used to solve (4.6) with w fixed as w".
By exploiting the structure of (1.3), we propose to solve (1.3) by an alternating ManPL algorithm
(AManPL). More specifically, in the k-th iteration of AManPL, we first fix w as w*, then (1.3)
reduces to

U
{=1

T
min <UUT,Zw§L“)>+)\||UUT||1, s.t., UeM, (4.8)

which is in the same form of (2.5) with L in (2.5) replaced by L:=3",_, wFL®. Therefore, (4.8)
can also be solved by ManPL. Here we adopt one step of ManPL, i.e., (2.10) to obtain U**. More

specifically, U**! is computed by the following two steps:

1
VFi=argmin (Vy f(U*, w*), V) + h(c(U*) + J(UFV) + 2—t|\V||%, st., VeTyuM, (4.9a)
v

U*T! .= Retryw (o V), (4.9b)

where f(U,w) := <UUT,Zf:1ng(Z)>, h(-):= M| - |l;, and ¢(U) =UUT". Note that (4.9a) can be
solved by the same PPA+SSN algorithm discussed in Section 3. We then fix U in (1.3) as Ut
and then (1.3) reduces to
T T
rrgn cTuH—prg log(wy), s.t., Zwe =1,w,>0,0=1,....T, (4.10)
=1 =1
where ¢, = (U’““U’““T, LWy ¢=1,...,T. We then obtain w**! by solving (4.10), which admits a
closed-form solution given by (4.4). The AManPL is described in Algorithm 2.
We have the following convergence and iteration complexity result for AManPL for solving

MKSSC (1.3). Its proof is given in the appendix.
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Algorithm 2 The AManPL Method for Solving MKSSC (1.3)
Input: parameter v € (0,1), initial point U° € M, let w° be the optimal solution to (4.10) for

co=(UU"T L®)
for k=0,1,... do
Calculate V* by solving (4.9a)

Let j, be the smallest non-negative integer such that
_ . _ Jk
F(Retry (3V5),0*) < F(U*,w®) = T [V*]3 (4.11)

Let ay =49 and compute U by (4.9b)
Update wit! by (4.4) with ¢, = (UMUT LOY ¢=1,...,T

end for

THEOREM 2. Assume F(U,w) in (1.3) is lower bounded by F*. The limit point of the sequence
{U* wk} generated by AManPL (Algorithm 2) is a stationary point of problem (1.3). Moreover,
to obtain an e-stationary point of problem (1.3), the number of iterations needed by AManPL is

O(e?).

5. Numerical Experiments

In this section, we compare our proposed methods ManPL and AManPL with some existing methods
for solving SSC and MKSSC. In particular, for SSC (1.2), we compare ManPL (Algorithm 1)
with convex ADMM (Lu et al. 2016) (denoted by CADMM ') for solving (2.1) and nonconvex
ADMM (Lu et al. 2018) (denoted by NADMM) for solving (2.2). We also include the spectral
clustering (denoted by SC) in the comparison. For MKSSC (1.3), we compare AManPL (Algorithm
2) with MPSSC (i.e., AMA+CADMM ?) (Park and Zhao 2018) and AMA+NADMM (4.7). All
the algorithms were terminated when the absolute change of the objective value is smaller than

1075, which indicates that the algorithms were not making much progress. All the codes were run

! cdoes downloaded from https://github.com/canyilu/LibADMM/blob/master/algorithms/sparsesc.m

2 codes downloaded from https://github.com/ishspsy/project/tree/master/MPSSC
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in Matlab R2021a on a laptop with a 1.61 GHz Intel 6-Core i7 CPU and 16GB RAM. All reported

CPU times are in seconds.

Formulation Method
Convex SSC (2.1) CADMM (Lu et al. 2016)
Smoothed SSC (2.2) NADMM (2.4) (Lu et al. 2018)
Original SSC (1.2) ManPL (Algorithm 1)
MKSSC (4.1) AMA+CADMM (4.5) (Park and Zhao 2018)
Smoothed MKSSC (4.6) AMA+NADMM (4.7)
Original MKSSC (1.3) AManPL (Algorithm 2)

Table 1 Summary of different methods for solving SSC or MKSSC.

5.1. UCI Datasets

We first compare the clustering performance of different methods on three benchmark datasets in
UCI machine learning repository (Dua and Graff 2017). For the parameters used in the models, we
choose them in the following manner. For o that is used in (2.2) and (4.6), we set it as 0 = 0.2. For
A that is used in all six models (1.2), (1.3), (2.1), (2.2), (4.1) and (4.6), and p that is used in (1.3),

(4.1) and (4.6), we choose them from the following sets:
Ae{5x107%,107%,5x 107*,107*,107°}, and p€{0.01,0.02,0.05,0.1,0.2,0.5,1}.  (5.1)

We follow Park and Zhao (2018) to construct the similarity matrices and record the Normalized
Mutual Information (NMI) scores (Strehl and Ghosh 2003) to measure the performance of the
clustering. Given two clustering assignments I and J on a set of n data points with C; and C;
clusters, repectively, the NMI score is defined as

St S 1, 0 J, | log e

max (= 07, |1, log 21, — 557, |, log 121

where the numerator is the mutual information between I and J, and the denominator represents

NMI(1,J) = (5.2)

the entropy of the clustering assignments I and J. Note that higher NMI scores indicate better
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clustering performance. More specifically, based on the matrix U computed using the algorithm,
we first perform K-means on U to get the resulting label I’ for each data. Since the ground-truth
assignments I of the clusters are available for the three datasets, we can then calculate the NMI

score based on the resulting label I" and the ground-truth label I using (5.2).

Wine Iris Glass

Task Method
NMI CPU| NMI CPU| NMI CPU

CADMM 0.893 0.022]0.742 0.020| 0.347 0.033

SSC NADMM 0.893 0.075] 0.636 0.063| 0.346 0.381

ManPL 0.893 0.066 | 0.652 0.108|0.407 0.372

AMA+CADMM | 0.893 0.965| 0.804 0.784| 0.353 1.842
MKSSC | AMA+NADMM | 0.893 1.230 | 0.831 0.357 | 0.357 4.761

AManPL 0.882 0.578 | 0.804 0.658 | 0.416 2.630
Table 2 Comparison of NMI scores and CPU runtime for solving SSC or MKSSC on the UCI datasets.

The NMI scores are reported in Table 2. Note that we can compute the NMI scores because
the ground-truth clustering assignments of these datasets are known. From Table 2 we see that
for the Iris and Glass datasets, the MKSSC model always performs better than the SSC model in
terms of NMI scores. For the Glass dataset, we see that our ManPL achieves better NMI score than
CADMM and NADMM, and our AManPL achieves better NMI score than AMA4+CADMM and
AMA+NADMM. For the Wine dataset, we find that all algorithms perform similarly in terms of
NMI scores, although AManPL achieves slightly worse NMI score. Moreover, we show the heatmap
of [UUT| for the Iris data set in Figure 1. For the SSC models (2.1), (2.2) and (1.2), we show the
figures corresponding to A =5 x 1073, and for the MKSSC models (4.1), (4.6) and (1.3), we show
the figures corresponding to A=10"*, p=2 x 1072, From Figure 1 we see that the figures generated
by the SSC models, i.e., Figures 1 (b)-(d) give clearly better clustering results than the spectral

clustering model (1.1), whose heatmap is given in Figure 1 (a). Furthermore, we also see that the
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MKSSC models whose heatmaps are given in Figures 1 (e)-(g) give clearly better clustering results
than the single view SSC models. These observations demonstrate the necessity of studying the

multiple-kernel SSC models.

() (f) (e)
Figure 1  The heatmaps of [UU "| on the Iris dataset estimated by (a) SC (1.1), (b) CADMM for SSC (2.1), (c)

NADMM for SSC (2.2), (d) ManPL for SSC (1.2), (¢) AMA+CADMM for MKSSC (4.1), (f) AMA+NADMM for

MKSSC (4.6), and (g) AManPL for MKSSC (1.3).

5.2. Synthetic Data
In this subsection, we follow Park and Zhao (2018) to evaluate the clustering performance of
different methods on two synthetic datasets with C' =15 clusters.
e Synthetic data 1. We randomly generate C points in the 2-dimensional latent space spanning
a circle as the centers of C' clusters. For each cluster, we randomly generate the points by adding
an independent noise to its center, and the entries of the noise follow a Gaussian distribution.
The noise level is equal to the radius of the circle in the embedded space multiplied by a
parameter o. We project these 2-dimensional data to a p-dimensional space using a linear
projection matrix and then add the heterogeneous noise to obtain the data matrix X.
e Synthetic data 2. We randomly generate a matrix B’ € R°*? with d = 10 by drawing its entries
independently from Gaussian distributions, where different rows of B’ specify heterogeneous

variances. We randomly assign the cluster labels zy,...,z2, € [C]. Let B= [B’ ,OCX(p,d)] and
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Z = (Zij)axc = (1{z;=} )nxc. We generate X = ZB + W, where W is a noise matrix with
independent standard normally distributed entries. The noise level is equal to the radius of
the circle in the embedded space multiplied by a parameter o.

Figure 2 visualizes one realization of the simulated data for these two settings. From Figure 2 we

see that different clusters mix together and the variability between clusters varies.

o ‘.‘. -.,'.:%.-‘ ‘..:‘ . . e .
o: . - o’ % o 15 T . o« o o
0 . % oo o0 . . ..- oy o
® earte . ; . o v 3
. ® e .

(a) Synthetic data 1 (b) Synthetic data 2

Figure 2 lllustration of one realization of the synthetic data.

The parameters A and p are again chosen from (5.1). Note that there are 35 different combinations
of (A, p). For each pair of (), p), we run the three algorithms AMA+CADMM, AMA+NADMM
and AManPL for 10 times, and then we report the average NMI scores and average CPU runtime
over the 350 independent repetitions. The results are given in Table 3.

From Table 3 we see that AMA4+NADMM and AManPL provided better NMI scores than
AMA+CADMM in most cases, with the only exception of (n,p) = (200,500) in synthetic dataset 2
where AMA+CADMM is better in terms of the NMI score. We also observe that AMA+NADMM
usually provides slightly better NMI score than AManPL, but AManPL is more efficient in some
cases such as n =200, p =250, 300, and 500 in synthetic dataset 2. This suggest that AManPL has
potential to be more efficient in large-scale problems.

We further conduct some numerical tests to test the sensitivity of the algorithms to the noise

level o. In particular, we repeat the tests above by varying o in the following set of values:

0€{0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5}. (5.3)
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Method | AMA+CADMM [ AMA+NADMM | AManPL

n | p | NMI CPU NMI CPU NMI | CPU

Synthetic data 1 with o =0.3

100 {250 | 0.906 | 0.695 [0.937| 0.825 ]0.935|1.231

100300 | 0.908 | 0.698 |0.939| 0.829 |0.938|1.188

100 500| 0.912 | 0.745 |0.944| 0.870 |0.943|1.248

2001250 0.935 | 1.647 ]0.941| 3.608 |0.940 |3.825

200 | 300| 0.931 1.640 [0.937| 3.574 ]0.934|3.712

2001500| 0.940 | 2.879 10.944| 5.799 ]0.943|6.307

Synthetic data 2 with o =0.2

100 | 250 | 0.727 | 0.609 |0.986| 1.049 |0.973|1.445
100 | 300 | 0.742 | 0.612 |0.980| 1.079 |0.968|1.460
100|500 | 0.906 | 0.570 |0.976 | 1.049 |0.961|1.292
200 | 250 | 0.959 1.224 10.990| 4.047 |0.984|3.924
200 | 300 | 0.972 1.247 10.989| 4.233 [0.980 | 3.893

200 | 500 | 0.986 | 1.265 0.984 | 4.741 |0.970 | 3.796
Table 3  Comparison of NMI scores and CPU runtime for solving MKSSC for synthetic data 1 and 2.

We report the NMI scores of the three algorithms for varying ¢ in Figure 3 for the two synthetic
data sets both with (n,p) = (100,300), (n,p) = (200, 300) and (n,p) = (200,500). From Figure 3 we
see that AMA4+NADMM and AManPL have very similar performance when the noise level ¢ varies,
and they are obviously better than AMA+CADMM for synthetic data 1. However, it appears that
when the noise level o is large, AMA+CADMM is better than the other two for synthetic data 2.
5.3. Single-Cell RNA Sequencing Data Analysis

Clustering cells and identifying subgroups are important topics in high-dimensional scRNA-seq
data analysis. The multiple kernel learning approach is vital as clustering scRNA-seq data is usually

sensitive to the choice of the number of neighbors and scaling parameter. Recently, Park and
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(a) Synthetic data 1, (n,p) = (100, 300) (b) Synthetic data 2, (n,p) = (100, 300)
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(e) Synthetic data 1, (n,p) = (200, 500) (f) Synthetic data 2, (n,p) = (200, 500)

Figure 3 Plots of NMI scores versus the noise level o. The z-axis denotes o and the y-axis denotes the NMI

score.

Zhao (2018) showed that AMA+CADMM for MKSSC provides a promising clustering result and
outperforms several state-of-art methods such as SC, SSC, t-SNE (van der Maaten and Hinton

2008), and SIMLR (Wang et al. 2017). In what follows, we focus on the numerical comparison of



Wang et al.: A Manifold Proximal Linear Method for Sparse Spectral Clustering
22 INFORMS Journal on Optimization 00(0), pp. 000-000, © 0000 INFORMS

AMA+CADMM, AMA+NADMM and AManPL to cluster high-dimensional scRNA-seq data on
seven real datasets used in Park and Zhao (2018). These seven real datasets represent several types
of important dynamic processes such as cell differentiation, and they include the information about
single cell types. We follow the procedure of Park and Zhao (2018) to specify multiple kernels for
clustering scRNA-seq data. The parameters A and p are again chosen from (5.1). For each dataset,
we report the average NMI score and average CPU runtime of AMA+CADMM, AMA4+NADMM
and AManPL in Table 4. Note that we can compute the NMI scores because the ground-truth
assignments of the clusters of these scRNA-seq data are known in the literature e.g., Park and Zhao
(2018). Moreover, since the Tasic dataset is very large, in which n=1727, p=>5832 and C' =49, we
only run the algorithms with one particular choice of (A, p) = (1072,107"). From Table 4 we see
that AManPL provides the best NMI score in most cases, with the first dataset being an exception
for which AMA+NADMM gives the best NMI score. Furthermore, for the large-scale Tasic dataset,
AManPL provides much better NMI score than the other two algorithms, and it is much more
efficient than AMA+NADMM. The results in Table 4 demonstrate that our AManPL for solving

(1.3) has great potential in analyzing the scRNA-seq data.

Method AMA+CADMM | AMA+NADMM AManPL

Datasets NMI CPU NMI CPU NMI CPU C

Deng et al. (2014) | 0.679 1.761 0.732 3.041 0.707 2.788 7
Ting et al. (2014) 0.901 1.124 0.919 1.576 0.941 0.911 )
Treutlein et al. (2014) | 0.423 0.572 0.655 0.873 0.673 0.672 )
Buettner et al. (2015) | 0.505 2.071 0.403 8.879 0.514 2.168 3
Schlitzer et al. (2015) | 0.368 3.201 0.378 14.769 | 0.402 4.918 3

Pollen et al. (2014) |0.662 4.864 0.816 24.020 |0.821 6.640 11

Tasic et al. (2016) 0.123 1.083e+402 | 0.156 3.421e+03|0.237 4.692e+02 | 49
Table 4  Comparison of NMI scores and CPU runtime for solving MKSSC on real scRNA-seq datasets.
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5.4. Unsupervised data

In practice, clustering usually needs to be performed for unsupervised data. Here we test the three
algorithms AMA+CADMM, AMA+NADMM and AManPL on a microbiome dataset with no
ground-truth assignment. The original data is from Morgan et al. (2015). After preprocessing, we
have the mRNA expression of 170 genes (i.e., p=170) for all 196 Inflammatory bowel disease
(IBD) patients (i.e., n=196). The spectral clustering on such microbiome mRNA data can help us
understand the grouping effect of gene expressions for IBD patients. For this dataset, we do not
know the ground-truth clusters, therefore NMI cannot be used. Instead, we choose to measure the
performance of the clustering by using the Calinski-Harabasz (CH) score (Calinski and Harabasz
1974), which is widely used to measure the cluster quality when there is no ground-truth information
available. According to the definition of the CH score, under the same value of proposed clustering
number C, higher CH score usually corresponds to better clustering result. We report the CH scores
of the three algorithms for clustering number C'=2,3,4, and 5 in Table 5. From Table 5 we see
that AMA+NADMM gives the best CH scores when C =2 and 4, and AManPL gives the best CH
scores when C' =3 and 5. Moreover, both AMA4+NADMM and AManPL produce much better CH
scores than AMA+CADMM. We also see that the CH varies significantly for different C', which

implies that it is very important to have a good estimation to C in practice.

C | AMA+CADMM | AMA+NADMM | AManPL
2 546.81 795.18 775.21
3 223.31 312.62 316.14
4 192.10 193.48 191.23
) 150.95 178.25 180.69

Table 5 Comparison of CH scores for solving MKSSC on an unsupervised dataset.

6. Conclusion
Motivated by the recent demands on analyzing the single cell RNA sequencing data, we considered

the sparse spectral clustering and multiple-kernel sparse spectral clustering in this paper. The SSC
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and MKSSC can be formulated as optimization problems over the Stiefel manifold with nonsmooth
objective function. Existing methods usually solve their convex relaxations or their approximation
with the nonsmooth function being approximated by a smooth function. In this paper, we proposed
a manifold proximal linear method for solving SSC, and the alternating manifold proximal linear
method for solving MKSSC. Convergence and iteration complexity of the proposed methods are
analyzed. Numerical results on clustering the single cell RNA sequencing data demonstrated the

practical potential of our proposed methods.
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