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Spectral clustering is one of the fundamental unsupervised learning methods and is widely used in data analysis.

Sparse spectral clustering (SSC) imposes sparsity to the spectral clustering and it improves the interpretability

of the model. One widely adopted model for SSC in the literature is an optimization problem over the Stiefel

manifold with nonsmooth and nonconvex objective. Such an optimization problem is very challenging to

solve. Existing methods usually solve its convex relaxation or need to smooth its nonsmooth objective using

certain smoothing techniques. Therefore, they were not targeting to solve the original formulation of SSC. In

this paper, we propose a manifold proximal linear method (ManPL) that solves the original SSC formulation,

without twisting the model. We also extend the algorithm to solve the multiple-kernel SSC problems, for

which an alternating ManPL algorithm is proposed. Convergence and iteration complexity results of the

proposed methods are established. We demonstrate the advantage of our proposed methods over existing

methods via clustering of several datasets including UCI and single-cell RNA sequencing datasets.

Key words : Riemannian Optimization, Manifold Proximal Linear Method, Sparse Spectral Clustering,

Single-Cell RNA Sequencing Data Analysis

1. Introduction

Clustering is a fundamental unsupervised learning problem with wide applications. The hierarchical

clustering, K-means clustering and spectral clustering (SC) methods are widely used in practice

(Friedman et al. 2001). It is known that interpretation of the dendrogram in hierarchical clustering

can be difficult in practice, especially for large datasets. The K-means clustering, closely related

to Lloyd’s algorithm, does not guarantee to find the optimal solution and performs poorly for

non-linearly separable or non-convex clusters. SC is a graph-based clustering method and it provides

a promising alternative for identifying locally connected clusters (Chung and Graham 1997, Shi

and Malik 2000, Ng et al. 2002).

Given the data matrix X = [x1, . . . ,xn] ∈ Rp×n, where n is the number of data points and p

is the feature dimension, SC constructs a symmetric affinity matrix S = (sij)n×n, where sij ≥ 0
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measures the pairwise similarity between two samples xi and xj for i, j = 1, . . . , n. Denote diagonal

matrix D= Diag (d1, . . . , dn) with di =
∑n

j=1 sij. The main step of SC is to compute the following

eigenvalue decomposition:

min
U∈Rn×C

〈UU>,L〉, s.t., U>U = IC , (1.1)

where L= In−D−1/2SD−1/2 is the normalized Laplacian matrix, IC denotes the C ×C identity

matrix, and C is the number of clusters. The rows of U can be regarded as an embedding of the

data X from Rp to RC . The cluster assignment is then decided after using a standard clustering

method such as the K-means clustering on the estimated embedding matrix Û obtained by solving

(1.1). Ideally, Û should be a sparse matrix such that Ûij 6= 0 if and only if sample i belongs to the

j-th cluster. Therefore Û Û> should be a block diagonal matrix which is also sparse. To this end,

the sparse spectral clustering (SSC) (Lu et al. 2016, 2018, Park and Zhao 2018) is proposed to

impose sparsity on Û Û>, which leads to the following optimization problem:

min
U∈Rn×C

〈UU>,L〉+λ‖UU>‖1, s.t., U>U = IC , (1.2)

where ‖Z‖1 =
∑

ij |Zij| is the entry-wise `1 norm of Z and it promotes the sparsity of Z, and λ> 0

is a weighting parameter.

In practice, the performance of SSC is sensitive to a single measure of similarity between data

points, and there are no clear criteria to choose an optimal similarity measure. Moreover, for

some very complex data such as the single-cell RNA sequencing (scRNA-seq) data (Kiselev et al.

2019), one may benefit from considering multiple similarity matrices because they provide more

information to the data. The next-generation sequencing technologies provide large detailed catalogs

of the transcriptomes of massive cells to identify putative cell types. Clustering high-dimensional

scRNA-seq data provides an informative step to disentangle the complex relationship between

different cell types. For example, it is important to characterize the patterns of monoallelic gene

expression across mammalian cell types (Deng et al. 2014), explore the mechanisms that control

the progression of lung progenitors across distinct cell types (Treutlein et al. 2014), or study the
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functionally distinct lineage in the bone marrow across mouse conventional dendritic cell types

(Schlitzer et al. 2015). To this end, Park and Zhao (2018) suggest the following similarity matrices

which lead to multiple-kernel SSC (MKSSC):

Kδ,m(i, j) = exp

(
‖xi−xj‖2

2ε2ij

)
, εij =

δ(µi +µj)

2
, µi =

∑
`∈KNN(i) ‖xi−x`‖

m
,

where KNN(i) represents a set of sample indices that are the top m nearest neighbors of the sample

xi. The parameters δ and m control the width of the neighborhoods. We use S(δ) and S(m) to

denote the sets of possible choices of δ and m, respectively. Then the total number of similarity

matrices is equal to T = |S(δ)| · |S(m)|. We denote the normalized Laplacian matrices corresponding

to these T similarity matrices as L(`), `= 1, . . . , T . The MKSSC can be formulated as the following

optimization problem:

min
U∈Rn×C ,w∈RT

F̄ (U,w)≡

〈
UU>,

T∑
`=1

w`L
(`)

〉
+λ‖UU>‖1 + ρ

T∑
`=1

w` log(w`) (1.3)

s.t. U>U = IC ,
T∑
`=1

w` = 1,w` ≥ 0, `= 1, . . . , T,

where w`, `= 1, . . . , T are unknown weightings of the kernels, and ρ
∑T

`=1w` log(w`) serves as an

entropy regularization term, and λ,ρ are two regularization parameters.

Note that both SSC (1.2) and MKSSC (1.3) are nonconvex and nonsmooth with Riemannian

manifold constraints. Therefore, they are both numerically challenging to solve. In this paper, we

propose a manifold proximal linear (ManPL) method for solving the SSC (1.2), and an alternating

ManPL (AManPL) method for solving the MKSSC (1.3).

Our contributions lie in several folds.

(i) We propose the ManPL method for solving SSC (1.2) and the AManPL method for solving

MKSSC (1.3). To the best of our knowledge, they are the first algorithms solving directly the

original formulations of SSC (1.2) and MKSSC (1.3), without twisting the models.

(ii) We analyze the convergence and iteration complexity of both ManPL and AManPL. Though

the two algorithms are closely related to the manifold proximal gradient (ManPG) algorithm
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(Chen et al. 2020b), ManPL and AManPL deal with more complicated problems where the

objective function involves a composition of a nonsmooth function and a smooth and nonconvex

mapping. As a result, the analysis for ManPL and AManPL is different from that of ManPG

and is new in the literature.

(iii) The subproblem in ManPL and AManPL is convex, but it is challenging to solve for large-scale

problems. We propose a proximal point algorithm based on a semi-smooth Newton method for

solving this subproblem.

(iv) We apply our proposed methods to clustering of scRNA-seq data. Our numerical experiments

indicate that our AManPL algorithm is very suitable for clustering this type of data, and its

advantage over existing methods is very clear.

The rest of this paper is organized as follows. We propose our ManPL method for solving the

SSC (1.2) in Section 2. We provide details of the proximal point method and semi-smooth Newton

method for solving the subproblem of ManPL in Section 3. We propose our AManPL method

for solving the MKSSC (1.3) in Section 4. The numerical results using the proposed methods for

solving clustering problems for UCI data, synthetic data, scRNA-seq data, and some unsupervised

data are reported in Section 5. Finally, we draw some concluding remarks in Section 6. Proofs to

the technical results are provided in the Appendix.

Notation. Throughout this paper, we use M to denote the Stiefel manifold. The smoothness,

convexity, and Lipschitz continuity of a function f are always interpreted as the function is considered

in the ambient Euclidean space. We use Sn+ to denote the set of n×n positive semidefinite matrices,

and Tr(Z) to denote the trace of matrix Z.

2. A Manifold Proximal Linear Method for SSC

Since SSC (1.2) is both nonsmooth and nonconvex, it is numerically challenging to solve. In the

literature, convex relaxations and smooth approximations of (1.2) have been suggested. In particular,

Lu et al. (2016) proposed to replace UU> with a positive semidefinite matrix P and solve the

following convex relaxation:

min
P∈Sn+

〈P,L〉+λ‖P‖1, s.t., 0� P � I, Tr(P ) =C. (2.1)
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This convex problem (2.1) can be solved by classical optimization algorithms such as ADMM. Denote

the solution of (2.1) by P̂ , the solution of (1.2) can be approximated by the top C eigenvectors of

P̂ . In another work, Lu et al. (2018) proposed a nonconvex ADMM to solve the following smooth

variant of (1.2):

min
U∈Rn×C ,P∈Sn+

〈UU>,L〉+ gσ(P ), s.t., P =UU>,U>U = IC , (2.2)

where gσ(·) is a smooth function with smoothing parameter σ > 0 that approximates the `1 regularizer

λ‖ · ‖1. In Lu et al. (2018), the authors used the following smooth function:

gσ(P ) := max
Z
〈P,Z〉− σ

2
‖Z‖2F , s.t., ‖Z‖∞ ≤ λ, (2.3)

where ‖Z‖∞ = maxij |Zij|. The nonconvex ADMM for solving (2.2) typically iterates as

Uk+1 := arg min
U∈Rn×C

L(U,P k;Λk), s.t., U>U = IC , (2.4a)

P k+1 := arg min
P∈Sn+

L(Uk+1, P ;Λk), (2.4b)

Λk+1 := Λk−µ(P k+1−Uk+1Uk+1>), (2.4c)

where the augmented Lagrangian function L is defined as

L(U,P ;Λ) := 〈UU>,L〉+ gσ(P )−〈Λ, P −UU>〉+ µ

2
‖P −UU>‖2F ,

and µ> 0 is a penalty parameter. The two subproblems (2.4a) and (2.4b) are both relatively easy

to solve. The reason to use the smooth function gσ(·) to approximate λ‖ · ‖1 in (2.2) is for the

purpose of convergence guarantee. In Lu et al. (2018), the authors proved that any limit point of

the sequence generated by the nonconvex ADMM (2.4) is a stationary point of (2.2). This result

relies on the fact that function gσ is smooth. If one applies ADMM to the original SSC (1.2), then

no convergence guarantee is known.

In this section, we introduce our ManPL algorithm that solves the original SSC (1.2) directly,

and unlike (2.1) and (2.2), our ManPL algorithm does not twist the formulation. For the ease of

presentation, we rewrite (1.2) as

min
U

F (U)≡ f(U) +h(c(U)), s.t., U ∈M, (2.5)
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where f(U) = 〈UU>,L〉, h(·) = λ‖ · ‖1, c(U) = UU>, M = {U ∈ Rn×C | U>U = IC} is the Stiefel

manifold. Moreover, note that f and c are smooth mappings, and h is nonsmooth but convex in the

ambient Euclidean space. Therefore, (2.5) is a Riemannian optimization problem with nonsmooth

and nonconvex objective function. Furthermore, throughout this paper, we use Lf , Lc, Lh to denote

the Lipschitz constants of ∇f , ∇c, and h, respectively. Riemannian optimization has drawn much

attention recently, due to its wide applications, including low rank matrix completion (Boumal and

Absil 2011), phase retrieval (Bendory et al. 2018, Sun et al. 2018), phase synchronization (Boumal

2016, Liu et al. 2017), and dictionary learning (Cherian and Sra 2017, Sun et al. 2017). Several

important classes of algorithms for Riemannian optimization with a smooth objective function

were covered in the monograph (Absil et al. 2008). On the other hand, there has been very limited

number of algorithms for Riemannian optimization with nonsmooth objective until very recently.

The most natural idea for this class of optimization problems is the Riemannian subgradient method

(RSGM) (Ferreira and Oliveira 1998, Grohs and Hosseini 2016, Hosseini and Uschmajew 2017).

Recently, Li et al. (2021) studied the RSGM for Riemannian optimization with weakly convex

objective. In particular, they showed that the number of iterations needed by RSGM for obtaining

an ε-stationary point is O(ε−4). Motivated by the proximal gradient method for solving composite

minimization in Euclidean space, Chen et al. (2020b) proposed a manifold proximal gradient method

(ManPG) for solving the following Riemannian optimization problem:

min
X

f(X) +h(X), s.t., X ∈M, (2.6)

whereM is the Stiefel manifold, f is a smooth function, and h is a nonsmooth and convex function.

A typical iteration of ManPG for solving (2.6) is:

V k := arg min
V

〈∇f(Xk), V 〉+h(Xk +V ) +
1

2t
‖V ‖2F , s.t., V ∈TXkM, (2.7a)

Xk+1 := RetrXk(αkV
k), (2.7b)

where αk > 0 is a step size. Here TUM denotes the tangent space of M at U , and for the Stiefel

manifold, it is known that TUM := {V ∈ Rn×C | V >U +U>V = 0}. Moreover, Retr denotes the

retraction operation, whose definition is given below.
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Definition 1. A retraction on a differentiable manifold M is a smooth mapping Retr from

the tangent bundle TM onto M satisfying the following two conditions (here RetrX denotes the

restriction of Retr onto TXM)

� RetrX(0) =X, ∀X ∈M, where 0 denotes the zero element of TXM.

� For X ∈M, it holds that

lim
TXM3ξ→0

‖RetrX(ξ)− (X + ξ)‖F
‖ξ‖F

= 0.

The retraction onto the Euclidean space is simply the identity mapping: RetrX(ξ) =X+ξ. Common

retractions include the polar decomposition:

Retrpolar
X (ξ) = (X + ξ)(Ir + ξ>ξ)−1/2,

the QR decomposition:

RetrQR
X = qf(X + ξ),

where qf(A) is the Q factor of the QR factorization of A, and the Cayley transformation:

Retrcayley
X (ξ) =

(
In−

1

2
W (ξ)

)−1(
In +

1

2
W (ξ)

)
X,

where W (ξ) = (In− 1
2
XX>)ξX>−Xξ>(In− 1

2
XX>).

Comparing with (2.6), we note that (2.5) is more difficult to solve, because of the nonconvex

term c(U). In fact, ManPG cannot be used to solve the SSC (1.2) because of the existence of the

nonconvex term UU> composite with the `1 norm. As a result, a new algorithm is demanded for

solving SSC (1.2). The iteration complexity of ManPG is proved to be O(ε−2) for obtaining an

ε-stationary point of (2.6) (Chen et al. 2020b), which is better than the complexity of RSGM (Li

et al. 2021). Variants of ManPG have been designed for different applications, such as alternating

ManPG for sparse PCA and sparse CCA (Chen et al. 2020c), FISTA for sparse PCA (Huang

and Wei 2019), manifold proximal point algorithm for robust subspace recovery and orthogonal

dictionary learning (Chen et al. 2019, 2020a), and stochastic ManPG (Wang et al. 2020) for online

sparse PCA. Moreover, ManPG has been extended to more general Riemannian proximal gradient
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method (Huang and Wei 2021). Motivated by the success of ManPG and its variants, we propose a

manifold proximal linear algorithm for solving SSC (2.5).

The proximal linear method has recently drawn great research attentions. It targets to solve the

optimization problem in the form of (2.5) without the manifold constraint, i.e.,

min
x∈Rn

f(x) +h(c(x)), (2.8)

where f : Rn→R and c : Rn→Rm are smooth mappings, h : Rm→R is convex and nonsmooth. The

proximal linear method for solving (2.8) iterates as follows:

xk+1 := arg min
x

〈∇f(xk), x−xk〉+h(c(xk) +J(xk)(x−xk)) +
1

2t
‖x−xk‖22, (2.9)

where J(x) =∇c(x) is the Jacobian of c, and t > 0 is a step size. Note that since h is convex, the

update (2.9) is a convex problem. This method has been studied recently by Lewis and Wright

(2016), Drusvyatskiy and Paquette (2019), Duchi and Ruan (2018) and applied to solving many

important applications such as robust phase retrieval (Duchi and Ruan 2019), robust matrix recovery

(Charisopoulos et al. 2019), and robust blind deconvolution (Charisopoulos et al. 2021).

Due to the nonconvex constraint U ∈M, solving (2.5) is more difficult than (2.8). Motivated by

ManPG and the proximal linear method (2.9), we propose a ManPL algorithm for solving (2.5). A

typical iteration of the ManPL algorithm for solving (2.5) is:

V k := arg min
V

〈∇f(Uk), V 〉+h(c(Uk) +J(Uk)V ) +
1

2t
‖V ‖2F , s.t., V ∈TUkM, (2.10a)

Uk+1 := RetrUk(αkV
k). (2.10b)

Similar to (2.7a), the equation (2.10a) computes the descent direction V by minimizing a convex

function over the tangent space ofM. However, solving (2.10a) is more difficult than (2.7a) because

of the non-trivial affine function, i.e., c(Uk) +J(Uk)V , composite with the nonsmooth function h.

Moreover, the difference of (2.10a) and (2.9) is the constraint in (2.10a), which is needed in the

Riemannian optimization setting. Fortunately, (2.10a) can still be solved efficiently by a proximal
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point algorithm combined with a semi-smooth Newton method, which will be elaborated in Section

3. The retraction step (2.10b) brings the iterate back to the manifold M.

The complete description of the ManPL for solving SSC (2.5) is given in Algorithm 1. The step

(2.11) is a line search step to find the step size αk such that there is a sufficient decrease on the

function F .

Algorithm 1 The ManPL for SSC (2.5)

Input: initial point U 0 ∈M, parameters γ ∈ (0,1), t > 0

for k= 0,1, . . . do

Calculate V k by solving (2.10a)

Let jk be the smallest non-negative integer such that

F (RetrUk(γjkV k))≤ F (Uk)− γ
jk

2t
‖V k‖2F (2.11)

Let αk = γjk and compute Uk+1 by (2.10b)

end for

The main convergence and iteration complexity result of ManPL (Algorithm 1) is given in

Theorem 1. Its proof is given in the appendix.

Theorem 1. Assume F (U) is lower bounded by F ∗. The limit point of the sequence {Uk}

generated by ManPL (Algorithm 1) is a stationary point of (2.5). Moreover, ManPL returns an

ε-stationary point of (2.5) in O(ε−2) iterations.

3. A Semi-Smooth Newton-based Proximal Point Algorithm for the
Subproblem

In this section, we introduce a proximal point algorithm (PPA) combined with a semi-smooth

Newton method (SSN) for solving the subproblem (2.10a) in ManPL. The notion of semi-smoothness

was originally introduced by (Mifflin 1977) for real valued functions and later extended to vector-

valued mappings by (Qi and Sun 1993). The SSN method has recently received significant amount

of attention due to its success in solving structured convex problems to a high accuracy in problems
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such as LASSO (Li et al. 2018, Yang et al. 2013), convex clustering (Wang et al. 2010), SDP (Zhao

et al. 2010), and convex composite problems (Xiao et al. 2018).

For simplicity of the notation, we omit the index k in (2.10a), and denote Z1 := ∇f(Uk),

Z2 := c(Uk), J = J(Uk), and operator A : V → V >Uk + (Uk)>V . Therefore, (2.10a) reduces to the

following form:

min
V,Y

1

2t
‖V +Z1‖2F +h(Z2 +Y ), s.t., A(V ) = 0, Y = JV. (3.1)

Note that we have introduced a variable Y to replace JV . The Lagrangian function for (3.1) is

given by:

L(V,Y ; Γ1,Γ2) =
1

2t
‖V +Z1‖2F +h(Z2 +Y )−〈Γ1,A(V )〉− 〈Γ2, JV −Y 〉,

where Γ1 and Γ2 are the Lagrange multipliers associated to the two equality constraints. Therefore,

(3.1) is equivalent to

min
V,Y
{G(V,Y ) := max

Γ1,Γ2

L(V,Y ; Γ1,Γ2)}. (3.2)

The minimization problem (3.2) can be solved by a PPA, which iterates as:

(V k+1, Y k+1) := arg min
V,Y

G(V k, Y k) +
1

2β

(
‖V −V k‖2F + ‖Y −Y k‖2F

)
:= arg min

V,Y

max
Γ1,Γ2

L(V,Y ; Γ1,Γ2) +
1

2β

(
‖V −V k‖2F + ‖Y −Y k‖2F

)
, (3.3)

where β > 0 is a parameter. The problem (3.3) is equivalent to:

max
Γ1,Γ2

min
V,Y
L(V,Y ; Γ1,Γ2) +

1

2β

(
‖V −V k‖2F + ‖Y −Y k‖2F

)
. (3.4)

Note that the minimization part of (3.4) is strongly convex and admits a closed-form solution given

by:

V =
tβ

t+β

(
A∗(Γ1) +J>Γ2−

1

t
Z1 +

1

β
V k

)
, Y = Proxβh(Z2 +Y k−βΓ2)−Z2, (3.5)

where Proxg denotes the proximal mapping of function g, which is defined as:

Proxg(Z) := arg min
X

g(X) +
1

2
‖X −Z‖2F .
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For simplicity of the notation, we define function E(Γ2) := Z2 + Y k − βΓ2. Substituting (3.5) to

(3.4), and using the Moreau identity, we know that (3.4) is equivalent to:

max
Γ1,Γ2

Θ(Γ1,Γ2) :=− 1

2

tβ

t+β

∥∥∥∥1

t
Z1−

1

β
V k−A∗(Γ1)−J>Γ2

∥∥∥∥2

F

(3.6)

+h(ProxβhE(Γ2)) +β‖Proxh∗/β(E(Γ2)/β)‖2F + 〈Γ2, Y
k〉− β

2
‖Γ2‖2F ,

where h∗ denotes the conjugate function of h. Now by denoting

Ψ(Γ2) := max
Γ1

Θ(Γ1,Γ2), (3.7)

it is easy to verify that Ψ(Γ2) is strongly concave and continuously differentiable (Li et al. 2018),

and its unique maximizer is found by solving the following nonsmooth system:

∇Ψ(Γ2) = 0. (3.8)

Solving (3.8) can be done by using SSN (Li et al. 2018, Xiao et al. 2018). After we obtain the

solution to (3.8), the optimal Γ1 can be found by solving the maximization problem in (3.7), which

is an easy least-squares problem.

To summarize, the PPA for solving (2.10a) is given by (3.3), and its solution is given by (3.5).

The required Γ2 in (3.5) is obtained by solving (3.8) using SSN, and Γ1 in (3.5) is obtained by

solving the least-squares problem in (3.7). The convergence of the PPA and the SSN has been well

studied in the literature (Li et al. 2018, Yang et al. 2013).

4. An Alternating ManPL Method for Multiple-Kernel SSC

In this section, we consider the multiple-kernel SSC (1.3). Park and Zhao (2018) consider to solve

the following relaxation of (1.3) by letting P =UU>:

min
P,w

〈
P,

T∑
`=1

w`L
(`)

〉
+λ‖P‖1 + ρ

T∑
`=1

w` log(w`) (4.1)

s.t. Tr(P ) =C,0� P � I,
T∑
`=1

w` = 1,w` ≥ 0, `= 1, . . . , T.

Note that this is still a nonconvex problem due to the bi-linear term in the objective function. Park

and Zhao (2018) suggested to use an alternating minimization algorithm (AMA) to solve (4.1).
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Note that this method is named MPSSC in (Park and Zhao 2018). In the k-th iteration of AMA,

one first fixes w as wk and solves the resulting problem with respect to P to obtain P k+1, and then

fixes P as P k+1 and solves the resulting problem with respect to w to obtain wk+1. In particular,

when w is fixed as wk, problem (4.1) reduces to

min
P

〈
P,

T∑
`=1

wk`L
(`)

〉
+λ‖P‖1, s.t., Tr(P ) =C,0� P � I, (4.2)

which is a convex problem and can be solved via convex ADMM algorithm. When P is fixed as

P k+1, problem (4.1) reduces to

min
w

c>w+ ρ
T∑
`=1

w` log(w`), s.t.,
T∑
`=1

w` = 1,w` ≥ 0, `= 1, . . . , T, (4.3)

where c` = 〈P k+1,L(`)〉, `= 1, . . . , T . This is also a convex problem and it can be easily verified that

(4.3) admits a closed-form solution given by

w` =
exp(−c`/ρ)∑T

j=1 exp(−cj/ρ)
, `= 1, . . . , T. (4.4)

In summary, a typical iteration of the AMA algorithm proposed by (Park and Zhao 2018) is as

follows: 
update P k+1 by solving (4.2)

update wk+1 by solving (4.3).

(4.5)

In our numerical experiments, we call this method AMA+CADMM, because (4.2) is solved by a

convex ADMM.

Another approach to approximate (1.3) is to combine the idea of AMA (4.5) and the nonconvex

ADMM for solving the smooth problem (2.2). In particular, one can solve the following smooth

variant of (1.3):

min
U∈Rn×C ,w∈RT

〈
UU>,

T∑
`=1

w`L
(`)

〉
+ gσ(UU>) + ρ

T∑
`=1

w` log(w`)

s.t. U>U = IC ,
T∑
`=1

w` = 1,w` ≥ 0, `= 1, . . . , T,

(4.6)

where gσ(·) is the smooth approximation to λ‖ · ‖1 defined in (2.3). When fixing w, (4.6) is in the

same form as the smoothed SSC (2.2), so it can be solved by the nonconvex ADMM (2.4). When
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fixing U , (4.6) is in the same form as (4.3), and admits a closed-form solution (4.4). In summary,

the AMA+ADMM algorithm for solving (4.6) works as follows:
update Uk+1 by solving (4.6) with w fixed as wk using nonconvex ADMM (2.4)

update wk+1 by solving (4.6) with U fixed as Uk+1 using (4.4).

(4.7)

To differentiate with the AMA+CADMM algorithm (4.5), we call (4.7) the AMA+NADMM,

because a nonconvex ADMM is used to solve (4.6) with w fixed as wk.

By exploiting the structure of (1.3), we propose to solve (1.3) by an alternating ManPL algorithm

(AManPL). More specifically, in the k-th iteration of AManPL, we first fix w as wk, then (1.3)

reduces to

min
U

〈
UU>,

T∑
`=1

wk`L
(`)

〉
+λ‖UU>‖1, s.t., U ∈M, (4.8)

which is in the same form of (2.5) with L in (2.5) replaced by L̄ :=
∑T

`=1w
k
`L

(`). Therefore, (4.8)

can also be solved by ManPL. Here we adopt one step of ManPL, i.e., (2.10) to obtain Uk+1. More

specifically, Uk+1 is computed by the following two steps:

V k := arg min
V

〈∇Uf(Uk,wk), V 〉+h(c(Uk) +J(Uk)V ) +
1

2t
‖V ‖2F , s.t., V ∈TUkM, (4.9a)

Uk+1 := RetrUk(αkV
k), (4.9b)

where f(U,w) :=
〈
UU>,

∑T

`=1w`L
(`)
〉

, h(·) := λ‖ · ‖1, and c(U) = UU>. Note that (4.9a) can be

solved by the same PPA+SSN algorithm discussed in Section 3. We then fix U in (1.3) as Uk+1,

and then (1.3) reduces to

min
w

c>w+ ρ
T∑
`=1

w` log(w`), s.t.,
T∑
`=1

w` = 1,w` ≥ 0, `= 1, . . . , T, (4.10)

where c` = 〈Uk+1Uk+1>,L(`)〉, `= 1, . . . , T . We then obtain wk+1 by solving (4.10), which admits a

closed-form solution given by (4.4). The AManPL is described in Algorithm 2.

We have the following convergence and iteration complexity result for AManPL for solving

MKSSC (1.3). Its proof is given in the appendix.
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Algorithm 2 The AManPL Method for Solving MKSSC (1.3)

Input: parameter γ ∈ (0,1), initial point U 0 ∈M, let w0 be the optimal solution to (4.10) for

c` = 〈U 0U 0>,L(`)〉

for k= 0,1, . . . do

Calculate V k by solving (4.9a)

Let jk be the smallest non-negative integer such that

F̄ (RetrUk(βjkV k),wk)≤ F̄ (Uk,wk)− γ
jk

2t
‖V k‖2F (4.11)

Let αk = γjk and compute Uk+1 by (4.9b)

Update wk+1
` by (4.4) with c` = 〈Uk+1Uk+1>,L(`)〉, `= 1, . . . , T

end for

Theorem 2. Assume F̄ (U,w) in (1.3) is lower bounded by F̄ ∗. The limit point of the sequence

{Uk,wk} generated by AManPL (Algorithm 2) is a stationary point of problem (1.3). Moreover,

to obtain an ε-stationary point of problem (1.3), the number of iterations needed by AManPL is

O(ε−2).

5. Numerical Experiments

In this section, we compare our proposed methods ManPL and AManPL with some existing methods

for solving SSC and MKSSC. In particular, for SSC (1.2), we compare ManPL (Algorithm 1)

with convex ADMM (Lu et al. 2016) (denoted by CADMM 1) for solving (2.1) and nonconvex

ADMM (Lu et al. 2018) (denoted by NADMM) for solving (2.2). We also include the spectral

clustering (denoted by SC) in the comparison. For MKSSC (1.3), we compare AManPL (Algorithm

2) with MPSSC (i.e., AMA+CADMM 2) (Park and Zhao 2018) and AMA+NADMM (4.7). All

the algorithms were terminated when the absolute change of the objective value is smaller than

10−5, which indicates that the algorithms were not making much progress. All the codes were run

1 cdoes downloaded from https://github.com/canyilu/LibADMM/blob/master/algorithms/sparsesc.m

2 codes downloaded from https://github.com/ishspsy/project/tree/master/MPSSC
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in Matlab R2021a on a laptop with a 1.61 GHz Intel 6-Core i7 CPU and 16GB RAM. All reported

CPU times are in seconds.

Formulation Method

Convex SSC (2.1) CADMM (Lu et al. 2016)

Smoothed SSC (2.2) NADMM (2.4) (Lu et al. 2018)

Original SSC (1.2) ManPL (Algorithm 1)

MKSSC (4.1) AMA+CADMM (4.5) (Park and Zhao 2018)

Smoothed MKSSC (4.6) AMA+NADMM (4.7)

Original MKSSC (1.3) AManPL (Algorithm 2)

Table 1 Summary of different methods for solving SSC or MKSSC.

5.1. UCI Datasets

We first compare the clustering performance of different methods on three benchmark datasets in

UCI machine learning repository (Dua and Graff 2017). For the parameters used in the models, we

choose them in the following manner. For σ that is used in (2.2) and (4.6), we set it as σ = 0.2. For

λ that is used in all six models (1.2), (1.3), (2.1), (2.2), (4.1) and (4.6), and ρ that is used in (1.3),

(4.1) and (4.6), we choose them from the following sets:

λ∈ {5× 10−3,10−3,5× 10−4,10−4,10−5}, and ρ∈ {0.01,0.02,0.05,0.1,0.2,0.5,1}. (5.1)

We follow Park and Zhao (2018) to construct the similarity matrices and record the Normalized

Mutual Information (NMI) scores (Strehl and Ghosh 2003) to measure the performance of the

clustering. Given two clustering assignments I and J on a set of n data points with CI and CJ

clusters, repectively, the NMI score is defined as

NMI(I, J) =

∑CI
p=1

∑CJ
q=1 |Ip ∩Jq| log

n|Ip∩Jq |
|Ip|×|Jq |

max
(
−
∑CI

p=1 |Ip| log
|Ip|
n
,−
∑CJ

q=1 |Jq| log
|Jq |
n

) , (5.2)

where the numerator is the mutual information between I and J , and the denominator represents

the entropy of the clustering assignments I and J . Note that higher NMI scores indicate better
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clustering performance. More specifically, based on the matrix Û computed using the algorithm,

we first perform K-means on Û to get the resulting label I ′ for each data. Since the ground-truth

assignments I of the clusters are available for the three datasets, we can then calculate the NMI

score based on the resulting label I ′ and the ground-truth label I using (5.2).

Task Method
Wine Iris Glass

NMI CPU NMI CPU NMI CPU

SSC

CADMM 0.893 0.022 0.742 0.020 0.347 0.033

NADMM 0.893 0.075 0.636 0.063 0.346 0.381

ManPL 0.893 0.066 0.652 0.108 0.407 0.372

MKSSC

AMA+CADMM 0.893 0.965 0.804 0.784 0.353 1.842

AMA+NADMM 0.893 1.230 0.831 0.357 0.357 4.761

AManPL 0.882 0.578 0.804 0.658 0.416 2.630

Table 2 Comparison of NMI scores and CPU runtime for solving SSC or MKSSC on the UCI datasets.

The NMI scores are reported in Table 2. Note that we can compute the NMI scores because

the ground-truth clustering assignments of these datasets are known. From Table 2 we see that

for the Iris and Glass datasets, the MKSSC model always performs better than the SSC model in

terms of NMI scores. For the Glass dataset, we see that our ManPL achieves better NMI score than

CADMM and NADMM, and our AManPL achieves better NMI score than AMA+CADMM and

AMA+NADMM. For the Wine dataset, we find that all algorithms perform similarly in terms of

NMI scores, although AManPL achieves slightly worse NMI score. Moreover, we show the heatmap

of |UU>| for the Iris data set in Figure 1. For the SSC models (2.1), (2.2) and (1.2), we show the

figures corresponding to λ= 5× 10−3, and for the MKSSC models (4.1), (4.6) and (1.3), we show

the figures corresponding to λ= 10−4, ρ= 2× 10−2. From Figure 1 we see that the figures generated

by the SSC models, i.e., Figures 1 (b)-(d) give clearly better clustering results than the spectral

clustering model (1.1), whose heatmap is given in Figure 1 (a). Furthermore, we also see that the
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MKSSC models whose heatmaps are given in Figures 1 (e)-(g) give clearly better clustering results

than the single view SSC models. These observations demonstrate the necessity of studying the

multiple-kernel SSC models.
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Figure 1 The heatmaps of |UU>| on the Iris dataset estimated by (a) SC (1.1), (b) CADMM for SSC (2.1), (c)

NADMM for SSC (2.2), (d) ManPL for SSC (1.2), (e) AMA+CADMM for MKSSC (4.1), (f) AMA+NADMM for

MKSSC (4.6), and (g) AManPL for MKSSC (1.3).

5.2. Synthetic Data

In this subsection, we follow Park and Zhao (2018) to evaluate the clustering performance of

different methods on two synthetic datasets with C = 5 clusters.

� Synthetic data 1. We randomly generate C points in the 2-dimensional latent space spanning

a circle as the centers of C clusters. For each cluster, we randomly generate the points by adding

an independent noise to its center, and the entries of the noise follow a Gaussian distribution.

The noise level is equal to the radius of the circle in the embedded space multiplied by a

parameter σ. We project these 2-dimensional data to a p-dimensional space using a linear

projection matrix and then add the heterogeneous noise to obtain the data matrix X.

� Synthetic data 2. We randomly generate a matrix B′ ∈RC×d with d= 10 by drawing its entries

independently from Gaussian distributions, where different rows of B′ specify heterogeneous

variances. We randomly assign the cluster labels z1, . . . , zn ∈ [C]. Let B =
[
B′,0C×(p−d)

]
and
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Z = (Zij)n×C = (1{zi=j})n×C . We generate X = ZB + W, where W is a noise matrix with

independent standard normally distributed entries. The noise level is equal to the radius of

the circle in the embedded space multiplied by a parameter σ.

Figure 2 visualizes one realization of the simulated data for these two settings. From Figure 2 we

see that different clusters mix together and the variability between clusters varies.
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(b) Synthetic data 2

Figure 2 Illustration of one realization of the synthetic data.

The parameters λ and ρ are again chosen from (5.1). Note that there are 35 different combinations

of (λ,ρ). For each pair of (λ,ρ), we run the three algorithms AMA+CADMM, AMA+NADMM

and AManPL for 10 times, and then we report the average NMI scores and average CPU runtime

over the 350 independent repetitions. The results are given in Table 3.

From Table 3 we see that AMA+NADMM and AManPL provided better NMI scores than

AMA+CADMM in most cases, with the only exception of (n,p) = (200,500) in synthetic dataset 2

where AMA+CADMM is better in terms of the NMI score. We also observe that AMA+NADMM

usually provides slightly better NMI score than AManPL, but AManPL is more efficient in some

cases such as n= 200, p= 250, 300, and 500 in synthetic dataset 2. This suggest that AManPL has

potential to be more efficient in large-scale problems.

We further conduct some numerical tests to test the sensitivity of the algorithms to the noise

level σ. In particular, we repeat the tests above by varying σ in the following set of values:

σ ∈ {0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5}. (5.3)
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Method AMA+CADMM AMA+NADMM AManPL

n p NMI CPU NMI CPU NMI CPU

Synthetic data 1 with σ= 0.3

100 250 0.906 0.695 0.937 0.825 0.935 1.231

100 300 0.908 0.698 0.939 0.829 0.938 1.188

100 500 0.912 0.745 0.944 0.870 0.943 1.248

200 250 0.935 1.647 0.941 3.608 0.940 3.825

200 300 0.931 1.640 0.937 3.574 0.934 3.712

200 500 0.940 2.879 0.944 5.799 0.943 6.307

Synthetic data 2 with σ= 0.2

100 250 0.727 0.609 0.986 1.049 0.973 1.445

100 300 0.742 0.612 0.980 1.079 0.968 1.460

100 500 0.906 0.570 0.976 1.049 0.961 1.292

200 250 0.959 1.224 0.990 4.047 0.984 3.924

200 300 0.972 1.247 0.989 4.233 0.980 3.893

200 500 0.986 1.265 0.984 4.741 0.970 3.796

Table 3 Comparison of NMI scores and CPU runtime for solving MKSSC for synthetic data 1 and 2.

We report the NMI scores of the three algorithms for varying σ in Figure 3 for the two synthetic

data sets both with (n,p) = (100,300), (n,p) = (200,300) and (n,p) = (200,500). From Figure 3 we

see that AMA+NADMM and AManPL have very similar performance when the noise level σ varies,

and they are obviously better than AMA+CADMM for synthetic data 1. However, it appears that

when the noise level σ is large, AMA+CADMM is better than the other two for synthetic data 2.

5.3. Single-Cell RNA Sequencing Data Analysis

Clustering cells and identifying subgroups are important topics in high-dimensional scRNA-seq

data analysis. The multiple kernel learning approach is vital as clustering scRNA-seq data is usually

sensitive to the choice of the number of neighbors and scaling parameter. Recently, Park and
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(c) Synthetic data 1, (n,p) = (200,300)
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(d) Synthetic data 2, (n,p) = (200,300)
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(e) Synthetic data 1, (n,p) = (200,500)
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(f) Synthetic data 2, (n,p) = (200,500)

Figure 3 Plots of NMI scores versus the noise level σ. The x-axis denotes σ and the y-axis denotes the NMI

score.

Zhao (2018) showed that AMA+CADMM for MKSSC provides a promising clustering result and

outperforms several state-of-art methods such as SC, SSC, t-SNE (van der Maaten and Hinton

2008), and SIMLR (Wang et al. 2017). In what follows, we focus on the numerical comparison of
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AMA+CADMM, AMA+NADMM and AManPL to cluster high-dimensional scRNA-seq data on

seven real datasets used in Park and Zhao (2018). These seven real datasets represent several types

of important dynamic processes such as cell differentiation, and they include the information about

single cell types. We follow the procedure of Park and Zhao (2018) to specify multiple kernels for

clustering scRNA-seq data. The parameters λ and ρ are again chosen from (5.1). For each dataset,

we report the average NMI score and average CPU runtime of AMA+CADMM, AMA+NADMM

and AManPL in Table 4. Note that we can compute the NMI scores because the ground-truth

assignments of the clusters of these scRNA-seq data are known in the literature e.g., Park and Zhao

(2018). Moreover, since the Tasic dataset is very large, in which n= 1727, p= 5832 and C = 49, we

only run the algorithms with one particular choice of (λ,ρ) = (10−3,10−1). From Table 4 we see

that AManPL provides the best NMI score in most cases, with the first dataset being an exception

for which AMA+NADMM gives the best NMI score. Furthermore, for the large-scale Tasic dataset,

AManPL provides much better NMI score than the other two algorithms, and it is much more

efficient than AMA+NADMM. The results in Table 4 demonstrate that our AManPL for solving

(1.3) has great potential in analyzing the scRNA-seq data.

Method AMA+CADMM AMA+NADMM AManPL

Datasets NMI CPU NMI CPU NMI CPU C

Deng et al. (2014) 0.679 1.761 0.732 3.041 0.707 2.788 7

Ting et al. (2014) 0.901 1.124 0.919 1.576 0.941 0.911 5

Treutlein et al. (2014) 0.423 0.572 0.655 0.873 0.673 0.672 5

Buettner et al. (2015) 0.505 2.071 0.403 8.879 0.514 2.168 3

Schlitzer et al. (2015) 0.368 3.201 0.378 14.769 0.402 4.918 3

Pollen et al. (2014) 0.662 4.864 0.816 24.020 0.821 6.640 11

Tasic et al. (2016) 0.123 1.083e+02 0.156 3.421e+03 0.237 4.692e+02 49

Table 4 Comparison of NMI scores and CPU runtime for solving MKSSC on real scRNA-seq datasets.
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5.4. Unsupervised data

In practice, clustering usually needs to be performed for unsupervised data. Here we test the three

algorithms AMA+CADMM, AMA+NADMM and AManPL on a microbiome dataset with no

ground-truth assignment. The original data is from Morgan et al. (2015). After preprocessing, we

have the mRNA expression of 170 genes (i.e., p = 170) for all 196 Inflammatory bowel disease

(IBD) patients (i.e., n= 196). The spectral clustering on such microbiome mRNA data can help us

understand the grouping effect of gene expressions for IBD patients. For this dataset, we do not

know the ground-truth clusters, therefore NMI cannot be used. Instead, we choose to measure the

performance of the clustering by using the Calinski-Harabasz (CH) score (Calinski and Harabasz

1974), which is widely used to measure the cluster quality when there is no ground-truth information

available. According to the definition of the CH score, under the same value of proposed clustering

number C, higher CH score usually corresponds to better clustering result. We report the CH scores

of the three algorithms for clustering number C = 2,3,4, and 5 in Table 5. From Table 5 we see

that AMA+NADMM gives the best CH scores when C = 2 and 4, and AManPL gives the best CH

scores when C = 3 and 5. Moreover, both AMA+NADMM and AManPL produce much better CH

scores than AMA+CADMM. We also see that the CH varies significantly for different C, which

implies that it is very important to have a good estimation to C in practice.

C AMA+CADMM AMA+NADMM AManPL

2 546.81 795.18 775.21

3 223.31 312.62 316.14

4 192.10 193.48 191.23

5 150.95 178.25 180.69

Table 5 Comparison of CH scores for solving MKSSC on an unsupervised dataset.

6. Conclusion

Motivated by the recent demands on analyzing the single cell RNA sequencing data, we considered

the sparse spectral clustering and multiple-kernel sparse spectral clustering in this paper. The SSC
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and MKSSC can be formulated as optimization problems over the Stiefel manifold with nonsmooth

objective function. Existing methods usually solve their convex relaxations or their approximation

with the nonsmooth function being approximated by a smooth function. In this paper, we proposed

a manifold proximal linear method for solving SSC, and the alternating manifold proximal linear

method for solving MKSSC. Convergence and iteration complexity of the proposed methods are

analyzed. Numerical results on clustering the single cell RNA sequencing data demonstrated the

practical potential of our proposed methods.
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