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1. Introduction

This paper concerns the solution of Generalized Riemann Prob-
lems (GRP) in the context of ADER schemes, a family of high-order
finite volume methods. The ADER (Arbitrary Accuracy DERivative
Riemann problem method), first put forward by Toro et al. [26], is
of particular interest in this work. The method in [26] was devoted
to develop a procedure able to compute the numerical solution, of
the one-dimensional linear advection problem, of arbitrary order
of accuracy in both space and time. This method can be consid-
ered as a generalization of Godunov’s method, where the numer-
ical fluxes can be obtained from the local solution of GRP where
the initial condition consists of polynomial functions of suitable or-
der. Subsequently, ADER was extended to solve linear systems of
hyperbolic conservation laws in [31,38]. The ADER philosophy was
extended by Toro and Titarev in [41] to solve the non-linear sys-
tems with source terms which are not stiff; inhomogeneous Burg-
ers equation and the nonlinear shallow-water equations with vari-
able bed elevation. In [35], the ADER approach was extended, by
Toro and Titarev, to nonlinear but homogeneous hyperbolic sys-
tems. Furthermore, the extension of ADER to scalar balance laws
was investigated by Toro and Takakura, [34].
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The original ADER scheme [26,35], has two main steps, recon-
struction and flux calculation. The marching in time generates cell
averages, then the reconstruction procedure generates a special
type of interpolation polynomial of the solution from cell aver-
ages. The flux calculation is carried out from the solution of the
GRP, which is proposed in terms of a Taylor series expansion in
time, where the time derivatives are completely expressed in terms
of spatial derivatives by means of the Cauchy-Kowalewskaya or
Lax-Wendroff procedure. The space derivatives are obtained from
homogeneous linearized Riemann problems constructed from the
governing equation and an initial condition given by the deriva-
tives of interpolation polynomials. This was the summary of the
pioneering ADER method, which in principle is able to generate ap-
proximations of arbitrary order of accuracy. The accuracy of ADER
methods depends on the number of terms in the Taylor series ex-
pansions. In the case of conservation laws, for the first order it re-
covers Godunov’s method and for the second order ADER recovers
the second-order method of Ben-Artzi and Falcoviz [5].

We mention here the pioneering work of Ben-Artzi [5], Ben-
Artzi and Falcovitz [5], Ben-Artzi and Li [6], where GRP consists of
Cauchy problems of hyperbolic balance laws and initial condition
given by two vectors of polynomials of first order separated by a
discontinuity allowed to build numerical scheme of second order
of accuracy. The GRP solver in these works is based on a Taylor
series expansion in time, where the leading term of the expansion
is obtained from an associated Riemann problem like in the case
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of the GRP in [26,35] and the time derivative in the expansion
is obtained from an algebraic system obtained from characteris-
tic curves and contributions of the source term, if present. The
solution of the Riemann problem can be done exactly or using
some approximate Riemann solver (see [37]). However, the issue
of obtaining the algebraic equation for the time derivative is
very difficult for general systems and a bit cumbersome to be
extended to high orders of accuracy. In [36], Toro has introduced
a simplification to the GRP of Ben-Artzi and Falcovitz [5], where
the time derivative was obtained from the Cauchy-Kowalewskaya
or Lax-Weondroff procedure using the solution of a linearized
Riemann problem. This approach can be straightforwardly applied
to any hyperbolic system and this work has opened the door to
high order extensions of GRP as those of in [26,35]. Some related
GRP solvers are, [7,22,24,25] to mention but a few.

In [8], a re-interpretation carried out by Castro and Toro of the
high-order numerical method proposed by Harten et al. [20] has
allowed us to formulate GRP solutions and thus ADER schemes
in a different way. In this new interpretation of ADER, a classi-
cal Riemann problem is built from the governing equation and a
piece-wise initial condition which is formed from two constant
states. In this approach, the constant states are local predictors
of the solution within computational cells, that is, these are ex-
trapolation values of the solution at both sides of the cell inter-
faces at a given time. The evolution of these extrapolated values
is carried out by using Taylor series expansion in time, where the
time derivatives are still expressed via Cauchy-Kowalewskaya func-
tionals but the arguments are now the spatial derivates of the re-
construction polynomials. In this form the predictors in two adja-
cent computational cells are interacted at the cell interface through
the classical Riemann problem. In [8], the approach based on the
Harten et al. is called the HEOC solver and the original GRP solver
of Toro and Titarev scheme is referred to as the TT solver. So, the
difference between the HEOC formulation and the TT formulation
is that, in the HEOC case only one classical Riemann problem is re-
quired but it needs to be solved at each quadrature point, whereas,
in the TT approach a sequence of classical Riemann problems are
required only once, one Riemann problem for the leading term
of Taylor expansions and a linearised Riemann problems for ev-
ery spatial derivative involved in the Cauchy-Kowalewskaya func-
tional. So, once these terms are available the computation of GRP
solution via TT is reduced just to evaluate a polynomial in time.
The similarities between both approaches are the use of Taylor se-
ries expansion and the use of the Cauchy-Kowalewskaya procedure.
A detailed review of GRP solvers is done in [8,27]. Similarly, fur-
ther details of ADER schemes can be found in Chapters 19 and
20 of the textbook by Toro [37]. Notice that, the GRP solvers re-
quire the ability of solving classical Riemann problems. The num-
ber of hyperbolic systems for which the exact solution of Rie-
mann problems is available, is limited. In general, the exact solu-
tion of Riemann problems for several hyperbolic systems can be
very difficult to be obtained. Fortunately, the ADER approaches de-
scribed above allow using approximate Riemann solvers, see [19].
In this sense, the search for approximate Riemann solvers for gen-
eral hyperbolic systems is a very relevant area of research, where
the ADER philosophy can be benefited. Balsara [1,2] and Balsara
et al. [3] have extended multidimensional HLL and HLLC to Euler
and MHD equations. Goetz et al. [17] have shown that approximate
Riemann solvers can be obtained from the well-known HLL solver.
See also [4,16] where universal approximate GRP solvers based on
HLL method and the inclusion of intermediate waves have been
reported.

ADER approach allows the flexibility for incorporating the finite
element approach into the finite volume framework. In an inter-
mediate stage in the mixing between finite volume and finite ele-
ment approach, Dumbser and Munz, Dumbser and Munz [13] and

Dumbser and Munz [14], have implemented the ADER scheme for
the Discontinuous Galerkin approach applied to the aeroacoustics
and the Euler equations in two dimensions. In this approach, ADER
is used to evolve polynomials in space and time through the evo-
lution of their degrees of freedom by using Taylor series expan-
sion and the Cauchy-Kowalewskaya procedure, but instead of using
reconstruction and the derivatives of reconstruction polynomials,
the authors proposed to use the test functions of the finite ele-
ment space. In this sense, the work of Dumbser et al. [11] in their
pioneering work, has introduced the Galerkin framework for ob-
taining the predictor within cells. The difference between this ap-
proach and that of Dumbser and Munz is that this neither requires
the use of any Taylor series expansion nor Cauchy-Kowalewskaya
procedure. Some contributions to the developments of this class of
solver can be found in [9,10,15,18,28], to mention but a few.

The methodologies based on the Galerkin approach requires
the inversion of matrices and the solution of non-linear alge-
braic equations which are very time-consuming processes. On the
other hand, the methodologies based on Taylor series suffer from
the Cauchy-Kowalewskaya procedure which becomes cumbersome
when the accuracy increases. Furthermore, the Taylor series expan-
sions without modifications cannot deal with stiff source terms. In
this sense, in [29,39] Toro and Montecinos have introduced the im-
plicit Taylor series expansion and Cauchy-Kowalewskaya procedure
to deal with hyperbolic balance laws with stiff source terms. In this
approach, the Cauchy-Kowalewskaya procedure requires the spatial
derivatives evolved in time, which cannot be obtained straightfor-
wardly from Riemann problems as in conventional ADER meth-
ods discussed above. This is basically because conventional ADER
methods based on TT solver uses linearised Riemann problems
which are homogeneous. Thus, the influence of the source term is
only involved in the Cauchy-Kowalewskaya procedure. In [39] the
spatial derivatives are evolved by using two approaches, which dif-
fer in the number of terms in the Taylor expansion, so Complete
Implicit Taylor Approach (CITA) and Reduced Implicit Taylor Ap-
proach (RITA), in both HEOC and TT approaches, are investigated.
A limitation of the approach in [39], is the computational cost,
for high orders of accuracy, the CPU time increases dramatically.
However, second order approaches work very well as reported in
[42] where an extension to transport phenomena on unstructured
meshes has been reported.

In this paper, we propose a strategy related to the implicit Tay-
lor series expansion and the Cauchy-Kowalewskaya procedure. The
difference between the conventional approaches described above
and the proposed one is that spatial derivatives do not need
to be evolved in terms of any Taylor series expansion and the
Cauchy-Kowalewskaya procedure is modified by expressing high-
order time derivatives not only in terms of spatial derivatives of
the data but also on space and time derivatives of the Jacobian ma-
trices of the flux and source functions as well. The derivatives are
obtained from an interpolation fashion on selected nodal points.
This simplification allows us to provide a closed form for the
Cauchy-Kowalewskaya functionals, in a recursive formula. Further-
more, this approach requires the solution of one algebraic equa-
tion but the number of variables is the same for all orders of ac-
curacy. Closed forms of the Cauchy-Kowalewskaya functional are
available for some partial differential equations as linear advec-
tion systems, linear systems with constant matrices [21,30] and for
the non-linear two-dimensional Euler equation, [14]. For the gen-
eral case, algebraic software manipulators are required for generat-
ing the Cauchy-Kowalewskaya functionals and gigantic expressions
may be obtained and lead, for instance, to long compile times.
However, the expression obtained here is very compact and use-
ful for all hyperbolic balance laws.

This paper is organized as follows. In Section 2, the general
framework is presented. In Section 3, the new predictor step is in-
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troduced. In the Section 4, numerical tests are concerned. Finally,
in Section 5 conclusions and remarks are drawn.

2. The framework

In this paper we present a strategy for solving hyperbolic bal-
ance law in the conservative form

9:Q+ xF(Q) = S(Q),
Q(x,0) = Ho(x), 1)

where Hy(x) is a prescribed function in R™. Here Q(x,t) € R™ is
the vector of unknowns, F(Q) € R™ is the physical flux function
and S(Q) € R™ is the source term.

To compute a numerical solution of (1), we divide the computa-
tional domain into N uniform cells of the form II' := [xif%,xpr%] X

[¢", t"+1] and then by integrating on I we obtain the well-known
one-step formula.

At
QI Q- H(FH% —FF%) +ALS;, 2)
where
n 1 1+2
Q=5 Q(x. t")dx (3)

1

2

! as well as the source term S; are com-
puted by adopting the ADER strategy, [26,37,40,41]. In this paper

tn+l
Fy (Qz (Xi+%, t), Qi1 (x,-+%, t))dt,

1
oy = 3¢ ],
tn+1

s,-:AmX/tn / 5 §(Q(x. t)dxdt | (4)

where F;(Q;, Qg) is a cla551cal numerical flux function, which can
be seen as a function of two states Q; and Qg. It is possible to de-
sign an approximate GRP solver out of the HLL, [17]. In this paper
we will use the Rusanov solver, obtained from HLL by taking ex-
treme left and right maximum waves speed to be the same but in
opposite directions. Here Q;(x, t) corresponds to a predictor within
the computational cell I”. In the next section, further details of the
predictor step are provided.

and the numerical flux F,

3. The predictor step

In this section we provide the details to obtain the predictor
Q;(x, t). We modify the strategy of the implicit Taylor series expan-
sion and the Cauchy-Kowalewskaya procedure presented in [39].
For the sake of completeness, we provide a brief review of the ap-
proach in [39]. The predictor is computed as

(-t

Q(x. 7) = Q(x. 0+>—Z (5)
which by means of the Cauchy-Kowalewskaya procedure, can be
written as

Qx7) = Qx.0,)
3 60 (1), 0 1)

k!
k=1

SQx D))
(6)

where M is an integer which corresponds to the order of accu-
racy M+1, in both space and time. Here, G corresponds to
the Cauchy-Kowalewskaya functional and it is the function which
’presses the time derivatives in terms of spatial derivatives,
30Qi(x, T) =GR (Qi(x, T), Qi (x, T), . . 0%Q;(x, 7)). Notice that

this functional requires the information of spatial derivatives at
T, which must be estimated. In [39] two strategies are proposed,
where the time spatial derivatives are obtained from implicit Tay-
lor series as well. These approaches require the solution of alge-
braic equations.

In the next section we provide a brief review of the conven-
tional Cauchy-Kowalewskaya procedure and subsequently, a sim-
plification of this procedure is presented.

3.1. A brief review of the Cauchy-Kowalewskaya procedure

Here, we briefly describe the Cauchy-Kowalewskaya procedure
for obtaining the time derivatives of the data. For the sake of sim-
plicity, in this section we omit the sub index i in Q;, to indicate the
approximation within the cell [xl.f%,xw%].

The time derivatives are obtained from the governing Eq. (1). As
for example, the first derivative is given by

Q=-A(Q3Q+S(Q) . (7)

where A(Q) is the Jacobian matrix of F(Q) with respect to Q. So,
to obtain the second time derivative we differentiate in time the
Eq. (A1), so we have

8A, m
20q = -y 3 MA@ L0000, - YA, @A)

1111 j=1

+ ZB(Q)i,jatQ,j ; (8)
j=1
where B(Q) is the Jacobian matrix of S(Q) with respect to Q,
0¢Q; and 9(Q; are the ith and the jth components of the vector
state 0:Q, respectively and then by differentiating the expression
(A1) with respect to x, we obtain

0A;
8(3Q) = -3 0000, - ZAU(Q)B(Z)Q

j]l]

+ ZB(Q)i.jaij ; 9)

j=1

the same procedure is applied to obtain 8t(3)Q and so on, in prin-
ciple any high order time derivative can be obtained through this
procedure. However, the procedure becomes very cumbersome for
derivatives of orders higher than two, furthermore the complexity
scales with the number of unknowns m and the order of accuracy
as well, see Appendix A. This justifies the requirement of finding
some efficient strategy to approximate temporal derivatives by fol-
lowing the Cauchy-Kowalewskaya ideas.

3.2. The simplified Cauchy-Kowalewskaya procedure

In this section, we derive a simplified Cauchy-kowalewskaya
procedure, to approximate time derivatives. For the sake of sim-
plicity, in this section we also omit the sub index i in Q;, to in-
dicate the approximation within the cell [x;_ 1, ] As seen in

the previous section, the conventional Cauchy-I(owalewskaya pro-
cedure provides the first time derivative as

Q= -A(Q3Q+S(Q) . (10)

At this point we introduce the first simplification. Instead of consid-
ering the previous equation, we are going to use the approximation

Q= —-A(x.1)%Q+S(Q) . (11)

which means, the matrix A is considered just a space-time depen-
dent matrix. This idea arises from the fact that A(Q(x, t)) is actu-
ally a matrix which depends on (x, t) through the state Q. It is very
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important to remark that A(x, t) is not a linearization of the Jaco-
bian matrix around any state, this must be formally considered as
a matrix which now depends on two variables (x, t) and if this is
regular enough, then this can be differentiated with respect to x
and t. Further details are provided in the Section 3.3.

By taking into account the approximation (11), the second time
derivative can be approximated in three steps described below.

Step 1. We differentiate d,Q with respect to t, thus

9:(9:Q) = —A:9,Q — A% (:Q) + B3, Q, (12)

where B is the Jacobian matrix of the source term with respect to
Q. For the remaining part of this paper, we use the notation dxA =
Ay for any matrix A. Similarly, we use the convention 8§I)A = A,((l)
for the I-th partial derivative of the matrix A with respect to x. Do
not confuse with A! which means matrix multiplication, [ times.

Step II. At this point we introduce the second simplification,
which is to consider also the matrix B as a space-time dependent
matrix rather than a state dependent matrix. We assume regular-
ity enough such that the spatial and time derivatives can be inter-
changed. So

32Q=—-A;3,Q — Ad(3Q) +B3Q. (13)

Similarly to the first simplification, this idea arises from the
fact that B(Q(x, t)) at the end is a matrix which depends on (x, t)
through the state Q. So, if B(x, t) is a regular enough matrix func-
tion, then this can be differentiated with respect to x and t. Further
details are provided in the Section 3.3.

Step III. Here, we differentiate in space the expression 9.Q, tak-
ing into account the simplifications introduced above, to obtain

9:(3,Q) = —A3Q — Ad¥Q + B3,Q
=-A3PQ+ (B-A{")3.Q. (14)

This step regards the main difference with respect to the conven-
tional Cauchy-Kowalewskaya procedure. By inserting the previous
expression into (13), we obtain

3PQ = -A:%Q - A(-A2PQ + (B~ A{")3,Q) +BQ

= A%{”Q+ (-A. —A(B-A{"))3,Q+BiQ. (15)
The last expression can be written as
37Q=1C(2,2)0”Q+C(2,1)3,Q +B3Q, (16)

where C(2, i), i = 1, 2 represent the matrix coefficients
C(2.2)=A? . C(2.1)=-A —A(B-A}). (17)

The novel contribution of this paper is as follows. We are going
to show that this procedure can be generalized. Before giving this
main result, we need to express B,f’)(atQ) only in terms of spatial
derivatives of the data and the Jacobian matrices. Notice that from
simplifications introduced above, we obtain

K (3Q) = -A3PQ+ (B—A)AQ,
9% (3Q) = —A3’Q+ (B - 243" Q+ (B, - AY)0:Q
37 (3Q) = ALY Q+ (B—3A,)3YQ+ (2B, - 3A%) 9, Q
+ (B -AY)aQ.
3 (3Q) = ~A3>'Q+ (B - 4A)3"Q + (3B, — 6A”) 37 Q
+ (3B —4AP)0Q + (BYY — AY)0.Q.
37 (0Q) = —AL®Q+ (B - 5A,)9,”Q + (4B, — 10A?) 3V Q
+ (6B — 10A)9,YQ + (4B — 5A(Y)9,7'Q
+ (B —AY)0,Q. (18)

Table 1

Coefficients a;; in expression (19).
a (-4 ap(-3) ag,i-2) ag-1) aun - A l
0 0 0 0 1 1 1
0 0 0 1 2 1 2
0 0 1 3 3 1 3
0 1 4 6 4 1 4
1 5 10 10 5 1 5

Table 2

Coefficients b;; in expression (19).
by (1-a) by -3y bai-2) baity  buy  bai l
0 0 0 0 0 1 1
0 0 0 0 1 1 2
0 0 0 1 2 1 3
0 0 1 3 3 1 4
0 1 4 6 4 1 5

so by inspection we observe that these derivatives, can be arranged
as

I+1

" (0Q =Y (bB{ T — a A T)0Q. (19)
k=1

Notice that, 8,?” stands by the [-th spatial derivative, with the con-
vention 3,”’M = M for any function M, which may be a scalar, vec-
tor or matrix function. This notation is also extended to temporal
derivatives.

Table 1, shows the coefficients a;;. Similarly, Table 2 shows the
coefficients b;;. We observe that they follow the structure of the
Pascal triangle, in the combinatorial theory. In fact, the structure is
given by the following.

Lemma 3.1.
I+1
(0@ =Y D(+1.kdMQ. (20)
k=1
where
D(I+1.k) = -1 B(l—k) _ l A(l+l—k) 21
(I+1,k) = I—k)™x [+1—k)™ ( )
and

I
(_1) -0, (22)

for all integer 1.
Proof. Let us prove it by induction.

e We already know that this is true for [ = 1.
o Let us assume it is true for [, that is

I+1
l—] —K l —K K
ax(l)(atQ) — Z ((l _k)B)((l k) <l+1 ~ k)A’(‘M I))a)EI)Q'

k=1
(23)

o Let us prove it is true for [ + 1. Indeed

[+1
. -1 . I k) ) -
d)ng)(atQ) _ Z <(l - k) B)(‘[H k) <[ 1o k)A;l+2 k))a)gk)Q
k=1

1 s I (1+1k) ) A (k1)
— +1— +1— K+
B (e e
-1 l
_ <(l - 1>B§‘“> _ <1>A§'+2)>BXQ
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' . I-1 (141-k) 5 (k)
- +
e[ () (1) et
(1+2-k) 5 (k)
S (3 (1) Jpre o
+<<l_—11)3£71> <(l)>A§O)>8§”2)Q (24)

By considering the properties of the combinatorial factors
-1 -1\ l
I+1-k) P -k)=\i+1-k)
-1 l l -1
(7)-0)-0)-(3)- =
and the assumption

m
(_1> -0, (26)

for all m, after grouping terms we obtain

(I1+1) _ S l (I+1—k)
5 OQ =3 ({141 -k )B
k=1

I+1 (1+2-k) \ 2 (k)
(1+2 I)A )8 Q (27)

This completes the proof.

JrH

O

Proposition 3.2. The high-order time derivatives have the following
recursive form

k
Q=Y ck.n2"Q+0?(B3Q) . (28)
=1
where
Ck—-1,k—1)D(k, k), =k,
C(k, 1) =
Ck-1, l)ﬁ—zm -1 Ck—1,mDm+1,1), I<k,
(29)
here, the matrix D is given by (21). We impose C(k,0) =0 Vk > 0,

€(1,1) = -A and 3" (B%Q) = S(Q).
Proof. Let us prove this proposition by induction.
o The result is true for k = 2. In fact, we know that

Q= -A%Q+S(Q) . (30)
Since, 8t(2>Q= 0¢(0:Q) from (30) we obtain
37Q=A’9"Q+ (-A. ~A(B-A))3,Q+B3Q.  (31)
Here, we have used the chain rule
% (S(Q) =BaQ. (32)

Therefore, from the expressions C(1,1) = —-A, D(2,2) = —
D(2,1) = B— Ay and by identifying terms, the induction hy-
pothesis is valid for k = 2.

e We assume the induction hypothesis is valid for k =n and
thus

k
39Q=> "ck.no"Q+ 0P (B3Q) . (33)

=1

for all k < n.

e Let us prove this is valid for k = n + 1. In fact

asn+1)Q

n
=Y o (€c(n. Do Q) + 0" " (B3Q)
1=1

n n
=Y cn. D3P+ Y € HdL @Q + 8" " (BY,Q)
1=1 =1
1+1

= ZC(n n:oPQ+ ZC(n D> DU+1.m)"MQ

m=1
+0"V (B3Q) = Zcm, Deo"Q

m+1

+ ZC(n m) ZD(m—H NaLQ+ 9" (B3Q)

- Z[C(n, Dt cn.mD(m+1.1)]3"Q

=1 m=I-1

+C(n,m)D(n+1,n+ 1)]8§”+”Q+ 3" P(BQ),  (34)

with C(n, 0) = 0. So by collecting terms and defining
cns = e e ety it
(35)
we can write (34) as
n+1
3 Q=Y"cn+1.03"Q+3""(B3Q) . (36)

=1

this proves the sought result.

Notice that the condition 9" (B3Q) =8, "(8S(Q) =
BfO)S(Q_) = S(Q) is natural, which also justifies the expression (30),
it also corresponds to k =1 in the formula (28). O

Notice that the expression (28) is only possible from the sim-
plifications proposed in this work. This is not possible, in general,
for the conventional Cauchy-Kowalewskaya procedure. Notice that
(28) expresses the time derivatives in terms of spatial derivatives
of Q, space and time derivatives of both A and B.

Corollary 3.3. The expression (28) can be written as

3¥Q=M,+B3*Q, (37)

where

M, = ZC(k N3P Q + Z (" )Bg’””ag”Q. (38)
=1

Proof. This result follows from the manipulation of (28) in
Proposition 3.2. Particularly the term at(k‘z)(Ban) can be ex-
pressed, by using the matrix-vector differentiation rules, as

k-1
0P (BAQ = ) (’,‘: f) B 5"Q. (39)
=1

By collecting terms and isolating for [ = k — 1, we obtain

a(k)Q Zc(k 1)8(1)Q+Z<k_ )B(k 1- l)a(l)Q+ Ba(k 1)Q

1=1
(40)

and thus the result holds. O
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Fig. 1. Sketch of the space-time node distribution.

Proposition 3.4.

k
oPQ=3"M +B-SQ, (41)

r=2
where M; are those in (38).

Proof. This is a consequence of the Corollary 3.3. O

As will be seen in the next sections, the previous results pro-
vide the closed form for approximations to Cauchy-Kowalewskaya
functionals, G), which will be important to design fixed-point it-
eration procedures. In B.1, we provide operational details for gen-
erating the matrix C(k, I) involved into the simplified Cauchy-
Kowaleskaya procedure introduced in this section.

3.3. The predictor step based on a modified implicit Taylor series
expansion and the simplified Cauchy-Kowalewskaya procedure

Notice that the predictor Q;, within If', is required for evaluat-
ing integrals in (4). On the other hand, the evaluation of these inte-
grals is carried out by means of quadrature rules in space and time.
So, for the temporal integration we use the Gaussian rule, which
involves t;, j=1,..,ny Gaussian points. Whereas, for the spa-
tial integration, we use the Newton-Cotes rule, which involves &,
m =1, ..., ng equidistant quadrature points, with ng = M + 1 where
M + 1 is the accuracy. See B.2 for further details about the set up
of these quadrature points through reference elements. This set of
quadrature points allows us to build space-time nodal points (&p,
7;) within the space-time cell I!, as illustrated in the Fig. 1. Here,
&1 and &y coincide with the cell interfaces. So, from the previous
comment it is evident that for flux and source evaluations, we only
need the information of Q; at (§m, 7;).

To obtain approximation of the predictor at every space-time
node (§m, 7;), we propose the following iterative strategy.

1. Provide a starting guess for Qi(ém, 7;), m=1,....ng and j =
], L N7
This is done by using the formula

Qm. 1)) =[1- TjB(W(%-m))]il (W;(ém)
- TjA(W(Em))ain(%'mv ;) , (42)

which corresponds to the second order accurate expression
in [39]. Here, W;(£) represents the reconstruction polyno-
mial obtained within the space-time cell I!. Any reconstruc-
tion procedure can be implemented, however, in this work

we use the Weighted Essentially Non-Oscillatory (WENO) re-
construction method described in [11,12], where the cen-
tral, left-sided and right-sided stencils are involved, with re-
spective weights w¢ = 10°, @, = wg = 1 and the coefficients
e=10"1r=09.

. Compute the approximation of high-order derivatives in

time and space of the state and Jacobian matrices as well.
For this purpose, we use the following approach.

Let M be a function, which may represent the state function
Q and the Jacobian matrices A and B as well.

o Then, for obtaining M,(cl) (. 1), we first interpolate the
function M on the nodes (§m, 7;) with j fix and vary-
ing m =1, ..., ng. So an interpolation function M(&, ;)
is obtained. Then, we are able to provide approxima-
tions of spatial derivatives of M(§, t;) for any order I
by using the spatial derivatives of M(&, 7).

o Similarly, to obtain Mt(l) (ém.T), we first interpolate
the function M on the nodes (£, 7;) with m fix
and varying j =1, ..., nr. So an interpolation function
M(&,, T) is obtained. Then, we are able to provide
approximations of temporal derivatives of M(&n,, T
for any order | by using the temporal derivatives of
M(ém’ 7).

In B.2, is shown the form of these interpolation polynomials
for the orders of accuracy considered in this paper.

. Update Q; at every (§m, ;) by using

Qen 1) =W - Y. 607 (43)
k=1

where G0 =G0 (Q,, ..., 00Q, A", AL, . BY, B, )
is given by (28). The derivatives of the state function and
matrices are evaluated at (§m, 7;) and computed in the pre-
vious step. The Eq. (43) corresponds to the implicit Tay-
lor series expansion in [39] with the difference that G®
is a simplification of the conventional Cauchy-Kowalewskaya
functional.

For solving (43), we use the following nested Picard iteration
procedure.

k

¢ = wien -y >

k=1 =2

ul 7)o 1
— s S+
—ZTB @)s(Q1) . (44)
k=1
where s is an iteration index and M; comes from the
Proposition 3.4. We have omitted the arguments of Q;(&m,
TJ)
Notice that for solving (44), we build an algebraic system,
which has the form

( 'L'])k k
HY) =Y - W(sm)+Z > M,
=2

k!

+Z( %) Bk’l(Qf(é'm,rj))S(Y), (45)

k!
k=1 <

then by solving for Y we get Q™! as Y = Q*'. This is carried

out in one step, that is Q! = Qf — §, where § is the solution
to J(Q})d = "H(Qf), where

T =1+ Z ) C0) gt (@i e )BY) (46)

is the ]acoblan matrix of H(Y) with respect to Y. Once the
Qf” has been updated then we set s <~ s+ 1 and update
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Qf“. The update is carried out M times, where M + 1 corre-
sponds to the order of accuracy. Notice that algebraic equa-
tions with a similar structure to Y has to be solved for any
order of accuracy. So, the size of Y does not depend on the
accuracy, indeed, this corresponds to the state Q and so, Y
and A have size m and consequently J is a matrix of m x m.

The global loop, it is the steps 2 and 3 listed above, are repeated
M times. From experiments, not shown here, the result does not
vary in terms of accuracy if a stop criterion, based on the toler-
ance for the relative error between subsequent approximations, is
implemented.

Once Q; is computed for each cell I?, the numerical flux and
source terms can be easily evaluated. In B.3, is shown the form in
which the integrals in (4) are evaluated.

This completes the description of the proposed strategy for ob-
taining the predictor within the computational cell I} by using the
implicit GRP approach.

4. Numerical results

In this section we shall consider several tests aimed at assess-
ing the accuracy and performance of the present scheme. The time
step, At, will be computed by using the well-known CFL condition

At =Cop (47)

where Aq = max;(max;(|A;(Q)])), here A;, j=1,..,m are the
eigenvalues of the Jacobian matrix of F evaluated at Q}, the data
at each cell I' and the maximum is taken over all cells I'. On the
other hand, to assess empirically the convergence rate, we are go-
ing to use the norm

Q- @115 =X A} Wit - @ Xt e (48)

where Q°¢(x, t) is the exact solution, W;(x) is the reconstruction
polynomial within the interval [x; 1,x; 41 | obtained at the output
2 2

time of the global simulation. In this paper we are going to use
(48) with p=1, p=2 and the maximum norm given by

1Q— QI = max{maxyeyy 1 1Wil0) — QX tat) [} . (49)
2 2
Here, toy: stands by the output time of simulations.

4.1. A linear system of hyperbolic balance laws

Here, we consider the linear system in [29], given by
9:Q(x, t) + Ad(Q(x,t)) =BQ(x.t) ,x € [0, 1],

sin(2mrx) (50)
Q. 0) = [cos(an) ’
where
0 A B 0
el g

The problem is endowed with periodic boundary conditions.
This system has the exact solution

o [O00 D) + W
0 = 5[&?3 e 3} : (52)

where

O (x,t) =sin(2mw (x — At)) + cos2m (x — At)) ,
W (x,t) =sin(2mw (x + At)) — cos(2m (x + At)) .
Here we consider A =1 and 8 = —1. This is a simple test aimed at

evaluating the accuracy of the present scheme. As can be seen in
Table 3, the expected theoretical orders of accuracy are achieved.

(53)

4.2. A system of non-linear hyperbolic balance laws

Here we assess the present methods, applied to the non-linear
system

9:Q+ 9:F(Q) =S(Q) ,
Q(x.0) [sin(znx)] , (54)

cos(2mx)

where F(Q) and S(Q) are given by

1(5,2 1 42
§(ju +v —uv)

1 24 142
§(4uv—u +jv)

F(Q) = . S(Q =

(55)

where 8 < 0 is a constant value, see [39]. The exact solution is
given by

ux, t) =wi(x, t) + wa(x, t) ,

V(X £) = 2w, (%, £) — Wa (X, £) | (56)
where wq and w, are the solutions to
atwl +W18X(W1) :0, (57)

0wy + w0k (W) = ﬂwﬁ ,
where the initial condition for each equation is

sin(27x) + cos(2mx)
3 ,
2sin(2mx) — cos(2mwx)
3 .

Notice that system (57) requires the solution of the Burgers
equation with a non linear source term, this solution is reported
in [39], which is computed numerically. Table 4, shows the em-
pirical orders of accuracy and the CPU times. Comparing with
CPU times of the implicit Taylor series expansion and conven-
tional Cauchy-Kowalewskaya procedure in [39], we observe that
the present scheme depicts important improvements in the perfor-
mance. An improvement of one order of magnitude compared with
the strategies in [39], is obtained. See Appendix A. On the other
hand, since the exact solution in [39] is also an approximation, we
observe a penalization in the convergence rate as the accuracy in-
creases. It is more evident in the fifth order case.

wi(x,0) =

w3 (X7 0) =

4.3. The LeVeque and Yee test

Here, we apply our schemes to the well-known and challenging
scalar test problem proposed by LeVeque and Yee [23], given by

(. £) + xq(x. 1) = Ba(x, ) (q(x. ) = D (q(x. ) = 3) . (58)

We solve this PDE on the computational domain [0,1] with trans-
missive boundary conditions and the initial condition given by

1,x<03,
q(x,0)={0,x>03. (59)

The solution on the characteristic curves satisfies the ordinary dif-
ferential equation 2®:0 — Bq(x(t), £)(q(x(t). t) — 1)(q(x(t). t) —
%), which has two stable solutions ¢ = 0 and ¢ = 1 and one
unstable solution in g = % where any solution tries to away from
this. Similarly, any solution associated to characteristic curves nec-
essarily must converge to one of the two stable solutions. On the
other hand, a numerical scheme which is not able to solve stiff
source terms, may blow up or introduce an excessive numeri-
cal diffusion and so the numerical solution, following character-
istic curves, converges to the wrong stable solution. This penal-
izes the right propagation. Fig. 2 shows the comparison between
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Table 3
Linear system. Output time tor = 1 with Gy =09, B=-1, A =1.

Theoretical order : 2

Mesh L, -ord L.-err Ly -ord Ly -err L, -ord L, -err CPU

8 - 245e-02 - 1.33e - 02 - 1.74e — 02 0.0064
16 2.35 4.81e—-03 238 2.55e — 03 2.55 2.97e — 03 0.0114
32 1.67 1.52e-03  2.85 3.54e — 04 234 5.84e — 04 0.0287
64 2.95 1.96e —04 3.71 2.71e — 05 3.47 5.29¢ — 05 0.0853
128 1.49 6.96e — 05 1.83 7.62e — 06 1.91 1.41e — 05 0.3395

Theoretical order : 3

Mesh L, - ord L- err Ly - ord Ly - err L, - ord L, - err CPU

8 - 1.52e-02 - 1.07e — 02 - 1.15e — 02 0.0116
16 2.85 2.11e — 03 2.97 1.36e — 03 2.94 1.50e — 03 0.0352
32 3.01 2.62e—-04 3.03 1.66e — 04 3.02 1.85e — 04 0.1096
64 3.05 3.17e - 05 3.04 2.02e — 05 3.05 2.24e — 05 0.4506
128 3.01 3.93e-06 3.01 2.50e — 06 3.01 2.78e — 06 2.0173

Theoretical order : 4

Mesh Ly -ord  L.- err Ly -ord Ly -err L, -ord L, -err CPU

8 - 7.69e-03 - 4.80e — 03 - 5.26e — 03 0.0358
16 2.92 1.02e-03 3.15 5.42e — 04 3.10 6.14e — 04 0.1280
32 3.64 8.15e-05  3.67 4.26e — 05 3.67 4.82e — 05 0.4703
64 3.87 5.56e—-06  3.87 2.92e — 06 3.87 3.30e — 06 1.7537
128 3.95 3.59e-07 3.95 1.89e — 07 3.95 2.14e — 07 6.9353

Theoretical order : 5

Mesh L, -ord L.-err Ly -ord Ly -err L, -ord L, -err CPU

8 - 1.49¢-03 - 6.42e — 04 - 7.65e — 04 0.1270

16 4.85 5.16e—-05  4.88 2.18e — 05 4.89 2.59e — 05 0.3801

32 4.96 1.66e —06  4.96 6.99¢ — 07 4.96 8.29 — 07 1.4746

64 4.99 523e—-08 499 2.19¢ — 08 4.99 2.60e — 08 5.7874

128 5.00 1.64e-09 4.99 6.88e —010  5.00 8.16e — 010  22.4536
Table 4

Non-linear system. Output time to, = 0.1 with C.; =0.9, 8 = 1.

Theoretical order : 2

Mesh L, -ord L.-err Ly -ord Ly -err L, -ord L, -err CPU

32 - 1.95e-02 - 545e—-03 - 7.81e—03  0.0061
64 1.53 6.75e — 03  2.12 1.25e-03 1.94 2.04e -03  0.0201
128 1.75 2.01e—-03 230 2.54e-04 218 4.49e - 04  0.0490
256 1.80 57% —-04 218 562e—-05 215 1.01e-04  0.1703
512 1.38 2.23e—-04 213 1.29e-05 2.06 2.44e -05 0.7851

Theoretical order : 3

Mesh L, - ord L- err L, - ord L, - err L, - ord L, - err CPU

32 - 2.00e -02 - 2.88¢-03 - 5.17e — 03 0.0139
64 2.47 3.63e-03  2.69 4.45e—-04 257 8.67e—04  0.0668
128 2.74 542e—-04 292 590e—-05 2385 1.20e —04  0.1935
256 2.84 7.59e—-05 295 7.62e—06 293 1.57e—-05 0.7559
512 2.95 9.83e-06 2.99 9.62e —07 298 2.00e - 06  2.9953

Theoretical order : 4

Mesh L, -ord L.- err Ly -ord Ly -err L, -ord L -err CPU

32 - 244e-02 - 333e-03 - 6.09e — 03  0.0609
64 3.07 2.90e-03 3.3 2.89% -04 324 6.46e —04  0.2186
128 3.88 1.97e-04 4.14 1.64e —05 4.00 4.03e—-05 0.7516
256 4.28 1.01e—-05  4.40 7.80e —07 4.34 1.99¢ -06  3.0089
512 4.18 558e—-07 433 3.87e-08 433 9.89e — 08  11.5548

Theoretical order : 5

Mesh L, -ord L.-err Ly -ord Ly -err Ly -ord L, - err CPU

32 - 8.80e—-03 - 8.56e —04 - 1.82e—-03  0.1879
64 3.48 791e—-04  4.07 5.09 -05 3.82 1.29¢e-04  0.6927
128 4.46 3.60e —05  4.66 2.02e - 06  4.58 537e—-06  2.4518
256 481 1.29¢e-06 4.72 7.65e—08  4.82 1.90e — 07  9.6558

512 4.46 5.87e-08 3.97 4.86e—09 441 8.90e— 09  38.51853
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o ADER, 2nd order
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Fig. 2. Leveque and Yee test. We have used 300 cells, C.y = 0.2, ton =0.3, B =
—-1000.

— Exact solution
o ADER-TT, 5th order
e ADER-Simplified CK, 5th order

L (e}
= L
T 05
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L
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X

Fig. 3. Leveque and Yee test. Proposed scheme against ADER-TT with the conven-
tional Cauchy-Kowalewskaya procedure. We have used 300 cells, C.j = 0.2, tour =
0.3, B = —1000.

the exact solution and the numerical approximations provided by
the present scheme of second, third, fourth and fifth orders of
accuracy. The figure shows a good agreement for § = —10000 at
tour = 0.3, which correspond to the stiff regime. We have used 300
cells. For this particular test, we use C.; = 0.2 which provides good
results, notice this is not the case for schemes using explicit GRP
solvers, as can be seen in the Fig. 3, where the comparison be-
tween ADER schemes of fifth order of accuracy using the proposed
GRP solver and the conventional TT solver, is shown. Despite this
is expected because ADER-TT is not designed for dealing with stiff
source terms, it helps us to show the gaining of using the local im-
plicit Taylor series expansion formulation. This test illustrates the
ability of the present scheme for solving hyperbolic balance laws
with stiff source terms. Despite the CFL coefficient in this test is
less than that used in [39] we remark that this is still in the range
of functional values.

4.4. The Euler equations

Now let us consider the Euler equations, given by

P ou
Q=|pu|. FQ=|pu*+p]|,. (60)
E u(E + p)

— Reference solution

i o ADER, 2nd order
= ADER, 3rd order
4
=
Z3
|5
a
2 —
1 L | L | L | L k\
-1 -0.5 0 0.5 1
X

Fig. 4. The Shu-Osher test. Otput time ty, = 0.47, 300 cells and CFL = 0.5.

where the pressure p is related with the conserved variables
through the equation

p= (- DE-25). (61)

for an ideal gas y = 1.4. Notice that, the choice of the initial con-
dition given by the functions

p(x,0) =1+0.2sin(2wx) ,
u(x,0) =1, (62)
p(x,0) =2,

provides the exact solution for the system (60), which corresponds
to the set of functions

px,t)=1+02sinr(x—t)),
ux,t)y=1, (63)
px,t)=2.

Notice that, the variables p, u, p correspond to the non-
conservative variables, the corresponding translation to conserved
variables needs to be done. This test has a complex eigenstructure,
which is a challenge for numerical methods. Table 5, shows the re-
sults of the empirical convergence rate assessment for the density
variable p, at tor =1 and Ccf, = 0.9, we observe that the scheme
achieves the expected theoretical orders of accuracy.

4.5. The Shu and Osher test

Here, we consider the test problem, first time proposed by Shu
and Osher in [32], which is given by (60) and the initial condition
given, in terms of non-conserved variables W = [p, u, p|T, as

(3.8571,2.6294, 10.333)

Xx<-08,
W(x,0) = {(1 +sin(57x),0,1)

,x>-0.8. (64)

The problem is solved on [—1,1] up to the output time ty, see
[18] for further details. Fig. 4 shows a comparison between a ref-
erence solution and numerical approximations. The reference so-
lution has been obtained with the scheme of third order using
2000 cells. The numerical results correspond to second and third
orders of accuracy for which we have used 300 cells, .5 = 0.5 and
tour = 0.47. This test illustrates the ability of the present scheme
for solving complex fluids, a good agreement is observed for the
scheme of second and third order of accuracy on the smooth re-
gion, whereas, the third order scheme present a better perfor-
mance in both the smooth region and the high frequency region
as well.
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Table 5
Euler equations.Output time to = 1 with Cop = 0.9.

Theoretical order : 2

Exact solution
ADER, 2nd order
ADER, 3rd order

o

Internal Energy
[\]
9

o
L}

Exact solution
ADER, 2nd order
ADER, 3rd order

Mesh L, -ord L.-err Ly -ord Ly -err L, -ord L, -err CPU
8 - 1.51e - 01 - 1.05e — 01 - 1.14e — 01 0.0119
16 1.22 6.45e—-02 1.76 3.09¢ — 02 1.59 3.79e—02  0.0401
32 1.43 2.40e—-02 1.62 1.01e — 02 1.65 1.21e—-02  0.1569
64 1.49 8.50e — 03 1.90 2.71e — 03 1.79 349 —-03 04242
128 1.53 2.95e-03  2.07 6.46e—04 1.85 9.69¢e —04  1.6852
Theoretical order : 3
Mesh L., - ord L- err Ly - ord Ly - err L, - ord L, - err CPU
8 - 833¢-02 - 5.18e — 02 - 5.83e—-02 0.0356
16 2.55 1.43e—-02  2.58 8.68¢—-03 259 9.68¢—-03  0.1292
32 2.90 191e—-03 293 1.14e — 03 2.93 1.27e—-03  0.5785
64 2.98 242e-04 299 1.44e—-04 299 1.60e —04  2.0123
128 3.00 3.03e—-05 3.00 1.80e-05 3.00 2.00e-05 7.3028
Theoretical order : 4
Mesh L, -ord L.-err Ly -ord Ly -err L, -ord L, -err CPU
8 - 7.49% -02 - 4.75e—-02 - 530e—-02 0.1776
16 417 4.17e - 03 4.24 2.51e - 03 4.25 2.79e—-03  0.5581
32 4.40 1.97e-04 449 1.12e-04 4.49 1.25¢e-04  2.0833
64 4.27 1.02e-05 4.24 591e-06 424 6.59¢e - 06  7.4370
128 412 5.88¢—07 4.08 3.50e - 07 4.08 3.90e — 07  30.9521
Theoretical order : 5
Mesh Ly -ord L.-err Ly -ord Ly -err L, -ord L, -err CPU
8 - 1.24e-02 - 7.62e-03 - 8.47e—-03  0.3804
16 4.75 459 —-04 4.80 2.73e—-04 4.80 3.04e - 04  1.6927
32 4.95 1.48¢ - 05 4.96 8.76e — 06  4.96 9.76e — 06  6.4005
64 4,99 4.66e —-07 4.99 2.75e - 07  4.99 3.07e - 07  23.9378
128 5.00 1.46e —08  5.00 8.62e—09 5.00 9.59¢ - 09  88.51398
Exact solution Exact solution
o ADER, 2nd order o ADER, 2nd order
[] ADER, 3rd order [ ADER, 3rd order
208¢
Q
r <
)
>
1 L 1 ] 0 1 L i
0 0.5 1 0 0.5
X X

Fig. 5. The Sod test. Otput time t, = 0.2, 100 cells and CFL = 0.7.

Here, we consider the test problem, first time proposed by Sod
in [33], which is given by (60) and the initial condition given, in

terms of non-conserved variables W = [p, u, p]T, as

W(,0) = {

1,0,1)
(1.125,0,0.1)

X <03,
,x>03.

(65)



G.I. Montecinos and D.S. Balsara/Computers and Fluids 202 (2020) 104490 1

The problem is solved on [-1,1] up to the output time ty =
0.2. Fig. 5 shows a comparison between the exact solution and nu-
merical approximations. The numerical results correspond to sec-
ond and third orders of accuracy for which we have used 100 cells
and C.; =0.7. In this test a rarefaction wave travels to the left
and a shock wave travels on the right and an intermediate contact
wave moves on the right also. The shock wave is solved in three
cells and the contact wave for the density is solved in three cells.
The rarefaction is lightly rounded on the left and right corners.
Despite, the internal energy depicts an overshot after the contact
wave, we observe that the constant state connecting the contact
and shock waves is well solved. This is the performance observed
in first order schemes able to capture discontinuous wave propa-
gation [37].

5. Conclusions

In this paper, a simplified Cauchy-Kowalewskaya procedure has
been proposed. The strategy uses not only the spatial derivatives of
the data but also the derivatives of the Jacobian matrices in both
space and time. The simplification allows us to propose a recur-
sive formula which requires the ability of obtaining time and space
derivatives of the state as well as matrices. This is achieved by us-
ing interpolations within a suitable arrangement of nodal points,
which allows us to extract the information for flux and source
term evaluations in a straightforward manner. This method is im-
plemented in the context of GRP solvers based on implicit Tay-
lor series expansions. The solver in [39] uses the same elements,
that is, implicit Taylor series expansions and Cauchy-Kowalewskaya
procedure. However, in the present approach the Taylor series ex-
pansion is used only once and the evolution of the space deriva-
tives via Taylor series is not required. Despite, in both approaches,
that is in [39] and the present one, the solution of an algebraic
equation is required, that in [39] increases the number of un-
knowns as the accuracy increases, whereas, the number of un-
knowns in the present approach remains constant when the ac-
curacy increases. We have implemented the GRP solver in the con-
text of ADER methods and several tests reported in the literature
have been solved. An empirical convergence rate assessment has
been done for some of them. We have proved that the complexity
of the simplified Cauchy-Kowalewskaya procedure presented here
grows up linearly with the order of accuracy and we have observed
from empirical comparisons that the performance of the present
scheme is at least one order of magnitude cheaper than schemes
in [39]. Furthermore, the expected theoretical orders of accuracy
have been achieved up to fifth order of accuracy. We have solved
the Osher-Shu and the Sod test, where the right propagation of
waves has been captured by the proposed scheme describing very
well strong-discontinuities as shock and contact waves. The exten-
sion to hyperbolic systems in 2D and 3D is the subject of ongoing
research.
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Appendix A. A comparison between the complexity of floating
point operations count between the conventional and
simplified Cauchy-Kowalewskaya procedure

Since the code is not optimized, we do not carry out a float-
ing point operations count of the enter program. Instead, we com-
pare the classical and the simplified procedure in terms of the
time complexity provided by the number of operations involved in
the computation of time derivatives. This will give us information
about the improvements of the present scheme.

For computing the time derivatives we use the expressions
(37) and (38) where the matrices C(k, I) in (29) are the key. In
practical approximations we encourage to compute the matrices in
(29) and then store them for later uses in (37). Also, it is recom-
mended to store the time derivatives and use them in the com-
putation of derivatives of subsequent orders. We argue that stor-
ing and memory access is more efficient than computing long ex-
pressions at any time. The same argument is used for analyzing
the performance of the conventional Cacuchy-Kowalewskaya pro-
cedure.

If one follows the suggested storage and access strategy for
computing time derivatives, the number of operations are additive.
So, if we denote by T;(m) the number of operations to get the
time derivative k via (37) and T¢(m) the number of operations to
get the matrices C via (29), then the total number of operations to
generate approximations of time derivatives is T, ; (m) + Tc(m).

The operations T;(m) in the case of time derivatives of order
k is O(km?2), whereas (29) in the case of the first time deriva-
tive requires T-(m) = O(m?2) operations. For k > 1, C(k, I) needs
Te(m) = 3m3 in the case of k=1 and m2 +3(k—)m> in the case
I < k, so we can say that for high order, T-(m) = 0(km3). Notice
that in (29) it is also required the matrix D, which has been al-
ready computed. From (21) the number of operations involved in
the computation of D is O(m?2). Therefore, after collecting all the
operation orders, the total number of operations for obtaining the
approximations in the simplified Cauchy-Kowalewskaya procedure
is O(km3).

Here, the number of operations for obtaining spatial and tem-
poral gradients of matrices has been neglected because they are
carried out by interpolations, where no matrix multiplication is in-
volved, only additions are required for such task where the number
of operations is of order O(m?2).

Now, let us analyze the number of operations involved in the
computation via the classical Cauchy-Kowalewskaya procedure. Let
us begin with the first-order time derivative. In a component-wise,
it has the form

m a )
atQi:_ZAi,j(Q)Tx] +Si. (A1)

j=1
so, we can see that the computation of this derivative involves m +
2m?2 operations, so the asymptotic order is O(m?).

Now, let us analyze the number of operations for the second-
order time derivative. In a component-wise, it has the form

@0 _ N~ (v 0AQQ0Q; 1 9°Q,
0"Q = Z( 30, 8tW+A”(Q)m>

i1 ket
+ ZBLJ‘(Q)% ,

j=1

(A2)
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where

T (o OA
8,((8&1):—2(2 11(Q) 9Q, 9Q

9x 0x
I=1 p=1

+A;(Q

82QJ>

0x2

+ZB,z(Q) Q.

Here, we have several alternatives to obtain the second time
derivative (A.2). We identify at least two options. The first one, is
to compute and store the mixed space and time derivative (A.3),
which involves Ty (m) = 4m? + 3m> operations, and then use the
stored values. In such a way, no extra operations are required so
the number of operation for evaluating (A.2) is 4m? + 3m3. How-
ever, we must consider the operation for Ty(m) and T{(m), since
the expressions have been precomputed already the total num-
ber of operations are additives. In this case the total iterations are
m + 10m?2 + 6m3. That is O(m3).

The second option, is to replace the mixed space-time deriva-
tive (A.3) into the full expression (A.2), obtaining

U 3Az (Q) 9Q, 9Q;
ZZ J j

Jat odx

(A.3)

Q=

j=1 k=
U 3A]1(Q) 9Q, 0Qy
+ZZZAI’(Q) Ox Ox

I=1 p=1

—_
Il

1

.

m m 2
LA @@ aax?
-3 ) A@BL@ Y

0
- L@ S

(A4)

and then the number of operations becomes 3m? + 12m3 + 5m*,
so the asymptotic order in this case is O(m?).

Let us obtain the order of operations involved into the compu-
tation of the third-order time derivative. This is obtained by differ-
entiating in time (A.4), after some manipulations it yields

L s o= 9%A,5(Q) 9Q; 0Q; 9Q;
3. — _ Y S 9N 9k VNS
0.7Q = Z{;; 9Q,0Q, ot ot ox

aA,J(Q) 92Q, 9Q;
Z atz ox

3A1](Q) 0Qy 92Q;
ZZ 3t 9wt

9°Q; | g 9B, (Q 9, 99
+kZA,-,j(Q>3Xa;2} Z]Z TS
=1 1

+ iB,,(Q) aathz] , (A5)
with .
%(02Q); = i] Iég 3828; fag) 38% 38% 38%
R R
N e

m 82 .
=1

and

I n o 07A(Q) 9Q4 9Q, 0Q
2(5.0.) = — i g
%" (0:Q)) = ;(;; aQ;BQq dx 0x Ox
iaAﬂ(Q)a Qpan

0x2

. 3A}1(Q) 9Q, 3*Q
Z 9x 0x2

83Q,)

p=

 0A;1(Q) 9Q, BZQI
2 j 0x 0x%

j[(Q)
p=1

v 9B;1(Q) 9Q, 0Q
+ZZ ] 9x 0x

;B]’,I(Q.)W .

(A7)

I=1 p=1

Notice that, if terms 2@ 33Q 82%, 3;(1 and ia? are already pre-
computed and just calleda in (A 5), then the number of operations
is O(m*).

However, if we introduce (A.3) and (A.7) into (A.5), we obtain

93Q, =
I o - 0%A; 1(Q) 3Q, 0Q, 9Q;
OB ’

Q0Q dt at ox

j=1 k=1 I=1

5 0@ g 7,
X2 T5g, A ax

j=1 k=1

L= 3Al,(Q) 0Qy 92Q;
-2 at 9xot

j=1 k=1

e EE an (Q)anaAkQ)anan
ZZZZ ; at EJQQ, dx 0x

Y1222 A aqfaqp Bt ax ox

FLEY A @ R
EESnae e
- ZZZ 565@ AT
*iﬁ ALQ M(Q)(,fxz%’;
B BAééQ) 33(3, ]k(Q)an
g

PRRIITE Sl 2
—Ji“i U(Q)B,k(Q)ng‘;

—_
=
Il

1

.
3 |

92qQ
+ Y B@5S

]=

(A.8)
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Fig. A1. Error vs CPU time for CITA: Error for the non-linear systems for orders from second to fourth order of accuracy.
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Fig. A2. Error vs CPU time for RITA: Error for the non-linear systems for orders from second to fourth order of accuracy.

i it 5 9Q 3°Q 9%Q 92Q
which can be seen that it is O(m) (here %, 2o Ixat d 55

are also computed previously and just used in (A.8)). Notice that
the number operation increases by a factor of m if one of the
mixed time and space derivatives commented above are explicitly
computed in (A.8).

Here we are interested in m > 1, the system case. In the
scalar case, m = 1, the number of operations in both the simpli-
fied and conventional Cauchy-Kowalewskaya procedures have sim-
ilar asymptotic behavior. So, we have analyzed two strategies for
computing the conventional Cauchy-Kowalewskaya in terms of the
number of unknown attempting to reproduce an optimized cod-
ing strategy. We have observed that the present simplified version

scales linearly with the order of accuracy whereas the conven-
tional procedure scales exponentially with the order of accuracy.
This shows an improvement in terms of the number of operations
which is also observed in simulations, as we will illustrate later.
Despite the code structure of the proposed scheme and those in
[39] are different, the GRP solvers should be one of the most time
consuming processes in ADER implementations. So, any difference
in the performance of GRP solvers should be evidenced into the
global CPU time of the ADER schemes. So, in order to illustrate the
improvement of the proposed GRP, enbedded into ADER schemes,
with respect to the local implicit GRP solver presented in [39], we
compare the Li-error vs CPU time involved by solving the non-
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Fig. A3. Error vs CPU time for simplified CK: Error for the non-linear systems for orders from second to fourth order of accuracy.

linear system of Section 4.2, which has been solved in [39] too. We
do not plot the fifth order because the accuracy for this particular
test is sub-optimal.

Fig. A.6 shows the L;—error vs CPU times for the ADER-HEOC-
CITA approach in [39]. Fig. A.7 shows the L;—error vs CPU times
for the ADER-HEOC-RITA approach in [39]. Fig. A.8 shows the
Li—error vs CPU times for the simplified Cauchy-Kowalewskaya
functional. From these figures, we observe two important issues.
i) The present scheme is one order of magnitude cheaper than
implicit formulation of GRP in the context of ADER reported in
[39]. ii) The complexity O(km3), where k is the order of accuracy
and m = 2, the number of unknowns, tells us that for k < 5. The
CPU times should remain within similar ranges for all these or-
ders of accuracy, which is observed in the Fig. A.8. Similarly from
the complexity analysis, we observe that conventional Cauchy-
Kowalewskaya functional has a complexity which grows up expo-
nentially with the order of accuracy, which is also evidenced in
Figs. A.7 andA.6.

Appendix B. Operational details

In this appendix, pseudo codes of the recursive formula for ob-
taining time derivatives are reported. Furthermore, the set up of
quadrature points through reference elements and how these are
used to obtain polynomials for approximating the spatial and tem-
poral derivatives of high-order, are provided. The numerical flux
and the source term evaluation strategy is also reported.

B1. Pseudo codes for computing the matrix coefficients D and C

Algorithms 1 and 2 shows the pseudo codes MATRIX_D and
MATRIX_C, respectively which provide the matrix D and C corre-
sponding to the formulas (21) and (29), respectively.

B2. Approximation of space and time derivatives

The interpolation polynomials obtained here can be straightfor-
ward generalized to scalar, vector and matrix functions. So, we pro-
vide the polynomials for a generic function f(§). To carry out inter-
polations, we have used the following strategy.

Algorithm 1 MATRIX_D. Here DXA and DxB contains all the spa-
tial derivatives of A and B, respectively, at each space time nodal
point.

1: procedure MATRIX_D( [, k, i, j, A, B, DXA, DXB )
2 if I-k—1<0) then

3 DB <~ 0

4 else if [ —k—1=0 then

5: DB <~ B(:,:, 1, j)

6: else

7 DB <~ DxB(:,:,i,j,l—k—1)
8 if (I-k=0) then

9: DA < A(:, 1, )

10: else

11: DA < DXA(:,:, i, j, 1 — k)

12: comA « =t

*=—DT-(=RT
. (1=2)!
13: comB < Gt
14: D <« comB x DB — comA = DA

15: return D

For interpolation in space, we first cast an interval [x; 1,x;, 1]
2 2

into [-1, 1] by the change of variable x = X 1+ (& — D Ax. Sec-

ond, we consider & =—1+ U with j=1,...M+1. So, the
polynomial interpolation in space for M+ 1 order has the form
P(x) :ZkM:O aMH‘kf". The coefficients ay,;, are given in the
Table B.6 for M=1,2,3,4, we have used the convention f;=
f(&;). Because of the change of variable, each space derivative of
order I needs to be scaled by Ax~!.

To obtain interpolation in time, we cast an interval [t", "]
into the reference element [0, 1] by the change of variable t =
t" + T At. Then we construct an interpolation polynomial from the
Gaussian points, 7; in [0, 1] with j=1,..,ngp. Interpolation in
time are only needed for accuracy higher than 3. In such a case.
The interpolation polynomial has the form T(t) = Y} by 1 -
k. The coefficients by, i are shown in the Table B.7 for M =
2,3,4. We have used the convention f; = f(z;). Because of the
change of variable, each time derivative of order | needs to be
scaled by At~
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Algorithm 2 MATRIX_C. Here DxA and DxB contains all the spa-
tial derivatives of A and B, respectively, at each space time nodal
point. NTime = Accuracy — 1 is the number of temporal nodes,
NSpace = Accuracy is the number of spatial nodes. The subroutine
uses the function MATRIX_TIME_GRADIENT which computes the
time derivative approximation of C which is carried out in terms
of interpolation. Accuracy is the order of accuracy of the scheme.

1: procedure MATRIX_C( [, k, 1, j, A, B, DxA, DxB)

2: for j < 1,NTime do

3: for i < 1, NSpace do

4: C(,:i, 7, 1,1) <« =AG, 51, )

5: for k1 < 2, Accuracy —1 do

6: for j < 1,NTime do

7: for i < 1, NSpace do

8: Dmat < MATRIX_D(k1, k1,1, j, A, B, DXA, DXB)

9: C(:,: i, j, k1, k1) < C(C,oyi, j,k1—1,k1 —1) %
Dmat

10: for 11 < 1,k1—-1do

1 DtC(:,:,: 5, 5 k1 —1,11) «
MATRIX_TIME_GRADIENT (C(:, :, :, :, k1 —1,11))

12: for j < 1,NTime do

13: for i < 1, NSpace do

14: C(:,:, 1,7, k1,11) < DtCM(:, 3,1, j, 1, k1 —1,11)

15: for m«<I11-1,k1-1 do

16: if (m > 0) then

17: Dmat < MATRIX_D(m +
1,11,i, j, A, B, DXA, DxB)

18: C(,:i, j k1,11) < C(:, i, j, k1,11) + C(:

, 51, j, k1 —1, m) « Dmat
19: return C

Table B1

Coefficients ay,;, for interpolation in space, P(x) =
M

koo Auetk - £

Second order (M = 1).

o=/

ay1 = (f, — fi) Third order (M = 2).
a30=fa

aso = (fs = f1)

a30=2(f3 -2f>+ f1)

Fourth order (M = 3).
ago=—(fa—9f-9L+ f1)/16

g1 =+((—fa+27f3 =27+ f1))/8

42 =((9fa—9f3 —9f» +9f1)&?)/4

g3 =—((-9fs+27f3 - 272+ 9f1)&%)/2
Fifth order (M = 4).

aso=f3

as1 = +((~fs +8fa =8>+ f1))/3

asy = —((2fs —=32fa+60f3 —=32f2 +2f1))/3
as3 =—((—16f5 +32f4 —32f, +16f1))/3
asq = ((32fs — 1284 +192f3 — 128f, +32f1))/3

Table B2

Table B3
Numerical source term. Here, w; are the corresponding Gaussian weights.

Second order (M = 1).

Si =5 X% 0;(S(Qi62, 7)) +S(Qi(&1, 7))

Third order (M = 2).

Si=§ X% 0 (S(Q(&3, 7)) +4S(Qi(&, 7)) +S(Qi 61, 7))

Fourth order (M = 3).

Si =

§ 2% @) (S(Qi(Ea, 7)) +35(Qi(&3, 7)) + 35(Qi(62, 7)) + S(Qi (&1, 7))
Fifth order (M = 4).

Si=¢ 0 ;i (78(Qi(Es, 7)) +328(Qi (s, 7)) + 128(Qi (&3, 7)) +
325(Qi(52, 7)) + 78(Qi(&1, 7))

B3. Evaluation of the numerical flux and source term

Regarding the evaluation of (4). The numerical flux can be
easily evaluated as Fi1 =Z?S; @Fp(Qi(Eps1. 7)), Qir1 (61, 7)),
where w; corresponds to the jth Gaussian weight in [0,1]. Whereas,
the source terms, can be easily obtained from the interpolation in
space and quadrature points in time. Table B.8 shows the form in

which the source is computed for several orders of accuracy.
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