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a b s t r a c t 

The Cauchy-Kowalewskaya (CK) procedure is a key building block in the design of solvers for the Gen- 

eralised Riemann Problem (GRP) based on Taylor series expansions in time. The CK procedure allows us 

to express time derivatives in terms of purely space derivatives. This is a very cumbersome procedure, 

which often requires the use of software manipulators. In this paper, a simplification of the CK proce- 

dure is proposed in the context of implicit Taylor series expansion for GRP, for hyperbolic balance laws 

in the framework of [Journal of Computational Physics 303 (2015) 146-172]. A recursive formula for the 

CK procedure, which is straightforwardly implemented in computational codes, is obtained. The proposed 

GRP solver is used in the context of the ADER approach and several one-dimensional problems are solved 

to demonstrate the applicability and efficiency of the present scheme. An enhancement in terms of ef- 

ficiency, is obtained. Furthermore, the expected theoretical orders of accuracy are achieved, conciliating 

accuracy and stability. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

This paper concerns the solution of Generalized Riemann Prob-

ems (GRP) in the context of ADER schemes, a family of high-order

nite volume methods. The ADER (Arbitrary Accuracy DERivative

iemann problem method), first put forward by Toro et al. [26] , is

f particular interest in this work. The method in [26] was devoted

o develop a procedure able to compute the numerical solution, of

he one-dimensional linear advection problem, of arbitrary order

f accuracy in both space and time. This method can be consid-

red as a generalization of Godunov’s method, where the numer-

cal fluxes can be obtained from the local solution of GRP where

he initial condition consists of polynomial functions of suitable or-

er. Subsequently, ADER was extended to solve linear systems of

yperbolic conservation laws in [31,38] . The ADER philosophy was

xtended by Toro and Titarev in [41] to solve the non-linear sys-

ems with source terms which are not stiff; inhomogeneous Burg-

rs equation and the nonlinear shallow-water equations with vari-

ble bed elevation. In [35] , the ADER approach was extended, by

oro and Titarev, to nonlinear but homogeneous hyperbolic sys-

ems. Furthermore, the extension of ADER to scalar balance laws

as investigated by Toro and Takakura, [34] . 
∗ Corresponding author. 
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The original ADER scheme [26,35] , has two main steps, recon-

truction and flux calculation. The marching in time generates cell

verages, then the reconstruction procedure generates a special

ype of interpolation polynomial of the solution from cell aver-

ges. The flux calculation is carried out from the solution of the

RP, which is proposed in terms of a Taylor series expansion in

ime, where the time derivatives are completely expressed in terms

f spatial derivatives by means of the Cauchy-Kowalewskaya or

ax-Wendroff procedure. The space derivatives are obtained from

omogeneous linearized Riemann problems constructed from the

overning equation and an initial condition given by the deriva-

ives of interpolation polynomials. This was the summary of the

ioneering ADER method, which in principle is able to generate ap-

roximations of arbitrary order of accuracy. The accuracy of ADER

ethods depends on the number of terms in the Taylor series ex-

ansions. In the case of conservation laws, for the first order it re-

overs Godunov’s method and for the second order ADER recovers

he second-order method of Ben-Artzi and Falcoviz [5] . 

We mention here the pioneering work of Ben-Artzi [5] , Ben-

rtzi and Falcovitz [5] , Ben-Artzi and Li [6] , where GRP consists of

auchy problems of hyperbolic balance laws and initial condition

iven by two vectors of polynomials of first order separated by a

iscontinuity allowed to build numerical scheme of second order

f accuracy. The GRP solver in these works is based on a Taylor

eries expansion in time, where the leading term of the expansion

s obtained from an associated Riemann problem like in the case

https://doi.org/10.1016/j.compfluid.2020.104490
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2020.104490&domain=pdf
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f  
of the GRP in [26,35] and the time derivative in the expansion

is obtained from an algebraic system obtained from characteris-

tic curves and contributions of the source term, if present. The

solution of the Riemann problem can be done exactly or using

some approximate Riemann solver (see [37] ). However, the issue

of obtaining the algebraic equation for the time derivative is

very difficult for general systems and a bit cumbersome to be

extended to high orders of accuracy. In [36] , Toro has introduced

a simplification to the GRP of Ben-Artzi and Falcovitz [5] , where

the time derivative was obtained from the Cauchy-Kowalewskaya

or Lax-Weondroff procedure using the solution of a linearized

Riemann problem. This approach can be straightforwardly applied

to any hyperbolic system and this work has opened the door to

high order extensions of GRP as those of in [26,35] . Some related

GRP solvers are, [7,22,24,25] to mention but a few. 

In [8] , a re-interpretation carried out by Castro and Toro of the

high-order numerical method proposed by Harten et al. [20] has

allowed us to formulate GRP solutions and thus ADER schemes

in a different way. In this new interpretation of ADER, a classi-

cal Riemann problem is built from the governing equation and a

piece-wise initial condition which is formed from two constant

states. In this approach, the constant states are local predictors

of the solution within computational cells, that is, these are ex-

trapolation values of the solution at both sides of the cell inter-

faces at a given time. The evolution of these extrapolated values

is carried out by using Taylor series expansion in time, where the

time derivatives are still expressed via Cauchy-Kowalewskaya func-

tionals but the arguments are now the spatial derivates of the re-

construction polynomials. In this form the predictors in two adja-

cent computational cells are interacted at the cell interface through

the classical Riemann problem. In [8] , the approach based on the

Harten et al. is called the HEOC solver and the original GRP solver

of Toro and Titarev scheme is referred to as the TT solver. So, the

difference between the HEOC formulation and the TT formulation

is that, in the HEOC case only one classical Riemann problem is re-

quired but it needs to be solved at each quadrature point, whereas,

in the TT approach a sequence of classical Riemann problems are

required only once, one Riemann problem for the leading term

of Taylor expansions and a linearised Riemann problems for ev-

ery spatial derivative involved in the Cauchy-Kowalewskaya func-

tional. So, once these terms are available the computation of GRP

solution via TT is reduced just to evaluate a polynomial in time.

The similarities between both approaches are the use of Taylor se-

ries expansion and the use of the Cauchy-Kowalewskaya procedure.

A detailed review of GRP solvers is done in [8,27] . Similarly, fur-

ther details of ADER schemes can be found in Chapters 19 and

20 of the textbook by Toro [37] . Notice that, the GRP solvers re-

quire the ability of solving classical Riemann problems. The num-

ber of hyperbolic systems for which the exact solution of Rie-

mann problems is available, is limited. In general, the exact solu-

tion of Riemann problems for several hyperbolic systems can be

very difficult to be obtained. Fortunately, the ADER approaches de-

scribed above allow using approximate Riemann solvers, see [19] .

In this sense, the search for approximate Riemann solvers for gen-

eral hyperbolic systems is a very relevant area of research, where

the ADER philosophy can be benefited. Balsara [1,2] and Balsara

et al. [3] have extended multidimensional HLL and HLLC to Euler

and MHD equations. Goetz et al. [17] have shown that approximate

Riemann solvers can be obtained from the well-known HLL solver.

See also [4,16] where universal approximate GRP solvers based on

HLL method and the inclusion of intermediate waves have been

reported. 

ADER approach allows the flexibility for incorporating the finite

element approach into the finite volume framework. In an inter-

mediate stage in the mixing between finite volume and finite ele-

ment approach, Dumbser and Munz, Dumbser and Munz [13] and
umbser and Munz [14] , have implemented the ADER scheme for

he Discontinuous Galerkin approach applied to the aeroacoustics

nd the Euler equations in two dimensions. In this approach, ADER

s used to evolve polynomials in space and time through the evo-

ution of their degrees of freedom by using Taylor series expan-

ion and the Cauchy-Kowalewskaya procedure, but instead of using

econstruction and the derivatives of reconstruction polynomials,

he authors proposed to use the test functions of the finite ele-

ent space. In this sense, the work of Dumbser et al. [11] in their

ioneering work, has introduced the Galerkin framework for ob-

aining the predictor within cells. The difference between this ap-

roach and that of Dumbser and Munz is that this neither requires

he use of any Taylor series expansion nor Cauchy-Kowalewskaya

rocedure. Some contributions to the developments of this class of

olver can be found in [9,10,15,18,28] , to mention but a few. 

The methodologies based on the Galerkin approach requires

he inversion of matrices and the solution of non-linear alge-

raic equations which are very time-consuming processes. On the

ther hand, the methodologies based on Taylor series suffer from

he Cauchy-Kowalewskaya procedure which becomes cumbersome

hen the accuracy increases. Furthermore, the Taylor series expan-

ions without modifications cannot deal with stiff source terms. In

his sense, in [29,39] Toro and Montecinos have introduced the im-

licit Taylor series expansion and Cauchy-Kowalewskaya procedure

o deal with hyperbolic balance laws with stiff source terms. In this

pproach, the Cauchy-Kowalewskaya procedure requires the spatial

erivatives evolved in time, which cannot be obtained straightfor-

ardly from Riemann problems as in conventional ADER meth-

ds discussed above. This is basically because conventional ADER

ethods based on TT solver uses linearised Riemann problems

hich are homogeneous. Thus, the influence of the source term is

nly involved in the Cauchy-Kowalewskaya procedure. In [39] the

patial derivatives are evolved by using two approaches, which dif-

er in the number of terms in the Taylor expansion, so Complete

mplicit Taylor Approach (CITA) and Reduced Implicit Taylor Ap-

roach (RITA), in both HEOC and TT approaches, are investigated.

 limitation of the approach in [39] , is the computational cost,

or high orders of accuracy, the CPU time increases dramatically.

owever, second order approaches work very well as reported in

42] where an extension to transport phenomena on unstructured

eshes has been reported. 

In this paper, we propose a strategy related to the implicit Tay-

or series expansion and the Cauchy-Kowalewskaya procedure. The

ifference between the conventional approaches described above

nd the proposed one is that spatial derivatives do not need

o be evolved in terms of any Taylor series expansion and the

auchy-Kowalewskaya procedure is modified by expressing high-

rder time derivatives not only in terms of spatial derivatives of

he data but also on space and time derivatives of the Jacobian ma-

rices of the flux and source functions as well. The derivatives are

btained from an interpolation fashion on selected nodal points.

his simplification allows us to provide a closed form for the

auchy-Kowalewskaya functionals, in a recursive formula. Further-

ore, this approach requires the solution of one algebraic equa-

ion but the number of variables is the same for all orders of ac-

uracy. Closed forms of the Cauchy-Kowalewskaya functional are

vailable for some partial differential equations as linear advec-

ion systems, linear systems with constant matrices [21,30] and for

he non-linear two-dimensional Euler equation, [14] . For the gen-

ral case, algebraic software manipulators are required for generat-

ng the Cauchy-Kowalewskaya functionals and gigantic expressions

ay be obtained and lead, for instance, to long compile times.

owever, the expression obtained here is very compact and use-

ul for all hyperbolic balance laws. 

This paper is organized as follows. In Section 2 , the general

ramework is presented. In Section 3 , the new predictor step is in-
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roduced. In the Section 4 , numerical tests are concerned. Finally,

n Section 5 conclusions and remarks are drawn. 

. The framework 

In this paper we present a strategy for solving hyperbolic bal-

nce law in the conservative form 

 t Q + ∂ x F (Q ) = S (Q ) , 

Q (x, 0) = H 0 (x ) , (1) 

here H 0 ( x ) is a prescribed function in R 
m . Here Q (x, t) ∈ R 

m is

he vector of unknowns, F (Q ) ∈ R 
m is the physical flux function

nd S (Q ) ∈ R 
m is the source term. 

To compute a numerical solution of (1) , we divide the computa-

ional domain into N uniform cells of the form I n 
i 
:= [ x 

i − 1 
2 
, x 

i + 1 
2 
] ×

 t n , t n +1 ] and then by integrating on I n 
i 
we obtain the well-known

ne-step formula. 

 
n +1 
i 

= Q 
n 
i −

�t 

�x 

(
F i + 1 2 − F i − 1 

2 

)
+ �tS i , (2)

here 

 
n 
i = 

1 

�x 

∫ x 
i + 1 

2 

x 
i − 1 

2 

Q ( x, t n ) dx (3) 

nd the numerical flux F 
i + 1 

2 
as well as the source term S i are com-

uted by adopting the ADER strategy, [26,37,40,41] . In this paper 

 i + 1 2 = 

1 

�t 

∫ t n +1 

t n 
F h 

(
Q i 

(
x i + 1 2 , t 

)
, Q i +1 

(
x i + 1 2 , t 

))
dt, 

S i = 

1 

�t�x 

∫ t n +1 

t n 

∫ x 
i + 1 

2 

x 
i − 1 

2 

S (Q i (x, t) d xd t , (4) 

here F h ( Q L , Q R ) is a classical numerical flux function, which can

e seen as a function of two states Q L and Q R . It is possible to de-

ign an approximate GRP solver out of the HLL, [17] . In this paper

e will use the Rusanov solver, obtained from HLL by taking ex-

reme left and right maximum waves speed to be the same but in

pposite directions. Here Q i ( x, t ) corresponds to a predictor within

he computational cell I n 
i 
. In the next section, further details of the

redictor step are provided. 

. The predictor step 

In this section we provide the details to obtain the predictor

 i ( x, t ). We modify the strategy of the implicit Taylor series expan-

ion and the Cauchy-Kowalewskaya procedure presented in [39] .

or the sake of completeness, we provide a brief review of the ap-

roach in [39] . The predictor is computed as 

 i (x, τ ) = Q i (x, 0 + ) −
M ∑ 

k =1 

(−τ ) k 

k ! 
∂ (k ) t Q i (x, τ ) , (5)

hich by means of the Cauchy-Kowalewskaya procedure, can be

ritten as 

 i (x, τ ) = Q i (x, 0 + ) 

−
M ∑ 

k =1 

(−τ ) k 

k ! 
G 

(k ) 
(
Q i (x, τ ) , ∂ x Q i (x, τ ) , ..., ∂ (k ) x Q i (x, τ ) 

)
,

(6)

here M is an integer which corresponds to the order of accu-

acy M + 1 , in both space and time. Here, G 
( k ) corresponds to

he Cauchy-Kowalewskaya functional and it is the function which

xpresses the time derivatives in terms of spatial derivatives,

 
(k ) Q i (x, τ ) = G 

(k ) (Q i (x, τ ) , ∂ x Q i (x, τ ) , ..., ∂ (k ) x Q i (x, τ )) . Notice that
t 
his functional requires the information of spatial derivatives at

, which must be estimated. In [39] two strategies are proposed,

here the time spatial derivatives are obtained from implicit Tay-

or series as well. These approaches require the solution of alge-

raic equations. 

In the next section we provide a brief review of the conven-

ional Cauchy-Kowalewskaya procedure and subsequently, a sim-

lification of this procedure is presented. 

.1. A brief review of the Cauchy-Kowalewskaya procedure 

Here, we briefly describe the Cauchy-Kowalewskaya procedure

or obtaining the time derivatives of the data. For the sake of sim-

licity, in this section we omit the sub index i in Q i , to indicate the

pproximation within the cell [ x 
i − 1 

2 
, x 

i + 1 
2 
] . 

The time derivatives are obtained from the governing Eq. (1) . As

or example, the first derivative is given by 

 t Q = −A (Q ) ∂ x Q + S (Q ) , (7) 

here A ( Q ) is the Jacobian matrix of F ( Q ) with respect to Q . So,

o obtain the second time derivative we differentiate in time the

q. (A.1) , so we have 

 

(2) 
t Q i = −

m ∑ 

j=1 

m ∑ 

l=1 

∂A i, j (Q ) 

∂Q l 

∂ t Q l ∂ x Q j −
m ∑ 

j=1 

A i, j (Q ) ∂ t (∂ x Q j ) 

+ 

m ∑ 

j=1 

B (Q ) i, j ∂ t Q j , (8) 

here B ( Q ) is the Jacobian matrix of S ( Q ) with respect to Q ,

 t Q i and ∂ t Q j are the i th and the j th components of the vector

tate ∂ t Q , respectively and then by differentiating the expression

A.1) with respect to x , we obtain 

 x (∂ t Q j ) = −
m ∑ 

j=1 

m ∑ 

l=1 

∂A i, j (Q ) 

∂Q l 

∂ x Q l ∂ x Q j −
m ∑ 

j=1 

A i, j (Q ) ∂ (2) 
x Q j 

+ 

m ∑ 

j=1 

B (Q ) i, j ∂ x Q j , (9) 

he same procedure is applied to obtain ∂ (3) 
t Q and so on, in prin-

iple any high order time derivative can be obtained through this

rocedure. However, the procedure becomes very cumbersome for

erivatives of orders higher than two, furthermore the complexity

cales with the number of unknowns m and the order of accuracy

s well, see Appendix A . This justifies the requirement of finding

ome efficient strategy to approximate temporal derivatives by fol-

owing the Cauchy-Kowalewskaya ideas. 

.2. The simplified Cauchy-Kowalewskaya procedure 

In this section, we derive a simplified Cauchy-kowalewskaya

rocedure, to approximate time derivatives. For the sake of sim-

licity, in this section we also omit the sub index i in Q i , to in-

icate the approximation within the cell [ x 
i − 1 

2 
, x 

i + 1 
2 
] . As seen in

he previous section, the conventional Cauchy-Kowalewskaya pro-

edure provides the first time derivative as 

 t Q = −A (Q ) ∂ x Q + S (Q ) . (10) 

t this point we introduce the first simplification . Instead of consid-

ring the previous equation, we are going to use the approximation

 t Q = −A (x, t) ∂ x Q + S (Q ) , (11) 

hich means, the matrix A is considered just a space-time depen-

ent matrix. This idea arises from the fact that A ( Q ( x, t )) is actu-

lly a matrix which depends on ( x, t ) through the state Q . It is very
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Table 1 

Coefficients a l,k in expression (19) . 

a l , (l −4) a l , (l −3) a (l ,l −2) a (l ,l −1) a ( l,l ) a (l ,l +1) l 

0 0 0 0 1 1 1 

0 0 0 1 2 1 2 

0 0 1 3 3 1 3 

0 1 4 6 4 1 4 

1 5 10 10 5 1 5 

Table 2 

Coefficients b l.k in expression (19) . 

b l , (l −4) b l , (l −3) b (l ,l −2) b (l ,l −1) b ( l,l ) b (l ,l +1) l 

0 0 0 0 0 1 1 

0 0 0 0 1 1 2 

0 0 0 1 2 1 3 

0 0 1 3 3 1 4 

0 1 4 6 4 1 5 

s  

a

∂  

N  

v  

t  

d

 

c  

P  

g

L

∂  

w

D  

a(
 

f

P

 

 

important to remark that A ( x, t ) is not a linearization of the Jaco-

bian matrix around any state, this must be formally considered as

a matrix which now depends on two variables ( x, t ) and if this is

regular enough, then this can be differentiated with respect to x

and t . Further details are provided in the Section 3.3 . 

By taking into account the approximation (11) , the second time

derivative can be approximated in three steps described below. 

Step I . We differentiate ∂ t Q with respect to t , thus 

∂ t (∂ t Q ) = −A t ∂ x Q − A ∂ t (∂ x Q ) + B ∂ t Q , (12)

where B is the Jacobian matrix of the source term with respect to

Q . For the remaining part of this paper, we use the notation ∂ x A =
A x for any matrix A . Similarly, we use the convention ∂ (l) x A = A 

(l) 
x 

for the l -th partial derivative of the matrix A with respect to x . Do

not confuse with A 
l which means matrix multiplication, l times. 

Step II . At this point we introduce the second simplification ,

which is to consider also the matrix B as a space-time dependent

matrix rather than a state dependent matrix. We assume regular-

ity enough such that the spatial and time derivatives can be inter-

changed. So 

∂ (2) 
t Q = −A t ∂ x Q − A ∂ x (∂ t Q ) + B ∂ t Q . (13)

Similarly to the first simplification, this idea arises from the

fact that B ( Q ( x, t )) at the end is a matrix which depends on ( x, t )

through the state Q . So, if B ( x, t ) is a regular enough matrix func-

tion, then this can be differentiated with respect to x and t . Further

details are provided in the Section 3.3 . 

Step III . Here, we differentiate in space the expression ∂ t Q , tak-

ing into account the simplifications introduced above, to obtain 

∂ x (∂ t Q ) = −A x ∂ x Q − A ∂ (2) 
x Q + B ∂ x Q 

= −A ∂ (2) 
x Q + 

(
B − A 

(1) 
x 

)
∂ x Q . (14)

This step regards the main difference with respect to the conven-

tional Cauchy-Kowalewskaya procedure. By inserting the previous

expression into (13) , we obtain 

∂ (2) 
t Q = −A t ∂ x Q − A 

(
−A ∂ (2) 

x Q + 

(
B − A 

(1) 
x 

)
∂ x Q 

)
+ B ∂ t Q 

= A 
2 ∂ (2) 

x Q + 

(
−A t − A 

(
B − A 

(1) 
x 

))
∂ x Q + B ∂ t Q . (15)

The last expression can be written as 

∂ (2) 
t Q = C (2 , 2) ∂ (2) 

x Q + C (2 , 1) ∂ x Q + B ∂ t Q , (16)

where C (2, i ), i = 1 , 2 represent the matrix coefficients 

C (2 , 2) = A 
2 , C (2 , 1) = −A t − A 

(
B − A 

(1) 
x 

)
. (17)

The novel contribution of this paper is as follows. We are going

to show that this procedure can be generalized. Before giving this

main result, we need to express ∂ (l) x (∂ t Q ) only in terms of spatial

derivatives of the data and the Jacobian matrices. Notice that from

simplifications introduced above, we obtain 

∂ x ( ∂ t Q ) = −A ∂ (2) 
x Q + ( B − A x ) ∂ x Q , 

∂ (2) 
x ( ∂ t Q ) = −A ∂ (3) 

x Q + ( B − 2 A x ) ∂ 
(2) 
x Q + 

(
B x − A 

(2) 
x 

)
∂ x Q , 

∂ (3) 
x ( ∂ t Q ) = −A ∂ (4) 

x Q + ( B − 3 A x ) ∂ 
(3) 
x Q + 

(
2 B x − 3 A 

(2) 
x 

)
∂ (2) 
x Q 

+ 

(
B 

(2) 
x − A 

(3) 
x 

)
∂ x Q , 

∂ (4) 
x ( ∂ t Q ) = −A ∂ (5) 

x Q + ( B − 4 A x ) ∂ 
(4) 
x Q + 

(
3 B x − 6 A 

(2) 
x 

)
∂ (3) 
x Q 

+ 

(
3 B 

(2) 
x − 4 A 

(3) 
x 

)
∂ (2) 
x Q + 

(
B 

(3) 
x − A 

(4) 
x 

)
∂ x Q , 

∂ (5) 
x ( ∂ t Q ) = −A ∂ (6) 

x Q + ( B − 5 A x ) ∂ 
(5) 
x Q + 

(
4 B x − 10 A 

(2) 
x 

)
∂ (4) 
x Q 

+ 

(
6 B 

(2) 
x − 10 A 

(3) 
x 

)
∂ (3) 
x Q + 

(
4 B 

(3) 
x − 5 A 

(4) 
x 

)
∂ (2) 
x Q 

+ 

(
B 

(4) 
x − A 

(5) 
x 

)
∂ x Q , (18)
o by inspection we observe that these derivatives, can be arranged

s 

 

(l) 
x ( ∂ t Q ) = 

l+1 ∑ 

k =1 

(
b l,k B 

(l+1 −k ) 
x − a l,k A 

(l+2 −k ) 
x 

)
∂ (k ) x Q . (19)

otice that, ∂ (l) x stands by the l -th spatial derivative, with the con-

ention ∂ (0) 
x M = M for any function M , which may be a scalar, vec-

or or matrix function. This notation is also extended to temporal

erivatives. 

Table 1 , shows the coefficients a l,k . Similarly, Table 2 shows the

oefficients b l,k . We observe that they follow the structure of the

ascal triangle, in the combinatorial theory. In fact, the structure is

iven by the following. 

emma 3.1. 

 

(l) 
x (∂ t Q ) = 

l+1 ∑ 

k =1 

D (l + 1 , k ) ∂ (k ) x Q , (20)

here 

 (l + 1 , k ) = 

((
l − 1 
l − k 

)
B 

(l−k ) 
x −

(
l 

l + 1 − k 

)
A 

(l+1 −k ) 
x 

)
(21)

nd 

l 
−1 

)
= 0 , (22)

or all integer l. 

roof. Let us prove it by induction. 

• We already know that this is true for l = 1 . 
• Let us assume it is true for l , that is 

∂ (l) x (∂ t Q ) = 

l+1 ∑ 

k =1 

((
l − 1 
l − k 

)
B 

(l−k ) 
x −

(
l 

l + 1 − k 

)
A 

(l+1 −k ) 
x 

)
∂ (k ) x Q .

(23)

• Let us prove it is true for l + 1 . Indeed 

∂ (l+1) 
x (∂ t Q ) = 

l+1 ∑ 

k =1 

((
l − 1 

l − k 

)
B (l+1 −k ) 
x −

(
l 

l + 1 − k 

)
A (l+2 −k ) 
x 

)
∂ (k ) x Q 

+ 

l+1 ∑ 

k =1 

((
l − 1 

l − k 

)
B (l+1 −k ) 
x −

(
l 

l + 1 − k 

)
A (l+1 −k ) 
x 

)
∂ (k +1) 
x Q 

= 

((
l − 1 

l − 1 

)
B (l+1) 
x −

(
l 

l 

)
A (l+2) 
x 

)
∂ x Q 
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∂  
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p  

f  

(  

o

C

∂  

w

M  

P  

P  

p

∂  

B

∂

a

+ 

l+1 ∑ 

k =2 

[(
l − 1 

l + 1 − k 

)
+ 

(
l − 1 

l − k 

)]
B (l+1 −k ) 
x ∂ (k ) x Q 

−
l+1 ∑ 

k =2 

[(
l 

l + 2 − k 

)
+ 

(
l 

l + 1 − k 

)]
A (l+2 −k ) 
x ∂ (k ) x Q 

+ 

((
l − 1 

−1 

)
B (−1) 
x −

(
l 

0 

)
A (0) 
x 

)
∂ (l+2) 
x Q . (24) 

By considering the properties of the combinatorial factors (
l − 1 

l + 1 − k 

)
+ 

(
l − 1 
l − k 

)
= 

(
l 

l + 1 − k 

)
, (

l − 1 
l − 1 

)
= 

(
l 
l 

)
= 

(
l 
0 

)
= 

(
l − 1 
0 

)
= 1 (25) 

and the assumption (
m 

−1 

)
= 0 , (26) 

for all m , after grouping terms we obtain 

∂ (l+1) 
x (∂ t Q ) = 

l+2 ∑ 

k =1 

((
l 

l + 1 − k 

)
B 

(l+1 −k ) 
x 

−
(

l + 1 
l + 2 − k 

)
A 

(l+2 −k ) 
x 

)
∂ (k ) x Q . (27) 

This completes the proof. 

�

roposition 3.2. The high-order time derivatives have the following

ecursive form 

 

(k ) 
t Q = 

k ∑ 

l=1 

C (k, l) ∂ (l) x Q + ∂ (k −2) 
t (B ∂ t Q ) , (28)

here 

 (k, l) = 

{
C (k − 1 , k − 1) D (k, k ) , l = k ,

C (k − 1 , l) t + 

∑ k −1 
m = l−1 C (k − 1 , m ) D (m + 1 , l) , l < k ,

(29) 

ere, the matrix D is given by (21) . We impose C (k, 0) = 0 ∀ k > 0,

 (1 , 1) = −A and ∂ (−1) 
t (B ∂ t Q ) = S (Q ) . 

roof. Let us prove this proposition by induction. 

• The result is true for k = 2 . In fact, we know that 

∂ t Q = −A ∂ x Q + S (Q ) . (30)

Since, ∂ (2) 
t Q = ∂ t (∂ t Q ) from (30) we obtain 

∂ (2) 
t Q = A 

2 ∂ (2) 
x Q + (−A t − A (B − A x )) ∂ x Q + B ∂ t Q . (31)

Here, we have used the chain rule 

∂ t (S (Q )) = B ∂ t Q . (32)

Therefore, from the expressions C (1 , 1) = −A , D (2 , 2) = −A ,

D (2 , 1) = B − A x and by identifying terms, the induction hy-

pothesis is valid for k = 2 . 
• We assume the induction hypothesis is valid for k = n and

thus 

∂ (k ) t Q = 

k ∑ 

l=1 

C (k, l) ∂ (l) x Q + ∂ (k −2) 
t (B ∂ t Q ) , (33)

for all k ≤ n . 
• Let us prove this is valid for k = n + 1 . In fact 

∂ (n +1) 
t Q 

= 

n ∑ 

l=1 

∂ t (C (n, l) ∂ (l) x Q ) + ∂ (n −1) 
t (B ∂ t Q ) 

= 

n ∑ 

l=1 

C (n, l) t ∂ 
(l) 
x Q + 

n ∑ 

l=1 

C (n, l) ∂ (l) x (∂ t Q ) + ∂ (n −1) 
t (B ∂ t Q ) 

= 

n ∑ 

l=1 

C (n, l) t ∂ 
(l) 
x Q + 

n ∑ 

l=1 

C (n, l) 
l+1 ∑ 

m =1 

D (l + 1 , m ) ∂ (m ) 
x Q 

+ ∂ (n −1) 
t (B ∂ t Q ) = 

n ∑ 

l=1 

C (n, l) t ∂ 
(l) 
x Q 

+ 

n ∑ 

m =1 

C (n, m ) 
m +1 ∑ 

l=1 

D (m + 1 , l) ∂ (l) x Q + ∂ (n −1) 
t (B ∂ t Q ) 

= 

n ∑ 

l=1 

[ 
C (n, l) t + 

n ∑ 

m = l−1 

C (n, m ) D (m + 1 , l) 
] 
∂ (l) x Q 

+ C (n, n ) D (n + 1 , n + 1) 
] 
∂ (n +1) 
x Q + ∂ (n −1) 

t (B ∂ t Q ) , (34) 

with C (n, 0) = 0 . So by collecting terms and defining 

 (n + 1 , l) = 

{
C (n, n ) D (n + 1 , n + 1) , l = n + 1 
C (n, l) t + 

∑ n 
m = l−1 C (n, m ) D (m + 1 , l) , l < n + 1 

(35) 

we can write (34) as 

∂ (n +1) 
t Q = 

n +1 ∑ 

l=1 

C (n + 1 , l) ∂ (l) x Q + ∂ (n −1) 
t (B ∂ t Q ) , (36)

this proves the sought result. 

Notice that the condition ∂ (−1) 
t (B ∂ t Q ) = ∂ (−1) 

t (∂ t S (Q )) =
 
(0) 
t S (Q ) = S (Q ) is natural, which also justifies the expression (30) ,

t also corresponds to k = 1 in the formula (28) . �

Notice that the expression (28) is only possible from the sim-

lifications proposed in this work. This is not possible, in general,

or the conventional Cauchy-Kowalewskaya procedure. Notice that

28) expresses the time derivatives in terms of spatial derivatives

f Q , space and time derivatives of both A and B . 

orollary 3.3. The expression (28) can be written as 

 

(k ) 
t Q = M k + B ∂ (k −1) 

t Q , (37)

here 

 k = 

k ∑ 

l=1 

C (k, l) ∂ (l) x Q + 

k −2 ∑ 

l=1 

(
k − 2 
l − 1 

)
B 

(k −1 −l) 
t ∂ (l) t Q . (38)

roof. This result follows from the manipulation of (28) in

roposition 3.2 . Particularly the term ∂ (k −2) 
t (B ∂ t Q ) can be ex-

ressed, by using the matrix-vector differentiation rules, as 

 

(k −2) 
t (B ∂ t Q ) = 

k −1 ∑ 

l=1 

(
k − 2 
l − 1 

)
B 

(k −1 −l) 
t ∂ (l) t Q . (39)

y collecting terms and isolating for l = k − 1 , we obtain 

 

(k ) 
t Q = 

k ∑ 

l=1 

C (k, l) ∂ (l) x Q + 

k −2 ∑ 

l=1 

(
k − 2 
l − 1 

)
B 

(k −1 −l) 
t ∂ (l) t Q + B ∂ (k −1) 

t Q 

(40) 

nd thus the result holds. �
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Fig. 1. Sketch of the space-time node distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proposition 3.4. 

∂ (k ) t Q = 

k ∑ 

r=2 

M r + B 
k −1 S (Q ) , (41)

where M r are those in (38) . 

Proof. This is a consequence of the Corollary 3.3 . �

As will be seen in the next sections, the previous results pro-

vide the closed form for approximations to Cauchy-Kowalewskaya

functionals, G 
( k ) , which will be important to design fixed-point it-

eration procedures. In B.1 , we provide operational details for gen-

erating the matrix C ( k, l ) involved into the simplified Cauchy-

Kowaleskaya procedure introduced in this section. 

3.3. The predictor step based on a modified implicit Taylor series 

expansion and the simplified Cauchy-Kowalewskaya procedure 

Notice that the predictor Q i , within I n 
i 
, is required for evaluat-

ing integrals in (4) . On the other hand, the evaluation of these inte-

grals is carried out by means of quadrature rules in space and time.

So, for the temporal integration we use the Gaussian rule, which

involves τ j , j = 1 , ..., n T Gaussian points. Whereas, for the spa-

tial integration, we use the Newton-Cotes rule, which involves ξm ,

m = 1 , ..., n S equidistant quadrature points, with n S = M + 1 where

M + 1 is the accuracy. See B.2 for further details about the set up

of these quadrature points through reference elements. This set of

quadrature points allows us to build space-time nodal points ( ξm ,

τ j ) within the space-time cell I n 
i 
, as illustrated in the Fig. 1 . Here,

ξ 1 and ξn S coincide with the cell interfaces. So, from the previous

comment it is evident that for flux and source evaluations, we only

need the information of Q i at ( ξm , τ j ). 

To obtain approximation of the predictor at every space-time

node ( ξm , τ j ), we propose the following iterative strategy. 

1. Provide a starting guess for Q i ( ξm , τ j ), m = 1 , ..., n S and j =
1 , ..., n T . 

This is done by using the formula 

Q i (ξm , τ j ) = [ I − τ j B (W (ξm ))] 
−1 (W i (ξm ) 

− τ j A (W (ξm )) ∂ x Q i (ξm , τ j )) , (42)

which corresponds to the second order accurate expression

in [39] . Here, W i ( ξ ) represents the reconstruction polyno-
mial obtained within the space-time cell I n 

i 
. Any reconstruc-

tion procedure can be implemented, however, in this work
we use the Weighted Essentially Non-Oscillatory (WENO) re-

construction method described in [11,12] , where the cen-

tral, left-sided and right-sided stencils are involved, with re-

spective weights ω C = 10 5 , ω L = ω R = 1 and the coefficients

ε = 10 −14 , r = 9 . 

2. Compute the approximation of high-order derivatives in

time and space of the state and Jacobian matrices as well.

For this purpose, we use the following approach. 

Let M be a function, which may represent the state function

Q and the Jacobian matrices A and B as well. 
• Then, for obtaining M 

(l) 
x (ξ , τ j ) , we first interpolate the

function M on the nodes ( ξm , τ j ) with j fix and vary-

ing m = 1 , ..., n S . So an interpolation function ˜ M (ξ , τ j )

is obtained. Then, we are able to provide approxima-

tions of spatial derivatives of M ( ξ , τ j ) for any order l

by using the spatial derivatives of ˜ M (ξ , τ j ) . 

• Similarly, to obtain M 
(l) 
t (ξm , τ ) , we first interpolate

the function M on the nodes ( ξm , τ j ) with m fix

and varying j = 1 , ..., n T . So an interpolation function
˜ M (ξm , τ ) is obtained. Then, we are able to provide

approximations of temporal derivatives of M ( ξm , τ )
for any order l by using the temporal derivatives of
˜ M (ξm , τ ) . 

In B.2 , is shown the form of these interpolation polynomials

for the orders of accuracy considered in this paper. 

3. Update Q i at every ( ξm , τ j ) by using 

Q i (ξm , τ j ) = W i (ξm ) −
M ∑ 

k =1 

(−τ j ) 
k 

k ! 
˜ G 

(k ) (ξm , τ j ) , (43)

where ˜ G 
(k ) = ˜ G 

(k ) (Q i , ..., ∂ 
(k ) 
x Q i , A 

(l) 
t , .., A 

(l) 
x , .., B (l) t , ..., B (l) x , ... )

is given by (28) . The derivatives of the state function and

matrices are evaluated at ( ξm , τ j ) and computed in the pre-

vious step. The Eq. (43) corresponds to the implicit Tay-

lor series expansion in [39] with the difference that ˜ G 
(k ) 

is a simplification of the conventional Cauchy-Kowalewskaya

functional. 

For solving (43) , we use the following nested Picard iteration

procedure. 

Q 
s +1 
i 

= W i (ξm ) −
M ∑ 

k =1 

(−τ j ) 
k 

k ! 

k ∑ 

l=2 

M l 

−
M ∑ 

k =1 

(−τ j ) 
k 

k ! 
B 
k −1 (Q 

s 
i ) S 

(
Q 

s +1 
i 

)
, (44)

where s is an iteration index and M l comes from the

Proposition 3.4 . We have omitted the arguments of Q i ( ξm ,

τ j ). 

Notice that for solving (44) , we build an algebraic system,

which has the form 

H(Y ) = Y − W i (ξm ) + 

M ∑ 

k =1 

(−τ j ) 
k 

k ! 

k ∑ 

l=2 

M l 

+ 

M ∑ 

k =1 

(−τ j ) 
k 

k ! 
B 
k −1 

(
Q 

s 
i 

(
ξm , τ j 

))
S (Y ) , (45)

then by solving for Y we get Q 
s +1 
i 

as Y = Q 
s +1 
i 

. This is carried

out in one step, that is Q 
s +1 
i 

= Q 
s 
i 
− δ, where δ is the solution

to J (Q 
s 
i 
) δ = H(Q 

s 
i 
) , where 

J (Y ) = I + 

M ∑ 

k =1 

(−τ j ) 
k 

k ! 
B 
k −1 (Q 

s 
i (ξm , τ j )) B (Y ) , (46)

is the Jacobian matrix of H(Y ) with respect to Y . Once the

Q 
s +1 
i 

has been updated then we set s ← s + 1 and update
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∂
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. The update is carried out M times, where M + 1 corre-

sponds to the order of accuracy. Notice that algebraic equa-

tions with a similar structure to Y has to be solved for any

order of accuracy. So, the size of Y does not depend on the

accuracy, indeed, this corresponds to the state Q and so, Y

and H have size m and consequently J is a matrix of m × m .

The global loop, it is the steps 2 and 3 listed above, are repeated

 times. From experiments, not shown here, the result does not

ary in terms of accuracy if a stop criterion, based on the toler-

nce for the relative error between subsequent approximations, is

mplemented. 

Once Q i is computed for each cell I n 
i 
, the numerical flux and

ource terms can be easily evaluated. In B.3 , is shown the form in

hich the integrals in (4) are evaluated. 

This completes the description of the proposed strategy for ob-

aining the predictor within the computational cell I n 
i 
by using the

mplicit GRP approach. 

. Numerical results 

In this section we shall consider several tests aimed at assess-

ng the accuracy and performance of the present scheme. The time

tep, �t , will be computed by using the well-known CFL condition

t = C c f l 
�x 
λabs 

, (47) 

here λabs = max i ( max j (| λ j (Q 
n 
i 
) | )) , here λj , j = 1 , ..., m are the

igenvalues of the Jacobian matrix of F evaluated at Q 
n 
i 
, the data

t each cell I n 
i 
and the maximum is taken over all cells I n 

i 
. On the

ther hand, to assess empirically the convergence rate, we are go-

ng to use the norm 

| Q − Q 
e || p p = 

∑ N 
i =1 

∫ x i + 1 
2 

x 
i − 1 

2 

| W i (x ) − Q 
e (x, t out ) | p dt , (48) 

here Q 
e ( x, t ) is the exact solution, W i ( x ) is the reconstruction

olynomial within the interval [ x 
i − 1 

2 
, x 

i + 1 
2 
] obtained at the output

ime of the global simulation. In this paper we are going to use

48) with p = 1 , p = 2 and the maximum norm given by 

| Q − Q 
e || = max i { max x ∈ [ x 

i − 1 
2 

,x 
i + 1 

2 
] | W i (x ) − Q 

e (x, t out ) |} . (49) 

ere, t out stands by the output time of simulations. 

.1. A linear system of hyperbolic balance laws 

Here, we consider the linear system in [29] , given by 

 t Q (x, t) + A ∂ x (Q (x, t)) = BQ (x, t) , x ∈ [0 , 1] , 

Q (x, 0) = 

[
sin (2 πx ) 
cos (2 πx ) 

]
, 

(50) 

here 

 = 

[
0 λ
λ 0 

]
, B = 

[
β 0 
0 β

]
. (51) 

The problem is endowed with periodic boundary conditions.

his system has the exact solution 

 
e (x, t) = 

e βt 

2 

[
�(x, t) + 
(x, t) 
�( x, t) − 
(x, t) 

]
, (52) 

here 

(x, t) = sin (2 π(x − λt)) + cos (2 π(x − λt)) , 
(x, t) = sin (2 π(x + λt)) − cos (2 π(x + λt)) . 

(53) 

ere we consider λ = 1 and β = −1 . This is a simple test aimed at

valuating the accuracy of the present scheme. As can be seen in

able 3 , the expected theoretical orders of accuracy are achieved. 
.2. A system of non-linear hyperbolic balance laws 

Here we assess the present methods, applied to the non-linear

ystem 

∂ t Q + ∂ x F (Q ) = S (Q ) , 

 (x, 0) = 

[
sin (2 πx ) 
cos (2 πx ) 

]
, 

(54) 

here F ( Q ) and S ( Q ) are given by 

 (Q ) = 

⎡ 

⎣ 

1 
9 

(
5 
2 
u 2 + v 2 − u v 

)
1 
9 

(
4 u v − u 2 + 

1 
2 
v 2 

)
⎤ 

⎦ , S (Q ) = 

⎡ 

⎢ ⎣ 

β
(

2 u −v 
3 

)2 

−β
(

2 u −v 
3 

)2 

⎤ 

⎥ ⎦ , 

(55) 

here β ≤ 0 is a constant value, see [39] . The exact solution is

iven by 

 (x, t) = w 1 (x, t) + w 2 (x, t) , 
 (x, t) = 2 w 1 (x, t) − w 2 (x, t) , 

(56) 

here w 1 and w 2 are the solutions to 

 t w 1 + w 1 ∂ x (w 1 ) = 0 , 

 t w 2 + w 2 ∂ x (w 2 ) = βw 
2 
2 , 

(57) 

here the initial condition for each equation is 

 1 (x, 0) = 

sin (2 πx ) + cos (2 πx ) 

3 
, 

 2 (x, 0) = 

2 sin (2 πx ) − cos (2 πx ) 

3 
. 

Notice that system (57) requires the solution of the Burgers

quation with a non linear source term, this solution is reported

n [39] , which is computed numerically. Table 4 , shows the em-

irical orders of accuracy and the CPU times. Comparing with

PU times of the implicit Taylor series expansion and conven-

ional Cauchy-Kowalewskaya procedure in [39] , we observe that

he present scheme depicts important improvements in the perfor-

ance. An improvement of one order of magnitude compared with

he strategies in [39] , is obtained. See Appendix A . On the other

and, since the exact solution in [39] is also an approximation, we

bserve a penalization in the convergence rate as the accuracy in-

reases. It is more evident in the fifth order case. 

.3. The LeVeque and Yee test 

Here, we apply our schemes to the well-known and challenging

calar test problem proposed by LeVeque and Yee [23] , given by 

 t q (x, t) + ∂ x q (x, t) = βq (x, t)(q (x, t) − 1)(q (x, t) − 1 
2 
) . (58) 

e solve this PDE on the computational domain [0,1] with trans-

issive boundary conditions and the initial condition given by 

 (x, 0) = 

{
1 , x < 0 . 3 , 
0 , x > 0 . 3 . 

(59) 

he solution on the characteristic curves satisfies the ordinary dif-

erential equation d(x (t ) ,t ) 
dt 

= βq (x (t ) , t )(q (x (t ) , t ) − 1)(q (x (t ) , t ) −
1 
2 ) , which has two stable solutions q ≡ 0 and q ≡ 1 and one

nstable solution in q ≡ 1 
2 where any solution tries to away from

his. Similarly, any solution associated to characteristic curves nec-

ssarily must converge to one of the two stable solutions. On the

ther hand, a numerical scheme which is not able to solve stiff

ource terms, may blow up or introduce an excessive numeri-

al diffusion and so the numerical solution, following character-

stic curves, converges to the wrong stable solution. This penal-

zes the right propagation. Fig. 2 shows the comparison between
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Table 3 

Linear system. Output time t out = 1 with C c f l = 0 . 9 , β = −1 , λ = 1 . 

Theoretical order : 2 

Mesh L ∞ - ord L ∞ - err L 1 - ord L 1 - err L 2 - ord L 2 - err CPU 

8 - 2 . 45 e − 02 - 1 . 33 e − 02 - 1 . 74 e − 02 0.0064 

16 2.35 4 . 81 e − 03 2.38 2 . 55 e − 03 2.55 2 . 97 e − 03 0.0114 

32 1.67 1 . 52 e − 03 2.85 3 . 54 e − 04 2.34 5 . 84 e − 04 0.0287 

64 2.95 1 . 96 e − 04 3.71 2 . 71 e − 05 3.47 5 . 29 e − 05 0.0853 

128 1.49 6 . 96 e − 05 1.83 7 . 62 e − 06 1.91 1 . 41 e − 05 0.3395 

Theoretical order : 3 

Mesh L ∞ - ord L ∞ - err L 1 - ord L 1 - err L 2 - ord L 2 - err CPU 

8 - 1 . 52 e − 02 - 1 . 07 e − 02 - 1 . 15 e − 02 0.0116 

16 2.85 2 . 11 e − 03 2.97 1 . 36 e − 03 2.94 1 . 50 e − 03 0.0352 

32 3.01 2 . 62 e − 04 3.03 1 . 66 e − 04 3.02 1 . 85 e − 04 0.1096 

64 3.05 3 . 17 e − 05 3.04 2 . 02 e − 05 3.05 2 . 24 e − 05 0.4506 

128 3.01 3 . 93 e − 06 3.01 2 . 50 e − 06 3.01 2 . 78 e − 06 2.0173 

Theoretical order : 4 

Mesh L ∞ - ord L ∞ - err L 1 - ord L 1 - err L 2 - ord L 2 - err CPU 

8 - 7 . 69 e − 03 - 4 . 80 e − 03 - 5 . 26 e − 03 0.0358 

16 2.92 1 . 02 e − 03 3.15 5 . 42 e − 04 3.10 6 . 14 e − 04 0.1280 

32 3.64 8 . 15 e − 05 3.67 4 . 26 e − 05 3.67 4 . 82 e − 05 0.4703 

64 3.87 5 . 56 e − 06 3.87 2 . 92 e − 06 3.87 3 . 30 e − 06 1.7537 

128 3.95 3 . 59 e − 07 3.95 1 . 89 e − 07 3.95 2 . 14 e − 07 6.9353 

Theoretical order : 5 

Mesh L ∞ - ord L ∞ - err L 1 - ord L 1 - err L 2 - ord L 2 - err CPU 

8 - 1 . 49 e − 03 - 6 . 42 e − 04 - 7 . 65 e − 04 0.1270 

16 4.85 5 . 16 e − 05 4.88 2 . 18 e − 05 4.89 2 . 59 e − 05 0.3801 

32 4.96 1 . 66 e − 06 4.96 6 . 99 e − 07 4.96 8 . 29 e − 07 1.4746 

64 4.99 5 . 23 e − 08 4.99 2 . 19 e − 08 4.99 2 . 60 e − 08 5.7874 

128 5.00 1 . 64 e − 09 4.99 6 . 88 e − 010 5.00 8 . 16 e − 010 22.4536 

Table 4 

Non-linear system. Output time t out = 0 . 1 with C c f l = 0 . 9 , β = −1 . 

Theoretical order : 2 

Mesh L ∞ - ord L ∞ - err L 1 - ord L 1 - err L 2 - ord L 2 - err CPU 

32 - 1 . 95 e − 02 - 5 . 45 e − 03 - 7 . 81 e − 03 0.0061 

64 1.53 6 . 75 e − 03 2.12 1 . 25 e − 03 1.94 2 . 04 e − 03 0.0201 

128 1.75 2 . 01 e − 03 2.30 2 . 54 e − 04 2.18 4 . 49 e − 04 0.0490 

256 1.80 5 . 79 e − 04 2.18 5 . 62 e − 05 2.15 1 . 01 e − 04 0.1703 

512 1.38 2 . 23 e − 04 2.13 1 . 29 e − 05 2.06 2 . 44 e − 05 0.7851 

Theoretical order : 3 

Mesh L ∞ - ord L ∞ - err L 1 - ord L 1 - err L 2 - ord L 2 - err CPU 

32 - 2 . 00 e − 02 - 2 . 88 e − 03 - 5 . 17 e − 03 0.0139 

64 2.47 3 . 63 e − 03 2.69 4 . 45 e − 04 2.57 8 . 67 e − 04 0.0668 

128 2.74 5 . 42 e − 04 2.92 5 . 90 e − 05 2.85 1 . 20 e − 04 0.1935 

256 2.84 7 . 59 e − 05 2.95 7 . 62 e − 06 2.93 1 . 57 e − 05 0.7559 

512 2.95 9 . 83 e − 06 2.99 9 . 62 e − 07 2.98 2 . 00 e − 06 2.9953 

Theoretical order : 4 

Mesh L ∞ - ord L ∞ - err L 1 - ord L 1 - err L 2 - ord L 2 - err CPU 

32 - 2 . 44 e − 02 - 3 . 33 e − 03 - 6 . 09 e − 03 0.0609 

64 3.07 2 . 90 e − 03 3.53 2 . 89 e − 04 3.24 6 . 46 e − 04 0.2186 

128 3.88 1 . 97 e − 04 4.14 1 . 64 e − 05 4.00 4 . 03 e − 05 0.7516 

256 4.28 1 . 01 e − 05 4.40 7 . 80 e − 07 4.34 1 . 99 e − 06 3.0089 

512 4.18 5 . 58 e − 07 4.33 3 . 87 e − 08 4.33 9 . 89 e − 08 11.5548 

Theoretical order : 5 

Mesh L ∞ - ord L ∞ - err L 1 - ord L 1 - err L 2 - ord L 2 - err CPU 

32 - 8 . 80 e − 03 - 8 . 56 e − 04 - 1 . 82 e − 03 0.1879 

64 3.48 7 . 91 e − 04 4.07 5 . 09 e − 05 3.82 1 . 29 e − 04 0.6927 

128 4.46 3 . 60 e − 05 4.66 2 . 02 e − 06 4.58 5 . 37 e − 06 2.4518 

256 4.81 1 . 29 e − 06 4.72 7 . 65 e − 08 4.82 1 . 90 e − 07 9.6558 

512 4.46 5 . 87 e − 08 3.97 4 . 86 e − 09 4.41 8 . 90 e − 09 38.51853 
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Fig. 2. Leveque and Yee test. We have used 300 cells, C c f l = 0 . 2 , t out = 0 . 3 , β = 

−10 0 0 . 

Fig. 3. Leveque and Yee test. Proposed scheme against ADER-TT with the conven- 

tional Cauchy-Kowalewskaya procedure. We have used 300 cells, C c f l = 0 . 2 , t out = 

0 . 3 , β = −10 0 0 . 
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Fig. 4. The Shu-Osher test. Otput time t out = 0 . 47 , 300 cells and CF L = 0 . 5 . 
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he exact solution and the numerical approximations provided by

he present scheme of second, third, fourth and fifth orders of

ccuracy. The figure shows a good agreement for β = −10 0 0 0 at

 out = 0 . 3 , which correspond to the stiff regime. We have used 300

ells. For this particular test, we use C c f l = 0 . 2 which provides good

esults, notice this is not the case for schemes using explicit GRP

olvers, as can be seen in the Fig. 3 , where the comparison be-

ween ADER schemes of fifth order of accuracy using the proposed

RP solver and the conventional TT solver, is shown. Despite this

s expected because ADER-TT is not designed for dealing with stiff

ource terms, it helps us to show the gaining of using the local im-

licit Taylor series expansion formulation. This test illustrates the

bility of the present scheme for solving hyperbolic balance laws

ith stiff source terms. Despite the CFL coefficient in this test is

ess than that used in [39] we remark that this is still in the range

f functional values. 

.4. The Euler equations 

Now let us consider the Euler equations, given by 

 = 

[ 

ρ
ρu 
E 

] 

, F (Q ) = 

[ 

ρu 

ρu 2 + p 
u (E + p) 

] 

, (60) 
here the pressure p is related with the conserved variables

hrough the equation 

p = (γ − 1)(E − ρu 2 

2 
) , (61)

or an ideal gas γ = 1 . 4 . Notice that, the choice of the initial con-

ition given by the functions 

(x, 0) = 1 + 0 . 2 sin (2 πx ) , 
 (x, 0) = 1 , 

p(x, 0) = 2 , 
(62) 

rovides the exact solution for the system (60) , which corresponds

o the set of functions 

(x, t) = 1 + 0 . 2 sin (2 π(x − t)) , 
 (x, t) = 1 , 

p(x, t) = 2 . 
(63) 

otice that, the variables ρ , u, p correspond to the non-

onservative variables, the corresponding translation to conserved

ariables needs to be done. This test has a complex eigenstructure,

hich is a challenge for numerical methods. Table 5 , shows the re-

ults of the empirical convergence rate assessment for the density

ariable ρ , at t out = 1 and C c f l = 0 . 9 , we observe that the scheme

chieves the expected theoretical orders of accuracy. 

.5. The Shu and Osher test 

Here, we consider the test problem, first time proposed by Shu

nd Osher in [32] , which is given by (60) and the initial condition

iven, in terms of non-conserved variables W = [ ρ, u, p] T , as 

 (x, 0) = 

{
(3 . 8571 , 2 . 6294 , 10 . 333) , x < −0 . 8 , 

(1 + sin (5 πx ) , 0 , 1) , x ≥ −0 . 8 . 
(64) 

he problem is solved on [ −1 , 1] up to the output time t out , see

18] for further details. Fig. 4 shows a comparison between a ref-

rence solution and numerical approximations. The reference so-

ution has been obtained with the scheme of third order using

0 0 0 cells. The numerical results correspond to second and third

rders of accuracy for which we have used 300 cells, C c f l = 0 . 5 and

 out = 0 . 47 . This test illustrates the ability of the present scheme

or solving complex fluids, a good agreement is observed for the

cheme of second and third order of accuracy on the smooth re-

ion, whereas, the third order scheme present a better perfor-

ance in both the smooth region and the high frequency region

s well. 
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Table 5 

Euler equations.Output time t out = 1 with C c f l = 0 . 9 . 

Theoretical order : 2 

Mesh L ∞ - ord L ∞ - err L 1 - ord L 1 - err L 2 - ord L 2 - err CPU 

8 - 1 . 51 e − 01 - 1 . 05 e − 01 - 1 . 14 e − 01 0.0119 

16 1.22 6 . 45 e − 02 1.76 3 . 09 e − 02 1.59 3 . 79 e − 02 0.0401 

32 1.43 2 . 40 e − 02 1.62 1 . 01 e − 02 1.65 1 . 21 e − 02 0.1569 

64 1.49 8 . 50 e − 03 1.90 2 . 71 e − 03 1.79 3 . 49 e − 03 0.4242 

128 1.53 2 . 95 e − 03 2.07 6 . 46 e − 04 1.85 9 . 69 e − 04 1.6852 

Theoretical order : 3 

Mesh L ∞ - ord L ∞ - err L 1 - ord L 1 - err L 2 - ord L 2 - err CPU 

8 - 8 . 33 e − 02 - 5 . 18 e − 02 - 5 . 83 e − 02 0.0356 

16 2.55 1 . 43 e − 02 2.58 8 . 68 e − 03 2.59 9 . 68 e − 03 0.1292 

32 2.90 1 . 91 e − 03 2.93 1 . 14 e − 03 2.93 1 . 27 e − 03 0.5785 

64 2.98 2 . 42 e − 04 2.99 1 . 44 e − 04 2.99 1 . 60 e − 04 2.0123 

128 3.00 3 . 03 e − 05 3.00 1 . 80 e − 05 3.00 2 . 00 e − 05 7.3028 

Theoretical order : 4 

Mesh L ∞ - ord L ∞ - err L 1 - ord L 1 - err L 2 - ord L 2 - err CPU 

8 - 7 . 49 e − 02 - 4 . 75 e − 02 - 5 . 30 e − 02 0.1776 

16 4.17 4 . 17 e − 03 4.24 2 . 51 e − 03 4.25 2 . 79 e − 03 0.5581 

32 4.40 1 . 97 e − 04 4.49 1 . 12 e − 04 4.49 1 . 25 e − 04 2.0833 

64 4.27 1 . 02 e − 05 4.24 5 . 91 e − 06 4.24 6 . 59 e − 06 7.4370 

128 4.12 5 . 88 e − 07 4.08 3 . 50 e − 07 4.08 3 . 90 e − 07 30.9521 

Theoretical order : 5 

Mesh L ∞ - ord L ∞ - err L 1 - ord L 1 - err L 2 - ord L 2 - err CPU 

8 - 1 . 24 e − 02 - 7 . 62 e − 03 - 8 . 47 e − 03 0.3804 

16 4.75 4 . 59 e − 04 4.80 2 . 73 e − 04 4.80 3 . 04 e − 04 1.6927 

32 4.95 1 . 48 e − 05 4.96 8 . 76 e − 06 4.96 9 . 76 e − 06 6.4005 

64 4.99 4 . 66 e − 07 4.99 2 . 75 e − 07 4.99 3 . 07 e − 07 23.9378 

128 5.00 1 . 46 e − 08 5.00 8 . 62 e − 09 5.00 9 . 59 e − 09 88.51398 

Fig. 5. The Sod test. Otput time t out = 0 . 2 , 100 cells and CF L = 0 . 7 . 

 

 

t

W  
4.6. The Sod test problem 

Here, we consider the test problem, first time proposed by Sod

in [33] , which is given by (60) and the initial condition given, in
erms of non-conserved variables W = [ ρ, u, p] T , as 

 (x, 0) = 

{
(1 , 0 , 1) , x < 0 . 3 , 

(1 . 125 , 0 , 0 . 1) , x ≥ 0 . 3 . 
(65)
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The problem is solved on [ −1 , 1] up to the output time t out =
 . 2 . Fig. 5 shows a comparison between the exact solution and nu-

erical approximations. The numerical results correspond to sec-

nd and third orders of accuracy for which we have used 100 cells

nd C c f l = 0 . 7 . In this test a rarefaction wave travels to the left

nd a shock wave travels on the right and an intermediate contact

ave moves on the right also. The shock wave is solved in three

ells and the contact wave for the density is solved in three cells.

he rarefaction is lightly rounded on the left and right corners.

espite, the internal energy depicts an overshot after the contact

ave, we observe that the constant state connecting the contact

nd shock waves is well solved. This is the performance observed

n first order schemes able to capture discontinuous wave propa-

ation [37] . 

. Conclusions 

In this paper, a simplified Cauchy-Kowalewskaya procedure has

een proposed. The strategy uses not only the spatial derivatives of

he data but also the derivatives of the Jacobian matrices in both

pace and time. The simplification allows us to propose a recur-

ive formula which requires the ability of obtaining time and space

erivatives of the state as well as matrices. This is achieved by us-

ng interpolations within a suitable arrangement of nodal points,

hich allows us to extract the information for flux and source

erm evaluations in a straightforward manner. This method is im-

lemented in the context of GRP solvers based on implicit Tay-

or series expansions. The solver in [39] uses the same elements,

hat is, implicit Taylor series expansions and Cauchy-Kowalewskaya

rocedure. However, in the present approach the Taylor series ex-

ansion is used only once and the evolution of the space deriva-

ives via Taylor series is not required. Despite, in both approaches,

hat is in [39] and the present one, the solution of an algebraic

quation is required, that in [39] increases the number of un-

nowns as the accuracy increases, whereas, the number of un-

nowns in the present approach remains constant when the ac-

uracy increases. We have implemented the GRP solver in the con-

ext of ADER methods and several tests reported in the literature

ave been solved. An empirical convergence rate assessment has

een done for some of them. We have proved that the complexity

f the simplified Cauchy-Kowalewskaya procedure presented here

rows up linearly with the order of accuracy and we have observed

rom empirical comparisons that the performance of the present

cheme is at least one order of magnitude cheaper than schemes

n [39] . Furthermore, the expected theoretical orders of accuracy

ave been achieved up to fifth order of accuracy. We have solved

he Osher-Shu and the Sod test, where the right propagation of

aves has been captured by the proposed scheme describing very

ell strong-discontinuities as shock and contact waves. The exten-

ion to hyperbolic systems in 2D and 3D is the subject of ongoing

esearch. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper. 

The authors declare that they have no financial inter-

sts/personal relationships which may be considered as potential

ompeting interests. 

RediT authorship contribution statement 

Gino I. Montecinos: Formal analysis, Writing - original draft,

riting - review & editing. Dinshaw S. Balsara: Conceptualization,

ethodology. 
cknowledgements 

G.M thanks to the National chilean Fund for Scientific and Tech-

ological Development , FONDECYT , in the frame of the research

roject for Initiation in Research, number 11180926 . 

ppendix A. A comparison between the complexity of floating 

oint operations count between the conventional and 

implified Cauchy-Kowalewskaya procedure 

Since the code is not optimized, we do not carry out a float-

ng point operations count of the enter program. Instead, we com-

are the classical and the simplified procedure in terms of the

ime complexity provided by the number of operations involved in

he computation of time derivatives. This will give us information

bout the improvements of the present scheme. 

For computing the time derivatives we use the expressions

37) and (38) where the matrices C ( k, l ) in (29) are the key. In

ractical approximations we encourage to compute the matrices in

29) and then store them for later uses in (37) . Also, it is recom-

ended to store the time derivatives and use them in the com-

utation of derivatives of subsequent orders. We argue that stor-

ng and memory access is more efficient than computing long ex-

ressions at any time. The same argument is used for analyzing

he performance of the conventional Cacuchy-Kowalewskaya pro-

edure. 

If one follows the suggested storage and access strategy for

omputing time derivatives, the number of operations are additive.

o, if we denote by T t,k ( m ) the number of operations to get the

ime derivative k via (37) and T C ( m ) the number of operations to

et the matrices C via (29) , then the total number of operations to

enerate approximations of time derivatives is T t,k (m ) + T C (m ) . 

The operations T t,k ( m ) in the case of time derivatives of order

 is O ( km 
2 ), whereas (29) in the case of the first time deriva-

ive requires T C (m ) = O (m 
2 ) operations. For k > 1, C ( k, l ) needs

 C (m ) = 3 m 
3 in the case of k = l and m 

2 + 3(k − l) m 
3 in the case

 < k , so we can say that for high order, T C (m ) = O (km 
3 ) . Notice

hat in (29) it is also required the matrix D , which has been al-

eady computed. From (21) the number of operations involved in

he computation of D is O ( m 
2 ). Therefore, after collecting all the

peration orders, the total number of operations for obtaining the

pproximations in the simplified Cauchy-Kowalewskaya procedure

s O ( km 
3 ). 

Here, the number of operations for obtaining spatial and tem-

oral gradients of matrices has been neglected because they are

arried out by interpolations, where no matrix multiplication is in-

olved, only additions are required for such task where the number

f operations is of order O ( m 
2 ). 

Now, let us analyze the number of operations involved in the

omputation via the classical Cauchy-Kowalewskaya procedure. Let

s begin with the first-order time derivative. In a component-wise,

t has the form 

 t Q i = −
m ∑ 

j=1 

A i, j (Q ) 
∂Q j 

∂x 
+ S i , (A.1)

o, we can see that the computation of this derivative involves m +
 m 

2 operations, so the asymptotic order is O ( m 
2 ). 

Now, let us analyze the number of operations for the second-

rder time derivative. In a component-wise, it has the form 

 

(2) 
t Q i = −

m ∑ 

j=1 

( m ∑ 

k =1 

∂A i, j (Q ) 

∂Q k 

∂Q k 

∂t 

∂Q j 

∂x 
+ A i, j (Q ) 

∂ 2 Q j 

∂ x∂ t 

)

+ 

m ∑ 

j=1 

B i, j (Q ) 
∂Q j 

∂t 
, (A.2) 

https://doi.org/10.13039/501100010751
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where 

∂ x (∂ t Q j ) = −
m ∑ 

l=1 

( m ∑ 

p=1 

∂A j,l (Q ) 

∂Q p 

∂Q p 

∂x 

∂Q l 

∂x 
+ A j,l (Q ) 

∂ 2 Q l 

∂x 2 

)

+ 

m ∑ 

l=1 

B j,l (Q ) 
∂Q l 

∂x 
. (A.3)

Here, we have several alternatives to obtain the second time

derivative (A.2) . We identify at least two options. The first one, is

to compute and store the mixed space and time derivative (A.3) ,

which involves T xt (m ) = 4 m 
2 + 3 m 

3 operations, and then use the

stored values. In such a way, no extra operations are required so

the number of operation for evaluating (A.2) is 4 m 
2 + 3 m 

3 . How-

ever, we must consider the operation for T xt ( m ) and T t ( m ), since

the expressions have been precomputed already the total num-

ber of operations are additives. In this case the total iterations are

m + 10 m 
2 + 6 m 

3 . That is O ( m 
3 ). 

The second option, is to replace the mixed space-time deriva-

tive (A.3) into the full expression (A.2) , obtaining 

∂ (2) 
t Q i = −

m ∑ 

j=1 

m ∑ 

k =1 

∂A i, j (Q ) 

∂Q k 

∂Q k 

∂t 

∂Q j 

∂x 

+ 

m ∑ 

j=1 

m ∑ 

l=1 

m ∑ 

p=1 

A i, j (Q ) 
∂A j,l (Q ) 

∂Q p 

∂Q p 

∂x 

∂Q l 

∂x 

+ 

m ∑ 

j=1 

m ∑ 

l=1 

A i, j (Q ) A j,l (Q ) 
∂ 2 Q l 

∂x 2 

−
m ∑ 

j=1 

m ∑ 

l=1 

A i, j (Q ) B j,l (Q ) 
∂Q l 

∂x 

+ 

m ∑ 

j=1 

B i, j (Q ) 
∂Q j 

∂t 
(A.4)

and then the number of operations becomes 3 m 
2 + 12 m 

3 + 5 m 
4 ,

so the asymptotic order in this case is O ( m 
4 ). 

Let us obtain the order of operations involved into the compu-

tation of the third-order time derivative. This is obtained by differ-

entiating in time (A.4) , after some manipulations it yields 

∂ (3) 
t Q i = −

m ∑ 

j=1 

[ 

m ∑ 

k =1 

m ∑ 

l=1 

∂ 2 A i, j (Q ) 

∂ Q k ∂ Q l 

∂Q l 

∂t 

∂Q k 

∂t 

∂Q j 

∂x 

+ 

m ∑ 

k =1 

∂A i, j (Q ) 

∂Q k 

∂ 2 Q k 

∂t 2 
∂Q j 

∂x 
+ 2 

m ∑ 

k =1 

∂A i, j (Q ) 

∂Q k 

∂Q k 

∂t 

∂ 2 Q j 

∂ x∂ t 

+ 

m ∑ 

k =1 

A i, j (Q ) 
∂ 3 Q j 

∂ x∂ t 2 

] 

+ 

m ∑ 

j=1 

m ∑ 

k =1 

∂B i, j (Q ) 

∂Q k 

∂Q k 

∂t 

∂Q j 

∂t 

+ 

m ∑ 

j=1 

B i, j (Q ) 
∂ 2 Q j 

∂t 2 
, (A.5)

with 

∂ x (∂ 
(2) 
t Q ) i = −

m ∑ 

j=1 

[ 

m ∑ 

k =1 

m ∑ 

l=1 

∂ 2 A i, j (Q ) 

∂ Q k ∂ Q l 

∂Q l 

∂x 

∂Q k 

∂t 

∂Q j 

∂x 

+ 

m ∑ 

k =1 

∂A i, j (Q ) 

∂Q k 

∂ 2 Q k 

∂ x∂ t 

∂Q j 

∂x 
+ 2 

m ∑ 

k =1 

∂A i, j (Q ) 

∂Q k 

∂Q k 

∂t 

∂ 2 Q j 

∂x 2 

+ 

m ∑ 

k =1 

A i, j (Q ) 
∂ 3 Q j 

∂ x 2 ∂ t 

] 

+ 

m ∑ 

j=1 

m ∑ 

k =1 

∂B i, j (Q ) 

∂Q k 

∂Q k 

∂x 

∂Q j 

∂t 

+ 

m ∑ 

j=1 

B i, j (Q ) 
∂ 2 Q j 

∂ x∂ t 
(A.6)
nd 

 

(2) 
x (∂ t Q j ) = −

m ∑ 

l=1 

( m ∑ 

p=1 

m ∑ 

q =1 

∂ 2 A j,l (Q ) 

∂ Q p ∂ Q q 

∂Q q 

∂x 

∂Q p 

∂x 

∂Q l 

∂x 

+ 

m ∑ 

p=1 

∂A j,l (Q ) 

∂Q p 

∂ 2 Q p 

∂x 2 
∂Q l 

∂x 
+ 

m ∑ 

p=1 

∂A j,l (Q ) 

∂Q p 

∂Q p 

∂x 

∂ 2 Q l 

∂x 2 

+ 

m ∑ 

p=1 

∂A j,l (Q ) 

∂Q p 

∂Q p 

∂x 

∂ 2 Q l 

∂x 2 
+ A j,l (Q ) 

∂ 3 Q l 

∂x 3 

)

+ 

m ∑ 

l=1 

m ∑ 

p=1 

∂B j,l (Q ) 

∂Q p 

∂Q p 

∂x 

∂Q l 

∂x 
+ 

m ∑ 

l=1 

B j,l (Q ) 
∂ 2 Q l 

∂x 2 
. 

(A.7)

otice that, if terms ∂Q 
∂t 

, 
∂ 3 Q 

∂ x 2 ∂ t 
, 

∂ 2 Q 
∂ x∂ t 

, 
∂ 2 Q 
∂t 2 

and ∂ 3 Q 
∂ x∂ t 2 

are already pre-

omputed and just called in (A.5) , then the number of operations

s O ( m 
4 ). 

However, if we introduce (A .3) and (A .7) into (A .5) , we obtain 

 

(3) 
t Q i = 

−
m ∑ 

j=1 

m ∑ 

k =1 

m ∑ 

l=1 

∂ 2 A i, j (Q ) 

∂ Q k ∂ Q l 

∂Q l 

∂t 

∂Q k 

∂t 

∂Q j 

∂x 

−
m ∑ 

j=1 

m ∑ 

k =1 

∂A i, j (Q ) 

∂Q k 

∂ 2 Q k 

∂t 2 
∂Q j 

∂x 

−
m ∑ 

j=1 

m ∑ 

k =1 

∂A i, j (Q ) 

∂Q k 

∂Q k 

∂t 

∂ 2 Q j 

∂ x∂ t 

+ 

m ∑ 

j=1 

m ∑ 

k =1 

m ∑ 

l=1 

m ∑ 

p=1 

∂A i, j (Q ) 

∂Q p 

∂Q p 

∂t 

∂A j,k (Q ) 

∂Q l 

∂Q l 

∂x 

∂Q k 

∂x 

+ 

m ∑ 

j=1 

m ∑ 

k =1 

m ∑ 

l=1 

m ∑ 

p=1 

A i, j (Q ) 
∂ 2 A j,k (Q ) 

∂ Q l ∂ Q p 

∂Q p 

∂t 

∂Q l 

∂x 

∂Q k 

∂x 

+ 

m ∑ 

j=1 

m ∑ 

k =1 

m ∑ 

l=1 

A i, j (Q ) 
∂A j,k (Q ) 

∂Q l 

∂ 2 Q l 

∂ x∂ t 

∂Q k 

∂x 

+ 

m ∑ 

j=1 

m ∑ 

k =1 

m ∑ 

l=1 

A i, j (Q ) 
∂A j,l (Q ) 

∂Q l 

∂Q l 

∂x 

∂ 2 Q k 

∂ x∂ t 

+ 

m ∑ 

j=1 

m ∑ 

k =1 

m ∑ 

l=1 

∂A i, j (Q ) 

∂Q l 

∂Q l 

∂t 
A j,k (Q ) 

∂ 2 Q k 

∂x 2 

+ 

m ∑ 

j=1 

m ∑ 

k =1 

m ∑ 

l=1 

A i, j (Q ) 
∂A j,k (Q ) 

∂Q l 

∂Q l 

∂t 

∂ 2 Q k 

∂x 2 

+ 

m ∑ 

j=1 

m ∑ 

k =1 

A i, j (Q ) A j,k (Q ) 
∂ 3 Q k 

∂ x 2 ∂ t 

−
m ∑ 

j=1 

m ∑ 

k =1 

m ∑ 

l=1 

∂A i, j (Q ) 

∂Q l 

∂Q l 

∂t 
B j,k (Q ) 

∂Q k 

∂x 

−
m ∑ 

j=1 

m ∑ 

k =1 

m ∑ 

l=1 

A i, j (Q ) 
∂B j,k (Q ) 

∂Q l 

∂Q l 

∂t 

∂Q k 

∂x 

−
m ∑ 

j=1 

m ∑ 

k =1 

A i, j (Q ) B j,k (Q ) 
∂ 2 Q k 

∂ x∂ t 

+ 

m ∑ 

j=1 

m ∑ 

k =1 

∂B i, j (Q ) 

∂Q k 

∂Q k 

∂t 

∂Q j 

∂t 

+ 

m ∑ 

j=1 

B i, j (Q ) 
∂ 2 Q j 

∂t 2 
, (A.8)
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Fig. A1. Error vs CPU time for CITA: Error for the non-linear systems for orders from second to fourth order of accuracy. 

Fig. A2. Error vs CPU time for RITA: Error for the non-linear systems for orders from second to fourth order of accuracy. 
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hich can be seen that it is O ( m 
5 ) (here ∂Q 

∂t 
, 

∂ 3 Q 
∂ x 2 ∂ t 

, 
∂ 2 Q 
∂ x∂ t 

and ∂ 2 Q 
∂t 2 

re also computed previously and just used in (A.8) ). Notice that

he number operation increases by a factor of m if one of the

ixed time and space derivatives commented above are explicitly

omputed in (A.8) . 

Here we are interested in m > 1, the system case. In the

calar case, m = 1 , the number of operations in both the simpli-

ed and conventional Cauchy-Kowalewskaya procedures have sim-

lar asymptotic behavior. So, we have analyzed two strategies for

omputing the conventional Cauchy-Kowalewskaya in terms of the

umber of unknown attempting to reproduce an optimized cod-

ng strategy. We have observed that the present simplified version
cales linearly with the order of accuracy whereas the conven-

ional procedure scales exponentially with the order of accuracy.

his shows an improvement in terms of the number of operations

hich is also observed in simulations, as we will illustrate later. 

Despite the code structure of the proposed scheme and those in

39] are different, the GRP solvers should be one of the most time

onsuming processes in ADER implementations. So, any difference

n the performance of GRP solvers should be evidenced into the

lobal CPU time of the ADER schemes. So, in order to illustrate the

mprovement of the proposed GRP, enbedded into ADER schemes,

ith respect to the local implicit GRP solver presented in [39] , we

ompare the L -error vs CPU time involved by solving the non-
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Fig. A3. Error vs CPU time for simplified CK: Error for the non-linear systems for orders from second to fourth order of accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 MATRIX_D. Here DxA and DxB contains all the spa- 

tial derivatives of A and B , respectively, at each space time nodal 

point. 

1: procedure MATRIX_D ( l, k, i, j, A , B , DxA , DxB ) 

2: if (l − k − 1 < 0) then 

3: DB ← 0 

4: else if l − k − 1 = 0 then 

5: DB ← B (: , : , i, j) 

6: else 

7: DB ← DxB (: , : , i, j, l − k − 1) 

8: if (l − k = 0) then 

9: DA ← A (: , : , i, j) 

10: else 

11: DA ← DxA (: , : , i, j, l − k ) 

12: comA ← 
(l−1)! 

(k −1)! ·(l−k )! 

13: comB ← 
(l−2)! 

(k −1)! ·(l−k −1)! 

14: D ← comB ∗ DB − comA ∗ DA 

15: return D 

 

i  

o  

p  

P  

T  

 

o

 

i  

t  

G  

t  

T

τ  

2  

c  

s

linear system of Section 4.2 , which has been solved in [39] too. We

do not plot the fifth order because the accuracy for this particular

test is sub-optimal. 

Fig. A.6 shows the L 1 −error vs CPU times for the ADER-HEOC-

CITA approach in [39] . Fig. A.7 shows the L 1 −error vs CPU times

for the ADER-HEOC-RITA approach in [39] . Fig. A.8 shows the

L 1 −error vs CPU times for the simplified Cauchy-Kowalewskaya

functional. From these figures, we observe two important issues.

i) The present scheme is one order of magnitude cheaper than

implicit formulation of GRP in the context of ADER reported in

[39] . ii) The complexity O ( km 
3 ), where k is the order of accuracy

and m = 2 , the number of unknowns, tells us that for k < 5. The

CPU times should remain within similar ranges for all these or-

ders of accuracy, which is observed in the Fig. A.8 . Similarly from

the complexity analysis, we observe that conventional Cauchy-

Kowalewskaya functional has a complexity which grows up expo-

nentially with the order of accuracy, which is also evidenced in

Figs. A.7 and A.6 . 

Appendix B. Operational details 

In this appendix, pseudo codes of the recursive formula for ob-

taining time derivatives are reported. Furthermore, the set up of

quadrature points through reference elements and how these are

used to obtain polynomials for approximating the spatial and tem-

poral derivatives of high-order, are provided. The numerical flux

and the source term evaluation strategy is also reported. 

B1. Pseudo codes for computing the matrix coefficients D and C 

Algorithms 1 and 2 shows the pseudo codes MAT RIX _ D and

MAT RIX _ C, respectively which provide the matrix D and C corre-

sponding to the formulas (21) and (29) , respectively. 

B2. Approximation of space and time derivatives 

The interpolation polynomials obtained here can be straightfor-

ward generalized to scalar, vector and matrix functions. So, we pro-

vide the polynomials for a generic function f ( ξ ). To carry out inter-
polations, we have used the following strategy. 
For interpolation in space, we first cast an interval [ x 
i − 1 

2 
, x 

i + 1 
2 
]

nto [ − 1 
2 , 

1 
2 ] by the change of variable x = x 

i − 1 
2 

+ (ξ − 1 
2 )�x . Sec-

nd, we consider ξ j = − 1 
2 + 

( j−1) 
M 

with j = 1 , ..., M + 1 . So, the

olynomial interpolation in space for M + 1 order has the form

 (x ) = 

∑ M 

k =0 a M+1 ,k · ξ k . The coefficients a M+1 ,k are given in the

able B.6 for M = 1 , 2 , 3 , 4 , we have used the convention f j =
f (ξ j ) . Because of the change of variable, each space derivative of

rder l needs to be scaled by �x −l . 

To obtain interpolation in time, we cast an interval [ t n , t n +1 ]

nto the reference element [0, 1] by the change of variable t =
 
n + τ�t . Then we construct an interpolation polynomial from the

aussian points, τ j in [0, 1] with j = 1 , ..., n GP . Interpolation in

ime are only needed for accuracy higher than 3. In such a case.

he interpolation polynomial has the form T (τ ) = 

∑ M−1 
k =0 

b M+1 ,k ·
k . The coefficients b M+1 ,k are shown in the Table B.7 for M =
 , 3 , 4 . We have used the convention f j = f (τ j ) . Because of the

hange of variable, each time derivative of order l needs to be

caled by �t −l . 
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Algorithm 2 MATRIX_C. Here DxA and DxB contains all the spa- 

tial derivatives of A and B , respectively, at each space time nodal 

point. NT ime = Accuracy − 1 is the number of temporal nodes, 

NSpace = Accuracy is the number of spatial nodes. The subroutine 

uses the function MAT RIX _ T IME _ GRADIENT which computes the 

time derivative approximation of C which is carried out in terms 

of interpolation. Accuracy is the order of accuracy of the scheme. 

1: procedure MATRIX_C ( l, k, i, j, A , B , D x A , D x B ) 

2: for j ← 1 , NT ime do 

3: for i ← 1 , NSpace do 

4: C (: , : , i, j, 1 , 1) ← −A (: , : , i, j) 

5: for k 1 ← 2 , Accuracy − 1 do 

6: for j ← 1 , NT ime do 

7: for i ← 1 , NSpace do 

8: Dmat ← MAT RIX _ D (k 1 , k 1 , i, j, A , B , DxA , DxB ) 

9: C (: , : , i, j, k 1 , k 1) ← C (: , : , i, j, k 1 − 1 , k 1 − 1) ∗
Dmat 

10: for l1 ← 1 , k 1 − 1 do 

11: DtC (: , : , : , : , : , k 1 − 1 , l1) ← 

MAT RIX _ T IME _ GRADIENT (C (: , : , : , : , k 1 − 1 , l1)) 

12: for j ← 1 , NT ime do 

13: for i ← 1 , NSpace do 

14: C (: , : , i, j, k 1 , l1) ← DtCM (: , : , i, j, 1 , k 1 − 1 , l1) 

15: for m ← l1 − 1 , k 1 − 1 do 

16: if (m > 0) then 

17: Dmat ← MAT RIX _ D (m + 

1 , l1 , i, j, A , B , DxA , DxB ) 

18: C (: , : , i, j, k 1 , l1) ← C (: , : , i, j, k 1 , l1) + C (: 

, : , i, j, k 1 − 1 , m ) ∗ Dmat 

19: return C 

Table B1 

Coefficients a M+1 ,k for interpolation in space, P(x ) = ∑ M 
k =0 a M+1 ,k · ξ k . 

Second order ( M = 1 ). 

a 2 , 0 = f 2 
a 2 , 1 = ( f 2 − f 1 ) Third order ( M = 2 ). 

a 3 , 0 = f 2 
a 3 , 0 = ( f 3 − f 1 ) 

a 3 , 0 = 2( f 3 − 2 f 2 + f 1 ) 

Fourth order ( M = 3 ). 

a 4 , 0 = −( f 4 − 9 f 3 − 9 f 2 + f 1 ) / 16 

a 4 , 1 = +((− f 4 + 27 f 3 − 27 f 2 + f 1 )) / 8 

a 4 , 2 = ((9 f 4 − 9 f 3 − 9 f 2 + 9 f 1 ) ξ 2 ) / 4 

a 4 , 3 = −((−9 f 4 + 27 f 3 − 27 f 2 + 9 f 1 ) ξ 3 ) / 2 

Fifth order ( M = 4 ). 

a 5 , 0 = f 3 
a 5 , 1 = +((− f 5 + 8 f 4 − 8 f 2 + f 1 )) / 3 

a 5 , 2 = −((2 f 5 − 32 f 4 + 60 f 3 − 32 f 2 + 2 f 1 )) / 3 

a 5 , 3 = −((−16 f 5 + 32 f 4 − 32 f 2 + 16 f 1 )) / 3 

a 5 , 4 = ((32 f 5 − 128 f 4 + 192 f 3 − 128 f 2 + 32 f 1 )) / 3 

Table B3 

Numerical source term. Here, ω j are the corresponding Gaussian weights. 

Second order ( M = 1 ). 

S i = 
1 
2 

∑ n GP 
j=1 

ω j (S (Q i (ξ2 , τ j ) + S (Q i (ξ1 , τ j )) 

Third order ( M = 2 ). 

S i = 
1 
6 

∑ n GP 
j=1 

ω j (S (Q i (ξ3 , τ j ) + 4 S (Q i (ξ2 , τ j ) + S (Q i (ξ1 , τ j )) 

Fourth order ( M = 3 ). 

S i = 

1 
8 

∑ n GP 
j=1 

ω j (S (Q i (ξ4 , τ j ) + 3 S (Q i (ξ3 , τ j ) + 3 S (Q i (ξ2 , τ j )) + S (Q i (ξ1 , τ j )) 

Fifth order ( M = 4 ). 

S i = 
1 
90 

∑ n GP 
j=1 

ω j (7 S (Q i (ξ5 , τ j ) + 32 S (Q i (ξ4 , τ j ) + 12 S (Q i (ξ3 , τ j ) + 

32 S (Q i (ξ2 , τ j )) + 7 S (Q i (ξ1 , τ j )) 

B
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Table B2 

Coefficients b M+1 ,k for interpolation in time, T (τ ) = 

∑ M−1 
k =0 b

Third order ( M = 2 ). 

b 3 , 0 = (−√ 

3 f 2 + f 2 + 
( 
√ 
3 +1) f 1 ) 
2 

b 3 , 1 = ( 
√ 

3 f 2 −
√ 

3 f 1 )) 

Fourth order ( M = 3 ). 

b 4 , 0 = (−√ 

15 f 3 + 5 f 3 − 4 f 2 + ( 
√ 

15 + 5) f 1 ) / 6 

b 4 , 1 = − ( −
√ 
15 f 3 +10 f 3 −20 f 2 + ( 

√ 
15 +10 ) f 1 ) 

3 

b 4 , 2 = 
( 10 f 3 −20 f 2 +10 f 1 ) 

3 

Fifth order ( M = 4 ). 

b 5 , 0 = −0 . 1139171962819898 f 4 + 0 . 4007615203116506 f 3 −
b 5 , 1 = 2 . 15592710364526 f 4 − 7 . 41707042146264 f 3 + 13 . 80

b 5 , 2 = −7 . 93576184 9944 94 9 f 4 + 24 . 99812585921913 f 3 − 3

b 5 , 3 = 7 . 420540068038946 f 4 · −18 . 79544940755506 f 3 + 1
3. Evaluation of the numerical flux and source term 

Regarding the evaluation of (4) . The numerical flux can be

asily evaluated as F 
i + 1 

2 
= 

∑ n GP 
j=1 

ω j F h (Q i (ξM+1 , τ j ) , Q i +1 (ξ1 , τ j )) ,

here ω j corresponds to the j th Gaussian weight in [0,1]. Whereas,

he source terms, can be easily obtained from the interpolation in

pace and quadrature points in time. Table B.8 shows the form in

hich the source is computed for several orders of accuracy. 
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