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Discontinuous Galerkin (DG) methods have become mainstays in the accurate solution of 
hyperbolic systems, which suggests that they should also be important for computational 
electrodynamics (CED). Typically DG schemes are coupled with Runge-Kutta timestepping, 
resulting in RKDG schemes, which are also sometimes called DGTD schemes in the 
CED community. However, Maxwell’s equations, which are solved in CED codes, have 
global mimetic constraints. In Balsara and Käppeli [von Neumann Stability Analysis of 
Globally Constraint-Preserving DGTD and PNPM Schemes for the Maxwell Equations using 
Multidimensional Riemann Solvers, Journal of Computational Physics, 376 (2019) 1108-1137] 
the authors presented globally constraint-preserving DGTD schemes for CED. The resulting 
schemes had excellent low dissipation and low dispersion properties. Their one deficiency 
was that the maximal permissible CFL of DGTD schemes decreased with increasing order 
of accuracy. The goal of this paper is to show how this deficiency is overcome. Because 
CED entails the propagation of electromagnetic waves, we would also like to obtain DG 
schemes for CED that minimize dissipation and dispersion errors even more than the prior 
generation of DGTD schemes.
Two recent advances make this possible. The first advance, which has been reported 
elsewhere, is the development of a multidimensional Generalized Riemann Problem 
(GRP) solver. The second advance relates to the use of Two Derivative Runge Kutta 
(TDRK) timestepping. This timestepping uses not just the solution of the multidimensional 
Riemann problem, it also uses the solution of the multidimensional GRP. When these two 
advances are melded together, we arrive at DG(TD)2 schemes for CED, where the first “TD” 
stands for time-derivative and the second “TD” stands for the TDRK timestepping. The first 
goal of this paper is to show how DG(TD)2 schemes for CED can be formulated with the 
help of the multidimensional GRP and TDRK timestepping. The second goal of this paper 
is to utilize the free parameters in TDRK timestepping to arrive at DG(TD)2 schemes for 
CED that offer a uniformly large CFL with increasing order of accuracy while minimizing 
the dissipation and dispersion errors to exceptionally low values. The third goal of this 
paper is to document a von Neumann stability analysis of DG(TD)2 schemes so that their 
dissipation and dispersion properties can be quantified and studied in detail.
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At second order we find a DG(TD)2 scheme with CFL of 0.25 and improved dissipation 
and dispersion properties; for a second order scheme. At third order we present a novel 
DG(TD)2 scheme with CFL of 0.2571 and improved dissipation and dispersion properties; 
for a third order scheme. At fourth order we find a DG(TD)2 scheme with CFL of 0.2322 and 
improved dissipation and dispersion properties. As an extra benefit, the resulting DG(TD)2
schemes for CED require fewer synchronization steps on parallel supercomputers than 
comparable DGTD schemes for CED. We also document some test problems to show that 
the methods achieve their design accuracy.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Several areas of science and engineering rely on the accurate, time-dependent computational solution of Maxwell’s equa-
tions – known as Computational Electrodynamics (CED). The finite-difference time-domain (FDTD) method (Yee [62], Taflove 
[56], Taflove and Hagness [57], [59], Taflove, Oskooi and Johnson [58]) has been one of the leading methods in CED for over 
half a century. FDTD relies on the staggering of the variables for the electric and magnetic fields, which provides a direct 
interpretation of the two curl-type equations given by Faraday’s Law and the generalized Ampere’s Law. The staggering also 
naturally satisfies the constraint equations given by Gauss’s Laws for electric and magnetic charge, albeit on a staggered 
pair of control volumes. On a simple Cartesian mesh, every electric field vector component is surrounded by four circulating 
magnetic field vector components, and every magnetic field vector component is surrounded by four circulating electric field 
vector components. This compactly staggered arrangement of primal variables is the source of the FDTD method’s strength 
and versatility and allows the method to globally satisfy the divergence constraints. However, it is also important to realize 
that the FDTD scheme was designed in an era that predates many modern advances in the numerical solution of hyperbolic 
systems. As a result, many of those advances have not been incorporated in the FDTD algorithm. A very prominent example 
consists of realizing that the FDTD scheme is restricted to second order of accuracy, especially when spatially varying ma-
terial properties are involved. In subsequent paragraphs, we take stock of recent advances for hyperbolic systems and their 
impact on CED, which also enables us to set the goals for this paper.

Maxwell’s equations are a hyperbolic system, and there have been significant advances in the numerical solution of 
hyperbolic systems in the last few decades. Specifically, the higher order Godunov schemes, which were initially formulated 
at second order, have all been extended to higher orders. The higher order accuracy provides significantly lower dispersion 
and dissipation in wave propagation, both of which are desirable in CED. The design philosophy underlying higher order 
Godunov schemes is very general and applies to any hyperbolic system, therefore one expects that they might also apply to 
CED. Such schemes rely on a detailed analysis of the wave propagation characteristics of a hyperbolic system, and Riemann 
solvers that contribute to the solution usually encapsulate this information. It is very desirable to incorporate the physics 
of Riemann solvers into CED schemes (Munz et al. [43], Ismagilov [39], Barbas and Velarde [21]; and references therein) 
where a set of one dimensional Riemann solvers were worked out for CED. Because these methods are based on finite 
volume approaches, they are often referred to as finite volume time domain (FVTD) methods. However, in their native 
form, these FVTD methods for CED do not have the ability to preserve the divergence constraints inherent in Faraday’s 
Law and the generalized Ampere’s Law. Discontinuous Galerkin time domain (DGTD) methods provide another approach to 
attaining high order of accuracy. These DGTD schemes are outgrowths of the original DG methods of Reed and Hill [47], 
Cockburn & Shu [25], [27], [28], Cockburn, Hou & Shu [26]. While FVTD schemes reconstruct all the higher order moments 
of the primal variables, DGTD schemes take all these higher order moments and endow them with time-evolution based 
on the governing equations. Therefore, it is widely believed that increasingly high order DGTD schemes might become 
almost spectrally accurate in their ability to propagate electromagnetic radiation. Since CED simulates the propagation of 
electromagnetic waves, it is believed that higher order DGTD schemes might be well-suited to CED. However, previous 
generations of DGTD schemes for CED were not globally constraint-preserving (Hesthaven and Warburton [37], Cockburn, Li 
and Shu [29] Kretzschmar et al. [40], Egger et al. [32], Bokil et al. [22], Chen and Liu [24]; Ren et al. [48]; Wang et al. [60]; 
Sun et al. [55], Angulo et al. [1]). We see, therefore, that classical FVTD and DGTD schemes cannot be naïvely extended to 
have all the constraint-preserving advantages for FDTD.

The picture begins to become clearer when one starts looking at recent advances in numerical magnetohydrodynamics 
(MHD). The MHD equations consist of Faraday’s law for the evolution of the magnetic field coupled to the usual hydrody-
namic equations with additional forces resulting from the Lorentz force law. Just like CED, Faraday’s law in MHD simulations 
has to be evolved in time in a mimetic, constraint-preserving fashion. As a result, two important advances had to be intro-
duced in numerical MHD, which carry over quite naturally to CED. In the next paragraph we explain how those advances 
were originated in MHD; the paragraph after that will explain how they have been extended to CED.

In order to have a mimetic scheme for MHD, the magnetic field components are collocated at the faces of the mesh, while 
the electric field components are collocated at the edges of the mesh. This gives the same Yee-scheme type staggering of 
variables that is also used to advantage in FDTD schemes for CED. However, the fluid variables are collocated at the zone 
centers and can be reconstructed over the volume of each zone, as is traditionally done in any higher order Godunov 
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scheme. The facially-collocated magnetic field variables then have to be reconstructed for each zone just like the fluid 
variables. A constraint-preserving reconstruction strategy was crucial to starting with the facial magnetic field components 
and making a high order representation of the magnetic field available throughout the zone. This reconstruction strategy, 
which is consistent with the constraint from Gauss’ law for magnetic fields, was presented in Balsara [2], [3], [4], Balsara 
and Dumbser [9], Xu et al. [63], Balsara et al. [13]. It ensures that the magnetic field is available over the same volume 
as the fluid flow variables. Once the magnetic field and flow variables are available within each volume, we wish to find 
the electric field variables at each edge of the mesh. However, at each edge of a Cartesian mesh, we will have four sets of 
MHD variables, one from each of the four zones that surround that edge. The only way to obtain the unique electric field 
associated with the edge under consideration is via a multidimensional Riemann solver. Such multidimensional Riemann 
solvers were formulated by Balsara [5], [6], [8], [11], Balsara, Dumbser and Abgrall [7], Balsara and Dumbser [10], Balsara 
et al. [12], Balsara and Nkonga [17]. Using these twin advances of a constraint-preserving reconstruction of the magnetic 
field and the multidimensional Riemann solver, Balsara and Käppeli [14] were able to formulate a mimetic DGTD scheme 
for MHD.

In a sequence of recent papers (Balsara et al. [13], [15], [16]) the above-mentioned advances have also been extended to 
design constraint-preserving, higher order Godunov, FVTD schemes for CED. (These FVTD schemes also benefited from the 
ADER time discretization of Dumbser et al. [31].) Globally constraint-preserving DGTD schemes for CED were also formulated 
by Balsara and Käppeli [18]. Hazra et al. [36] have also implemented such DGTD schemes and shown them to work with 
their design accuracies even for problems that have strong variation in material properties. Therefore, a basic goal was 
achieved, i.e. one had access to a fully constraint-preserving DGTD scheme for CED with its attendant spectral-like accuracies 
that could work at up to fifth order of accuracy even in the presence of spatially varying permittivity and permeability. The 
higher order schemes in the DGTD family also show diminishing dissipation and improved dispersion with increasing order; 
which is a very salutary sign. However, the resulting schemes showed the same trend that we see in all DG schemes – 
i.e., the timestep reduces as the order of accuracy of the DG scheme is increased. Two recent advances make it possible 
to improve on the already very accurate family of DGTD schemes. First, it has become possible to modify the timestepping 
strategy so as to reduce the dissipation and improve the CFL number. Second, a novel generation of multidimensional 
generalized Riemann problem (GRP) solvers have been designed which make it feasible to implement the above-mentioned 
timestepping strategies. The overarching goal of this paper is to document the first of these two advances and show how it 
opens the door to improved DGTD schemes with large time steps and low dissipation and dispersion for CED. The second 
of these two advances has already been documented in Balsara et al. [20].

Traditionally, in numerical work for hyperbolic PDEs, strong stability preserving Runge-Kutta (SSP-RK) schemes have 
been used for the time-evolution of hyperbolic systems. Such schemes (Shu and Osher [52], [53], [54], Spiteri and Ruuth 
[50], [51], Gottlieb et al. [34]) try to reduce the total variation in the solution at the end of a timestep. They are very 
useful for non-linear hyperbolic systems, where the presence of shocks can otherwise cause the total variation in the 
solution to increase. However, the time update of linear systems like CED does not necessarily mandate the strong stability 
preserving property. Instead, for CED, the optimal time-evolution strategies should lower the dispersion and dissipation of 
the numerical scheme while simultaneously enabling a large timestep. This encourages us to seek alternative timestepping 
strategies which are more suited to linear systems. A very interesting class of methods for integrating ordinary differential 
equations (ODEs) with high order of accuracy was presented in Chan and Tsai [23]. Those authors realized that for ODEs of 
the form y′ = f (y) it is sometimes very inexpensive to additionally evaluate the second derivative y′′ = g (y) ≡ f ′ (y) f (y). 
In other words, by incorporating the second derivative into the update strategy one can obtain a scheme with fewer stages 
and higher order of accuracy per stage. Chan and Tsai [23] called their schemes two-derivative Runge-Kutta (TDRK) schemes. 
Grant et al. [35] then extended this idea to arrive at what they call SSP-TS (Strong Stability Preserving – Taylor Series) 
schemes for the time-update of non-linear hyperbolic systems.

It should be noted that the SSP-TS schemes of Grant et al. [35] are, in some sense, abstract constructions because those 
authors do not give us much guidance on how the time-derivative of a numerical flux is to be obtained. Without a practical, 
implementable, strategy for obtaining that time-derivative, an SSP-TS scheme is not very useful. Indeed, the only examples 
that Grant et al. [35] show in their paper are nominal ones. In another line of inquiry, Balsara and his co-workers were 
developing generalized Riemann problem (GRP) solvers. Such GRP solvers can be applied to any hyperbolic system and they 
indeed provide an implementable approach for obtaining the time-derivative of a numerical flux. The GRP solvers, there-
fore, make it feasible to design SSP-TS schemes for any hyperbolic system. In Goetz et al. [33] and Balsara et al. [19] we 
presented this novel class of one-dimensional GRP solvers which are capable of making SSP-TS schemes practicable. How-
ever, please realize that FVTD and DGTD schemes for CED require multidimensional Riemann solvers; therefore, TDRK-based 
DGTD schemes for CED require the existence of multidimensional GRP solvers. This milestone was breached in Balsara et al. 
[20]. It opens the door to TDRK-based DGTD schemes for CED. The first goal of this paper is to formulate TDRK-based DGTD 
schemes. (In Balsara et al. [20] we only documented TDRK-based FVTD schemes because the design of TDRK-based DGTD 
schemes was deemed to be too much of a challenge to be breached in one paper.) We refer to the novel schemes for CED 
by the compact name of DG(TD)2 schemes because the first “TD” stands for time-derivative and the second “TD” stands for 
the TDRK timestepping.

The SSP-TS schemes have a strong stability preserving property but use a Taylor series expansion (i.e. a second derivative 
evaluation) in the time-update strategy. However, for a linear hyperbolic system like CED, the SSP property is not truly 
needed. On the other hand, some desirable properties like low dispersion, low dissipation and robust CFL are highly desired. 
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Therefore, the second goal of this paper is to utilize all the free parameters in TDRK timestepping to arrive at DG(TD)2
schemes for CED that optimize the desirable features mentioned above. Such attempts to obtain low dissipation and low 
dispersion schemes has indeed been attempted within the context of Runge-Kutta timestepping (Hesthaven and Warburton 
[38], Sarmany et al. [49], Diehl et al. [30], Niegemann et al. [44], Williamson [61]). However, it has never been attempted 
within the context of TDRK schemes.

Prior work on DG schemes has shown that there are several very valuable insights to be gained by analyzing the stability 
of such schemes (Liu et al. [42], Zhang and Shu [65], Yang and Li [64], Balsara and Käppeli [14], [18]). As the third goal
this paper, we document a von Neumann stability analysis of DG(TD)2 schemes for CED which have low dissipation and 
dispersion while permitting a robust timestep. In a subsequent paper we will document practical, fully-working DG(TD)2
schemes for CED which work with spatially varying material properties.

In Section 2 we introduce the Two Derivative Runge-Kutta (TDRK) timestepping and identify the free parameters that 
will be used in the ensuing optimization study. In Section 3 we explain how DG(TD)2 schemes are obtained from their 
DGTD predecessors. A von Neumann stability analysis of second order DG(TD)2 schemes reveals that they have several very 
desirable properties that should be developed at higher orders. In Section 4 we show how the two-stage TDRK timestepping 
can be optimized to yield improved third order DG(TD)2 schemes for CED. In Section 5 we show how the three-stage TDRK 
timestepping can be optimized to yield improved fourth order DG(TD)2 schemes for CED. Von Neumann stability analyses 
for the optimized third and fourth order DG(TD)2 schemes for CED are also presented in Sections 4 and 5 respectively.

2. Description of two derivative Runge-Kutta (TDRK) timestepping

Consider the PDE that is formally written as

∂U

∂t
= F (U) (2.1)

where U is a vector of M components and F (U) is negative of the gradient of the fluxes. We assume that a suitable GRP 
solver is available which provides Ḟ (U), which is the time-derivative of F (U). (The GRP solver takes as its inputs not just 
the states that are usually sent into a Riemann solver but also the multidimensional gradients of those states. It produces 
as its output, not just the fluxes but also the time derivatives of the fluxes.) The time-explicit two-derivative RK schemes 
with “s” internal stages can be written as

U(i) = Un + �t
i−1∑
j=1

aijF
(
U( j)

)
+ �t2

i−1∑
j=1

âi j Ḟ
(
U( j)

)
, i = 2, ..., s

Un+1 = Un + �t
s∑

j=1

b jF
(
U( j)

)
+ �t2

s∑
j=1

b̂ j Ḟ
(
U( j)

) (2.2)

where we start the timestep with U(1) = Un and the above timestepping scheme enables us to evolve the solution Un at 
time tn to a solution Un+1 at time tn+1 = tn + �t . We now document the two-stage and three-stage schemes in their own 
sections and identify the parameters that can be optimized.

2.1. Two-stage TDRK scheme

The two-stage TDRK scheme that can be up to fourth order accurate in time is written as

U∗ = Un + �ta21F
(
Un

) + �t2â21Ḟ
(
Un

)
Un+1 = Un + �t

[
b1F

(
Un

) + b2F (U∗)
] + �t2

[
b̂1Ḟ

(
Un

) + b̂2Ḟ (U∗)
] (2.3)

The condition for ensuring first order of accuracy is

b1 + b2 = 1 (2.4)

The condition for ensuring second order of accuracy is

b2a21 + b̂1 + b̂2 = 1

2
(2.5)

The conditions for ensuring third order of accuracy are

b2a
2
21 + 2b̂2a21 = 1

3
; b2â21 + b̂2a21 = 1

6
(2.6)

The conditions for ensuring fourth order accuracy are
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b2a
3
21 + 3b̂2a

2
21 = 1

4
; b2a21â21 + b̂2a

2
21 + b̂2â21 = 1

8
; b̂2a

2
21 = 1

12
; b̂2â21 = 1

24
(2.7)

If all of the above conditions are satisfied, the TDRK scheme in Eq. (2.3) becomes fourth order accurate. The unique choice 
of parameters that give rise to full fourth order of accuracy is given by Chan and Tsai [23]

b1 = 1; b2 = 0; b̂1 = 1

6
; b̂2 = 1

3
; a21 = 1

2
; â21 = 1

8
(2.8)

Of course, we have the option of settling for lower than fourth order of accuracy as long as the resultant scheme gives us 
some other very desirable features. In other words, if the spatial accuracy is just third order, we do not object to a temporal 
accuracy that is also restricted to third order as long as we get some additional nice attributes in our numerical method. 
We explore that next.

We realize from Eqs. (2.4), (2.5), (2.6) and (2.7) that only the first three of those four equations are needed in order to 
ensure third order accuracy. Therefore, two of the six coefficients in Eq. (2.3) for the time update are indeed free. We realize 
that the process of choosing which two coefficients to pick is not unique. However, we pick b̂2 → u1 and a21 → u2. With 
this choice, Eqs. (2.4), (2.5) and (2.6) uniquely allow us to identify the rest of the four coefficients as

b1 = 3u2
2 + 6u1u2 − 1

3u2
2

; b2 = 6u1u2 − 1

3u2
2

; b̂1 = 6u1u2 + 3u2 − 2

6u2
; â21 = u2

2

2
(2.9)

We see, therefore, that within a two-stage TDRK scheme there is the freedom to optimize a scheme that is third order 
accurate in space and time. We can, therefore, make a two-parameter plot in (u1,u2) space where we plot out one or 
the other desirable feature. We can also plot out multiple such features. For example, we might prioritize the process of 
obtaining the largest CFL but we may additionally want to minimize the dissipation or dispersion so that they lie below 
certain thresholds. We can then use such machine-generated plots to identify for us the regions in the two-parameter 
(u1,u2) space where we may expect good performance of the resultant scheme. The last step could possibly involve a 
human being who could identify schemes that meet certain criteria of excellence that a computationalist may subjectively 
want in his/her schemes.

2.2. Three-stage TDRK scheme

The three-stage TDRK scheme that can be up to sixth order accurate in time is written as

U∗ = Un + �ta21F
(
Un) + �t2â21Ḟ

(
Un)

U∗∗ = Un + �t
[
a31F

(
Un) + a32F

(
U∗)] + �t2

[
â31Ḟ

(
Un) + â32Ḟ

(
U∗)]

Un+1 = Un + �t
[
b1F

(
Un) + b2F

(
U∗) + b3F

(
U∗∗)] + �t2

[
b̂1Ḟ

(
Un) + b̂2Ḟ

(
U∗) + b̂3Ḟ

(
U∗∗)]

(2.10)

The condition for ensuring first order of accuracy is

b3 + b2 + b1 = 1 (2.11)

The condition for ensuring second order of accuracy is

b2a21 + b̂1 + b̂2 + b̂3 + b3 (a32 + a31) = 1

2
(2.12)

The conditions for ensuring third order of accuracy are

b2a
2
21 + 2b̂2a21 + b3 (a31 + a32)

2 + 2b̂3 (a31 + a32) = 1

3
;

b2â21 + b̂2a21 + b3
(
â31 + â32 + a21a32

) + b̂3 (a31 + a32) = 1

6

(2.13)

The conditions for ensuring fourth order accuracy are

b2a
3
21 + 3b̂2a

2
21 + b3 (a31 + a32)

3 + 3b̂3 (a31 + a32)
2 = 1

4

b2a21â21 + b̂2a
2
21 + b̂2â21 + b3a21a32 (a31 + a32) + b3 (a31 + a32)

(
â31 + â32

)
+ b̂3a21a32 + b̂3 (a31 + a32)

2 + b̂3
(
â31 + â32

) = 1

8
(2.14)

b̂2a
2
21 + b3a

2
21a32 + 2b3a21â32 + b̂3 (a31 + a32)

2 = 1

12

b̂2â21 + b3a21â32 + b3a32â21 + b̂3a21a32 + b̂3
(
â31 + â32

) = 1
24
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The conditions for ensuring fifth and sixth order of accuracy are documented in the appendix of Grant et al. [35]. They are 
not very relevant to the discussion of this paper which is why we do not document them here. Eqs. (2.11), (2.12), (2.13)
and (2.14) represent eight conditions for the twelve coefficients of the three-stage TDRK scheme. Hence, we realize that we 
have four degrees of freedom available for the optimization.

3. Obtaining DG(TD)2 schemes from their DGTD predecessors

We consider a simplified set of CED equations for the following von Neumann stability analysis. We assume that the 
permittivity ε and permittivity μ are simple scalars with no spatial variation. Furthermore, we assume vanishing current 
and charge densities. That is the usual level of simplification that is used in the CED field when carrying out a von Neumann 
stability analysis. The corresponding form of the extended Ampère’s law for the evolution of the electric displacement field 
D reads

∂D

∂t
− 1

μ
∇ × B = 0. (3.1)

Likewise, Faraday’s law for the evolution of the magnetic induction B reads

∂B

∂t
+ 1

ε
∇ ×D = 0. (3.2)

Both fields are subject to the involution constraints

∇ · B = 0 and ∇ ·D = 0. (3.3)

As Balsara and Käppeli [18], we introduce one further simplification by assuming that all significant variations are re-
stricted to the two-dimensional xy-plane. We focus on the transverse electric TEz mode by letting the z-component of the 
electric displacement field D and the x- and y-components of the magnetic induction B vanish. We remark that we could 
as well analyze the transverse magnetic TMz mode due the symmetry properties of the DGTD and DG(TD)2 schemes (see 
Balsara and Käppeli [18]). The CED equations can then be written in the compact form

∂

∂t

⎛
⎝ Dx

D y

Bz

⎞
⎠ + ∂

∂x

⎛
⎝ 0

Bz/μ
Dy/ε

⎞
⎠ + ∂

∂ y

⎛
⎝ −Bz/μ

0
−Dx/ε

⎞
⎠ = 0. (3.4)

These are the simplified equations for which we will develop the DG(TD)2 schemes below. We stress that this restriction to 
a two-dimensional Cartesian setting is done for the technical feasibility of the von Neumann stability analysis below. The 
DG(TD)2 schemes would in principle be generalizable to three dimensions and the practically relevant unstructured meshes. 
However, this would be beyond the scope of the present publication.

In the rest of the section, we show how the DGTD schemes that were documented in Sections 3 and 4 of Balsara and 
Käppeli [18] can now be extended to yield DG(TD)2 schemes. We only need to demonstrate this for second order because 
the process becomes self-evident after that. This extension is shown in Sub-section 3.1. In Sub-section 3.2 we present 
the von Neumann stability analysis for such a second order DG(TD)2 scheme, showing that it results in a scheme with 
dissipation and dispersion that are an improvement over those of a DGTD scheme with SSP-RK timestepping.

3.1. Second order single-stage DG(TD)2 scheme obtained from second order two stage DGTD scheme

We start by pointing out that the DGTD and the here presented DG(TD)2 schemes are not traditional DG schemes for 
conservation laws due to the curl-type CED equations and their constraint-preservation properties. Therefore, we call them 
DG-like schemes. We refer to Section II of Balsara and Käppeli [14] for a detailed comparison between the DG-like schemes 
and a traditional DG scheme.

Although we are interested in two-dimensional schemes, we begin by outlining the schemes on a three-dimensional 
mesh. This is important to appreciate the constraint-preserving DG-like formulation. The restriction to two dimensions and 
the TEz mode follows then easily. One computational zone of a uniform Cartesian three-dimensional mesh with zone widths 
�x, �y, �z is shown in Fig. 1. The zone spans the domain [−�x/2,+�x/2] × [−�y/2,+�y/2] × [−�z/2,+�z/2]. Let n̂
be the unit outward pointing normal of a face (of the considered zone) and An be the face’s area. Concretely, say we take 
the right x-face in Fig. 1 that contains the field component Dx we wish to evolve with Eq. (3.1). Then n̂ = x̂ and An = �y�z
is the area of the face. Now say we take the upper y-face in Fig. 1 that contains the field component Dy we wish to evolve 
with Eq. (3.1). Then n̂ = ŷ and An = �x�z is the area of the face. In order to find the evolution equations for the field 
components, we project Eq. (3.1) into a space of test functions. The test functions will be identical to the trial functions and 
will be made explicit below. To make the DG-like projection, we first multiply the extended Ampère’s law Eq. (3.1) with a 
test function φ. Then we restrict the attention to the face An by taking the scalar product with the unit normal n̂ of that 
face. Next, we integrate over the considered face to get
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Fig. 1. Shows us that the primal variables of the DG scheme, given by the normal components and their higher moments for the magnetic induction and 
electric displacement field. These variables are facially-collocated and are explicitly shown in the figure for the two-dimensional second order accurate 
DG scheme. They undergo an update from Faraday’s law and the generalized Ampere’s law respectively. The components of the primal magnetic induction 
vector and its higher moments are shown by the thick blue arrows while the components of the primal electric displacement vector and its higher moments 
are shown by the thick red arrows. The edge-collocated electric displacement fields, which are used for updating the facial magnetic induction components, 
are shown by the thin blue arrows close to the appropriate edge. The edge-collocated magnetic induction fields, which are used for updating the facial 
electric displacement components, are shown by the thin red arrows close to the appropriate edge. (For interpretation of the references to color in this 
figure, the reader is referred to the web version of this article.)

∂

∂t

⎛
⎜⎝

∫
An

(
n̂ ·D)

φdAn

⎞
⎟⎠ − 1

μ

∫
∂ An

(φB) · dl+ 1

μ

∫
An

n̂ · [(∇φ) × B]dAn = 0 (3.5)

where the elementary vector identity

∇ × (φD) = (∇φ) ×D+ φ∇ ×D (3.6)

and Stokes’ theorem were used. The boundary of the face is denoted by ∂ An and the infinitesimal line element by dl. Eqn. 
(3.5) is the desired Galerkin projection applied to Ampère’s law Eq. (3.1) (a curl-type equation) at a face of the mesh. The 
second term is a numerical flux integrated along the edges of the face under consideration. Realize that at the edges, four 
states (from four neighboring zones) come together. This requires the usage of a multidimensional Riemann solver. (Note 
that this is also the case in a two-dimensional setting when a z-edge collapses to a vertex in the xy-plane.) This term 
is analogous to the numerical flux term in a traditional DG scheme. The third term is an integral over the face and it is 
analogous to the volume term in a traditional DG scheme.

Along the same lines, one derives a Galerkin projection applied to Faraday’s law Eq. (3.2) at a face of the mesh:

∂

∂t

⎛
⎜⎝

∫
An

(
n̂ · B)

φdAn

⎞
⎟⎠ + 1

ε

∫
∂ An

(φD) · d�� − 1

ε

∫
An

n̂ · [(∇φ) ×D]dAn = 0. (3.7)

Next, we specialize the discussion to the here relevant two-dimensional case by suppressing any variation in the z-direction.
From Fig. 1, we see that the second order accurate representation of the x-component of the displacement vector at 

x = �x/2 is given by

Dx (y, t) = Dx
0 (t) + Dx

y (t)

(
y

�y

)
. (3.8)

The trial functions are φ (y) = 1 and φ (y) = (y/�y), i.e. the zeroth and first orthogonal Legendre polynomials over the 
interval [−�y/2, +�y/2]. Similarly, the second order accurate representation of the y-component of the displacement 
vector at y = �y/2 is given by

Dy (x, t) = Dy
0 (t) + Dy

x (t)
( x

�x

)
. (3.9)

The trial functions are φ (x) = 1 and φ (x) = (x/�x), i.e. the zeroth and first orthogonal Legendre polynomials over the 
interval [−�x/2, +�x/2]. In like fashion, the second order accurate representation of the z-component of the magnetic 
induction vector is represented in the xy-plane as
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Bz (x, y, t) = Bz
0 (t) + Bz

x (t)
( x

�x

)
+ Bz

y (t)

(
y

�y

)
. (3.10)

The trial functions are φ (x, y) = 1, φ (x, y) = (x/�x) and φ (x, y) = (y/�y), i.e. orthogonal Legendre polynomials over 
[−�x/2, +�x/2] × [−�y/2, +�y/2]. Observe that in keeping with the philosophy for Discontinuous Galerkin schemes, all 
the modes/trial functions in the above three equations have been endowed with time-dependence. This ensures that as the 
order of accuracy is increased, the DG schemes approach spectral accuracy.

The evolution equations for the modes of the x-component of the displacement vector at x = �x/2 are then obtained by 
instantiating Eq. (3.5). With n̂ = x̂ and the test function φ (y) = 1, Eq. (3.5) gives us

dDx
0 (t)

dt
= 1

μ

1

�y

[
Bz∗∗

(x = �x/2, y = �y/2) − Bz∗∗
(x = �x/2, y = −�y/2)

]
. (3.11a)

Likewise, with n̂ = x̂ and the test function φ (y) = (y/�y) in Eq. (3.5) we get

dDx
y (t)

dt
= 1

μ

6

�y

[
Bz∗∗

(x = �x/2, y = �y/2) + Bz∗∗
(x = �x/2, y = −�y/2)

]

− 1

μ

12

�y

〈
Bz∗ (x = �x/2, y)

〉 (3.11b)

Here Bz∗∗
(x = �x/2, y = �y/2) and Bz∗∗

(x = �x/2, y = −�y/2) are magnetic induction components that are obtained at 
the two endpoints of the right x-face. They are obtained by the application of a two-dimensional Riemann solver at the 
edges of the mesh (explicit expressions are given below). Also notice that the terms within angled brackets 〈〉, represent 
suitably high order line averages within a face, i.e.

〈
Bz∗ (x = �x/2, y)

〉
= 1

�y

+�y/2∫
−�y/2

Bz∗ (x = �x/2, y)dy.

These terms with an angled bracket are to be obtained with a suitably high order quadrature over each face of the mesh. 
In this work, since the z-variation is suppressed, we use the well-known one-dimensional Gauss-Legendre quadrature 
to carry out the facial integrals. One-dimensional Riemann problems in the right face being considered will furnish the 
Bz∗ (x = �x/2, y) component of the magnetic induction field that is to be used in the angled brackets. These Riemann prob-
lems are solved at each of the quadrature points in the x-face. Let the two states have subscripts L (for left) and R (for 
right). Then Bz∗ (x = �x/2, y) is given explicitly by

Bz∗ = 1

2

(
Bz
L + Bz

R

) − 1

2c

(
Dy

R/ε − Dy
L /ε

)
. (3.12)

The evolution equations for the modes of the y-component of the displacement vector at y = �y/2 are obtained by 
instantiating Eq. (3.5). Using n̂ = ŷ and the test function φ (x) = 1, Eq. (3.5) then gives us

dD y
0 (t)

dt
= − 1

μ

1

�x

[
Bz∗∗

(x = �x/2, y = �y/2) − Bz∗∗
(x = −�x/2, y = �y/2)

]
. (3.13a)

With n̂ = ŷ and the test function φ (x) = (x/�x) in Eq. (3.5) we get

dD y
x (t)

dt
= − 1

μ

6

�x

[
Bz∗∗

(x = �x/2, y = �y/2) + Bz∗∗
(x = −�x/2, y = �y/2)

]

+ 1

μ

12

�x

〈
Bz∗ (x, y = �y/2)

〉 (3.13b)

Here again, Bz∗∗
(x = �x/2, y = �y/2) and Bz∗∗

(x = −�x/2, y = �y/2) are magnetic induction components that are ob-
tained at the endpoints of the upper y-face. They are obtained by the application of a two-dimensional Riemann solver at 
the edges of the mesh (explicit expressions are given below). One-dimensional Riemann problems in the upper face being 
considered will furnish the Bz∗ (x, y = �y/2) component of the magnetic induction field that is to be used in the angled 
brackets:

〈
Bz∗ (x, y = �y/2)

〉
= 1

�x

+�x/2∫
−�x/2

Bz∗ (x, y = �y/2)dx.

These Riemann problems are solved at each of the quadrature points in the y-face. Let the two states have subscripts D (for 
down) and U (for upper). Then Bz∗ (x, y = �y/2) is given explicitly by
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Fig. 2. For the second order DG(TD)2 scheme, we plot out the dissipation and dispersion for electromagnetic waves that span five and ten zones. For 
comparison purposes, we also show the same information for second order DGTD with SSP-RK timestepping and second order FDTD schemes. Figs. 2a and 
2b show the dissipation and dispersion for waves that span five zones and propagate at all possible directions on a Cartesian mesh. Figs. 2c and 2d show 
the dissipation and dispersion for waves that span ten zones and propagate at all possible directions on a Cartesian mesh.

Bz∗ = 1

2

(
Bz
D + Bz

U

) + 1

2c

(
Dy

U /ε − Dy
D/ε

)
. (3.14)

The two-dimensional Riemann solver will provide the magnetic induction Bz∗∗
(x = ±�x/2, y = ±�y/2) at the edges of 

the mesh. Let the four states that come together be labeled by subscripts RU (for right-upper), LU (for left-upper), LD (for 
left-down) and RD (for right-down). Then Bz∗∗

(x = �x/2, y = �y/2) is given explicitly by

Bz∗∗ = 1

4

(
Bz
LD + Bz

LU + Bz
RD + Bz

RU

)

+ 1

2c

(
1

2

(
Dx

LU /ε + Dx
RU /ε

) − 1

2

(
Dx

LD/ε + Dx
RD/ε

))

− 1

2c

(
1

2

(
Dy

RD/ε + Dy
RU /ε

) − 1

2

(
Dy

LD/ε + Dy
LU/ε

))
. (3.15)

We refer to Balsara et al. [15], [16] for complete derivation and further details.
Eqs. (3.11a) and (3.13a) taken together also ensure that the mean electric displacement field components within the 

faces of the mesh preserve the constraint-preserving property at a discrete level. In other words, we retrieve the traditional 
Yee-type update.

The evolution equations for the modes of the z-component of the magnetic induction are obtained by instantiating Eq. 
(3.7) at a z-face. Note that suppressing the z-variation implies that both the near and far z-faces of Fig. 1 have the same 
z-component of the magnetic induction vector, thus ensuring that the solenoidality constraint in Eq. (3.3) is always satisfied 
for the magnetic induction. (The far z-face in Fig. 1 is not shown.) With n̂ = ẑ and the test function φ (x, y) = 1 in Eq. (3.7)
then gives us

dBz
0 (t)

dt
= −1

ε

1

�x

[〈
Dy∗

(x = �x/2, y)
〉
−

〈
Dy∗

(x = −�x/2, y)
〉]

+ 1 1 [〈
Dx∗

(x, y = �y/2)
〉
−

〈
Dx∗

(x, y = −�y/2)
〉] (3.16a)
ε �y
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Alike, with n̂ = ẑ and the test function φ (x, y) = (x/�x) in Eq. (3.7) also gives us

dBz
x (t)

dt
= −1

ε

6

�x

[〈
Dy∗

(x = �x/2, y)
〉
+

〈
Dy∗

(x = −�x/2, y)
〉]

+ 1

ε

12

�y

[〈
(x/�x) Dx∗

(x, y = �y/2)
〉
−

〈
(x/�x) Dx∗

(x, y = −�y/2)
〉]

+ 1

ε

12

�x

{
Dy (x, y)

} (3.16b)

And finally, with n̂ = ẑ and the test function φ (x, y) = (y/�y) in Eq. (3.7) further gives us

dBz
y (t)

dt
= −1

ε

12

�x

[〈
(y/�y) Dy∗

(x = �x/2, y)
〉
−

〈
(y/�y) Dy∗

(x = −�x/2, y)
〉]

+ 1

ε

6

�y

[〈
Dx∗

(x, y = �y/2)
〉
+

〈
Dx∗

(x, y = −�y/2)
〉]

− 1

ε

12

�y

{
Dx (x, y)

} (3.16c)

From the above three equations, note that angled brackets again represent suitably high order line averages in the edges 
that surround the z-face. Notice that the angled brackets in the above three equations contain the electric displacements 
obtained from one-dimensional Riemann solvers. In x-direction we have two states, labeled by L (for left) and R (for right), 
coming together. The solution of the one-dimensional Riemann problem is then given explicitly by

Dy∗ = 1

2

(
Dy

L + Dy
R

) − cε

2

(
Bz
R − Bz

L

)
. (3.17)

Likewise, in y-direction we have two states, labeled by D (for down) and U (for upper), coming together. The solution of 
the resulting one-dimensional Riemann problem is

Dx∗ = 1

2

(
Dx

D + Dx
U

) + cε

2

(
Bz
U − Bz

D

)
. (3.18)

Also notice the introduction of curly brackets, i.e. {}, in Eqs. (3.16b) and (3.16c). These curly brackets denote suitably high 
order area averages within the z-face of Fig. 1:

{
Dx (x, y)

} = 1

�x�y

+�x/2∫
−�x/2

+�y/2∫
−�y/2

Dx (x, y)dxdy.

As always, they have to be obtained via a suitably high order two-dimensional quadrature formula. Notice that in order to 
compute the angled brackets along the edges and the curly brackets over the faces, the electric displacement components 
Dx and Dy are needed at all locations in the zone. This is obtained by the constraint-preserving reconstruction developed 
in Section III of Balsara et al. [15].

Up to this point, the narrative in the previous three paragraphs, i.e. the narrative surrounding Eqs. (3.11), (3.13), (3.16), 
tracks the narrative in Balsara and Käppeli [18]. However, notice that in Balsara et al. [20] a new type of invention was 
made. It was based on a multidimensional GRP solver. The multidimensional GRP solver sits on top of the multidimensional 
Riemann solver. The multidimensional GRP solver takes in not just the input states of the multidimensional Riemann solver 
but also their spatial derivatives. For a very small increase in computational complexity, the multidimensional GRP solver returns 
not just the starred and double starred variables in Eqs. (3.11), (3.13), (3.16) but also their time-derivatives. As a result, if 
we think of Eqs. (3.11), (3.13), (3.16) as being analogous to Eq. (2.1) then we realize that the right-hand sides of those 
equations give us the analogue of F (U). Now realize that the multidimensional GRP solver gives us the time-derivative of 
the right-hand sides of Eqs. (3.11), (3.13), (3.16); i.e. the analogue of Ḟ (U). As a result, a second order accurate in space and 
time scheme can be devised by the following time-stepping strategy

Un+1 = Un + �tF
(
Un) + �t2

2
Ḟ
(
Un) (3.19)

The point to be emphasized is that this is all achieved with a very small increase in computational cost. But there is a catch 
which is easy to miss. The update must be truly multidimensional, in keeping with the fact that the governing PDE is also 
truly multidimensional.

For the sake of completeness, we now give explicit expressions for the time-derivatives obtained from the multidimen-
sional GRP solver. We specialize the expressions for the here considered simplified CED equations. For a complete derivation 
and full generality, we refer to Balsara et al. [20]. Let us begin with the time-derivatives of the right-hand sides of Eqs. 
(3.11) and (3.13). For the right x-face at x = +�x/2 with a left (L) and right (R) state interacting, the time-derivative of the 
magnetic induction Ḃ z∗ (x = �x/2, y) is given explicitly by
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Ḃ z∗ = −
[

1

2ε

((
∂Dy

∂x

)
L
+

(
∂Dy

∂x

)
R

)
− c

2

((
∂Bz

∂x

)
R

−
(

∂Bz

∂x

)
L

)]

+
[

1

2ε

((
∂Dx

∂ y

)
L
+

(
∂Dx

∂ y

)
R

)] (3.20)

For the upper y-face at y = +�y/2 with a down (D) and upper (U) state interacting, the time-derivative of the magnetic 
induction Ḃ z∗(x, y = �y) is given explicitly by

Ḃ z∗ = −
[

1

2ε

((
∂Dy

∂x

)
D

+
(

∂Dy

∂x

)
U

)]

+
[

1

2ε

((
∂Dx

∂ y

)
D

+
(

∂Dx

∂ y

)
U

)
+ c

2

((
∂Bz

∂ y

)
U

−
(

∂Bz

∂ y

)
D

)] (3.21)

Eqs. (3.20) and (3.21) are the time-derivatives of Eqs. (3.12) and (3.14), respectively. For the time-derivative of the magnetic 
induction along the edges of the mesh with right-upper (RU), left-upper (LU), left-down (LD) and right-down (RD) states 
interacting, the time-derivative Ḃ z∗∗

(x = ±�x/2, y = ±�y/2) is explicitly given by

Ḃ z∗∗ = − 1

4ε

((
∂Dy

∂x

)
LD

+
(

∂Dy

∂x

)
LU

+
(

∂Dy

∂x

)
RD

+
(

∂Dy

∂x

)
RU

)

+ c

4

((
∂Bz

∂x

)
RD

+
(

∂Bz

∂x

)
RU

−
(

∂Bz

∂x

)
LD

−
(

∂Bz

∂x

)
LU

)

+ 1

4ε

((
∂Dx

∂x

)
RU

−
(

∂Dx

∂x

)
RD

−
(

∂Dx

∂x

)
LU

+
(

∂Dx

∂x

)
LD

)

+ 1

4ε

((
∂Dx

∂ y

)
LD

+
(

∂Dx

∂ y

)
LU

+
(

∂Dx

∂ y

)
RD

+
(

∂Dx

∂ y

)
RU

)

+ c

4

((
∂Bz

∂ y

)
LU

+
(

∂Bz

∂ y

)
RU

−
(

∂Bz

∂ y

)
LD

−
(

∂Bz

∂ y

)
RD

)

− 1

4ε

((
∂Dy

∂ y

)
RU

−
(

∂Dy

∂ y

)
LU

−
(

∂Dy

∂ y

)
RD

+
(

∂Dy

∂ y

)
LD

)

(3.22)

Eqn. (3.22) is the time-derivative of Eq. (3.15). Next let us focus on the time-derivatives of the right-hand sides of Eqs. 
(3.16). For the right x-face at x = +�x/2 with a left (L) and right (R) state interacting, the time-derivative of the electric 
displacement Ḋ y∗

(x = �x/2, y) is given explicitly by

Ḋ y∗ = − c2ε

2

((
∂Bz

∂x

)
L
+

(
∂Bz

∂x

)
R

)
+ c

2

((
∂Dy

∂x

)
R

−
(

∂Dy

∂x

)
L

)
(3.23)

For the upper y-face at y = +�y/2 with a down (D) and upper (U) state interacting, the time-derivative of the electric 
displacement Ḋx∗

(x, y = �x/2) is given explicitly by

Ḋx∗ = + c2ε

2

((
∂Bz

∂ y

)
D

+
(

∂Bz

∂ y

)
U

)
+ c

2

((
∂Dx

∂ y

)
U

−
(

∂Dx

∂ y

)
D

)
(3.24)

Eqs. (3.23) and (3.24) are the time-derivatives of Eqs. (3.17) and (3.18), respectively. Note that the spatial derivatives in the 
above expressions are readily obtained from the modes evolved in the DG(TD)2 schemes.

Let us emphasize the last point from the previous two paragraphs in considerable detail; just to make sure that the 
message is driven home. In Eqs. (3.11), (3.13), (3.16), the double starred variables on the right-hand sides will indeed get 
multidimensional updates because they are obtained from a multidimensional GRP solver. That solver will indeed factor in 
all the spatial derivatives and include them in the update using a Cauchy-Kovalevskaya procedure. However, notice that Eqs. 
(3.11b) and (3.13b) also involve single starred variables. If one is using a DGTD update of the sort that is described in Balsara 
and Käppeli [18] then it is indeed acceptable to use a one-dimensional Riemann solver for the update of the angled brackets 
in Eqs. (3.11b) and (3.13b). However, if one is using a DG(TD)2 update of the sort described here, then the time-derivatives 
of the single starred variables in those angled brackets must include the gradients in the directions that are transverse to 
the direction of the GRP in addition to including the gradients that are in the direction of the GRP! A similar consideration 
applies to the single starred variables within the angled brackets in Eqs. (3.16). Furthermore, consider the terms within the 
curly brackets in Eqs. (3.16b) and (3.16c); the terms within those curly brackets must also be updated multidimensionally. It 
is only when all the potential multidimensional effects are included that the resulting DG(TD)2 scheme becomes stable and 
consistent with the governing PDE.

In this Sub-section we have shown how to start with a globally constraint-preserving DGTD scheme for CED and upgrade 
it to yield a globally constraint-preserving DG(TD)2 scheme for CED. In this Sub-section, we have carried out such an exercise 
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in great detail for the second order DGTD scheme in Balsara and Käppeli [18]. We now point out that Section 4 of Balsara 
and Käppeli [18] also describes a globally constraint-preserving third order DGTD scheme and Appendix B of the same paper 
describes an analogous fourth order DGTD scheme. As a result, it is now possible to upgrade those DGTD schemes to yield 
higher order globally constraint-preserving DG(TD)2 schemes for CED.

3.2. von Neumann stability of the second order, single-stage DG(TD)2 scheme

Eqn. (3.19) from the previous Sub-section can be combined with the analysis in Sub-section 3.2 from Balsara and Käppeli 
[18]. This gives us a strategy for carrying out a von Neumann stability analysis of the second order, single-stage DG(TD)2
scheme described in the previous Sub-section. The scheme has a maximal CFL number of 0.25. The same CFL was obtained 
in Balsara and Käppeli [18] where second order SSP-RK timestepping was conjoined with DG schemes for CED. We see, 
therefore, that the CFL stemming from the use of TDRK timestepping is the same as the CFL stemming from the use of 
SSP-RK timestepping.

In CED we would like electromagnetic waves to propagate as isotropically as possible relative to the computational mesh. 
They should propagate with speeds that are as close as possible to the speed of light. Since electromagnetic waves are not 
dissipated as they propagate in perfect insulators with uniform dielectric properties, we want the dissipation of the numer-
ical scheme to be as small as possible. Moreover, we would like all these desirable properties to hold for electromagnetic 
waves with a wavelength that spans as few zones as possible. We are helped in this regard by the fact that our DG(TD)2
scheme is linear, at least when limiters are not used. The von Neumann stability analysis can give us an abundance of 
insights with regard to electromagnetic wave propagation on a Cartesian computational mesh. Operationally, we work on 
a Cartesian mesh with �x = �y. Fig. 4.2 from Taflove and Hagness [57] presents a von Neumann analysis-based study of 
electromagnetic wave propagation in FDTD, thereby providing the motivation for an analogous study in this section. We 
now ask the important question: Does the resulting scheme give us any advantage in terms of dissipation or dispersion?

For the results shown in this Sub-section, we held the CFL number to be 95% of the maximal allowable CFL number. 
For each direction of electromagnetic wave propagation, the von Neumann stability analysis then gives us an amplification 
factor which is the largest absolute value of the eigenvalues of the amplification matrix. It also gives us a phase speed for 
the propagation of the waves. Ideally, we want the amplification factor to be as close to unity as possible. We also want 
the phase speed of the waves to be as close to the speed of light as possible. For the second order DG(TD)2 scheme, we 
plot out the dissipation and dispersion for electromagnetic waves that span five and ten zones. For comparison purposes, 
we also show the same information for second order DGTD with SSP-RK timestepping and second order FDTD schemes. 
Figs. 2a and 2b show the dissipation and dispersion for waves that span five zones and propagate at all possible directions 
on a Cartesian mesh. Figs. 2c and 2d show the dissipation and dispersion for waves that span ten zones and propagate 
at all possible directions on a Cartesian mesh. We see that the Yee scheme is dissipation-free, as expected for a scheme 
that uses a symplectic (leap frog) time update strategy. But we also happily notice from Figs. 2a and 2c that the second 
order DG(TD)2 scheme has lower dissipation compared to second order DGTD scheme from Balsara and Käppeli [18] that 
utilizes SSP-RK timestepping. We attribute that to the fact that the time update for the second order DG(TD)2 scheme in 
Eq. (3.19) is better centered in time. Now let us compare Figs. 2b and 2d for the dispersion properties of the schemes that 
we are considering. We clearly see that all second order DG schemes offer better dispersion properties compared to the 
second order FDTD scheme. Furthermore, we find that the second order DG(TD)2 scheme offers more isotropic propagation 
of electromagnetic radiation compared to the second order DGTD scheme from Balsara and Käppeli [18] that utilizes SSP-RK 
timestepping. This shows us that DG(TD)2 schemes have some desirable properties which could even be improved on as we 
go to higher orders. The narrative in this Sub-section has, therefore, given us incentive to develop DG(TD)2 schemes with 
even higher orders of accuracy.

4. Optimal DG(TD)2 schemes at third order

In this section we demonstrate how the two-stage TDRK timestepping scheme from Sub-section 2.1 can be optimized to 
yield a third order, two-stage DG(TD)2 scheme for CED. In this paper we show how the resulting scheme can be optimized 
to have some desirable features. These schemes derive their value from the fact that much of the information that is used in 
the construction of a Riemann solver can indeed be re-used in the construction of the GRP solver. As a result, one gets the 
GRP solver for only a mild amount of additional cost compared to a Riemann solver. But the payoff, in terms of improved 
CFL, lower dissipation and lower dispersion can be substantial.

This section has been split into two sub-sections. Sub-section 4.1 describes the optimization of the third order, two-stage 
DG(TD)2 scheme. Sub-section 4.2 describes the results from the von Neumann stability analysis of the third order, two-stage 
DG(TD)2 scheme.

4.1. Optimization of the third order, two-stage DG(TD)2 scheme

We would, of course, like to maximize the CFL. But we would also like to maximize the CFL within the context of 
obtaining a scheme that has low dissipation and low dispersion. This identifies the desirable features that we would pick 
out, though to some extent the choice is subjective. In Sub-section 2.1 we identified a two-parameter (u1,u2) space. For each 
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Fig. 3. Fig. 3a shows the permitted CFL in the two-parameter space. Figs. 3b and 3c show us the maximum dissipation and dispersion error that an 
electromagnetic wave spanning five zones would have if it were propagated at any angle on a Cartesian mesh. Figs. 3d and 3e show us the maximum 
dissipation and dispersion error that an electromagnetic wave spanning ten zones would have if it were propagated at any angle on a Cartesian mesh.

point in this space we can evaluate one or the other desirable feature. Fig. 3a shows the permitted CFL in the two-parameter 
space. Figs. 3b and 3c show us the maximum dissipation and dispersion errors that an electromagnetic wave spanning five 
zones would have if it were propagated at any angle on a Cartesian mesh. Figs. 3d and 3e show us the maximum dissipation 
and dispersion errors that an electromagnetic wave spanning ten zones would have if it were propagated at any angle on 
a Cartesian mesh. Such plots can be obtained from a von Neumann stability analysis of the DG scheme. For our purposes, 
the lowest possible dissipation corresponds to an amplification factor of unity, as obtained from the von Neumann stability 
analysis. Consequently, Figs. 3b and 3d plot out the maximum of the absolute value of the deviation of the amplification 
factor from unity. Furthermore, for our purposes, the lowest possible dispersion corresponds to a phase of propagation that 
coincides with the speed of light. For the phase error we evaluate the fractional deviation of the numerical phase speed 
ν̃p from the speed of light c (i.e., we consider (ν̃p − c)/c). These deviations can again be obtained from the von Neumann 
stability analysis. Consequently, Figs. 3c and 3e plot out the maximum of the absolute value of the deviation in the fractional 
phase speed from zero. In other words, optimal wave propagation with the true speed of light would cause the deviation in 
the phase speed to become zero.

Fig. 3a shows us the region of parameter space where the CFL is colorized for each point in parameter space. The 
sub-regions of parameter space where the CFL is close to maximum is shown by a deep red color in Fig. 3a. However, let 
us also focus on Figs. 3b and 3c which colorize the dissipation and dispersion errors. Since the dissipation is the more 
important parameter, we overplot on Fig. 3b the contours that correspond to a maximum deviation of the amplification 
factor from unity by two parts in a thousand and three parts in a thousand. Since the waves in Figs. 3d and 3e span ten 
zones, we overplot on Fig. 3d the contours that correspond to a maximum deviation of the amplification factor from unity 
by one part in ten-thousand and three parts in ten-thousand. We see that, generally speaking, the dissipation becomes 
smaller as we move in a north-easterly direction in Figs. 3b and 3d. Likewise, the phase accuracy improves as we move 
in a north-easterly direction in Figs. 3c and 3e. Now let us circle back to Fig. 3a. We realize that the ranges of parameters 
that would give us exceptionally low dissipation and exceptionally low dispersion would also force us to settle for an 
exceptionally low CFL. This is why we have to optimize our choices. We do that next.

We see from Fig. 3a that we could get a CFL that is as large as 0.34. However, from Figs. 3b and 3d we see that such a 
scheme would have substantial dissipation. Similarly, we see from Figs. 3c and 3e that the scheme would have substantial 
dispersion. We therefore ask, “What is the acceptable range of CFLs that we could tolerate, and furthermore, where in the 
two-parameter plot of Fig. 3a are those CFLs reached?”. The two solid curves in Fig. 3a correspond to a CFL of 0.162, which 
was the largest CFL that Balsara and Käppeli [18] found for three-stage, SSP-RK-based, DGTD schemes for CED. To show some 
advantage in our new two-stage DG(TD)2 scheme, we would like it to match or improve on the CFL of the SSP-RK-based, 
DGTD scheme (recall that the latter scheme had a limiting CFL of 0.162). That is why we overplotted the solid lines in 
Fig. 3a. The colors in Fig. 3a prevent us from seeing the overplotted lines very clearly, which is why we present Fig. 4. In 
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Fig. 4. In Fig. 4 we remove the colorization from Fig. 3a, we retain the blue solid lines from Fig. 3a and we also overlay, as two red curves, the lower 
contour from Fig. 3b. Apart from that, Fig. 4 shows the same two-parameter space as Fig. 3a. The magenta, blue and green circles that are shown in Fig. 4
identify a reasonable search space where we will look for optimal schemes with the aid of the human eye and human intuition. The green diamond shows 
the location of the fourth order scheme. The red cross shows the location of the scheme that produces the largest CFL.

Fig. 4 we remove the colorization from Fig. 3a, we retain the blue solid lines from Fig. 3a and we also overlay, as red curves, 
the lower contour from Fig. 3b. Apart from that, Fig. 4 shows the same two-parameter space as Fig. 3a. (The lower contour 
in Fig. 3d is not as restrictive as the lower contour in Fig. 3b, which is why we show only the lower contour from Fig. 3b.) 
An optimal scheme should lie north-east of that lower contour in Fig. 4 and it should also retain a robust CFL. We, therefore, 
see that the range of parameters where we would get optimal schemes is indeed very limited – but it is not a null set! The 
logic of this paragraph and the previous paragraph illustrates that an optimal region can be found and that it can be found 
simply by asking a computer to span a very large parameter space. I.e. the machine teaches us where to look for optimal 
schemes. The magenta, blue and green circles that are shown in Fig. 4 identify a reasonable search space where we will 
look for optimal schemes with the aid of the human eye and human intuition. The green diamond shows the location of 
the fourth order scheme. Clearly, we see that the fourth order scheme will have too small a CFL; i.e. a CFL of 0.1323 which 
is less than 0.162. The red cross shows the location in parameter space of the scheme that produces the largest CFL of 0.34.

4.2. von Neumann stability of the third order, two-stage DG(TD)2 scheme

The next step in the optimization process requires combining human intuition and an optimization algorithm.
First let us start with human intuition. For each of the circles that we identified in Fig. 4, we plot out the dissipation and 

dispersion for electromagnetic waves that span five and ten zones. Figs. 5a and 5b show the dissipation and dispersion for 
waves that span five zones and propagate at all possible directions on a Cartesian mesh. Figs. 5c and 5d show the dissipation 
and dispersion for waves that span ten zones and propagate at all possible directions on a Cartesian mesh. The black curves 
in Fig. 5 show the third order, three-stage SSP-RK-based, DGTD scheme from Balsara and Käppeli [18]. The green curves in 
Fig. 5 show the use of a fourth order TDRK timestepping from Eq. (2.8); this scheme has a smaller CFL of 0.1323 and is 
third order accurate in space while retaining fourth order accuracy in time. It corresponds to parameters that are shown by 
the green diamond in Fig. 4. We see that it is an improvement over the third order DGTD scheme from Balsara and Käppeli 
[18]; but it suffers from a smaller CFL. The aquamarine, magenta and blue curves in Fig. 5 correspond to the parameters 
shown with the aquamarine, magenta and blue circles in Fig. 4. The red curves in Fig. 5 show the scheme that has the 
optimal CFL of 0.34 and corresponds to the red cross in Fig. 4.

We can now begin to understand the different schemes that we have generated using our human intuition. Let us first 
focus on the red curves in Fig. 5. These curves correspond to the two-stage, third-order DG(TD)2 scheme that has the largest 
possible CFL. While we would be inclined to like this scheme based on the machine search, Figs. 5a and 5c show us that the 
scheme only achieves its large CFL at the expense of introducing substantial dissipation. Furthermore, we see that waves 
that are propagating in mesh-aligned directions will also suffer from dissipation. We would like to have a scheme that 
shows minimal dissipation for wave propagation in mesh-aligned directions. For this reason, we use our human intuition 
to realize that despite the optimal CFL, this scheme is not the most attractive scheme. We also see that the green curve 
in Fig. 5 produces the least overall dissipation. Therefore, if one is willing to tolerate a lower CFL, the third order in space 
DG(TD)2 scheme that uses the fourth order TDRK timestepping from Eq. (2.8) would also be acceptable. Focus now on the 
aquamarine, magenta and blue curves in Figs. 5b and 5d. We see that they have dispersion properties that are slightly 
superior to both the green curve and the black curve. Their CFL is also substantially larger than 0.1323 or 0.162, indicating 
a clear advantage. Now focus on the aquamarine, magenta and blue curves in Figs. 5a and 5c. We see that they have 
substantially lower dissipation compared to the black curve (which is the original third order DGTD scheme from Balsara 
and Käppeli [18])! Clearly, the SSP-RK is a sub-optimal timestepping strategy for CED. We see, however, that the aquamarine, 
magenta and blue curves have dissipation that is slightly inferior to the dissipation in the green curve, as expected. We see, 
therefore, that our optimization exercise has produced several positive results.
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Fig. 5. For each of the dots that we identified in Fig. 4, we plot out the dissipation and dispersion for electromagnetic waves that span five and ten zones. 
The human-optimized schemes are shown. Figs. 5a and 5b show the dissipation and dispersion for waves that span five zones and propagate at all possible 
directions on a Cartesian mesh. Figs. 5c and 5d show the dissipation and dispersion for waves that span ten zones and propagate at all possible directions 
on a Cartesian mesh. The original third order DGTD scheme with SSP-RK timestepping is also shown to provide a point of reference.

The blue dot in Fig. 4 is especially noteworthy because it identifies the parameters that are closest to the green diamond 
in Fig. 4. This also gives us the realization that scheme performance is smoothly varying in many parts of the search space 
(though not in all parts of the search space). Therefore, we get the idea that we can use one optimal scheme to discover 
other contiguous schemes that are optimized to have slightly different advantages. For these reasons we accept the blue dot 
in Fig. 4 as providing us with the optimal scheme. It has (u1,u2) = (0.32,0.43). With this choice of optimized parameters 
we can finally write down the optimal, third order DG(TD)2 scheme by specifying the coefficients in Eq. (2.3) as:

a21 = 43

100
; â21 = 1849

2000
; b1 = 3803

5547
; b2 = 1744

5547
;

b̂1 = 289

6450
; b̂2 = 8

25

(4.1)

This completes our description of the optimized third order DG(TD)2 scheme for CED that was obtained from human intu-
ition. It has a CFL of 0.2085.

We now realize that relying on human intuition is a slow and sub-optimal process. Therefore, we ask a computer to use 
the optimization algorithms in Powell [45], [46] and Johnson [41] to optimize further. Many promising DG(TD)2 schemes 
were found, including one which had dissipation and dispersion that were lower than the one in Eq. (4.1) along with 
offering a larger CFL of 0.2571. We also obtained yet another scheme with a CFL of 0.3265, however, it again proved to have 
larger dissipation and dispersion than we would have liked. For the sake of completeness, Table 1 shows the full set of third 
order coefficients that we obtained along with their CFL. We encourage use of the last row of that table because it offers 
the best compromise between a reasonably large CFL along with very low dissipation and dispersion.

We now document the dissipation and dispersion properties of the optimal DG(TD)2 scheme that we found through 
machine-driven optimization in Fig. 6. To give the reader perspective, we also show the analogous results from original the 
three-stage DGTD scheme from Balsara and Käppeli [18] which uses SSP-RK timestepping. We also show the results from 
the large CFL scheme that the machine found. We see that the dispersion and dissipation properties of the DGTD scheme 
from Balsara and Käppeli [18] are indeed somewhat inferior. The DG(TD)2 scheme with a CFL of 0.2571 has dispersion that 
is comparable to the DG(TD)2 scheme with a CFL of 0.3265. However, the former scheme has dissipation properties that are 
an improvement to the latter scheme, which is why we prefer the former scheme.
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Table 1
Shows the full set of third order coefficients that we obtained along with their CFL. The first 
three rows document schemes that were obtained via human optimization. The last two rows 
document schemes that were obtained via machine optimization.

a21 â21 b1 b2 b̂1 b̂2 CFL
477
625

227529
781250

3925537
5460696

1535159
5460696

2494841
14310000

1111
10000 0.3426

1 1
2

76
135

59
135 − 109

900
49
100 0.1950

43
100

1849
20000

3803
5547

1744
5547

289
6450

8
25 0.2085

5889
10000

34680321
200000000

61140707
104040963

42900256
104040963

2110609
22083750

101
625 0.3265

1057
2000

1117249
8000000

10857001
16758735

5901734
16758735

2904133
31710000

2223
10000 0.2571

Fig. 6. Is identical in spirit to Fig. 5. However, it documents the dissipation and dispersion for electromagnetic waves that span five and ten zones for the 
machine-optimized third order schemes that we have found. The original third order DGTD scheme with SSP-RK timestepping is also shown to provide a 
point of reference.

Please notice that all but one of the schemes in Table 1 have positive coefficients. Only the second row in Table 1 has 
one negative coefficient; and that scheme was obtained by human optimization. In light of the fact that machine-driven 
optimization in Fig. 6 yields improved results to human-driven optimization, we now feel free to use machine-driven opti-
mization in subsequent parts of the paper.

5. Optimal DG(TD)2 schemes at fourth order

We now demonstrate how a three-stage TDRK timestepping scheme from Sub-section 2.2 can be optimized to yield a 
fourth order, three-stage DG(TD)2 scheme for CED that has very desirable features. An examination of Eqs. (2.11) to (2.14)
shows that we have eight equations and twelve free parameters in the TDRK time update. Therefore, it is a four parameter 
optimization and that is out of the scope of human-driven optimization. Consequently, we need to use machine-driven 
optimization using the software mentioned in the previous section. The objective is to maximize the CFL while fulfilling 
the eight order constraints. We will see that it indeed yields a scheme with minimal dissipation and dispersion. Fig. 7
is identical in spirit to Fig. 6. However, it documents the dissipation and dispersion for electromagnetic waves that span 
five and ten zones for the machine-optimized fourth order schemes that we have found. Our optimized DG(TD)2 scheme 
allows a maximum CFL of 0.2322. The original fourth order DGTD scheme with SSP-RK timestepping is also shown in order 
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Fig. 7. Is identical in spirit to Fig. 6. However, it documents the dissipation and dispersion for electromagnetic waves that span five and ten zones for the 
machine-optimized fourth order schemes that we have found. The original fourth order DGTD scheme with SSP-RK timestepping is also shown to provide 
a point of reference.

to provide a point of reference; it allows a maximum CFL of 0.2153. We also show the SSP-TS scheme from Grant et al. 
[35]; which allows a maximum CFL of 0.1936. We see from Fig. 7 that the DG(TD)2 scheme offers the lowest dissipation 
and dispersion amongst the three schemes that we have compared. The other two schemes in Fig. 7 have higher levels of 
dissipation, owing to the fact that they are SSP schemes. Comparing Fig. 7 to Fig. 6, we see that the optimized fourth order 
schemes are better compared to the optimized third order schemes.

Our task is now to document the fourth-order three-stage DG(TD)2 schemes that we have found. Please refer to Eq. (2.10)
for the coefficients. The optimal scheme, which minimizes dissipation and dispersion and permits a large CFL of 0.2322 is 
given by

b1 = 0.40947669189107749; b2 = 8.0434980657990901E-002; b3 = 0.51008832745093169;
b̂1 = 5.4611648326405991E-002; b̂2 = 2.7208570201466540E-003; b̂3 = 5.6078083959227858E-002;
a21 = 0.91883707684724236; a31 = 0.49171927302523588; a32 = 0.12127802834948631;
â21 = 0.42213078689459249; â31 = 6.8195421162713099E-002; â32 = 8.2526755291938963E-003;

(5.1)

For completeness, we also document the timestepping scheme from Grant et al. [35], which has a maximum CFL of 0.1936. 
Notice that because it is an SSP scheme, it has lower CFL and yet a larger amount of dissipation and dispersion. It is given 
by

b1 = 17

48
; b2 = 1

12
; b3 = 27

48
;

b̂1 = 1

24
; b̂2 = 0; b̂3 = 0

a21 = 1; a31 = 14

27
; a32 = 4

27
;

â21 = 1 ; â31 = 2 ; â32 = 0.

(5.2)
2 27
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Table 2
Shows the accuracy analysis for the second-order DG(TD)2 scheme for the propagation of 
an electromagnetic wave in vacuum. A CFL that was 95% of the maximum was used. The 
errors and accuracy in the y-component of the electric displacement vector (measured at 
the y-faces) and z-component of the magnetic induction (measured as zone averages) are 
shown.

Zones Dy L1 error Dy L1 accuracy Dy Linf error Dy Linf accuracy

82 1.74E-04 – 2.76E-04 –
162 3.64E-05 2.25 5.66E-05 2.29
322 8.21E-06 2.15 1.28E-05 2.14
642 1.98E-06 2.05 3.10E-06 2.05
1282 4.88E-07 2.02 7.67E-07 2.02
2562 1.22E-07 2.01 1.91E-07 2.01
5122 3.03E-08 2.00 4.77E-08 2.00

Zones Bz L1 error Bz L1 accuracy Bz Linf error Bz Linf accuracy

82 9.24E-02 – 1.36E-01 –
162 1.89E-02 2.29 2.96E-02 2.20
322 4.32E-03 2.13 6.78E-03 2.13
642 1.05E-03 2.04 1.65E-03 2.04
1282 2.60E-04 2.01 4.08E-04 2.01
2562 6.47E-05 2.00 1.02E-04 2.00
5122 1.62E-05 2.00 2.54E-05 2.00

It is also worth pointing out that the analysis of Grant et al. [35] was not based on having an underlying discretization 
of a PDE, whereas the analysis done here draws on a genuine PDE system. This completes our discussion of fourth-order 
three-stage DG(TD)2 schemes.

6. Numerical tests

In this section, we present a numerical accuracy analysis of the second-, third- and fourth-order accurate DG(TD)2
schemes designed in this paper. We use the same test setup as Balsara et al. [15]. The test problem consists of a plane 
polarized electromagnetic wave propagating in vacuum along the north-east diagonal of a uniformly discretized computa-
tional domain spanning [−1/2,+1/2]2 meter with periodic boundary conditions. The magnetic induction is initialized with 
the following magnetic vector potential

A (x, y, z, t) = 1

2π
sin

[
2π

(
x+ y − √

2ct
)]

ŷ.

The components of the magnetic induction vector are then obtained at the zone faces by the well-known relationship ∇ ×B. 
Likewise, the electric displacement is initialized with an electric vector potential given by

C (x, y, z, t) = − 1

2π
√
2
sin

[
2π

(
x+ y − √

2ct
)]

ẑ

and the components of the electric displacement vector are then obtained at the zone faces by the relation D = cε0(∇ × C). 
Here c is the speed of light and ε0 = 8.85 × 10−12 F/m is the free space permittivity. The problem was run from initial time 
t0 = 0 until t f = 1/

√
2c ≈ 2.3587 × 10−9 seconds when the wave has traveled once through the computational domain.

Tables 2, 3 and 4 show the accuracy analysis for the second-, third- and fourth-order DG(TD)2 schemes. The errors and 
order of accuracy in the y-component of the electric displacement vector and the z-component of the magnetic induction 
are shown at final time t f of the simulation. We observe that all the schemes indeed meet their design order of accuracy. 
As already observed for the RKDG schemes in Balsara and Käppeli [18], our novel DG(TD)2 schemes have the very desirable 
property that they reach their design accuracies at fairly low resolutions.

In the considered idealized setting, Poynting’s theorem implies that Maxwell’s equations conserve the electromagnetic 
energy analytically. However, given the nature of our DG(TD)2 schemes, energy conservation at the discrete level is not 
guaranteed. From the consistency of the schemes with Maxwell’s equation, it is expected that the electromagnetic energy 
is conserved with near-perfect precision in the limit of high numerical resolution, i.e. when the electromagnetic waves are 
resolved by a large number of zones. Given the limitation in computational resources, it is therefore desirable that a scheme 
preserves the electromagnetic energy as well as possible on the smallest number of zones per wavelength.

In order to assess the energy conservation properties of the presented DG(TD)2 schemes, we compute the electromag-
netic energy after one periodic orbit as a function of the number of zones of the computational mesh for the second-, third-
and fourth-order schemes. This is shown in Fig. 8. This figure should be compared to Fig. 9a in Balsara and Käppeli [18]. 
We observe that the new DG(TD)2 schemes have considerably lower energy losses. For a more quantitative comparison, we 
also show the information in tabulated form in Table 5. The latter table has to be compared to the relevant entries (first 
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Table 3
Shows the accuracy analysis for the third-order DG(TD)2 scheme for the propagation of 
an electromagnetic wave in vacuum. A CFL that was 95% of the maximum was used. The 
errors and accuracy in the y-component of the electric displacement vector (measured at 
the y-faces) and z-component of the magnetic induction (measured as zone averages) are 
shown.

Zones Dy L1 error Dy L1 accuracy Dy Linf error Dy Linf accuracy

82 6.28E-05 - 9.15E-05 -
162 7.26E-06 3.11 1.13E-05 3.02
322 8.77E-07 3.05 1.38E-06 3.04
642 1.08E-07 3.02 1.70E-07 3.02
1282 1.35E-08 3.01 2.12E-08 3.01
2562 1.68E-09 3.00 2.64E-09 3.00
5122 2.10E-10 3.00 3.30E-10 3.00

Zones Bz L1 error Bz L1 accuracy Bz Linf error Bz Linf accuracy

82 3.01E-02 - 4.69E-02 -
162 3.69E-03 3.03 5.75E-03 3.03
322 4.57E-04 3.01 7.16E-04 3.01
642 5.70E-05 3.00 8.96E-05 3.00
1282 7.14E-06 3.00 1.12E-05 3.00
2562 8.93E-07 3.00 1.40E-06 3.00
5122 1.12E-07 3.00 1.76E-07 3.00

Table 4
Shows the accuracy analysis for the fourth-order DG(TD)2 scheme for the propagation of 
an electromagnetic wave in vacuum. A CFL that was 95% of the maximum was used. The 
errors and accuracy in the y-component of the electric displacement vector (measured at 
the y-faces) and z-component of the magnetic induction (measured as zone averages) are 
shown.

Zones Dy L1 error Dy L1 accuracy Dy Linf error Dy Linf accuracy

82 6.15E-06 – 9.56E-06 –
162 4.17E-07 3.88 6.54E-07 3.87
322 2.65E-08 3.98 4.15E-08 3.98
642 1.65E-09 4.00 2.60E-09 4.00
1282 1.03E-10 4.00 1.62E-10 4.00
2562 6.45E-12 4.00 1.01E-11 4.00
5122 4.04E-13 4.00 6.35E-13 4.00

Zones Bz L1 error Bz L1 accuracy Bz Linf error Bz Linf accuracy

82 2.49E-03 – 3.71E-03 –
162 1.95E-04 3.67 3.03E-04 3.61
322 1.32E-05 3.88 2.07E-05 3.87
642 8.56E-07 3.95 1.34E-06 3.95
1282 5.42E-08 3.98 8.51E-08 3.98
2562 3.41E-09 3.99 5.36E-09 3.99
5122 2.15E-10 3.99 3.37E-10 3.99

Fig. 8. Shows the electromagnetic energy after one periodic orbit as a function of number of zones along one direction of the two-dimensional mesh for 
second- (blue line), third- (green line) and fourth-order (red line) DG(TD)2 schemes.
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Table 5
Shows the quantitative values of the magnetic energy at the end of the simulation for the simulations documented in 
Fig. 8. We show the order of the scheme (and reconstruction strategy) and the kind of timestepping in the first two 
columns. The remaining columns show the resolution of the mesh and the electromagnetic energy in the simulation 
at the end of the run.
Scheme Timestepping 8× 8 zones 16× 16 zones 32× 32 zones 64× 64 zones 128 × 128 zones

DG P = 1 TDRK(1, 2) 0.880 0.982 0.998 1.000 1.000
DG P = 2 TDRK(2, 3) opt. 0.900 0.988 0.999 1.000 1.000
DG P = 3 TDRK(3, 4) opt. 0.995 1.000 1.000 1.000 1.000

Table 6
Shows the runtime (wall-clock) ratios between DG(TD)2 schemes with optimized TDRK timestep-
ping and the DGTD schemes with SSP-RK timestepping. The second order schemes use TDRK(1, 
2)/SSP-RK2 timestepping. The third order schemes use TDRK(2, 3) opt./SSP-RK3 timestepping. The 
fourth order schemes use TDRK(3, 4) opt./SSP-RK(5, 4) timestepping.

Zones DG P = 1, TDGTD/TDG(TD)2 DG P = 2, TDGTD/TDG(TD)2 DG P = 3, TDGTD/TDG(TD)2

82 1.00 1.36 1.61
162 1.31 1.58 1.53
322 1.29 1.29 1.44
642 1.19 1.66 1.53
1282 1.51 1.34 1.29
2562 1.85 1.58 1.52
5122 1.42 1.66 1.45

three rows) in Table 15 of Balsara and Käppeli [18]. Here also we observe that the DG(TD)2 schemes enjoy improved energy 
preservation properties especially at low resolution. However, please note that the quadratic energy preservation for the DG 
schemes in Balsara and Käppeli [18] was already quite excellent; so the present DG(TD)2 schemes improve on an already 
salutary situation.

In order to illustrate the computational advantage of the presented DG(TD)2 schemes, we present runtime (wall-clock) 
ratios between the new schemes and the DGTD with SSP-RK timestepping schemes from Balsara and Käppeli [18]. The 
runtimes were measured on identical machines of the EULER cluster at ETHZ. Moreover, all schemes were implemented 
within the same computer code in order to avoid (as much as possible) any systematic bias stemming from software design 
and implementation. The results are displayed in Table 6. We note that the DG(TD)2 schemes show a substantial increase in 
computational efficiency on the considered simple test problem.

7. Conclusions

In this paper we have achieved three main goals applied to CED. First, we have shown how the recent globally constraint-
preserving DG schemes by Balsara and Käppeli [14], [18] can be meld together with two recent advances. The first advance 
is the recently developed multidimensional Generalized Riemann Problem (GRP) solver for CED by Balsara et al. [20]. The 
second advance is the use of Two-Derivative Runge-Kutta (TDRK) timestepping. The resulting schemes have been named 
DG(TD)2, where the first “TD” stands for Time-Derivative and the second “TD” for TDRK timestepping. We have thoroughly 
described the novel schemes in a two-dimensional Cartesian setting. Second, we have used the free parameters in TDRK 
timestepping to achieve uniformly large CFL with increasing order of accuracy while minimizing the dissipation and disper-
sion errors. And thirdly, we have documented the von Neumann stability analysis of the DG(TD)2 schemes and quantified 
in detail their dissipation and dispersion properties.

At second order we find a DG(TD)2 scheme with CFL of 0.25 and improved dissipation and dispersion properties; for a 
second order scheme. At third order we present a novel DG(TD)2 scheme with CFL of 0.2571 and improved dissipation and 
dispersion properties; for a third order scheme. At fourth order we find a DG(TD)2 scheme with CFL of 0.2322 and improved 
dissipation and dispersion properties. As an extra benefit, the resulting DG(TD)2 schemes for CED require fewer synchro-
nization steps on parallel supercomputers than comparable DGTD schemes for CED. We also document some test problems 
to show that the methods achieve their design accuracy. The new DG(TD)2 schemes also show excellent preservation of 
quadratic electromagnetic energy on the computational mesh.

It would be interesting to combine the present approach to classical RKDG schemes without constraint-preserving prop-
erties, as used e.g. in Computational Fluid Dynamics for the Euler or Navier-Stokes equations. In principle, the combination 
of a (multidimensional) GRP solver together TDRK timestepping could lead to similar improvements of the CFL stability 
constraint. However, this is beyond the scope of the present paper and will be dealt with in a forthcoming publication.
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