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Abstract. We explain a general construction through which concave
elliptic operators on complex manifolds give rise to concave functions
on cohomology. In particular, this leads to generalized versions of the
Khovanskii-Teissier inequalities.

1. Introduction

The purpose of this paper is to explain how concave elliptic equations
on compact complex manifolds give rise to concave functions on (certain
subsets of) “cohomology”. For example, if (X,ω) is compact Kähler, we
obtain concave functions on (certain subsets) of H1,1(X,R). The prototype
for the type function we consider is the volume function on Kähler classes.
Let K ⊂ H1,1(X,R) be the open convex cone consisting of all (1, 1) classes
admitting Kähler representatives. For a Kähler class α ∈ K define

Vol(α) =

∫
X
αn

Then the function α 7→ Vol(α)1/n is concave on K [9, 18, 16, 29, 30, 31]. In
particular, for any Kähler classes α0, α1 we have

(1.1) Vol(α0 + α1)1/n > Vol(α0)1/n + Vol(α1)1/n.

Furthermore, if β ∈ H1,1(X,R) is any class (not necessarily Kähler), then
since K is open, α + tβ ∈ K for t sufficiently close to zero. Differentiating
the volume function yields(∫

X
β2 ∧ αn−2

)(∫
X
αn
)
6

(∫
X
β ∧ αn−1

)2

.

This latter inequality is a special case of a class of inequalities originally
discovered by Khovanskii [18] and Teissier [30, 31], and can be viewed as a
generalization of the Hodge Index Theorem. Many parts of the preceding
discussion have in fact been extended beyond the Kähler cone, to the big
cone where the definition of the volume function must be appropriately
extended; see [1, 19, 13, 20].

T.C.C is supported in part by NSF grant DMS-1810924 and an Alfred P. Sloan
Fellowship.

1
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In this paper we will explain how the concavity of the volume function
is a special case of a more general result which applies to a broad class of
concave elliptic PDEs on complex manifolds. For the time being we will be
deliberately vague about what kind of classes we are considering, as they
will vary between applications. In any event, to motivate our discussion,
let us recall Demailly’s proof of the Khovanskii-Teissier inequalities [9]; see
also [16] for another approach. First, observe that for constant forms on a
complex torus Cn\Λ, the concavity of the volume function is equivalent to
the well-known concavity of the map

Herm+(n) 3M 7−→ det(M)
1
n ∈ R

where Herm+(n) denotes the set of positive definite, n × n Hermitian ma-
trices. Next, we apply Yau’s solution of the Calabi conjecture [39] to reduce
the global inequality to the pointwise inequality. Namely, fix a Kähler form
ω, and assume that

∫
X ω

n = 1. By Yau’s theorem [39] we can find a Kähler
forms α̃i with [αi] = [α̃i] for i = 0, 1 satisfying

(1.2) α̃ni =

(
[αi]

n

[ω]n

)
ωn.

Applying the point-wise concavity we clearly have(
(α̃0 + α̃1)n

ωn

)1/n

>

(
α̃n0
ωn

)1/n

+

(
α̃n1
ωn

)1/n

at each point p ∈ X. Combining this with (1.2) yields

(α̃0 + α̃1)n >

[(
[α0]n

[ω]n

)1/n

+

(
[α1]n

[ω]n

)1/n
]n
ωn.

Integrating this inequality over X yields (1.1). They key idea here is that

the concavity of the elliptic operator F (M) = (det(M))1/n yields the con-
cavity of the associated function on cohomology on the set of classes where
the equation F (M) = c is globally soluble on (X,ω). There has recently
been some interest in generalizing the Khovanskii-Teissier inequalities using
different concave functions. For some recent work in this direction, using
the σk operators, see [37, 38] and the references therein.

Acknowledgements The author thanks the referees for helpful comments
and suggestions.

2. Generalized Khovanskii-Teissier inequalities

To begin with, we recall some of the basic definitions of the elliptic oper-
ators we will study. Since our focus is on complex manifolds, some of our
definitions will be suited to this particular case.

To begin with, fix an open, set Γ ⊂ Rn, preserved by the natural action
of the symmetric group on n letters and denote by Γn = Rn+ the positive or-
thant. Suppose that f(λ1, . . . , λn) : Γ→ R is a smooth, symmetric function
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(in fact, one only needs f to be C2 for what follows, but we will not pursue
this). We suppose in addition that

(i) f is strictly increasing in each of its arguments. That is ∂f
∂λi

> 0.

(ii) f is concave.

By abuse of notation, denote by Γ ⊂ Herm(n) the set of Hermitian matrices
whose eigenvalues lie in Γ ⊂ Rn. Then f induces an elliptic operator on Γ
by

F (M) = f(λ1(M), . . . , λn(M))

where λ1(M), . . . , λn(M) are the eigenvalues of M . The function F : Γ→ R
is concave and elliptic, in the sense the F (M + P ) > F (M) for all P ∈ Γn.
In all of our examples the operator F will be defined on all of Herm(n).
Furthermore, in most (but not all examples) Γ will be a cone in Rn with
vertex at the origin, containing Γn. For our purposes we will always think
of an elliptic operator as a pair (f,Γ) of an operator, together with an
admissible cone. We pause to discuss a variety of examples.

Example 2.1 (Hessian Equations). Let Γk ⊂ Rn be

Γk = {(λ1, . . . , λn) : σ`(λ1, . . . , λn) > 0 for all 1 6 ` 6 k}
where σ` denotes the `-th symmetric function on (λ1, . . . , λn). Then it is
well-known [14, 2] that on the cone Γk, the function

f(λ) =

((
n

k

)−1

σk(λ)

)1/k

is concave, and increasing in each of its arguments. In fact, slightly more is

true [14]; σ
1/k
k is strictly concave in the following sense. Let M ∈ Γk, and B

any Hermitian matrix. Then

d2

dt2
∣∣
t=0

σ
1/k
k (M + tB) 6 0

with equality if and only if B = λM for some λ ∈ R.

Example 2.2 (Hessian Quotient Equations). One can also consider ratios
of symmetric functions. For 1 6 ` < k 6 n we consider the function

f(λ) =

((
n
k

)−1
σk(λ)(

n
`

)−1
σ`(λ)

) 1
k−`

This function is increasing in each of its arguments, and concave [26]. Note
that the case ` = n − 1, k = n is the operator corresponding to the J-
equation, introduced by Donaldson [12] and Chen [3].

Example 2.3 (The Lagrangian phase operator). Consider the Lagrangian
phase operator

f(λ1, . . . , λn) = Θ(λ) :=
n∑
i=1

arctan(λi).
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This operator arises in the study of special Lagrangian submanifolds of
Calabi-Yau manifolds, and the deformed Hermitian-Yang-Mills equation in
mirror symmetry. While Θ is increasing in all of its arguments on all of Rn
it is well known that Θ is not globally concave on Rn. Instead, we have

(1) Θ is concave on the set {(λ1, . . . , λn) : Θ(λ) > (n− 1)π2 } [40]

(2) For every δ > 0 there is a constant A = A(δ) such that −e−AΘ is
concave on the set {(λ1, . . . , λn) : Θ(λ) > (n− 2)π2 + δ} [5]

For n > 3, the operator Θ can fail to have even convex level sets in the range
(−(n− 2)π2 + δ, (n− 2)π2 − δ).

Example 2.4 (The (n−1, n−1) Hessian equations). For (λ1, . . . , λn) ∈ Rn
we define a map P : Rn → Rn, written as P (λ1, . . . , λn) = (µ1, . . . , µn), by

µi =
1

n− 1

∑
j 6=i

λj .

Then we define the (n− 1, n− 1) k-Hessian operator to be

f(λ1, . . . , λn) =

((
n

k

)−1

σk(P (λ))

)1/k

.

This operator is clearly elliptic, and concave on the set P−1(Γk).

An elliptic operator in the above sense gives rise to an elliptic operator
on a complex manifold (X,ω) in the following way. Given a smooth (1, 1)
form α on X, we can associate to α a Hermitian endomorphism of T 1,0X
using the Kähler metric. Namely, in local coordinates, define

E(α)ij = ωik̄αk̄j .

Since E(α) is Hermitian, it has n real eigenvalues which we denote by
λ1(α), . . . , λn(α). Note that, while we have suppressed the dependence,
these eigenvalues depend on the choice of Hermitian metric ω. In order for
our results to be broadly applicable, we make the following definition.

Definition 2.5. We define an ansatz to be a smooth, linear map W : Λ1
R →

Λ1,1
R . For a given ansatz W , and a smooth (1, 1) form α on X we define the

W -class of α by

[α]W = {αij̄ + ∂i∂j̄ϕ+W (dϕ)ij̄ : ϕ ∈ C∞(X,R)}

Note that, sinceW is linear, it is easy to see that the set [α]W ⊂ Λ1,1(X,R)
is an equivalence class; hence the terminology. We endow the set of W -
classes with the quotient topology induced by the C4 norm on Λ1,1.

Remark 2.6. Our primary interest is going to be the case when W = 0,
and dα = 0. In this case [α]W = [α]BC , the Bott-Chern class of α.

Definition 2.7. Given an elliptic operator (f,Γ) we will say that a form α
is admissible (with respect to ω) if λ(α) ∈ Γ. Furthermore, we will say that
the W -class [α]W is admissible if [α]W contains an admissible representative.
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Note in particular that, since Γ is open and W is smooth, the set of
admissible W -classes is open. Concretely, this means that, for any smooth
(1, 1) form β the class [α+ εβ]W is admissible for ε sufficiently small. With
this discussion in place, it makes sense to study the following very general
elliptic problem on (X,ω).

Problem 2.8. Fix an elliptic operator (f,Γ), and an ansatz W . For each
admissible class [α]W , find a constant c, and a smooth, admissible (1, 1)
form α̃ ∈ [α]W such that

(2.1) F (α̃) = f(λ1(α̃), . . . , λn(α̃)) = c

where λi(α̃) are the eigenvalues of α̃ with respect to the Hermitian metric
ω.

Definition 2.9. Given an elliptic operator (f,Γ) and an ansatz W we will
denote by Solω(f,Γ,W ) the set of admissible W -classes admitting a solution
to Problem 2.8 for some constant c.

We are now going to prove two elementary structural results about solu-
tions of Problem 2.8. Our first result is that, on the set Solω(f,Γ,W ), the
constant c appearing in the statement of Problem 2.8 is unique in [α]W , and
hence descends to a function

Solω(f,Γ,W ) 3 [α]W 7−→ c(ω, [α]W ).

The second structural result is that the set Solω(f,Γ,W ) is either empty, or
open in the set of W -classes.

Lemma 2.10. Fix a compact Hermitian manifold (X,ω), and a cohomology
class [α]. We consider an ansatz W , and an equation (f,Γ), and fix a
(1, 1) form α ∈ [α]W . Assume that there are two functions ϕ0, ϕ1 such that
αi := α +

√
−1∂∂ϕi + W (dϕ) are admissible solutions of F (αi) = ci for

i = 0, 1. Then c0 = c1. In particular, on Solω(f,Γ,W ) the function

[α]W 7→ c(ω, [α]W )

is well-defined.

Proof. This is just an application of the maximum principle. Since X is com-
pact, there are points pmin (resp. pmax )where ϕ0−ϕ1 attains its minimum
(resp. maximum). At pmin we have

dϕ0 = dϕ1,
√
−1∂∂ϕ0 >

√
−1∂∂ϕ1.

It follows that α0 > α1. Since αi are both admissible, we can invoke the
ellipticity of f to obtain

c0 = F (α0) > F (α1) = c1.

Arguing similarly at the maximum implies c0 = c1. �

Remark 2.11. Note that the above argument, together with the strong
maximum principle, also implies uniqueness of solutions to Problem 2.8 in
a given W -class.
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Lemma 2.12. Fix a compact complex manifold (X,ω), and an ansatz W .
Consider an equation (f,Γ). Then, with notation as above, Solω(f,Γ,W ) is
either empty, or open.

Proof. This is nothing but the implicit function theorem. Assume that
Solω(f,Γ,W ) is not empty. Let [α]W admit a smooth solution α of the
equation F (α) = c(ω, [α]W ). Fix a (1, 1) form β, and consider the map

F(ϕ, t, a) = F (α+ tβ +
√
−1∂∂ϕ+W (dϕ))− c(ω, [α]W )− a

Since Γ is open, there is small neighborhood U of (0, 0, 0) ∈ Ck,α(R)×R×R
such that F : U → Ck−2,α(R). Let

F ij̄ =
∂F

∂mij̄

denote the derivative of F at α, and note that, since F is elliptic, F ij̄ defines a
Hermitian metric on X. Let ∆F = F ij̄∂i∂j̄ denote the associated Laplacian.
The operator

v 7→ Lv := ∆F v + F ij̄Wij̄(dv)

is homotopic to ∆ω and therefore has index zero, regarded as a map from
Ck,α → Ck−2,α. By the maximum principle, the kernel of L consists of
the constant functions. Thus, the cokernel of L has dimension 1. Another
application of the maximum principle shows that the cokernel of L contains
the constants. It follows that the map

Ck,α × R 3 (v, a) 7−→ Lv − a ∈ Ck−2,α

is surjective. On the other hand, the linearization of F is

DF(v, β, a) = Lv + F ij̄βij̄ − a.
Thus, by the implicit function theorem, for all t sufficiently small we can
find a function ϕt ∈ Ck,α and a constant at ∈ R such that

F (α+ tβ +
√
−1∂∂ϕt) = c(ω, [α]) + at.

Fixing k � 2, the Schauder theory implies that ϕt ∈ C∞(X,R), and the
result follows. �

We will now give the proof of our main theorem, and then spend the re-
mainder of the paper discussing applications. Suppose (X,ω) is a compact
complex manifold with a Hermitian metric, and fix a concave elliptic opera-
tor (f,Γ), and an ansatz W . Suppose that Solω(f,Γ,W ) is not empty, and
hence by Lemma 2.12 it is open. By Lemma 2.10 we get a function

Solω(f,Γ,W ) 3 [α]W −→ c(ω, [α]W ).

Theorem 2.13. (i) With notation as above, the function

Solω(f,Γ,W ) 3 [α]W −→ c(ω, [α]W )

is concave with respect to the natural linear structure on real (1, 1)
forms.



7

(ii) Furthermore, in case W ≡ 0, assume that there is a smooth (1, 1)

form β for which we have d2

dt2

∣∣
t=0

c(ω, [α + tβ]0) = 0. If α denotes
the solution of F (α) = c(ω, [α]0), then there is a function ψ so that

D2F (α)(β +
√
−1∂∂ψ, β +

√
−1∂∂ψ) ≡ 0

where we regard D2F (α) as a negative semi-definite bilinear form on
Λ1,1.

Proof. Fix [α]W ∈ Solω(f,Γ,W ), and let α denote the solution of F (α) =
c(ω, [α]W ). Let β be a smooth (1, 1) form. By Lemma 2.12, for all t suffi-
ciently small there is a smooth function ϕt so that

F (α+ tβ +
√
−1∂∂ϕt +W (dϕt)) = c(ω[α+ tβ]W ) = c(t)

Differentiating this equation in t yields

(2.2)

ċ = F ij̄
(
βij̄ + ∂i∂j̄ϕ̇+Wij̄(dϕ̇t)

)
c̈ = F ij̄∂i∂j̄ϕ̈+ F ij̄Wij̄(dϕ̈t)

+ F ij̄,k
¯̀(
βij̄ + ∂i∂j̄ϕ̇+Wij̄(dϕ̇t)

)
(βk ¯̀ + ∂k∂¯̀ϕ̇+Wk ¯̀(dϕ̇t)).

Where F ij̄,k
¯̀

denotes the hessian of F . Evaluating at t = 0 and using the
concavity of F on Γ, we have

(2.3) c̈(0) 6 F ij̄∂i∂j̄ϕ̈+ F ij̄Wij̄(dϕ̈t).

Crucially, this equation holds at every point of X. In particular, it holds at
the maximum point of ϕ̈. Applying the maximum principle, we obtain

c̈(0) 6 0

which is the desired result.
Let us give another proof, which applies only in the case that W = 0,

but which yields a slightly stronger result. Suppose that W = 0. Before
beginning, we recall a result of Gauduchon [15]. Let hij̄ be any Hermitian
metric on X, and let η be the associated (1, 1) form. Then there is a function
σ : X → R so that √

−1∂∂(eση)n−1 = 0

That is, we can conformally rescale h to a Gauduchon metric. By the
ellipticity of F , F ij̄ induces a Hermitian metric hF on X, with associated
(1, 1) form ηF . Hence we can apply Gauduchon’s theorem to find σ so that
eσηF is Gauduchon. Furthermore, after possibly adding a constant to σ, we
can assume that

∫
X e

(n−1)σηnF = 1. Write

F ij̄∂i∂j̄ϕ̈ = n
ηn−1
F ∧

√
−1∂∂ϕ̈

ηnF
.

Multiply both sides of (2.3) by e(n−1)σηnF and integrate over X to get

c̈(0) = c̈(0)

∫
X
e(n−1)σηnF 6 n

∫
X

√
−1∂∂ϕ̈ ∧ (eσηF )n−1.
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Integrating by parts, and using that eσηF is Gauduchon, we obtain c̈(0) 6 0
which proves the result. Note, that if

c̈(0) = 0

then we must have equality throughout. In particular, we have that

F ij̄,k
¯̀(
βij̄ + ∂i∂j̄ϕ̇

)
(βk ¯̀ + ∂k∂¯̀ϕ̇) ≡ 0

and hence β+
√
−1∂∂ϕ̇ lies in the kernel of the negative semi-definite bilinear

form D2F : Λ1,1 × Λ1,1 → C. �

Remark 2.14. The proof implies a type of “ellipticity” for the function c
on the solvable set when W = 0. Namely, assuming W = 0, suppose that
there is a L1 function ψ so that β +

√
−1∂∂ψ > 0 in the sense of currents.

Then, using (2.2) and the above notation we have

ċ(0) = ċ(0)

∫
X
e(n−1)σηnF = n

∫
X

(β +
√
−1∂∂ϕ̇) ∧ (eσηF )n−1

= n

∫
X
β ∧ (eσηF )n−1

= n

∫
X

(β +
√
−1∂∂ψ) ∧ (eσηF )n−1

> 0

where in the third and fourth inequalities we used that eσηF is Gauduchon.
For example, when [β]0 is the Bott-Chern class of an effective divisor, the
inequality

d

dt

∣∣
t=0

c(ω, [a+ tβ]0) > 0

can be regarded as a sort of algebraic obstruction for the existence of solu-
tions to Problem 2.8. In all the examples we have considered, the obstruc-
tions produced via this observation are clear “by inspection”. Nevertheless,
we hope this observation may be of some use in other settings.

From Theorem 2.13 we obtain generalized Khovanskii-Teissier type in-
equalities of the following form; fix a complex manifold (X,ω) and an ansatz
W , then for each [α]W ∈ Solvω(f,Γ,W ), and every β ∈ Λ1,1 we have

d2

dt2
c(ω, [α]W + t[β]W ) 6 0.

The most useful applications of this result come from situations in which
the ansatz W = 0, and the constant c(ω, [α]W ), as well as the solvability of
the equation (f,Γ,W ), depend only on the algebraic structure of X. That
is, in situations where c(ω, [α]W ) = c([ω], [α]W ), and Solω(f,Γ,W ) depends
only on [ω], [α]W , and can be determined by the algebraic properties of X,
such as the intersection pairing on cohomology, and Poincaré duality. This
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is the case for the Monge-Ampère equation, thanks to Yau’s theorem [39],
which says that on a compact Kähler manifold X, with W=0, we have

Solω(σ1/n
n ,Γn) ∩H1,1(X,R) = K,

and on this set we have

c(ω, [α]) =

(∫
X α

n∫
X ω

n

) 1
n

.

Furthermore, by the result of Demailly-Păun [10], the Kähler cone K can
be determined purely algebraically. All together, these results imply restric-
tions on the intersection theory of a general Kähler manifold.

Even in the simplest case, when the ansatz W = 0, producing algebraic
conditions determining the solvability of an equation (f,Γ) is a hard prob-
lem, and the subject of current research [21, 6, 27, 8]. On the other hand, we
can at least attempt to give a structural condition under which the constant
c(ω, [α]) can be shown to depend only on [ω], [α] (and Γ!). The remainder of
this paper will be spent discussing explicit examples of equations to which
Theorem 2.13 applies. This will motivate the introduction of the structural
condition alluded to above, which appears at the end of the paper. We will
use the following notation; for closed (1, 1) forms αi, 1 6 i 6 n we denote

α1.α2 · · ·αn−1.αn =

∫
X
α1 ∧ α2 · · · ∧ αn−1 ∧ αn

Example 2.15 (Hessian Equations). Let (X,ω) be a compact Kähler man-
ifold, and α be a closed, real (1, 1) form on X, and W = 0. Then an exercise
in linear algebra shows that

(2.4) σk(λ(α)) =

(
n

k

)
ωn−k ∧ αk

ωn
.

If (
(
n
k

)−1
σk(λ(α))

1
k = c, and α is k-positive then, multiplying (2.4) by ωn

and integrating over X we must have

ck =

∫
X ω

n−k ∧ αk∫
X ω

n
.

When k is odd, c is uniquely specified, and when k is even, c is the pos-
itive root of the cohomological quantity appearing above. In particular,
given that α is k-positive, there is unique constant c, determined only by
[α], [ω] ∈ H1,1(X,R), for which Problem 2.8 can possibly admit a solution.
Furthermore, by work of Dinew-Kolodziej [11] (see also Székelyhidi [27]), if
[α] admits a k-positive representative, then the complex Hessian equation

(
(
n
k

)−1
σk(λ(α))

1
k = c admits a smooth solution in the class [α]. Thus, we

conclude
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Corollary 2.16. Let KΓk,ω ⊂ H1,1(X,R) denote the cone of classes admit-
ting k-positive representatives with respect to ω. Then the function

H1,1(X,R) 3 [α] 7−→
(
ωn−k.αk

ωn

) 1
k

is concave on KΓk,ω. In particular, for any [β] ∈ H1,1(X,R) we have the
generalized Khovanskii-Teissier type inequality

(2.5)
(
ωn−k.αk−2.β2

)(
ωn−k.αk

)
6
(
αk−1.β.ωn−k

)2
,

with equality if and only if [β] = λ[α] for some λ ∈ R.

The final claim that

(2.6)
(
ωn−k.αk−2.β2

)(
ωn−k.αk

)
=
(
αk−1.β.ωn−k

)2

if and only if [β] = λ[α] for some λ ∈ R follows from the second statement
in Theorem 2.13, together with the discussion in Example 2.1. Namely, by
[14], if (2.6) holds, then, in the notation of the proof of Theorem 2.13 (ii)
β +
√
−1∂∂ϕ̇ = λα at each point of X, and hence [β] = λ[α].

Remark 2.17. In fact, it is not hard to see that the concavity, and hence the
generalized Khovanskii-Teissier type inequality, hold on the a priori larger
set of classes [α] admitting a k-positive representative with respect to some
Kähler metric in the class [ω].

Corollary 2.16 was known to Tosatti-Weinkove [32] who observed that
it followed from Dinew-Ko lodziej’s work [11], and Demailly’s technique [9].
It was also proved independently by Xiao [37], who also proves polarized
versions of (2.5).

Remark 2.18. Applying the discussion of Remark 2.14 to the class of an
effective divisor [E] on X yields that, for any class [α] admitting a k-positive
representative with respect to ω, we have∫

E
ωn−k ∧ αk−1 > 0.

Note that this result, with strict inequality, follows from linear algebra.

Example 2.19 (Hessian Quotient Equations). Let (X,ω) be a compact
Kähler manifold, and α be a closed, real (1, 1) form on X, and W = 0. The
considerations of Example 2.15 hold for the Hessian quotient equations of
Example 2.2. Using (2.4) we obtain

c =

(∫
X ω

n−k ∧ αk∫
X ω

n−` ∧ α`

) 1
k−`

and hence there is a unique constant, depending only on [α], [ω] ∈ H1,1(X,R)
such that the Hessian quotient equation on (X,ω), in the k-positive class
[α] can admit a solution. Applying Theorem 2.13 we obtain
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Corollary 2.20. Let Solω(k` ,Γk) ⊂ KΓk,ω denote the set of classes [α] ad-
mitting a k-positive representative solving the Hessian quotient equation((

n
k

)−1
σk(α)(

n
`

)−1
σ`(α)

)1/(k−`)

= c.

Then on Solω(k` ,Γk), the function

H1,1(X,R) 3 [α] 7−→
(
ωn−k.αk

ωn−`.α`

) 1
k−`

is concave.

The concavity implies a Khovanskii-Teissier type inequality, which is not
difficult to compute, but rather long to write down. For simplicity, we make
the following observation; if g is a positive, concave function, and a > 1,
then g−a is convex. We conclude that

H1,1(X,R) 3 [α] 7−→ ωn−`.α`

ωn−k.αk

is convex on Solvω(k` ,Γk); in particular, for every [β] ∈ H1,1(X,R) we have

`(`− 1)(ωn−`.α`−2.β2)(ωn−k.αk)− k(k − 1)(ωn−k.αk−2.β2)(ωn−`.α`)

> 2k

(
`(ωn−`.α`−1.β)− k(ωn−k.αk−1.β)

(ωn−`.α`)

(ωn−k.αk)

)
(ωn−k.αk−1.β)

Remark 2.21. Székelyhidi [27], and Lejmi-Székelyhidi [21] have made con-
jectures concerning necessary and sufficiently algebraic conditions for the
Hessian quotient equations to be solvable. For effective divisors, the obstruc-
tions appearing in [27, 21] are precisely those obtained from Remark 2.14.
When k = n and ` = n − 1, and (X,ω) is toric, this conjecture has been
proved by the author and Székelyhidi [6]. Combining this work with Corol-
lary 2.20 we obtain constraints on the intersection theory of toric varieties.

Example 2.22 (Lagrangian Phase Operator). Again we consider (X,ω)
compact Kähler manifold, α a closed, and real (1, 1) form on X, and W = 0.
The Lagrangian phase operator considered in Example 2.3 satisfies a slightly
more complicated version of the principle discussed in the previous two
examples. Consider the volume form

Ω(ω, α) =

√√√√( n∏
i=1

1 + λi(α)2

)
ωn.

It is straightforward to show that

−(−
√
−1)n

∫
X
e
√
−1Θω(α)Ω(ω, α) = −

∫
X
e(
√
−1ω+α).
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For simplicity, let us denote Z([α], [ω]) = −
∫
X e

(
√
−1ω+α). If Θω(α) = c on

X, then we clearly have

−
∫
X

(
√
−1ω + α)n ∈ R>0e

√
−1c−(n−2)π

2

and so, in particular, the constant c appearing on the right-hand side of the
Lagrangian phase equation is determined modulo 2π by the classes [α], [ω] ∈
H1,1(X,R) on the solvable set. Furthermore, if α solves the Lagrangian
phase equation with c > (n− 2)π2 , then we have

c = (n− 2)
π

2
+ Argp.v(Z([α], [ω]))

where Argp.v. denotes the principal value of argument. For each angle c ∈
(−nπ2 , n

π
2 ), let

Γ>c = {(λ1, . . . , λn) ∈ Rn :
n∑
i=1

arctan(λi) > c}.

With this discussion, Theorem 2.13 implies

Corollary 2.23. Let Solω(Θ,Γ(n−1)π
2
) ⊂ KΓ(n−1)π2

,ω denote the set of classes

[α] ∈ H1,1(X,R) admitting solutions of the Lagrangian phase equation Θ(α) =
c with c > (n− 1)π2 . Then, on this set

Argp.v(Z([α], [ω]))

defines a concave map into [π2 , π). Furthermore, for every δ ∈ (0, π2 ), there
is a constant C = C(δ) > 0, such that

− exp[−CArgp.v(Z([α], [ω]))]

is concave on Solω(Θ,Γ(n−2)π
2

+δ).

Remark 2.24. The Lagrangian phase equation, also called the deformed
Hermitian-Yang-Mills (dHYM) equation, has recently seen a great deal of
interest, owing to its importance in mirror symmetry [23, 22, 7, 4, 17]. In
particular, the author, with Jacob and Yau [4], and the author and Yau [8]
have formulated conjectures relating algebraic geometry and the solvability
of the dHYM which would, in principle, determine the set Solω(Θ,Γ(n−1)π

2
)

in terms of algebraic data.

So far, our discussion has focused on Kähler examples. We now turn to
some non-Kähler applications.

Example 2.25. Let (X,ω) be a compact complex manifold with dimCX =
n > 2. Recall that the (n−1, n−1) Aeppli cohomology group of X is defined
by

Hn−1,n−1
A (X,R) =

{∂∂-closed, real (n− 1, n− 1) forms}
{∂γ + ∂γ : γ ∈ Λn−2,n−1}

Note that every Gauduchon metric α on X induces a class [αn−1]A ∈
Hn−1,n−1
A (X,R). We have the following
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Theorem 2.26 (Székelyhidi-Tosatti-Weinkove [28]). Let (X,ω) be a com-
pact complex manifold with a fixed Gauduchon metric ω. Let α0 be any
Gauduchon metric. Then there exists a unique function ϕ : X → R, with
supX ϕ = 0, and a unique constant c ∈ R>0, and Gauduchon metric αϕ,
satisfying

(2.7) αn−1
ϕ = αn−1

0 +
√
−1∂∂ϕ ∧ ωn−2 + Re(

√
−1∂ϕ ∧ ∂(ωn−2))

and solving

(2.8) αnϕ = cωn.

Observe that, in the above theorem, we clearly have [αn−1
0 ]A = [αn−1]A.

A few words are in order about how this theorem is proved. In [34, 25] it
is shown that, under the ansatz (2.7), equation (2.8) can be reduced to the
equation

f(λ) = ((n− 1)c)
1
n

where f is the (n − 1, n − 1) Monge-Ampère equation discussed in Exam-
ple 2.4, and λ are the eigenvalues of a certain related Hermitian (1, 1) form. It
will be important for us how this particular Hermitian form is constructed.
We say that a real (n − 1, n − 1) form Ω is Gauduchon if Ω is positive,
and

√
−1∂∂Ω = 0. By a theorem of Michelsohn [24] every Gauduchon

(n− 1, n− 1) form Ω satisfies Ω = αn−1 for a unique Gauduchon metric α.
Let G denote the set of Gauduchon (n − 1, n − 1) forms, which is a convex
cone in the space of real (n− 1, n− 1) forms on X. Following [34], to each
Ω we associate a smooth, not necessarily positive, (1, 1) form αΩ by

(αΩ)ij̄ = Trω

(
1

(n− 1)!
∗ω Ω

)
ωij̄ −

(
1

(n− 2)!
∗ω Ω

)
.

Then, imposing (2.7), and solving (2.8) is equivalent to solving the (n −
1, n− 1) Monge-Ampère equation in Example 2.4 with (1, 1) form

(αΩ)ij̄ + ϕij̄ +Wij̄(dϕ)

where W is a certain anstaz in the sense of Definition 2.5. The corresponding
Gauduchon metric is obtained by applying the Pω operator described in
Example 2.4, which acts on (1, 1)-forms by

Pω(β) =
1

n− 1
[(Trωβ)ω − β] .

A straightforward computation shows that

(2.9) αϕ =
1

(n− 1)!
∗ω Ω +

1

n− 1

(
∆ωϕ−

√
−1∂∂ϕ

)
+ Pω(Wij̄(dϕ))

Observe that the linear structure on Gauduchon (n − 1, n − 1) forms is
mapped to the linear structure on (1, 1) forms by this construction. Namely,
if Ωi are Gauduchon (n−1, n−1) forms, for i = 0, 1, and Ωt = (1−t)Ω0+tΩ1,
then applying the above construction yields

αΩt = (1− t)αΩ0 + tαΩ1 .
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Thus, by Theorem 2.13 we obtain

Corollary 2.27. Let (X,ω) be a compact Hermitian manifold, and let G
denote the space of Gauduchon (n− 1, n− 1) forms. For each Ω, let αΩ,CY

be the Gauduchon metric produced by Theorem 2.26, and define

Vol1/n(Ω) =

(∫
X α

n
Ω,CY∫

X ω
n

)1/n

.

Then Vol1/n defines a concave function on the space G.

Remark 2.28. Observe that Corollary 2.27 also holds if we consider only
Gauduchon (n− 1, n− 1) forms with fixed Aeppli cohomology class. In par-

ticular, it would be interesting to know if Vol1/n achieves a finite maximum
on Gauduchon forms in a fixed class, as this could be interpreted as an in-
variant of the Aeppli cohomology class. It would furthermore be interesting
to understand whether this maximum (provided it exists) is unique.

A related invariant to the one discussed about was considered in [36]

Remark 2.29. As pointed out in [28], Theorem 2.26 also holds for the
(n − 1, n − 1) − σk equations, and hence the above construction can be
extended to define mixed volume functions on G, which are also concave, in
complete analogy with Example 2.19

Example 2.30. Let (X,ω) be a Hermitian manifold, and let α be any
smooth Hermitian metric. Then a result of Tosatti-Weinkove [35] says that
there exists a unique function ϕ : X → R such that αϕ : α+

√
−1∂∂ϕ solves

the Monge-Ampère equation

αnϕ = ebωn

for some constant b = b(α, ω). Applying Theorem 2.13 we conclude that

the map α 7→ eb/n, defined on
√
−1∂∂-equivalence classes of Hermitian met-

rics, is concave. This result may have applications to the study of compact
complex manifolds admitting big and nef (1, 1) classes; see [33].

Inspired by examples 2.15, 2.19 and 2.22 we make the following definition.

Definition 2.31. We say that an elliptic operator (f,Γ) is of cohomological
type if it has the following property:

(1) There is a finite-to-one map ϕf : R→ R such that ϕf : f(Γ)→ [0, π]
is injective.

(2) There is a map Ẑ : R→ C∗ such that

Ẑ(x) ∈ R>0e
√
−1ϕf (x).

(3) For each admissible α ∈ [α] there is a volume form Ω(ω, α) such that∫
X
Ẑ(F (α))Ω(ω, α) =: ZF ([α], [ω]) ∈ C

depends only on the classes [α], [ω].
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It is not hard to see that all of the elliptic operators in examples 2.15, 2.19
and 2.22 can be fit into this framework. For example, for the Hessian equa-

tion f(λ) = σ
1/k
k , we can define

Ẑk(x) = (1 +
√
−1xk) ∈ C∗.

In particular, we can take ϕ(x) = arctan(xk). We define the volume form
to be Ωk(α, ω) = ωn. Then we have∫

X
Ẑk(σ

1/k
k (α))ωn =

∫
X
ωn +

√
−1ωn−k ∧ αk = Zk([α], [ω]).

The Hessian quotient equations of Example 2.19 can be treated similarly, and
we have essentially already described how the Lagrangian phase operator can
be fit into this framework. The trivial observation is that when (f,Γ) is a
cohomological type, the function c(ω, [α]) can be determined by cohomology
(together with Γ).

Lemma 2.32. Suppose (f,Γ) is of cohomological type. Then, on the set
of classes KΓ,ω ⊂ H1,1(X,R) admitting Γ-admissible representatives, the
constant c depends only depends only on [α], [ω], and is determined by

ZF ([α], [ω]) ∈ R>0e
√
−1ϕf (c)

Proof. By assumption, for any class [α] admitting a Γ-admissible represen-
tative we have

ZF ([α], [ω]) =

∫
X
Ẑ(F (α))Ω(ω, α)

On the other hand, if [α] admits a Γ-admissible solution of F = c then we

have Ẑ(F (α)) ∈ R>0e
√
−1ϕf (c). Thus,

ZF ([α], [ω]) ∈ R>0e
√
−1ϕF (c).

On the other hand, combining the assumption that ϕf : f(Γ) → [0, π] is
injective, with that fact that c ∈ f(Γ), it follows that c is uniquely specified
by ϕf (c). �

Combining this simple lemma with Theorem 2.13 we make the following
conclusion. Let (X,ω) be a Kähler manifold. Any concave elliptic operator
(f,Γ) of cohomological type induces a concave function on the subset of
H1,1(X,R) consisting of classes containing admissible solutions of f = c for
some Kähler metric in the class [ω].
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