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Unseen Object Instance Segmentation for
Robotic Environments

Christopher Xie , Yu Xiang, Arsalan Mousavian , and Dieter Fox, Fellow, IEEE

Abstract—In order to function in unstructured environments,
robots need the ability to recognize unseen objects. We take a
step in this direction by tackling the problem of segmenting un-
seen object instances in tabletop environments. However, the type
of large-scale real-world dataset required for this task typically
does not exist for most robotic settings, which motivates the use
of synthetic data. Our proposed method, unseen object instance
segmentation (UOIS)-Net, separately leverages synthetic RGB and
synthetic depth for unseen object instance segmentation. UOIS-Net
is composed of two stages: first, it operates only on depth to produce
object instance center votes in 2D or 3D and assembles them into
rough initial masks. Second, these initial masks are refined using
RGB. Surprisingly, our framework is able to learn from synthetic
RGB-D data where the RGB is nonphotorealistic. To train our
method, we introduce a large-scale synthetic dataset of random
objects on tabletops. We show that our method can produce sharp
and accurate segmentation masks, outperforming state-of-the-art
methods onunseen object instance segmentation.Wealso show that
our method can segment unseen objects for robot grasping.

Index Terms—Robot perception, sim-to-real, unseen object
instance segmentation.

I. INTRODUCTION

FOR a robot to work in an unstructured environment, it must
have the ability to recognize new objects that have not

been seen before. Assuming every object in the environment has
beenmodeled is infeasible and impractical. Recognizing unseen
objects is a challenging perception task since the robot needs to
learn the concept of “objects” and generalize it to unseen objects.
Building such a robust object recognition module is valuable for
robots interactingwith objects, such as pickingupunseenobjects
or learning to use new tools [1]–[3]. A common environment in
which manipulation tasks take place is on tabletops. Thus, we
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approach this by focusing on the problem of unseen object in-
stance segmentation (UOIS), where the goal is to segment every
arbitrary (and potentially unseen) object instance, in tabletop
environments.
In order to ensure the generalization capability of the module

to recognize unseen objects, we need to learn from data that
contains large amounts of various objects. However large-scale
datasets with this property do not exist. Since collecting a
large dataset with manual annotations is expensive and time-
consuming, it is appealing to utilize synthetic data for training,
such as using the ShapeNet repository which contains thou-
sands of 3D objects [4]. However, there exists a domain gap
between synthetic data and real-world data as many simulators
do not provide realistic-looking images. Training directly on
such synthetic data only usually does not work well in the real
world [5], and synthesizing photo-realistic images with physics-
based rendering can be computationally expensive [6], making
large photorealistic synthetic datasets impractical to obtain.
Consequently, recent efforts in robot perception have been

devoted to the problem of sim-to-real, where the goal is to trans-
fer capabilities learned in simulation to real-world settings. For
instance, some works have used domain adaptation techniques
to bridge the gap when unlabeled real data is available [7], [8].
Domain randomization [9] was proposed to diversify the render-
ing of synthetic data for training.While these techniques attempt
to fix the discrepancy between synthetic and real-world RGB,
models trainedwith synthetic depth have been shown to general-
ize reasonably well for simple settings such as bin-picking [10],
[11]. However, in more complex settings, noisy depth sensors
can limit the application of suchmethods, andmodels trained on
RGB have been shown to produce accurate masks [12]. An ideal
method should combine the generalization capability of training
on synthetic depth and the ability to produce sharp masks by
utilizing RGB.
In this work, we investigate how to utilize synthetic RGB-D

images for UOIS in tabletop environments.We show that simply
combining synthetic RGB images and synthetic depth images as
inputs does not generalize well to the real world. To tackle this
problem, we propose a two-stage network architecture called
UOIS-Net that separately leverages the strengths of RGB and
depth forUOIS.Our first stage is a depth seeding network (DSN)
that utilizes only depth to produce object instance center votes,
which are then used to compute rough initial instancemasks.We
compare multiple architectures for the DSN that produce center
votes in 2D and 3D. Training the DSNwith depth images allows
for better generalization to real-world data. However, the initial
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Fig. 1. High level overview of our proposed two-stage framework. The first
stage leverages depth only to produce rough initial masks. The second stage then
leverages RGB to refine the initial masks to produce accurate, sharp instance
masks.

masks from the DSN may contain inaccurate object boundaries
due to depth senor noise. In this case, exploiting textures in RGB
images can significantly help.
Thus, our second stage is a region refinement network (RRN)

that takes an initial mask from the DSN and an RGB image
as input and outputs a refined mask. Our surprising result is
that, conditioned on initial masks, our RRN can be trained on
non-photorealistic synthetic RGB images without adopting any
of the afore-mentioned Sim-to-Real solutions. We posit that
mask refinement is an easier problem than directly using RGB
as input to produce masks, mainly because the mask refinement
uses a local image patch as input and focuses on a single object.
Weempirically show robust generalization acrossmanydifferent
objects in cluttered real-world data. In fact, our RRN works
almost as well as if it were trained on real data. Our framework
produces sharp and accurate masks even when the depth images
are noisy. We show that it outperforms state-of-the-art (SOTA)
methods including Mask R-CNN [12] and PointGroup [13].
Fig. 1 illustrates our two-stage framework.
To train our method, we introduce a synthetic dataset of

tabletop objects in home environments, which we name tabletop
object dataset (TOD). Our dataset consists of indoor scenes
of random ShapeNet [4] objects on random ShapeNet tables.
We use the PyBullet physics simulator [14] to generate the
scenes and render depth and nonphotorealistic RGB. Training
our proposed method on this dataset results in SOTA results on
multiple real-world datasets for UOIS.
We extend our previous work, UOIS-Net-2D [15], by intro-

ducing a novel DSN architecture that reasons in 3D space. Aswe
show in Section VIII, this architecture solves many limitations
of producing these center votes in 2D (our previous work),
thus providing stronger performance.Additionally,we propose a
novel loss function that encourages separation of the center vote
clusters and show that this loss function is crucial to achieving
strong performance in cluttered environments.

II. RELATED WORKS

A. Category-Level Object Segmentation

2D semantic segmentation involves assigning pixels in an
image to a set of known classes. Deep learning has emerged
as the most popular tool for solving this problem [16]–[20].
Shelhamer et al. [16] first introduced the concept of using a fully
convolutional architecture (FCN). Chen et al. [17] designed an
architecture that utilizes dilated convolutions in order to increase

the receptive field. Refs. [18], [19] further improve performance
by introducing decoder architectures on top of the encoders.
Lin et al. [20] proposed a multipath refinement network with
long-range residual connections to enable high-resolution pre-
dictions. These methods have demonstrated strong performance
on datasets such as PASCAL [21] and COCO [22].
Much work has been devoted to solving the semantic seg-

mentation problem in 3D as well. A common representation
of 3D space is voxels; however, operating with voxel grids
as input can be expensive both computationally and memory-
wise. Thus, Graham et al. [23] introduced a submanifold sparse
convolutional operator to preserve spatial sparsity of the input.
Choy et al. [24] further generalized these sparse convolutions
to arbitrary kernel shapes, improving performance. Other 3D
methods utilize point clouds. Qi et al. [25] proposed PointNet,
a permutation-invariant network architecture to handle point
clouds, and Qi et al. [26] extended this to a hierarchical network
that recursively applies PointNet in order to obtain multires-
olution features, similar to deep convolutional networks with
decreasing resolutions via strides/max pooling.
The advent of RGB-D sensors such as Kinect allowed the

research community to utilize both modalities for semantic
segmentation, and drove the creation of datasets such as [27].
Ren et al. [28] investigated a combination of kernel descriptors,
support vector machines, and Markov random fields for indoor
scene segmentation. Both [29] and [30] leverage RGB-D videos,
extracting 2D features from each RGB frame and integrating
them with a reconstructed voxel representation of the scene.
Deep learning-based approaches include [31]–[33]. Gupta et
al.[31] proposed the Horizontal disparity, Height above ground,
and the Angle the pixel’s local surface normal makes with the
inferred gravity direction (HHA) encoding of depth images. The
authors used this encoding to design an object detection system,
which they further exploited to improve semantic segmentation
performance. Shelhamer et al.[16] also used the HHA in their
pioneering work on FCNs. Wang and Neumann [32] proposed a
depth-aware convolution and pooling mechanism to incorporate
geometry into the convolution operators to build a depth-aware
receptivefield.Qi et al. [33] used the output of a 2Dsegmentation
network to initialize node features of a graph neural network
applied on a 3D point cloud which was backprojected from a
depth image. In this work, we also leverage RGB-D images,
but focus on segmenting each individual object with unknown
object class.

B. Instance-Level Object Segmentation

2Dobject instance segmentation is the problemof segmenting
every object instance in an image. Many approaches for this
problem involve top-down solutions that combine segmentation
with object proposals in the form of bounding boxes [12],
[34]–[36], typically produced by a region proposal network
(RPN). Fully convolutional instance-aware semantic segmenta-
tion (FCIS) [34] utilizes position-sensitive inside/outside score
maps for fully end-to-end convolutional instance segmentation.
Mask R-CNN [12], a prominent work in the field, predicts a
foreground mask for each object proposal. Chen et al. [35] build
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on top of both FCIS and Mask R-CNN and exploit semantic
segmentation and direction predictions to assemble foreground
masks. Kirillov et al. [36] propose a module that iteratively
refines segmentationpredictions at adaptively selected locations,
which can be used in conjunction with Mask R-CNN.
However,whenboundingboxes containmultiple objects (e.g.,

cluttered robot manipulation setups), the true instance mask is
ambiguous and thesemethods struggle. Recently, a fewmethods
have investigated bottom-up methods which assign pixels to ob-
ject instances [37]–[40]. Other methods examine dense sliding-
window instance segmentation on 4D tensors [41], combining
top-down and bottom-up methods via blending modules [42],
and alternative mask representations such as contours [43]. Ad-
ditionally, interactive instance segmentation has shown strong
results with few user inputs [44].
Most of the aforementioned algorithms provide instance

masks with category-level semantic labels, which do not gen-
eralize to unseen objects in novel categories. One approach
to adapting these techniques to unseen objects is to employ
“class-agnostic” training, which treats all object classes as
one foreground category [11]. One family of methods exploits
motion cues with class-agnostic training in order to segment
arbitrary moving objects [45], [46]. Another family of meth-
ods are class-agnostic object proposal algorithms [47]–[49].
However, these methods will segment everything and require
some postprocessing method to select the masks of interest. [50]
jointly estimates instance segmentation masks and rigid scene
flow, similar to [51], [52]. We also train our proposed method in
a class-agnostic fashion, but instead focus our notion of unseen
objects in particular environments such as tabletop settings.
In 3D instance segmentation, researchers have recently been

investigating architectures to apply on point clouds/voxel grids.
Hou et al. [53] introduced the first deep learning method to
fuse RGB and geometric information from RGB-D scans. Han
et al. [54] proposed an occupancy term, which greatly aids
supervoxel clustering, leading to strong results. A few of these
methods embrace center voting-based techniques [13], [55]–
[58]. Lahoud et al. [55] utilize metric learning to learn abstract
features, and predicts center votes which are postprocessed by
meanshift clustering. Qi et al. [56] use the center votes with
a simple grouping mechanism to detect 3D bounding boxes
of objects from point clouds only. Their follow-up work [57]
incorporates RGB information by lifting 2D votes and features
into 3D. Engelmann et al. [58] follow a similar architecture but
stack a graph convolutional network to refine proposal features.
Jiang et al. [13] also perform clustering on votes and semantic
features for targeted performance on certain object classes. Our
method takes inspiration from these voting-based methods, but
is targeted to cluttered robot environments.

C. Sim-to-Real Perception

Training amodel on synthetic RGB and directly applying it to
real data typically fails [5]. Many methods employ some level
of rendering randomization [9], [59]–[63], including lighting
conditions and textures. However, they typically assume specific
object instances and/or known object models. Another family

of methods employ domain adaptation to bridge the gap be-
tween simulated and real images [7], [8]. Algorithms trained
on depth have been shown to generalize reasonably well for
simple settings [10], [11]. However, noisy depth sensors can
limit the application of such methods. Our proposed method is
trained purely on (nonphotorealistic) synthetic RGB-D data and
is accurate even when depth sensors are inaccurate, and can be
trained without adapting or randomizing the synthetic RGB.

III. METHOD OVERVIEW

Given a single RGB-D image, the goal of our algorithm is
to produce object instance segmentation masks for all objects
on a tabletop, where the object instances (or even the semantic
class) are arbitrary and are not assumed to have been seen during
a training phase. These masks do not have any notion of class
categorization or semantics. These masks can be employed by
robots for interacting with unseen object instances in down-
stream applications such as grasping and/or manipulation.
Our framework consists of two separate networks that process

Depth and RGB separately to produce instance segmentation
masks. First, we design a depth seeding network (DSN) that
takes a depth image as input and outputs initial object instance
segmentation masks. These initial masks can be quite noisy for
a number of reasons, thus we design an initial mask processor
(IMP) to robustify them with standard image processing tech-
niques. We further refine the processed initial masks using our
region refinement network (RRN), which is designed to snap
the noisy initial mask edges to object edges in RGB, providing
sharp and accurate final instance masks. The full architecture is
shown in Fig. 2.
Because the DSN incorporates non-differentiable techniques

in order to build the initial masks, our DSN and RRN are trained
separately as opposed to end-to-end. Both theDSNandRRNcan
be trained fully in simulation with no fine-tuning on real-world
data, allowing our framework to capitalize on large amounts of
simulated scenes and objects without resorting to the expensive
process of annotating data. Our framework generalizes remark-
ably well to real-world scenarios despite being trained only on
nonphotorealistic simulated data, enabling robotic tasks with
unseen objects.

IV. DEPTH SEEDING NETWORK

It has been shown that depth generalizes reasonably well for
sim-to-real problems [10], [11], [64]. Inspired by this concept,
we focus the first stage of our framework on depth only to
produce initial class-agnostic instance segmentation masks. At
a high level, the DSN takes as input a three-channel organized
point cloud, D ∈ RH×W×3, of XYZ coordinates, and outputs
initial instance segmentation masks. Note that D can be com-
puted by backprojecting a depth map given camera intrinsics.
We examine two methods of structuring the DSN. First, we

investigate building initial masks by predicting centers in 2D
pixel space. While this method provides SOTA results, it has
some obvious pitfalls (examined in Section VIII) that motivates
a novel architecture that builds masks by predicting centers in
3D space.
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Fig. 2. Overall architecture. The depth seeding network (DSN) is shown in the red box, the initial mask processor (IMP) in the green box, and the region
refinement network (RRN) in the blue box. The images come from a real example taken by an RGB-D camera in our lab. Despite the level of noise in the depth
image (due to reflective table surface), our method is able to produce sharp and accurate instance masks. Gradients do not flow backwards through dotted lines.

A. Reasoning in 2D

1) Network Architecture: The organized point cloud D is
passed through an encoder–decoder architecture to produce two
outputs: a semantic segmentation mask F ∈ RH×W×C , where
C is the number of semantic classes, and 2D directions to
object centers V ∈ RH×W×2. We use C = 3 for our semantic
classes: background, tabletop, and tabletop objects. Each pixel
of V encodes a two-dimensional unit vector pointing to the 2D
center of the object. We define the center of the object to be the
mean pixel location of the observable mask (part of mask that
is unoccluded). Although we do not explicitly make use of the
tabletop label in Section VIII, it can be used in conjunction
with RANSAC [65] in order to better estimate the table for
downstream applications. For the encoder–decoder architecture,
we use aU-Net [66] architecturewhere each 3× 3 convolutional
layer is followed by a GroupNorm layer [67] and ReLU. The
output of the U-Net is a feature map of shapeRH×W×64. Sitting
on top of this is two parallel branches of convolutional layers
that produce the foreground mask F and center directions V
(Fig. 2).
In order to compute the initial segmentationmasks fromF and

V , we design a Hough voting layer similar to [59]. We describe
the pseudocode detailed in Algorithm 1. First, we discretize
the space of angles [0, 2π] into A equally spaced bins. For
every pixel, we compute the percentage of discretized directions
from all other foreground pixels that point to it and use this
as a score for how likely the pixel is an object center (lines
3–10). We threshold when a foreground pixel points to it with
an inlier threshold and distance threshold. We then threshold
the percentages and apply nonmaximum suppression (NMS) to
select object centers (line 11). Given these object centers, each
pixel is assigned to the closest center it points to (line 12), which
gives the initial masks as shown in the red box of Fig. 2. Note
that the inlier, distance, and percentage thresholds provide the
Hough voting layer with robustness. For example, if not enough
foreground pixels from all directions point towards a potential
object center, that center is not selected. This robustifies the
algorithm by protecting against false positives. We qualitatively
show the efficacy of these design choices in Section VIII-E.

2) Loss Functions: To train the DSN, we apply two different
loss functions on the semantic segmentation F and the direction
prediction V .

Foreground Loss: For the semantic segmentation F , we use
a weighted cross-entropy as this has been shown to work well
in detecting object boundaries in imbalanced images [68]. The
loss is �fg =

∑
i wi �ce(Fi, F̄i), where i ranges over pixels,

Fi, F̄i are the predicted and ground truth probabilities of pixel i,
respectively, and �ce is the cross-entropy loss. The weight wi is
inversely proportional to the number of pixels with labels equal
to F̄i, normalized to sum to 1.
Direction Loss: We apply a weighted cosine similarity loss

to the direction prediction V . The cosine similarity is focused
on the tabletop object pixels, but we also apply it to the back-
ground/tabletop pixels to have them point in a fixed direction to
avoid false positives. The loss is given by

�dir =
∑
i∈O

αi

(
1− V ᵀ

i V̄i

)
+

λbt

|B ∪ T |
∑

i∈B∪T

(
1− V ᵀ

i

[
0

1

])

(1)
where Vi, V̄i are the predicted and ground truth unit directions
of pixel i, respectively. B, T , and O are the sets of pixels be-
longing to background, table, and object/foreground classes,
respectively. Note thatB ∪ T ∪ O = Ω, whereΩ is the set of all
pixels. αi is inversely proportional to the number of pixels with
the same instance label as pixel i, which gives equal weight to
each instance regardless of size. We set λbt = 0.1. The total loss
for our 2D DSN is given by �fg + �dir.

B. Reasoning in 3D

Reasoning in 2D has some failure cases that can be mitigated
by reasoning in 3D. For example, if the center of an object
is occluded by another object, the 2D center voting procedure
will not detect that object (examples of this can be found in
Section VIII-E). Thus, we propose a new architecture to the
DSN to better handle these cases and provide stronger results.
This formulation requires more sophisticated loss functions. In
particular, we introduce a novel separation loss that significantly
improves accuracy in cluttered scenes.
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Algorithm 1: Hough Voting Procedure Pseudocode.
Require: F , V , cosine distance dc, number of angle bins
A. Robustness parameters: inlier threshold εit, distance
threshold εd, percentage threshold εpt.

1: return Initial instance masks S
2: Initialize H ∈ RH×W×A to zeros
3: for potential center pc ∈ Ω do
4: for p ∈ F do
5: if dc(pc − p, Vp) < εit AND d(pc, p) < εd then
6: a = �A · dc(pc − p, [0, 1])� # discretized angle
7: Hpc,a = 1
8: end if
9: end for
10: end for
11: Compute local maximums C ofH using NMS and εpt
12: Compute S with C, V

1) Network Architecture: The network architecture of this
3DDSN is almost the sameas the 2DDSN.The input is the same,
which is the organized point cloud D of XYZ coordinates. The
main difference between the 2DDSN and the 3DDSN is the out-
put. Our 3D DSN still outputs the semantic segmentation mask
F , but produces 3D offsets to object centers V ′ ∈ RH×W×3

instead of 2D directions V . Note that elements in V ′ are not
unit vectors, which is the case with V . Since V ′ are 3D offsets,
D + V ′ is the predicted object centers for each pixel, which we
will refer to as “center votes.”
We propose to modify the architecture to use dilated con-

volutions [69] in order to provide the DSN with a higher re-
ceptive field. We replace the 6th, 8th, and 10th convolution
layers with efficient spatial pyramid (ESP) modules [70]. An
ESP module is a lightweight module consisting of a reduction
operation, a split/transform component that applies convolutions
with different dilation rates to get a spatial pyramid, and amerge
process that hierarchically fuses the feature maps of the spatial
pyramid [70]. The ESP module has less parameters than the
convolution layer it replaces,making itmore computationally ef-
ficient. Details of the implementation can be found in the public
code release at the project website.1 We show in Section VIII-F
that adding this module provides a boost in performance.
To compute initial masks, we perform mean shift clustering

in 3D space over our center votesD + V ′. Mean shift clustering
is an iterative procedure to find the modes of a distribution
approximated by a kernel density esimate (KDE). The number of
clusters (objects, in our case) is not determined beforehand, but
instead by the number ofmodes in theKDE.Weuse theGaussian
kernelK(x, y) = exp( 1

σ2 ‖x− y‖22), which results in Gaussian
mean shift (GMS) clustering. σ > 0 is a hyperparameter which
affects the number of modes (objects) in the KDE. Thus, the
choice of σ is crucial and depends on the relative distance
between objects, which is low in clutter. A detailed review of
mean shift clustering algorithms can be found in [71]. After

1[Online]. Available: https://rse-lab.cs.washington.edu/projects/unseen-
object-instance-segmentation/.

clustering, each pixel is assigned to the cluster ID of its center
vote to generate the initial masks. The clustering is only applied
to the foreground pixels. Note that this method of producing
initial masks lacks the thresholds such as εit, εd, εpt from the 2D
DSN Hough voting layer that provide robustness.
2) Loss Functions: We apply four loss functions on the

semantic segmentation F and center offsets V ′ to train the
3D-reasoning version of the DSN.
a) Foreground Loss: We utilize the same foreground loss as

in Section IV-A2 for the 2D DSN, �fg .
b) Center Offset Loss: We apply a Huber loss ρ (Smooth L1

loss) to the center offsetsV ′ to penalize the distance of the center
votes to their corresponding ground truth object centers.

�co =
∑
i∈Ω

wiρ (Di + V ′
i − ci) (2)

where ci is the 3D coordinate of the ground truth object center
for pixel i. Like �fg , the weight wi is inversely proportional to
the number of pixels with the same instance label yi. For object
centers that are out of view of the camera, we project them to
the camera’s field of view.
c) Clustering Loss: We adopt a clustering loss that unrolls

GMS for a few iterations and applies a loss on the clustered
points, very similar to [72]. GMS iteratively shifts a set of S 3D
seed points, Z ∈ RS×3, to higher density regions of the KDE
in a gradient ascent-type fashion [71]. Let Z(l) be the points at
the lth iteration of GMS. Z(0) is initialized as the center votes
X = D + V ′ ∈ R|O|×3 of the foreground pixels. One iteration
of GMS amounts to Z(l+1) = D̃−1KX where K ∈ RS×|O| is
the kernel matrix s.t. [K]ij = K(Z

(l)
i , Xj), and D̃ = diag(K1)

with 1 ∈ R|O| being a vector of all ones. Note that K depends
on σ. This iteration can be seen as a layer in the network with no
parameters for learning. We apply the following loss function
to Z(l) and X , with the corresponding object instance labels
Y ∈ R|O|:

�
(l)
cl (Z

(l), X, Y ) =
S∑

i=1

∑
j∈O

wij1{yi = yj}d2(Z(l)
i , Xj)

+ wij1{yi �= yj}[δ − d(Z
(l)
i , Xj)]

2
+ (3)

wherewij are inverse proportional weights with respect to class
size, d(·, ·) is the Euclidean distance, and [·]+ = max(·, 0). This
loss function influences the KDEmodes to be close to its points,
and at least δ away from points not belonging to the cluster,
encouraging the points X = D + V ′ to be more cluster-like.

Applying (3) to all points, i.e., S = |O|, results in excessive
memory usage, and thus we instead adopt a stochastic version
of this loss function. We randomly sample an index set I ⊂
{1, 2, . . . , |O|} and setZ(0) = XI , and runGMSclustering only
on these points.We unroll GMS forL iterations, and apply �(l)cl at

each iteration, giving the full cluster loss �cl = �
(1)
cl + · · ·+ �

(L)
cl .

d) Separation Loss: We introduce a novel separation loss that
encourages the center votes to not necessarily be at the center
of an object, as long as it is far away from other object center
votes in order to ease the postprocessing GMS clustering phase.
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To do this, we consider the following tensor:

Mij =
exp (−τ d(cj , Di + V ′

i ))∑J
j′=1 exp (−τ d(cj′ , Di + V ′

i ))
(4)

where cj is the jth ground truth object center, i ∈ O, and τ > 0
is a hyperparameter. This is simply the distance from center vote
Di + V ′

i to all object centers scaled by τ , with a softmax applied.
We apply a cross entropy loss �sep(Mij) = −

∑N
j=1 1{yi =

j} log(Mij) in order to maximize Mij when yi = j.
MaximizingMij for a foreground pixel i and its correspond-

ing GT object center j encourages 1) the center voteDi + V ′
i to

be close to cj , and 2) to be far from {cj | yi �= yj}. While the �co
also enforces property 1, property 2 is quite desirable in heavy
clutter. If two objects are situated in a way such that their 3D
object centers are very close, postprocessing clustering will be
difficult. This separation loss encourages the network to predict
object center votes that are not close to each other, making the
task of postprocessing clustering easier. In Section VIII-F, we
show that this loss is crucial for strong performance in heavy
clutter.
In summary, the total loss used to train the 3D DSN is given

by λfg�fg + λco�co + λcl�cl + λsep�sep.

V. INITIAL MASK PROCESSING MODULE

Computing the initial masks from F and V/V ′ often results
in noisy masks (see an example of initial masks computed from
the 2D DSN using our Hough voting layer in Fig. 2). For
example, these instance masks often exhibit salt/pepper noise
and erroneous holes near the object center (see Section VIII-E
for examples). As shown in SectionVIII-D, the RRN has trouble
refining the masks when they are scattered as such. To robustify
the algorithm, we propose to use two simple image processing
techniques to clean the masks before refinement.
For a single instance mask, we first apply an opening oper-

ation, which consists of mask erosion followed by mask dila-
tion [73], removing the salt/pepper noise issues. Next we apply
a closing operation, which is dilation followed by erosion, which
closes up small holes in the mask. Finally, we select the largest
connected component and discard all other components. Note
that these operations are applied to each instance mask sepa-
rately. These simple image processing techniques are immensely
helpful in robustifying the system.

VI. REGION REFINEMENT NETWORK

While depth generalizes reasonablywell from sim-to-real, the
initial masks (after IMP) are still subject to many errors due to
noisy depth sensors. The RRN is designed to snap the initial
mask edges to the object edges in RGB to provide accurate and
sharp instance masks.

A. Network Architecture

Inspired by [44], this network takes as input a cropped 4-
channel image, which consists of RGB concatenated with a sin-
gle initial instance mask. The RGB image is cropped around the
instancemaskwith some padding for context, concatenatedwith

the (cropped) mask, and then resized to 224× 224. This gives
an input image I ∈ R224×224×4. The output of the RRN is the
refined mask probabilities R ∈ R224×224, which we threshold
to get the final output. We use the same U-Net architecture as
in the DSN. To train the RRN, we apply the loss �fg with two
classes (foreground vs. background) instead of three.

B. Mask Augmentation

Recall that the DSN and RRN are trained separately. In order
to train theRRN,we need examples of perturbed instancemasks.
While we could train the RRN with the outputs of the DSN, we
found that they are typically too clean on our synthetic dataset
and we achieved better results by perturbing the ground truth
masks instead. This problem can be seen as a data augmentation
task where we augment the mask into something that resembles
an initial mask (after the IMP). We detail the different augmen-
tation techniques used below.
1) Translation/Rotation: We translate the mask by sampling

a displacement vector proportionally to the mask size.
Rotation angles are sampled uniformly in [−10◦, 10◦].

2) Adding/Cutting: For this augmentation, we choose a ran-
dom part of the mask near the edge, and either remove it
(cut) or copy it outside of the mask (add). This reflects the
setting when the initial mask egregiously overflows from
the object, or is only covering part of it.

3) Morphological Operations: We randomly choose multiple
iterations of either erosion or dilation of the mask. The
erosion/dilation kernel size is set to be a percentage of
the mask size, where the percentage is sampled from a
beta distribution. This reflects inaccurate boundaries in the
initial mask, e.g. due to noisy depth sensors.

4) Random Ellipses: We sample the number of ellipses to add
or remove in themask from a Poisson distribution. For each
ellipse, we sample both radii from a gamma distribution
and a random rotation angle. This augmentation requires
the RRN to learn to remove irrelevant blots outside of the
object and close up small holes within it.

VII. TABLETOP OBJECT DATASET

Many desired robot environment settings (e.g., kitchens, cab-
inets) lack large-scale training data to train deep networks.
To our knowledge, there is no large-scale dataset for unseen
tabletop objects. To remedy this, we generate our own synthetic
dataset which we name the TOD. This dataset is composed of
40 k synthetic scenes of cluttered ShapeNet [4] objects on a
(ShapeNet) tabletop in SUNCG home environments [74]. We
only use ShapeNet tables that have convex tabletops and filter
the ShapeNet object classes to roughly 25 classes of objects that
could potentially be on a table. Example classes include jar,mug,
helmet, and pillow.
Each scene in the dataset is of a random room chosen from a

randomSUNCGhouse loadedwithout any furniture.We sample
a ShapeNet table and scale it such that its height is in the range
0.75–1 m, and places it in the room so that it is not colliding
with walls or other fixtures in the room. Next, we randomly
sample anywhere between 5 and 25 objects to put on the table,
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Fig. 3. Examples from our tabletop object dataset (nonphotorealistic). RGB, depth, and instance masks are shown.

rescaling them such that they are not larger than 1
4 min{th, tl},

where th, tl are the height and length of the table, respectively.
The objects are either randomly placed on the table, on top of
another object (stacked), or generated at a random height and
orientation above the table. We use PyBullet [14] to simulate
physics until the objects come to rest and remove any objects
that fell off the table. Next, we generate seven views: one view
is of only background, another is of just the table in the room,
and the rest are taken with random camera viewpoints with the
tabletop objects in view. The viewpoints are sampled at a height
of between 5 and 1.2 m above the table and rotated randomly
with an angle in [−12◦, 12◦]. The images are generated at a
resolution of 640× 480 with vertical FOV of 45 degrees. The
segmentation has a tabletop (table plane only) label and instance
labels for each object.
We show some example images of our dataset in Fig. 3.

The rightmost two examples show that some of our scenes are
heavily cluttered. Note that the RGB looks nonphotorealistic. In
particular, PyBullet is unable to load textures of some ShapeNet
objects (see gray objects in leftmost two images). PyBullet
was built for reinforcement learning, not computer vision, and
thus its rendering capabilities are insufficient for photorealistic
tasks [14]. Despite this, our RRN can learn to snap masks to
object boundaries from this synthetic dataset.

VIII. EXPERIMENTS

We evaluate our method on real datasets against the SOTA
methods Mask R-CNN [12] and PointGroup [13]. We denote
our method as UOIS-Net-2D or UOIS-Net-3D, depending on
whether the DSN reasons in either 2D or 3D.

A. Implementation Details

All images have resolution H = 480,W = 640.
1) DSN: We train all 2D DSN models for 100 k iterations

with stochastic gradient descent (SGD) using a fixed learning
rate of 1e−2. We use a batch size of 8 and set λfg = λdir =
1. For the Hough voting layer, we discretize the angles into
A = 100 bins, and set εit = 0.9, εd = 20, εpt = 0.5. We also
process every 10th pixel instead of every pixel in line 4 of
Algorithm 1 for computational efficiency.

All 3D DSNs are trained for 150 k iterations with Adam [81]
with initial learning rate of 1e−4. We use a batch size of 8, with
λfg = 3, λco = 5, λcl = λsep = 1. In training, we roll out the
cluster loss �cl L = 5 times and use |I| = 150 seeds, while we
useL = 10, |I| = 200during test time. δ is set to 0.1.We remove
any cluster of pixels that is smaller than 500. Unless stated
otherwise, we use τ = 15, σ = 0.02. Note that we tried learning
σ as an output of the network; however it did not perform well,
and thus we opted to keep it fixed.
During DSN training, we augment depth maps with multi-

plicative gamma noise similar to [10], and add Gaussian Process
noise to the backprojected point clouds.
2) RRN: All RRNs are trained with SGD for 100 k iterations

with a fixed learning rate of 1e−2 and batch size of 16. Inputs to
the RRN are padded by 25% of the initial mask’s bounding box
size in each dimension.Our entire pipeline runs at approximately
3–5 frames per second on a single NVIDIA RTX 2080ti.
3) Baselines: For the baselines in [79], we use the results

graciously provided by the authors. We follow the official de-
tectron schedule when training Mask R-CNN [12] on TOD, and
train for 100 k iterations using SGD with a batch size of 8. We
train PointGroup [13] for 300 k iterations with a batch size of 4
on TOD. We remove clustering of the semantic scores since our
problem only has one meaningful semantic class, foreground,
which makes no sense to cluster.
Note that the training procedure for 2D DSNs and Mask

R-CNN (reported in [15]) differs slightly from the training
procedure for 3D DSNs. We replicated these experiments us-
ing the same conditions as 3D DSNs (150 k iterations with
Adam/SGD), but observed very similar results to [15]. Thus,
we report numbers from [15].

B. Datasets

Weevaluate quantitatively and qualitatively on two real-world
datasets: OCID [79] and OSD [80], which have 2346 images of
semi-automatically constructed labels and 111manually labeled
images, respectively. OSD is a small dataset that was manually
annotated, so the annotation quality is high. OCID, which is
much larger, uses a semi-automatic process of annotating the
labels. It incrementally builds up the scene by adding one object
at a time, and computes labels by calculating difference in depth.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 28,2021 at 23:28:06 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON ROBOTICS

However, this process is subject to depth sensor noise, so while
themajority of the instance label is accurate, the label boundaries
are noisy. Additionally, OCID contains images with objects on a
tabletop, and images with objects on a floor. Despite our method
being trained in synthetic tabletop settings, it generalizes to floor
settings as well.
Finally, we use the Google Open Images Dataset v5 [82]

(OID) in an experiment to test the sim-to-real gap of the RRN.
OIDcontains approximately 9million “in-the-wild” imageswith
image-level annotations, bounding boxes, and segmentations. In
particular, it contains 2.8 million segmentations for 350 object
classes. We filtered the 350 object object classes down to 156
classes that could potentially be on a tabletop, resulting in
roughly 220 k instance masks on real RGB images.

C. Metrics

We use the precision/recall/F-measure (P/R/F) metrics as
defined in [46]. These metrics promote methods that segment
the desired objects and penalize methods that provide false
positives. Specifically, the F-measure is computed between all
pairs of predicted and ground truth masks, which are matched
via the Hungarian method. Given a matching, the final P/R/F is
computed by

P =

∑
i |si ∩ g(si)|∑

i |si|
, R =

∑
i |si ∩ g(si)|∑

j |gj |
, F =

2PR

P +R

where si denotes the set of pixels belonging to predicted object
i, g(si) is the set of pixels of the matched ground truth object
of si, and gj is the set of pixels for ground truth object j. We
denote this as Overlap P/R/F. See [46] for more details.
Segmentations with sharp or fuzzy boundaries will obtain

similar overlap P/R/F scores, which will not reflect the efficacy
of the RRN. To remedy this, we introduce a boundary P/R/F
measure to complement the overlap P/R/F. Using the same
Hungarianmatchingused to compute overlapP/R/F,wecompute
boundary P/R/F by

P =

∑
i |si ∩D [g(si)]|∑

i |si|
, R =

∑
i |D [si] ∩ g(si)|∑

j |gj |

where we overload notation and denote si, gj to be the set of
pixels belonging to the boundaries of predicted object i and
ground truth object j, respectively. D[·] denotes the dilation
operation, which allows for some slack in the prediction. Note
that these metrics are sensitive to the amount of allowed slack.
However, without this, these numbers can look deceivingly low
as no slack requires exact pixel boundary matching which can
lead to issues with either noisy manual annotations or noisy
semi-automatic annotations [79]. For the dilation operation, we
use a circular kernel where the diameter of the kernel depends
on the size of the image. Roughly, this metric is a combination of
the F-measure in [83] along with the overlap P/R/F as defined
in [46].
We report all P/R/F measures in the range [0100] (P/R/F

×100).

TABLE I
COMPARISON WITH BASELINES ON ARID20 AND YCB10 SUBSETS OF

OCID [79].

RED indicates the best performance.

D. 2D Quantitative Results

Comparison to Baselines. We compare to baselines shown
in [79], which include GCUT [75], SCUT [76], LCCP [77],
and V4R [78]. In [79], these methods were only evaluated on
the ARID20 and YCB10 subsets of OCID, so we compare our
results these subsets as well. These baselines are designed to
provide oversegmentations (i.e., they segment the whole scene
instead of just the objects of interest). To allow a more fair
comparison,we set all predictedmasks smaller than 500pixels to
background, and set the largest mask to table label (which is not
considered in ourmetrics). Results are shown inTable I. Because
the baselines aim to oversegment the scene, the precision is
in general low while the recall is high. LCCP is designed to
segment convex objects (most objects in OCID are convex),
but its predicted boundaries are noisy due to utilizing depth
only. Recall that OCID labels suffer from depth sensor noise,
which explains why LCCP’s boundary recall is quite high (see
Section VIII-E for a visual example). Both SCUT and V4R
utilize models trained on real data, putting them at an advantage
with respect to UOIS-Net-2D. V4R was trained on OSD [80]
which has an extremely similar data distribution toOCID, giving
V4R a substantial advantage andmaking it the strongest baseline
in [79]. However, our UOIS-Net-2D (line 5 in Table I), despite
never having seen any real data, significantly outperforms these
baselines on F-measure.
Comparison to SOTA: In Table II, we compare UOIS-Net-2D

to two SOTAmethods, Mask R-CNN [12] and PointGroup [13],
both trained on RGB-D from TOD. While Mask R-CNN is a
general method for detection that can be applied to different
types of input modes, the more recent PointGroup requires point
clouds and utilizes a sparse convolutional backbone.We see that
UOIS-Net-2D (line 6) outperforms Mask R-CNN (line 3) on
OSD and slightly on OCID. On the other hand, PointGroup (line
4) provides comparable performance to UOIS-Net-2D. Note,
however, that PointGroup reasons in 3Dwith center votingwhile
UOIS-Net-2D does not. In that sense, Mask R-CNN is more
similar to UOIS-Net-2D.
Note that the performance of UOIS-Net-2D is similar to

Mask R-CNN and PointGroup on OCID in terms of boundary
F-measure. This result is misleading: it turns out that using
the RRN to refine the initial masks produced by UOIS-Net
results in degraded quantitative performance on OCID, while
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TABLE II
EVALUATION OF OUR METHODS AGAINST SOTA METHODS TRAINED ON DIFFERENT INPUT MODES.

Red indicates the best performance.

Fig. 4. Comparison of UOIS-Net-2D with baselines, Mask R-CNN, and PointGroup on OCID [79]. LCCP and V4R operate on depth only, thus are subject to
noise from depth sensors. However, this is also true for the ground truth segmentation produced by OCID [79]. Our proposed UOIS-Net-2D provides sharp and
accurate masks in comparison to all of the baselines.

TABLE III
PERFORMANCE OF UOIS-NET WITHOUT RRN

the qualitative results are better. This is due to OCID’s noisy
label boundaries. An illustration of this can be found in the
first example (row) of Fig. 4. Table III shows the performance
of UOIS-Net without applying RRN (DSN and IMP only) on
OCID and OSD. This method utilizes only depth and predicts
segmentation boundaries that are aligned with the sensor noise.
In this setting, UOIS-Net-2D outperforms both SOTA methods,
with a significant gain in boundary F-measure and a minor
gain in overlap F-measure. In fact, UOIS-Net-3D also gains
performance on OCID when removing the RRN which further
demonstrates the issue with OCID labels. On the other hand,
OSD has manually annotated labels and this issue is not present,

and our methods’ performances deteriorate in the absence of the
RRN. In particular, UOIS-Net-2D drops almost 20% relatively
without it.
Effect of Input Mode: To evaluate how different input modes

affect results, we train Mask R-CNN on RGB, depth, and RGB-
D and compare it to UOIS-Net-2D in Table II. Training Mask
R-CNN on synthetic RGB only poorly generalizes from sim-
to-real. Training on depth drastically boosts this generalization,
which is in agreement with [10], [11], [64]. When training on
RGB-D, we posit that Mask R-CNN relies heavily on depth as
adding RGB to depth results in little change. However, UOIS-
Net-2D exploits RGB and depth separately, leading to better
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TABLE IV
COMPARISON OF RRN WHEN TRAINING ON TOD AND REAL IMAGES FROM GOOGLE OID [82]

TABLE V
(LEFT) ABLATION EXPERIMENTS FOR UOIS-NET-2D ON OSD [80], AND (RIGHT) REFINING MASK R-CNN RESULTS WITH RRN (TRAINED ON TOD) ON OSD.

O/C denotes the open/close morphological transform, while CCC denotes the closest connected component.

results on OSD while being trained on the exact same synthetic
dataset. Furthermore, when our DSN is trained directly onRGB-
D (line 4, Table II), we see a drop in performance, suggesting
that training directly on (nonphotorealistic) RGB is not the best
way of utilizing synthetic data.
Degradation of Training on Nonphotorealistic Simulated

RGB: To quantify how much nonphotorealistic RGB degrades
performance, we train an RRN on real data. This serves as an
approximate upper bound on how well the synthetically trained
RRN can perform. We use the instance masks from OID [82]
and show results in Table IV. Both models share the same DSN
and IMP. The overlap measures are roughly the same, while
the RRN trained on OID has slightly better performance on the
boundary measures. This suggests that while there is still a gap,
our method is surprisingly not too far off, considering that we
train with nonphotorealistic synthetic RGB. We conclude that
mask refinement with RGB is an easier task to transfer from
sim-to-real than directly segmenting from RGB.
Ablation Studies:We report ablation studies onOSD to evalu-

ate each component of our proposedmethod inTableV (left).We
omit the overlap P/R/F results since they follow similar trends
to boundary P/R/F. Running the RRN on the raw masks output
by DSN without the IMP module actually hurts performance as
the RRN cannot refine such noisy masks. Adding the open/close
morphological transform and/or the closest connect component
results in much stronger results, showing that the IMP is crucial
in robustifying our proposed method. In these settings, applying
the RRN significantly boosts boundary P/R/F. In fact, Table V
(right) shows that applying the RRN to theMask R-CNN results
effectively boosts the boundary P/R/F for all input modes on
OSD, showing the efficacy of the RRN. Note that even with this
refinement, the Mask R-CNN results are outperformed by our
method.

E. 2D Qualitative Results

Comparison to Baselines and SOTA: First, we show qualita-
tive results onOCID of baselinemethods,MaskR-CNN (trained
on RGB-D), PointGroup, and UOIS-Net-2D in Fig. 4. It is clear
that the baseline methods suffer from oversegmentation issues;
they segment the table and background into multiple pieces.
This is especially the case for methods that utilize RGB as an
input (GCUT and SCUT); the objects are often oversegmented
as well. In example (row) 1 of Fig. 4, the ground truth label for
the keyboard is riddled with holes. Methods that operate only on
depth (LCCPandV4R)mirror these noisy boundaries, leading to
inflated boundary P/R/F measures. Despite this, our quantitative
results still outperform these baselines.
The main failure mode for Mask R-CNN is that it tends to un-

dersegment objects. This is the typical failure mode of top-down
instance segmentation algorithms in clutter. A close inspection
of Fig. 4 shows that Mask R-CNN frequently segments multiple
objects as one. Examples 1 and 4 show undersegmentation of
many neighboring small objects, and example 2 shows under-
segmentation of larger objects. Since PointGroup requires point
clouds, it is susceptible to degradation from depth sensor noise
as well. Additionally, some masks (e.g., example 4) can be
quite noisy, which we hypothesize is due to the rudimentary
breadth-first search clustering algorithm.
On the other hand, our method utilizes depth and RGB sep-

arately to provide sharp and accurate masks. Because UOIS-
Net-2D leverages RGB after depth, it can fix the issues with
depth sensors shown in example 1. Additionally, our method
can segment complicated structures such as stacks (examples 2
and 4) and cluttered environments (example 4).
RRN Refinements: In Fig. 5, we qualitatively show the effect

of the RRN. The top row shows the masks before refinement
(after IMP), and the bottom row shows the refined masks. These
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Fig. 5. Mask refinements with RRN: before (top) refinement (after IMP), and after refinement (bottom).

Fig. 6. Outputs (and intermediate) of UOIS-Net-2D are visualized.We demonstrate the robustness of the Hough voting layer and the IMP (top) and show common
failure modes (bottom). See text for details. Best viewed in color on a computer screen.

images were taken in our lab with an Intel RealSense D435
RGB-D camera to demonstrate the robustness of our method
to camera viewpoint variations and distracting backgrounds,
as OCID and OSD have relatively simple backgrounds. Due
to noise in the depth sensor, it is impossible to get sharp and
accurate predictions from depth alone without using RGB. Our
RRN can provide sharp masks even when the boundaries of
objects are occluding other objects (examples 2 and 5). Our
RRN is able to fix squiggly mask boundaries and patch up large
missing chunks in the initial mask.
Robustness: In Fig. 6 (top), we demonstrate how our method

is robust to errors in the pipeline. In row 1, the DSN produces
a false positive foreground region in the top right of the image.
However, there is not enough evidence in the center directions
(not enough discretized angles are present), and thus the Hough
voting layer suppresses this potential object. In row 2, there are
many spurious center direction predictions; however, these are

not considered as potential object centers by the Hough voting
layer because they are not detected by the foreground mask.
Additionally, one can see the many holes and spurious mask
components in column 5. As seen in the ablation studies in
Section VIII-D, applying the RRN here actually degrades the
performance. The IMP cleans this image, making the refinement
task easier for the RRN.
Failure Modes: We show some failure modes of our DSN

in Fig. 6 (bottom) on the OSD dataset. In row 1, we see an
undetected object (green book) because the center of the mask
is occluded. In the center direction image, there is no convergent
point for this object which would be considered as the object
center with all discretized angles pointing to it. In row 2, there
is a false positive region detected by the DSN in the top right
corner, which cannot be undone by the RRN. Finally, in row 3,
the DSN cannot correctly segment an object whose mask has
been split into two by an occluding object.
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TABLE VI
ABLATION STUDY OVER LOSS FUNCTIONS OF UOIS-NET-3D.

Our novel separation loss �sep is crucial to obtaining state-of-the-art performance. Note that we are using an RRN trained on real data.

Our RRN also has some common failure modes. Column
4 in Fig. 5 shows that the RRN can fail when the object has
a complex texture. Column 6 demonstrates that if there is not
enough padding to the initial mask to see the entire object, the
RRN cannot segment the entire object (lego block). In column
2, the RRN has a tough time fixing the segmentation mask when
the DSN has incorrectly undersegmented a few objects together
(the two cups to the left of the eraser).

F. 3D Quantitative Results

Comparison to Baselines:We compare the full UOIS-Net-3D
with an RRN trained on TOD to all previous baselines from [79]
and our UOIS-Net-2D in Table I. Discussion of all baselines and
UOIS-Net-2D is given in Section VIII-D. Compared to UOIS-
Net-2D, the 3D version substantially increases the recall in both
the overlap and boundary metrics, leading to a relative increase
of 4.5% in overlap F-measure and 5.5% in boundary F-measures.
In fact, UOIS-Net-3D, despite no convexity assumptions, gets
quite close to the overlap recall of LCCP,which segments objects
based on convexity. Note that only the DSN structure is changed
when moving from 2D to 3D, and thus this extra recall is mainly
due to the 3D center voting structure and better initial masks.
Comparison to SOTA: In Table II, we show comparisons

of UOIS-Net-3D with SOTA methods Mask R-CNN [12] and
PointGroup [13], and the previous UOIS-Net-2D on OCID and
OSD. Again, the trend of performance increase from UOIS-
Net-2D is similar to before, where a significant increase in recall
leads to a boost in F-measure. On OCID, UOIS-Net-3D receives
a relative increase of 5.8% in overlap F-measure and a 6.7% in
boundary F-measure. Compared to the best performing Mask
R-CNN, our performance provides a relative increase of 8.1%
on overlap F-measure and 6.0% on boundary F-measure, while
being trained on the exact same dataset (TOD). Additionally,
we outperform PointGroup by 7.9% and 6.3% on overlap and
boundaryF-measures, respectively.Note thatUOIS-Net-3Dper-
forms center voting in a similar fashion to PointGroup; however,
we believe our novel loss functions target cluttered environments
more effectively. On OSD overlap F-measure, we provide a
relative increase of 4.3% over UOIS-Net-2D, 12.4% over Mask
R-CNN, and 5.7% over PointGroup. For boundary F-measure,
we show 8.5% over UOIS-Net-2D, 32.3% over Mask R-CNN,
and 8.9% over PointGroup. Note that while our recall jumps
modestly in comparison to UOIS-Net-2D, the precision increase
is more sizable.

RRN Ablation: We refer readers to Table IV to show the
full power of our method. When using an RRN trained on
OID [82], our full UOIS-Net-3D further increases the boundary
F-measures, leading to 79.9 points on OCID and 77.3 points on
OSD,which is 7.8% and 9.2%higher than the full UOIS-Net-2D
on OCID and OSD, respectively. In the rest of this section, all
UOIS-Net-3D’s will use an RRN trained on OID in order to
show the full performance of our method.
Loss Function Ablation: At the minimum, we require �fg

and �co to train UOIS-Net-3D. In Table VI, UOIS-Net-3D actu-
ally performs poorer than UOIS-Net-2D (see Table IV) with
these two losses only. When adding the cluster loss �cl, we
get roughly the same performance on OCID. Our intuition is
that this loss encourages the same behavior as �co, namely that
the points should cluster near the ground truth object center,
and thus it does not introduce anything new. However, adding
this loss significantly hurts performance on OSD; we posit that
this result is noisy due to the small size of OSD. In the third
row, we show that adding our novel �sep loss relatively boosts
overlap F-measure by 10.1% and boundary F-measure by 14.4%
compared to the base model (λfg�fg + λco�co), demonstrating
it is crucial for obtaining good performance. �sep pushes center
votes away from center votes of other objects in order to make
the postprocessing GMS clustering easier. Note that the center
votes do not necessarily need to be close to the ground truth
object centers; they simply need to be easily clustered, and this
loss allows for that. This property is crucial to getting strong
performance in clutter as the numbers demonstrate. We will also
visually illustrate this phenomena in Section VIII-G. Finally,
since the object clusters are not necessarily near the ground truth
object centers, �cl now encourages something that �co does not:
it encourages that the center votes are tightly packed wherever
they are placed, further easing the job of the postprocessingGMS
clustering. In line 4, we see it provides some extra performance
gain.
ESP Module Ablation: We evaluate the significance of using

the ESP module [70] to obtain a higher receptive field by testing
bothUOIS-Net-3D andUOIS-Net-2D (which normally does not
include the ESPmodule) with and without the ESPmodules em-
bedded into the DSN in Table VII. We immediately see that ob-
taining a higher receptive field is beneficial to the performance.
For UOIS-Net-3D, we see relative gains on OCID of 3.0% and
3.5% on overlap and boundary F-measures, respectively. On
OSD, we see a similar performance. For UOIS-Net-2D, we
see a large relative gain on OCID of 4.9% and 5% on overlap
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TABLE VII
ABLATION STUDY TO TEST THE SIGNIFICANCE OF A WIDER RECEPTIVE FIELD.

Using the ESP module [70] in the DSN architecture improves performance for both UOIS-Net-2D and UOIS-Net-3D. Note that we are using an RRN trained on real data.

Fig. 7. Ablation study to test the sensitivity of UOIS-Net-3D with respect to
τ, σ. Best viewed by zooming in on a computer.

and boundary F-measures, respectively. Note that the DSN with
ESP modules has slightly fewer parameters than without them,
and thus these experiments highlight the usefulness of a higher
receptive field.
τ Ablation: In the top row of Fig. 7, we test the sensitivity

of our model to the settings of τ over [5, 10, 15, 20, 25], which
is used in �sep. We visualize both overlap and boundary P/R/F
measures. Note that as τ is essentially a multiplicative factor
on the Euclidean distance in (4); thus, as τ becomes larger, the
Euclidean distance becomes more inflated and objects do not
need to be pushed as far in order to minimize �sep. It is clear to
seeFig. 7 that allmetrics increase as τ increases, and they plateau
after τ hits a high enoughvalue, in this case 15. This suggests that
we only need a small level of encouragement to push the object
centers away from each other in order to get strong performance,
and that setting τ too low can degrade performance, potentially
by making �sep too difficult to minimize.

σ Ablation: In the bottom row of Fig. 7, we test the sensitivity
of UOIS-Net-3D to σ over [0.01, 0.02, 0.03, 0.04, 0.05], which
is used in �cl. The value of σ determines how tightly packed
the center votes of an object need to be in order to minimize �cl.
Additionally, it determines howmuch spread the center votes can
have and still be clustered together during the post-processing
GMS clustering step. When σ is too small, the DSN typically
oversegments the objects. On the other hand, whenσ is too large,
center votes from multiple objects get clustered together and
undersegmentation occurs. Thus, σ should be chosen to reflect
the level of clutter in the scenes, i.e., how close the objects are.

Our ablation study hints at this idea: the bottom row of Fig. 7
that σ = 0.02works the best for both OCID [79] and OSD [80],
as they are similar in distribution. In fact, the trends of the graph
in both datasets are also similar. Note that we tried learning σ
as a parameter of the network; however, these experiments did
not work well.

G. 3D Qualitative Results

2D vs. 3D Comparison: In Fig. 8, we qualitatively compare
the predictions of UOIS-Net-2D and UOIS-Net-3D to under-
stand how reasoning in 3D can solve the 2D issues mentioned
beforehand (in Section VIII-E). The first row of Fig. 6 (bottom)
exhibits the 2D issue of false negative detection when the 2D
center of the object is occluded. However, this is easily corrected
when voting for 3D centers, as seen in columns 2 and 5 of Fig. 8
In columns 1, 3, and 4, we see that UOIS-Net-3D detects and
segments more small, thin objects such as pens and bananas.
The 2D Hough voting procedure typically fails to detect enough
discretized directions for objects with such shape. This issue
is ameliorated when reasoning in 3D, as there are no approx-
imations made with discretized directions. Finally, in columns
3, 4, and 6, we show that the 3D DSN architecture performs
better due to a higher receptive field provided by the ESP
modules.
Center Votes:As shown in Table VI, �sep is crucial to ensuring

UOIS-Net-3D has strong performance. We visually examine
the reason for this in Fig. 9. In the first and second columns,
we visualize the point cloud of the scene with the predicted
center votes overlaid on the same image. Both the point cloud
and center votes are color coded with respect to their instance
segmentation masks. It is clear to see that when training without
�sep, the center votes are more spread out and messy, which
makes the postprocessing GMS clustering more difficult. On
the other hand, the full model has much more tightly packed
and separated center votes, which leads to better performance.
Looking at example (row) 5, there are many small objects such
as fruits and bananas which are close to each other in spatial
proximity. UOIS-Net-3D trained without �sep shows that the
center votes are mostly jumbled together, while the full model
nicely separates the center votes which leads to almost perfect
segmentation. Note that the center votes do not need to be at the
center of the object, as long as they can be clustered correctly.
In the upper right of example 2, the cylinder and the bowl have
very close 3D centers. The 3DDSN predicts the center votes in a
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Fig. 8. Qualitative comparison of UOIS-Net-2D to UOIS-Net-3D on OCID.

Fig. 9. Effect of �sep on center votes. Columns 1 and 2 show the point cloud
(visualized with Open3D [84]) and center votes overlaid on the image, which
are color-coded according to their instance ID. Best viewed in color and zoomed
in.

way that pushes them apart to ease the postprocessing clustering
and allows (the full) UOIS-Net-3D to correctly segment these
objects.
Failure Modes: In Fig. 10, we demonstrate common failure

modes of UOIS-Net-3D. Row 1 shows that when objects are
close together, they may undersegmented into a single segment.
The center votes show that the three small fruits have center votes
that are too close to separate in the post-processing clustering
step. Another case of undersegmentation is shown in row 3,
where multiple objects (cereal boxes) with flat surfaces are lined

TABLE VIII
PERFORMANCE ON TOD TEST SET (20 K IMAGES)

up such that the depthmap shows a large flat surface. It is difficult
to correctly separate these boxes from depth alone; appearance
is key in providing the correct segmentation in such situations.
Row 4 shows that highly nonconvex objects such as power drills
can beoversegmented into pieces. The center votes image clearly
shows that theDSNbelieves this object to be twoobjects. Finally,
row2 indicates that the 2D issue of attempting to segment amask
that is split into multiple pieces by an occluding object is still
present when reasoning in 3D.

H. Quantifying Generalization From Sim to Real

In order to quantify generalization from simulation to the real
world, we showperformance of ourmethods and SOTAmethods
Mask R-CNN and PointGroup on the TOD test set. This dataset
of 20 k imageswas generated using instances that are not present
in the training set. In TableVIII, we show that bothMaskR-CNN
and PointGroup outperformUOIS-Net on all metrics on this test
set. However, as seen in Table II, UOIS-Net outperforms Mask
R-CNN and PointGroup on real-world data, indicating that our
methods handle the distribution shift better, which is ultimately
what we care about.

I. Application in Grasping Unknown Objects

We use our model to demonstrate manipulation of unknown
objects in a cluttered environment using a Franka robot with
panda gripper and wrist-mounted RGB-D camera. The task is
to collect objects from a table and put them in a bin. Object
instances are segmented using our method and the point cloud
of the closest object to the camera is fed to 6-DOFGraspNet [1],
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Fig. 10. Common failure modes of UOIS-Net-3D. See text for details. Best viewed in color and zoomed in.

Fig. 11. Visualization of clearing table using our instance segmentation and
6-DOF GraspNet [1].

[2] to generate diverse grasps, with other objects considered
obstacles.Other objects are represented as obstacles by sampling
fixed number of points using farthest point sampling from their
corresponding point cloud. The grasp that has the maximum
score and has a feasible path is chosen to execute. Fig. 11 shows
the instance segmentation at different stages of the task and
also the execution of the robot grasps. Video of the experiments
can be found at the project website.2 Our method segments the
objects correctlymost of the time but fails sometimes, such as the
oversegmentation of the drill in the scene. Ourmethod considers
the top of the drill as one object and the handle as an obstacle.
This is because the object is highly nonconvex as discussed in

2[Online]. Available: https://rse-lab.cs.washington.edu/projects/unseen-
object-instance-segmentation/.

the previous section. We conducted the experiment to collect 51
objects from nine different scenes. Each object is considered to
be successfully grasped if the robot can pick it up in maximum
two attempts. Otherwise, we count that object as failure case and
remove it from the scene manually and proceed to other objects.
In our trials, the robot successfully grasped 41/51 objects (80.3%
success rate). The failures stem from either imperfections in
segmentation or inaccurate generated grasps. Note that neither
our method nor 6-DOF GraspNet [1] is trained on real data.

IX. CONCLUSION

Weproposed a deep network,UOIS-Net, that separately lever-
ages RGB and depth to provide sharp and accurate masks for
unseen object instance segmentation. Our two-stage framework
produces rough initial masks using only depth by regressing
center votes in either 2D or 3D, then refines those masks with
RGB. Surprisingly, our RRN can be trained on nonphotoreal-
istic RGB and generalize quite well to real-world images. We
demonstrated the efficacy of our approach on multiple tabletop
environment datasets and showed that our model can provide
strong results for unseen object instance segmentation. Finally,
we also addressed the weaknesses of our method which will
serve as the base of future work.
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