
Orthogonalized SGD and Nested Architectures for Anytime Neural Networks

Chengcheng Wan 1 Henry Hoffmann 1 Shan Lu 1 Michael Maire 1

Abstract

We propose a novel variant of SGD customized

for training network architectures that support

anytime behavior: such networks produce a se-

ries of increasingly accurate outputs over time.

Efficient architectural designs for these networks

focus on re-using internal state; subnetworks must

produce representations relevant for both imme-

diate prediction as well as refinement by subse-

quent network stages. We consider traditional

branched networks as well as a new class of re-

cursively nested networks. Our new optimizer,

Orthogonalized SGD, dynamically re-balances

task-specific gradients when training a multitask

network. In the context of anytime architectures,

this optimizer projects gradients from later out-

puts onto a parameter subspace that does not in-

terfere with those from earlier outputs. Experi-

ments demonstrate that training with Orthogonal-

ized SGD significantly improves generalization

accuracy of anytime networks.

1. Introduction

The accuracy of deep neural networks is affected by both

their architecture and overall size. On one hand, improving

architecture, via either principled design (He et al., 2016;

Simonyan & Zisserman, 2015; Szegedy et al., 2015) or au-

tomated search (Pham et al., 2018; Xie et al., 2019; Zoph

& Le, 2017), has been a major research focus; on the other,

fixing a particular architectural motif, increasing network

size (i.e. width and depth) provides a path to further im-

provement in accuracy—a trend prevalent among dominant

architectures in major application areas, including computer

vision (He et al., 2016; Zagoruyko & Komodakis, 2016)

and natural language processing (Devlin et al., 2018). The

higher accuracy of larger networks comes at the cost of in-

creased compute requirements and longer inference latency.

1University of Chicago, Chicago, IL, USA. Correspondence to:
Chengcheng Wan <cwan@uchicago.edu>.

Proceedings of the 37
th International Conference on Machine

Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

In
p

u
t

...

O
1

O
2

O
3

...

...

Layers of stage-1 subnetwork Extra layers for stage-2 subnetwork

Cross-layer connectionsExtra layers for stage-3 subnetwork

Figure 1. Ensemble of three different deep neural networks.

In
p
u
t

O
1

O
2

Figure 2. Cascade with branching outputs. Networks are nested in

depth, sharing a common trunk to which output branches attach.

(Box colors indicate in which inference stage a layer is introduced, as in Figure 1).

1 O
1

O
2

In
p

u
t

2

3

4

5

6

1

O
1

O
2

In
p

u
t

2 3 4 5 6

(b) An alternative display of (a)

(a)

Figure 3. Our interlaced depth-wise nesting design for anytime

networks. Recursive interlacing produces additional nested stages

(beyond the two diagrammed here), each time doubling overall

network depth. This design allows more synergistic coordination

between networks than the branched topology shown in Figure 2.

Real applications may be deployed on hardware (e.g. mo-

bile) and in use cases (e.g. interactive, real-time) that cap

permissible network designs in both compute and latency.

Network compression techniques (Bucilua et al., 2006;

Han et al., 2016) can provide means of meeting some

types of known, fixed resource constraints. The pruning

paradigm (Han et al., 2016) removes parameters throughout

a network, reducing memory and FLOP requirements, while

distillation approaches (Han et al., 2015; Hinton et al., 2015)

can also shrink network depth and thereby reduce latency.

However, none of these techniques handle dynamic run-

Orthogonalized SGD and Nested Architectures for Anytime Neural Networks

time environments, where applications may need to adjust

accuracy-compute-latency trade-offs in real-time. For ex-

ample, interactivity requirements may present dynamically

changing latency deadlines for predictions (Dollar et al.,

2011; Fowers et al., 2018); concurrently running applica-

tions can compete for computation resources and power

budget (Hoffmann & Maggio, 2014) in unpredictable ways

(Zhuravlev et al., 2010). These environmental factors could

change while inference is executing (Lin et al., 2018), de-

feating attempts to statically schedule around them.

Anytime predictors (Zilberstein, 1996) are a promising ap-

proach to generating accurate inference results under dy-

namic latency and resource constraints. They produce com-

plete outputs at multiple intermediate stages, ameliorating

penalties associated with failure to complete an inference

process. If interrupted, an intermediate prediction—though

less accurate—substitutes for the originally desired output,

thereby preventing catastrophic failure. General approaches

to building anytime predictors include ensembling (Diet-

terich, 2000) multiple independent predictors (Figure 1)

and reorganizing a standard prediction pipeline into a cas-

cade (Zilberstein, 1996) (Figure 2), both of which can be

exploited to build anytime variants of deep networks (Huang

et al., 2017a; Lee & Shin, 2018; McGill & Perona, 2017;

Teerapittayanon et al., 2016; Wang et al., 2019).

Unfortunately, anytime flexibility is not free. Existing any-

time network design and training procedures sacrifice con-

siderable accuracy and/or require significant extra computa-

tion to produce intermediate predictions. We reduce these

costs by introducing synergistic innovations across both

anytime network architecture and training procedures.

On the architectural aspect, we propose new structures for

anytime neural networks according to a principle of maxi-

mizing the potential for re-use of intermediate state between

successive stages. A small network should not only produce

a quick output, but should also produce internal represen-

tations that serve as valuable input to larger networks in

subsequent stages. We thus design architectures so that

connections between subnetworks in different stages are

aligned: they directly link corresponding pairs of layers

across stages, so as to allow subsequent subnetworks to

refine previously computed internal representations.

Maximizing the potential for cooperative refinement leads

to a class of recursively-nested anytime networks, in which

later subnetworks fully contain earlier ones, while growing

in width, depth, or a combination thereof. Compared to

prior work (Huang et al., 2017a; Teerapittayanon et al.,

2016) using branched cascade architectures (Figure 2), our

alignment principle suggests a depth-nesting approach based

on interlacing subnetwork layers (Figure 3). Conveniently, a

recently proposed improvement (Zhu et al., 2018) to residual

networks (He et al., 2016), though not an anytime design

In
p
u
t

...

O
1

O
2

O
4

O
3

Layer for O1

Extra layer for O2

Extra layer for O3

Extra layer for O4

Connection

Pruned Connection

Figure 4. Width-wise nesting of deep networks. Compared to a

standard network, each layer is sliced into multiple layers (colored

blocks, stacked vertically). Each successive subnetwork includes

another set of layer slices across the entire depth of the network.

itself, is amenable to adaptation into an interlaced, depth-

nested form; we defer details to Section 3.

Nesting networks width-wise is more straightforward (Fig-

ure 4) and, unlike depth-nesting, previously-explored solu-

tions (Lee & Shin, 2018) agree with our alignment principle.

We do, however, propose an improvement to width-nesting:

subsequent stages should grow exponentially, rather than

linearly, in width. This same scaling strategy applies to our

novel depth-nesting approach. Experiments in Section 5

demonstrate the efficacy of interlaced depth-nesting, as well

as how exponential scaling of subnetwork size in width-

and/or depth-nested scenarios yields anytime networks that

cover a broad accuracy-compute trade-off curve.

Complementary to our architectural innovations, we pro-

pose a novel optimizer, Orthogonalized SGD (OSGD), for

training anytime neural networks. Motivating OSGD is a

view of anytime networks as a special-case of multitask net-

works, combined with a desire to facilitate synergy between

those tasks. In addition to synergistic architectures, we

want another type of synergy: synergy in the optimization

dynamics when training those multitask architectures.

Here, the multiple tasks are different versions of the same

task, restricted to use only parameters within a particular

subnetwork. The partially-shared structure of anytime net-

works, present in classical cascades and our nested topolo-

gies, means that tasks may compete for use of shared pa-

rameters. At the same time, the highly-related nature of the

tasks means that they may also act as regularizers for one

another. OSGD provides a methodology for re-balancing

task interactions as they simultaneously pull on network

parameters over the course of training. Section 4 presents

the technical details of our re-balancing approach, which

operates on a set of task-specific parameter gradients.

While OSGD is general, with potential application to any

multitask training scenario, we restrict focus to anytime net-

works. We observe dramatic improvements in generalization

accuracy when training anytime networks with OSGD—a

result that holds across the full spectrum of anytime network

architectures. Training our fully-nested anytime networks

with Orthogonalized SGD sufficiently improves accuracy to

the point of making such networks competitive with stan-

Orthogonalized SGD and Nested Architectures for Anytime Neural Networks

dard designs lacking anytime flexibility. Together, the tech-

niques we develop here provide a pathway toward endowing

deep neural networks with anytime flexibility at minimal

overhead cost; as a consequence, perhaps anytime designs

should become the new default architectural schema.

2. Related Work

2.1. Dynamic Inference and Anytime Deep Networks

Anytime algorithms have a well-established history, with

computational strategies applicable to many learning tech-

niques (Zilberstein, 1996). Classic approaches include any-

time decision trees using ensembles or boosting (Grubb &

Bagnell, 2012; Viola & Jones, 2004; Xu et al., 2012; 2013).

Past focus includes domains such as visual perception (Vi-

ola & Jones, 2004), which is now dominated by methods

based on deep neural networks. Adapting anytime tech-

niques to modern deep networks is of particular importance

given their computational demands and their potential use

in real-time safety-critical systems, such as autonomous ve-

hicles (Chen et al., 2015; Dosovitskiy et al., 2017; Huval

et al., 2015; Teichmann et al., 2018).

Complementary to recent methods for statically reducing

neural network model size (Han et al., 2015; Hinton et al.,

2015; Howard et al., 2017; Iandola et al., 2016; Rastegari

et al., 2016), another branch of investigation has focused

on reducing inference time in a dynamic, input-dependent

manner (Figurnov et al., 2017; McGill & Perona, 2017; Ren

et al., 2018; Veit & Belongie, 2018; Wu et al., 2018). These

adaptive inference methods skip execution of parts of a net-

work, based on an estimate of relevance computed for each

input; their goal is to minimize computation required for ac-

curate prediction on a per-example basis. Here, the inference

procedure changes dynamically in response a network’s in-

put data. However, these approaches do not provide any

mechanism for responding to environmental conditions that

might introduce transient resource constraints to the system.

Anytime methods, in contrast, do provide means of address-

ing such environmental variability. Specifically, they aim to

introduce a degree of robustness to dynamic environmental

effects, at the possible cost of moderately increased compu-

tation. For example, a recent anytime design by Wang et al.

(2019) develops a prediction pipeline specifically for stereo

depth estimation, outputting images with increasing spatial

resolution, an approach that may not generalize to other do-

mains. Recent generic anytime approaches include several

cascade designs (Hu et al., 2019; Huang et al., 2017a; Lars-

son et al., 2016; Teerapittayanon et al., 2016), which grow

subnetworks by depth, and a recent proposal (Lee & Shin,

2018) that grows by width, as discussed in Section 1. We

compare our anytime designs with them both conceptually

and experimentally; Sections 3 and 5 provide details.

2.2. Multitask Training

Caruana (1997) suggests that multitask training can improve

generalization performance of machine learning systems.

Recent advances highlight the ability of learned neural repre-

sentations to transfer between related tasks within particular

domains, including vision (Donahue et al., 2014) and natu-

ral language processing (Devlin et al., 2018). Fine-tuning

previously trained networks for new tasks has become a

standard mode of operation.

Multitask learning has successes in multiple areas, including

vision (Eigen & Fergus, 2015; Kokkinos, 2017; Teichmann

et al., 2018), natural language processing (Collobert & We-

ston, 2008; Hashimoto et al., 2016; Søgaard & Goldberg,

2016), speech (Seltzer & Droppo, 2013; Wu et al., 2015),

and cross-domain representations (Bilen & Vedaldi, 2017).

However, training such systems is a non-trivial problem.

Long & Wang (2015); Misra et al. (2016) use clustering

methods; Yang & Hospedales (2016) separate general and

task-specific features; Kokkinos (2017); Larsson (2017)

train all tasks with the same base network and a few task-

specific layers; Hu et al. (2019); Kendall et al. (2018) build

joint losses with adaptive weights.

Notably, Kokkinos (2017) finds it difficult to train a single

convolutional network for multimodal visual perception to

the point of matching the accuracy of more specialized task-

specific networks. This observation runs contrary to the

expectation that visual perception tasks should be highly re-

lated to one another, sparking interest in developing methods

to quantify task interdependence (Zamir et al., 2018).

Similar in spirit to our approach, prior works have targeted

changes to optimizers to improve multitask network training.

This includes NormSGD (Larsson, 2017), which computes

a parameter gradient per task, in separate backpropagation

passes. These gradient vectors are then normalized before

summation, ensuring that each task exerts equal influence

on network parameters at every training iteration. Kendall

et al. (2018) take another approach to dynamically balancing

task influence, allowing some slack in relative task impor-

tance, provided it is justified by outsized gains in accuracy

across the task spectrum as a whole. Our OSGD optimizer,

like NormSGD, attempts to dynamically re-balance task

interactions. However, OSGD addresses a different kind of

interaction, making it composable with most existing opti-

mizers; we also test an Orthogonalized NormSGD variant.

2.3. Gradient Orthogonality

Directly related to our method for reasoning about task

interactions is the work of Farajtabar et al. (2019). Like

Farajtabar et al. (2019), we view task interactions through

the lens of their parameter gradient vectors. That is, for

a multitask network, comparing per-task gradient vectors

Orthogonalized SGD and Nested Architectures for Anytime Neural Networks

(computed via separate backpropagation passes) tells us

about task similarity: aligned gradients indicate synergy

between tasks, while opposing gradient directions suggest

competition. Orthogonal vectors suggest the tasks do not

interfere with one another; they each pull on a parameter

subspace about which the other is agnostic.

Farajtabar et al. (2019) translate these intuitions into an al-

gorithmic approach for fine-turning that resists catastrophic

forgetting. Their goal is to train an existing neural network

to perform an additional task while ensuring that it retains

the ability to accurately perform a task it has previously

learned. Farajtabar et al. (2019) model the parameter sub-

space of the original task using a collection of parameter

gradient vectors for a sample of that task’s training examples.

When training a new task, they project its gradients onto

the subspace orthogonal to that spanned by this collection.

Even if using only a few hundred samples, this projection

step can be expensive.

As Section 4 details, we instead orthogonalize gradient vec-

tors for the purpose of simultaneously training a multitask

network from scratch. We use orthogonalization to alter

optimizer dynamics in an online, approximate manner. Un-

like (Farajtabar et al., 2019), we do not have access to a

gradient collection modeling the true parameter subspace of

a trained task. Surprisingly, using just a single gradient vec-

tor per (partially trained) task, computed over a minibatch,

proves to be sufficient. Our OSGD algorithm dynamically

re-balances task interactions online, and at far lower compu-

tational expense.

3. Anytime Network Architectures

3.1. Baselines

Cascade networks add early exit branches from the main

network pipeline (Hu et al., 2019; Huang et al., 2017a;

McGill & Perona, 2017; Teerapittayanon et al., 2016). As

illustrated in Figure 2, early outputs are generated without

traversing later pipeline stages—which tend to capture high-

level input features—leading to large accuracy loss for early

outputs. Cascading also requires extra computation on every

early output path to convert the intermediate representation

of that layer to a suitable output. Training such cascades

puts conflicting pressure on layers that serve heterogeneous

branches (e.g., a block can be connected to both an output

layer and another intermediate layer in Figure 2).

Equal-width nested networks split a neural network into

n equal-width horizontal stripes (Lee & Shin, 2018), as

Figure 4 illustrates. Each stripe executes sequentially. Com-

pared to branched cascades, this configuration offers more

intermediate state reuse opportunities across subnetworks.

Compared to a regular network of similar size, some con-

nections are removed, as one cannot have edges from latter

stripes to earlier stripes (gray edges in Figure 4). Further-

more, although increasing network width increases accuracy,

benefits do not typically scale linearly with network size.

Consequently, the design in Figure 4 may produce interme-

diate results with suboptimal accuracy-latency trade-offs.

3.2. Design Principles

Three observations guide our anytime architecture designs.

Grow both width and depth. Accuracy improves with

both deeper (more layers) (He et al., 2016; Simonyan &

Zisserman, 2015; Szegedy et al., 2015) and wider (more

neurons per layer) (Devlin et al., 2018; Zagoruyko & Ko-

modakis, 2016) designs. Moreover, this trend is especially

pronounced within an architecture family: if residual net-

works (ResNets) are preferred for a particular domain, a

50-layer ResNet will deliver better accuracy than a 34-layer

ResNet (He et al., 2016). Consequently, we develop freely

composable recipes for nesting networks in width and depth.

Grow fast. Although accuracy typically improves with

network size, this improvement usually falls off as size in-

creases; logarithmic scaling of improvements are a common

result. Consequently, we increase network size exponen-

tially from one stage to the next. This places output predic-

tions at useful discrete accuracy steps along a trade-off curve.

This design choice also minimizes cut connections when

transforming a standard network into an anytime version.

Reuse intermediate state. We improve efficiency by fully

reusing internal activation states of earlier subnetworks

to bootstrap later subnetworks. Recent investigations of

learned representations (Greff et al., 2017; Jastrzebski et al.,

2018) suggest that layers within very deep networks might

be learning to perform incremental updates, slowly refining

a stored representation. Deeper networks might refine their

representations more gradually than shallower networks. By

aligning layers of different subnetworks trained for the same

task, according to the relative depth in their own subnetwork,

we might jump-start computation in larger subnetworks.

3.3. Nested Anytime Network Architectures

Our design consists of a sequence of fully nested subnet-

works: the first, D1, is completely contained within the

second, D2, which is a subpart of D3, etc. Going from Di

to Di+1, our scheme permits growing the network in width,

depth, or both. Our anytime networks also have the follow-

ing properties: (1) pipeline structure: Every subnetwork Di

follows the usual pipeline structure of a traditional neural

network (as opposed to the branching present in cascade

networks); (2) aligned feed forward: Outputs of internal

layers of a smaller subnetwork are forwarded to deeper lay-

ers of the same subnetwork, as well as internal layers of

the larger network most appropriate for consuming their

Orthogonalized SGD and Nested Architectures for Anytime Neural Networks
In
p
u
t

...

O
1

O
2

O
3

Layer for O1

Extra layer for O2

Extra layer for O3

Connection

Pruned Connection

Figure 5. Our width-wise nesting of subnetworks.

signals, maximizing data reuse (i.e., connections are purely

feed-forward in depth or nesting level); (3) exponential size

scaling: The sizes of subnetworks increases exponentially

so later outputs offer meaningful accuracy improvements

over earlier ones.

The difference between an independent non-nested network

and every subnetwork Di is that some neurons in an outer

nesting level will not feed backward into neurons in inner

nesting levels. Dropping these connections slightly reduces

the compute load and parameter count, slightly shifting the

network’s position on the latency-accuracy curve, which is

inconsequential in the big picture of an anytime network that

populates the trade-off curve with many nested subnetworks.

3.3.1. DEPTH NESTING

We interlace layers following the same pipeline structure

as the original network. As illustrated in Figure 3, we par-

tition a traditional network into odd and even layers. We

create a shallower subnetwork consisting of only the odd

numbered layers to produce the first intermediate result, and

nest it within the full network, which has double the depth.

Recursively applying this process, we create a sequence of

interlaced networks that repeatedly double in depth.

This depth-nesting strategy applies only to networks satisfy-

ing an additional architectural requirement. Notice, in Fig-

ure 3, the presence of additional skip connections between

layers, even in the basic, non-nested network. Indeed, within

any network in the sequence, we must have that each layer

connects directly to any other layer separated in depth by a

power of 2. Fortunately, this power-of-2 skip-connection de-

sign is exactly the SparseNet architecture (Zhu et al., 2018),

which is a state-of-the-art variant of ResNet (He et al., 2016)

(or DenseNet (Huang et al., 2017b)) convolutional networks.

3.3.2. WIDTH NESTING

Similar to a Lee & Shin (2018), our width-nesting strategy

divides a network into M horizontal stripes, with the i-
th subnetwork including all the neurons inside the first i
stripes. Different from this prior work, we use a power-of-2

sequence for stripe widths, as Figure 5 depicts.

If the first subnetwork D1 contains w neurons in one layer,

Di contains w × 2i−1 neurons in the corresponding layer.

This choice creates a good trade-off curve for accuracy and

O
1

1

O
2

O
3In
p
u
t

3 5

1

2

3

4

5

6

Layer for O1

Extra layer for O2

Extra layer for O3

Extra layer for O4

Connection

Pruned Connection1 3 5

O
4

2 4 6

Figure 6. Our width-depth nesting that alternates growing width

and depth. Connections across intermediate layers are hidden.

Layer for O1

Extra layer for O2

Extra layer for O3

Connection

Pruned Connection

O
1

O
2

O
3

In
p
u
t

Figure 7. Our width-depth nesting that grows width and depth

simultaneously. Connections across intermediate layers are hidden.

latency. Additionally, this exponential stripe-width split

causes far fewer edges to be pruned than the even-width

split in prior work (Lee & Shin, 2018). All the connections

from a later-stripe neuron to an earlier-stripe neuron need to

be pruned, like those upward gray edges in Figure 4 and 5.

3.3.3. COMBINING DEPTH AND WIDTH NESTING

Our width and depth nesting designs can be easily com-

bined in arbitrary order: depth then width, width then depth,

or combinations thereof. When growing depth, interlaced

layers are added. When growing width, all layers double

their filter count. Figure 6 illustrates growth by alternating

width and depth: subnetwork-1 (dark blue layers) grows

to subnetwork-2 by extending its width (light blue layers),

then grows to subnetwork-3 by extending depth (green lay-

ers), and then to subnetwork-4 by extending width again

(light green layers). Figure 7 illustrates an alternative of

simultaneous growth in width and depth.

4. Optimization Strategies

Every anytime network (using our architecture or others)

faces a multitask training challenge: simultaneous optimiza-

tion of losses attached to outputs of multiple subnetworks.

In this section, we propose Orthogonalized SGD (OSGD), a

new optimizer for training multitask deep networks, which,

as Section 5 demonstrates, proves particularly effective

when applied to anytime networks.

Prior to presenting Orthogonalized SGD, we describe sev-

eral optimization strategies appropriate for anytime net-

works. Performance of these baselines provides a bench-

mark against which to compare OSGD. The optimizers we

consider vary in how they address two crucial issues: (1)

how to weight losses from multiple outputs, and (2) how to

share network parameters between multiple tasks.

Our simplest baseline optimizer, a greedy training approach,

Orthogonalized SGD and Nested Architectures for Anytime Neural Networks

couples loss weighting and parameter sharing. By training

an anytime network in a greedy stage-wise fashion, it only

ever has one loss to consider and one active set of parame-

ters. Specifically, the greedy optimizer trains the smallest

subnetwork to produce the first output. It then freezes pa-

rameters of that subnetwork and trains the next subnetwork,

repeating in such fashion until the last output is trained.

The anytime network’s parameters are thus partitioned into

subsets that are optimized exclusively for each output. How-

ever, greedy training potentially harms later outputs as they

cannot influence parameters in the portion of the network

they share with earlier outputs.

Decoupling loss weighting and parameter sharing strategies,

we span a larger optimizer design space. For loss weighting,

we consider a fixed linear combination, as well as a dy-

namic normalization scheme which equalizes the influence

of each task at every training step. SGD and NormSGD

are the corresponding optimizers we consider; they repre-

sent the default parameter sharing strategy. OSGD and its

normalized variant manage parameter sharing in a more

sophisticated manner. They give some tasks preferential

pull on certain parameter subsets, while still allowing other

tasks some influence. This prioritization process depends

on the gradients from each task, thereby inducing entirely

different learning dynamics.

4.1. Definitions and Preliminaries

Training a nested anytime network is an instance of multi-

task learning, where the tasks are solving the same problem

with different network components (specifically, the outputs

of different subnetworks).

Let w1 ∈ Rd1 , w2 ∈ Rd2 , · · · , wn ∈ Rdn be the weights

of the nested networks, where d1 < d2 < · · · < dn and

w1 (w2 (· · · (wn. We define other symbols as follows:

• W : weight for the whole network, equivalent to wn

• Li: the loss of subnetwork Di (Di has weights wi)

• gi: the gradient of weights wi from loss Li.

• gji : the gradient of weights wj \ wj−1 from loss Li,

where j ≤ i; Note that gji is a subset of gi.

• ki: the importance of loss Li

• C: a constant value for normalization

4.2. Baseline Optimizers

Greedy (stage-wise SGD) The greedy optimizer sep-

arates weights (parameters) into stages corresponding

to the structural organization of the anytime network:

w1, (w2\w1), (w3\w2), . . . , (wn\wn−1). It trains the first

stage to achieve the lowest possible loss for L1. It then

freezes all weights inside the first stage, and trains the sec-

Algorithm 1 Greedy stage-wise multitask training

1: w0 ⇐ ∅
2: for i = 1 to n do

3: Initialize weights wi \ wi−1

4: for t = 0 to max train steps do

5: Compute Li(t) [forward pass]

6: gi(t) ⇐ ∇wi\wi−1
Li(t)

7: Update W (t) 7→ W (t+ 1) using gi(t)
8: end for

9: end for

ond subnetwork, which contains the first two stages. This

then continues for the third, and so on. (Algorithm 1)

This strategy typically yields high accuracy for the smallest

network, as parameters w1 are entirely dedicated to that

network’s output task. However, it pays for this guarantee

by having suboptimal coordination with later output tasks,

as they cannot adjust w1 for their own benefit.

SGD With standard stochastic gradient descent (SGD),

each task contributes a term to the overall loss in the forward

path. A straight-forward approach is to compute a weighted

average of these terms, and then conduct standard backprop:

L =

∑n

i=1 kiLi
∑n

i=1 ki
. (1)

The weighted average function could be chosen to match

known operating environment characteristics (e.g., the time

budget and latency on a target machine), which provides

great flexibility.

NormSGD Globally normalizing gradients can help to

dynamically balance the importance of different tasks (Chen

et al., 2017; Larsson, 2017). Doing so directly modifies

gradient magnitudes to balance the contribution of each task

at each training iteration. This effect is not equivalent to

any static reweighting of losses. For gradient gi ∈ Rdi , it is

normalized as:

gi =
gi

‖gi(t)‖
·
√

di · C (2)

where
√
di compensates for the fact that we are working

with subnetworks of different size. This multiplicative term

gives each subnetwork equal influence upon the parameters

it shares with other subnetworks. When updating param-

eters, we use an average of the (normalized) gradients of

the subnetworks in which they participate. To allow use of

NormSGD with standard learning rate schedules, we multi-

ply the gradient by a constant value C, which we set using

calibration experiments.

Orthogonalized SGD and Nested Architectures for Anytime Neural Networks

Algorithm 2 Orthogonalized SGD: A multitask variant of

SGD with optional dynamic normalization of task influence.

1: Initialize weights W
2: for t = 0 to max train steps do

3: Compute Li(t) ∀i, s.t. 1 ≤ i ≤ n [forward pass]

4: g(t) ⇐ 0

5: for i = 1 to n do

6: gi(t) ⇐∇wi
Li(t)

7: if normalizing then

8: gi(t) ⇐ gi(t)/ ‖gi(t)‖ ·
√
di · C

9: end if

10: end for

11: for i = 1 to n do

12: hi(t) ⇐
∑i−1

j=1 projgj(t)gi(t)

13: gi(t) ⇐ gi(t)− hi(t)
14: g(t) ⇐ g(t) + gi(t)
15: end for

16: Update W (t) 7→ W (t+ 1) using g(t)
17: end for

4.3. Orthogonalized SGD (OSGD)

Our novel optimizer, Orthogonalized SGD, dynamically

re-balances task-specific gradients in a manner that pri-

oritizes the influence of some losses over others. Given

loss-specific gradient vectors g1, g2, . . . , gn, Orthogonal-

ized SGD projects gradients from later outputs onto the

parameter subspace that is orthogonal to that spanned by the

gradients of earlier outputs. As a result, subsequent outputs

do not interfere with how earlier outputs desire to move

parameters. For example, the retained component of the

gradient of w2 is

g′2 = g2 − projg1g2, (3)

where projAB refers to projecting vector B onto A. g′2 is

orthogonal to g1, and thus updating w1 in the direction of

g′2 minimizes interference with the optimization of loss L1.

Algorithm 2 provides a complete presentation of both

Orthognolized SGD and an orthogonalized variant of

NormSGD. Note that for anytime networks, per-task gradi-

ent vectors are padded with zero entries for any parameters

not contained in the corresponding subnetwork. For exam-

ple, g1 pads zeros to w2 \ w1, so the part of g2 specific to

the second subnetwork will be unaffected by Eq 3.

More generally, OSGD can be used with any priority order-

ing of tasks; the priority order need not correspond to the

order in which outputs are generated by an anytime network.

Algorithm 2 is valid for any shuffling of losses, regardless

of the underlying network architecture. Choosing a prior-

ity order determines the sequencing of gradient projection

steps, thereby changing which tasks are given preferential

influence over network parameters.

As part of the following section, we discuss why an early-

to-late priority order delivers excellent results for anytime

networks. We also explore how different task priority order-

ing can serve as a tool for customizing network behavior

towards specific time-dependent prediction utility curves.

5. Experiments

5.1. Methodology

We begin with evaluation using the CIFAR-10 dataset

(Krizhevsky & Hinton, 2012). All networks are trained

for 200 epochs, with learning rate decreasing from 0.1 to

0.0008. We train every network 3 times, and report the

average and standard deviation of its validation error.

We evaluate all five optimization strategies from Section 4:

Greedy stage-wise training, SGD, OSGD, and the normal-

ized variants of both SGD and OSGD. We set C = 1/2 and

use a constant loss importance for SGD and NormSGD, as

these settings provide the best results.

We evaluate six different anytime network architectures:

four novel designs of our own and two prior designs. Our

designs include: (1) depth-nesting applied to Sparse ResNet-

98 (Zhu et al., 2018) (Figure 3), (2) width-nesting applied to

ResNet-42 (He et al., 2016) (Figure 5), (3) alternating width-

depth nesting (Figure 6), and (4) simultaneous width-depth

nesting (Figure 7), with the latter two applied to Sparse

ResNet-98 (Zhu et al., 2018).

The two previous designs represent the state-of-the-art

depth-growing anytime design, referred to as EANN (Figure

2) and width-growing anytime design, referred to as Even-

width (Figure 4). In EANN, we apply the cascade-based ap-

proach (Hu et al., 2019) to Sparse ResNet-98, which grows

depth exponentially and assembles an output branch every

k · 2i(i = 1, 2, ...) layers. In Even-width, we apply the idea

of recently proposed even-sized width-nested architecture

(Lee & Shin, 2018) to ResNet-42.

5.2. Evaluation of Optimization Strategies

Tables 1 and 2 show the validation error rates of apply-

ing five different optimizers to different anytime networks.

Overall, our Orthogonalized SGD and its normalized variant

perform the best, capable of achieving high accuracy for

later outputs of an anytime network without significantly

reducing the accuracy for earlier outputs.

Compared with SGD, OSGD consistently achieves higher

accuracy for the last two subnetworks across all six anytime

designs, while maintaining similar or better accuracy for

early subnetworks. Switching from SGD to OSGD drops

the last-stage error rates from 7.2, 9.8, 8.8 and 8.5 down to

6.6, 7.3, 6.8 and 6.8 across the four anytime networks in

Table 1. While the greedy training strategy offers the high-

Orthogonalized SGD and Nested Architectures for Anytime Neural Networks

Stagesize Greedy SGD OSGD SGDNorm OSGDNorm

Our Depth Nested Sparse ResNet-98

1d1 9.6 (0.2) 9.8 (0.1) 10.0 (0.3) 10.0 (0.2) 10.7 (0.2)
2d2 9.3 (0.3) 8.3 (0.3) 8.4 (0.1) 8.6 (0.4) 8.5 (0.3)
3d4 9.2 (0.3) 7.7 (0.3) 7.4 (0.1) 8.1 (0.3) 7.6 (0.1)
4d8 9.1 (0.2) 7.2 (0.4) 6.6 (0.1) 8.0 (0.2) 6.9 (0.1)

Our Width Nested ResNet-42

1w1 10.2 (0.1) 12.2 (0.2) 12.3 (0.1) 12.3 (0.3) 12.7 (0.1)
2w2 9.9 (0.2) 10.1 (0.1) 8.9 (0.2) 10.1 (0.2) 9.6 (0.4)

- - - - -
3w4 9.2 (0.2) 9.8 (0.3) 7.3 (0.3) 10.1 (0.2) 7.4 (0.2)

Our (Alternating) Width-Depth Nested Sparse ResNet-98

1w1d1 18.5 (0.1) 31.4 (0.6) 28.3 (0.4) 30.7 (0.4) 28.1 (0.5)
2w2d1 16.5 (0.1) 15.6 (0.2) 14.8 (0.2) 15.5 (0.3) 14.7 (0.4)
3w2d2 15.9 (0.2) 15.5 (0.2) 13.4 (0.3) 15.4 (0.2) 14.1 (0.2)
4w4d2 15.7 (0.4) 10.4 (0.4) 8.6 (0.3) 10.4 (0.2) 9.4 (0.2)
5w4d4 15.6 (0.3) 8.8 (0.3) 6.8 (0.2) 8.9 (0.3) 7.4 (0.2)

Our (Simultaneous) Width-Depth Nested Sparse ResNet-98

1w1d1 18.5 (0.1) 28.0 (0.2) 26.2 (0.1) 29.1 (0.5) 26.7 (0.5)
2w2d2 11.4 (0.1) 15.0 (0.3) 13.1 (0.1) 15.6 (0.5) 14.5 (0.4)
3w4d4 8.6 (0.4) 8.5 (0.3) 6.8 (0.3) 9.0 (0.2) 7.4 (0.1)

Table 1. CIFAR-10 error rates, the lower the better, of our any-

time networks with different optimization strategies. Numbers in

parentheses are standard deviations. Size subscripts indicate the

subnetwork width or depth normalized to that of the first-stage sub-

network. OSGD consistently improves over SGD and, compared

to both SGD and Greedy stage-wise training, achieves dramatically

lower error for later outputs.

est accuracy for the first intermediate result of all anytime

networks, it falls far behind OSGD for later-stage results.

The improvement offered by OSGD is striking, yet some-

what counterintuitive. These experiments give earlier out-

puts high priority than later outputs. OSGD is prioritizing

the influence that gradients of smaller subnetworks have on

the training dynamics, but it is the outputs of larger subnet-

works that most improve in accuracy.

A possible explanation for this curious behavior stems from

the fact that the multiple tasks in anytime networks are

highly related. In particular, in a well-architected anytime

network, different output tasks might exert a beneficial regu-

larization effect on one another. OSGD, by prioritizing task

X over task Y in such a network then triggers two effects:

• It allocates parameters to task X instead of task Y.

• It decreases the regularization influence of task Y on

task X, while simultaneously increasing the regulariza-

tion influence of task X on task Y.

Individually, these effects move the relative accuracy of task

X and Y in opposite directions. As they are coupled, we

observe only the net result. Regularization interaction being

the stronger effect would explain the behavior of anytime

networks trained with OSGD. But, further investigation is

required before confidently adopting this explanation.

Figure 8 shows that, by changing the task priority order,

Stagesize Greedy SGD OSGD SGDNorm OSGDNorm

EANN Cascade Sparse ResNet-98

1d1 9.3 (0.1) 11.7 (0.3) 11.6 (0.3) 12.4 (0.1) 12.1 (0.4)
2d2 9.2 (0.3) 11.1 (0.1) 10.9 (0.2) 12.0 (0.1) 11.2 (0.1)
3d4 8.8 (0.3) 8.5 (0.2) 8.0 (0.1) 9.2 (0.2) 9.0 (0.2)
4d8 8.5 (0.3) 6.5 (0.2) 6.4 (0.2) 8.0 (0.1) 7.6 (0.1)

Even-Width Nested ResNet-42

1w1 10.2 (0.04) 12.7 (0.2) 13.9 (0.1) 12.6 (0.1) 13.5 (0.2)
2w2 9.9 (0.3) 10.2 (0.3)) 10.7 (0.2) 10.6 (0.1 10.8 (0.1)
3w3 9.9 (0.4) 10.0 (0.1) 8.3 (0.02) 10.5 (0.1) 8.3 (0.01)
4w4 9.8 (0.2) 9.9 (0.1) 8.3 (0.1) 10.4 (0.1) 8.3 (0.1)

Table 2. CIFAR-10 error rates of previous anytime networks with

different optimization strategies. As in Table 1, OSGD offers

benefits compared to other optimizers.

Stage in Depth Nested Sparse ResNet-98
1 2 3 4

E
rr

o
r

R
a
te

 (
%

)
6

7

8

9

10

11

1,2,3,4
2,3,1,4
1,4,3,2
1,4,2,3
SGD

Figure 8. Re-prioritizing outputs within the same anytime architec-

ture, OSGD training focuses on reducing error at certain stages at

the expense of others. Shown are results for OSGD training with

four different stage priority orders, as well as an SGD baseline.

we can use OSGD to improve the accuracy of intermediate-

stage anytime outputs at the expense of later-stage outputs.

Compared to the standard priority order (green line), giving

intermediate outputs higher priority (yellow line) reduces

their error while slightly increasing error for the final output.

This capability could be used to target an anytime system

around a critical prediction time window.

5.3. Evaluation of Nested Architectures

We compare our nested architectures to an infeasible

Oracle—a collection of independently-trained single-task

networks with sizes matching our subnetwork stages. Per-

fectly deploying this collection of independent networks

as an anytime system would require oracle knowledge of

impending deadlines to select which network to run. The

Oracle thus represents an impossible scenario in which any-

time prediction capability is granted for free. Figure 9 shows

the accuracy-FLOPs trade-off curves achieved by our nested

network designs (green), the Oracle (blue), and the EANN

and Even-width baselines (red). Here, each network is

trained using the strategy that offers the most accurate re-

sults (i.e., OSGD for all anytime networks and SGD for

all independent networks except for the largest setting of

SparseResNet-98, which uses NormSGD).

Orthogonalized SGD and Nested Architectures for Anytime Neural Networks

of Floating Operations ×10
8

0 1 2 3 4 5

E
rr

o
r

R
a
te

 (
%

)

6

10

14

18

26

29

EANN
Nested (Ours)
Oracle

(a) Depth-nested;

Sparse ResNet-98

of Floating Operations ×10
8

0 2 4 6 8

E
rr

o
r

R
a
te

 (
%

)

6

10

14

18

26

29

Even-width
Nested (Ours)
Oracle

(b) Width-nested;

ResNet-42

of Floating Operations ×10
8

0 1 2 3 4 5

E
rr

o
r

R
a
te

 (
%

)

6

10

14

18

26

29

Nested (Simultaneous)
Nested (Alternating)
Oracle

(c) Width-depth;

Sparse ResNet-98

Figure 9. Accuracy-FLOP trade-offs (lower is better). Our nested

architectures offer trade-offs close to the infeasible Oracle.

Time Budget of One Image (×10
−2 s)

2.78 3.33 3.89 4.44 5 5.56 ∞

A
v
er

a
g
e

E
rr

o
r

R
a
te

 (
%

)

6

7

8

9

10

11

12

13

14

Base

Nest (Ours)

Oracle-All

Oracle-Each

(a) Depth-nested;

Sparse ResNet-98

Time Budget of One Image (×10
−2 s)

1.77 2.12 2.48 2.83 3.18 3.54 ∞

A
v
er

a
g
e

E
rr

o
r

R
a
te

 (
%

)

6

7

8

9

10

11

12

13

14

Base

Nest (Ours)

Oracle-All

Oracle-Each

(b) Width-nested;

ResNet-42

Time Budget of One Image (×10
−2 s)

1.29 1.55 1.8 2.06 2.32 2.58 ∞

A
v
er

a
g
e

E
rr

o
r

R
a
te

 (
%

)

6

7

8

9

10

11

12

13

14

Nest (Simultaneous)

Nest (Alternating)

Oracle-All

Oracle-Each

(c) Width-depth;

Sparse ResNet-98

Figure 10. Error rates at different deadlines (lower is better). Our

nested designs perform better than baselines and the static Oracle.

From Figure 9a and 9b, our depth and width nesting anytime

networks both offer much better accuracy-FLOPs trade-offs

than previous work, and come close to the infeasible Oracle.

Figure 9c shows our width-depth nested Sparse ResNet-98

offers almost as good trade-off as the Oracle, and covers a

much wider trade-off spectrum than depth-only or width-

only nesting.

5.4. Run-time Simulation

We further compare four schemes for maximizing inference

accuracy under various inference deadlines: (1) Baseline

anytime schemes (Even-width and EANN); (2) Our Nested

anytime schemes (width, depth, and width-depth nesting).

(3) OracleAll, which picks the most accurate independent

network that finishes before the deadline for all inputs; (4)

OracleEach, which picks the most accurate independent net-

work for each input that finishes before the deadline (i.e., the

network may vary across inputs). When no inference result

is generated by the deadline, a random guess is output. We

report the average error rates across all inputs in Figure 10

(vertical axis, lower is better) under 7 deadlines and then

no deadline (horizontal axis); the 7 deadlines are set to be

0.5x-1x of the average latency under the biggest ResNet-42

or Sparse ResNet across all inputs.

The accuracy advantage of Nest (the second bar in each

group) over Base (the first bar), and OracleAll (the third

bar) is apparent in Figure 10. For example, for ResNet-

42, Nest has 7%-24% lower error rate than Base for all

deadlines. Nest has lower accuracy than OracleEach in most

cases, because the anytime network usually has slightly

SGD OSGD
Top-1 Error Top-5 Error Top-1 Error Top-5 Error

Our Width Nested ResNet-50

1w1 36.7 14.7 36.7 14.8
2w2 31.5 11.7 31.7 11.7
3w4 29.2 10.2 28.3 9.4

Our Depth Nested Sparse ResNet-66

1d1 31.3 11.3 32.9 12.4
2d2 28.4 9.7 29.2 10.1
3d4 28.0 9.3 27.1 8.9

Table 3. Validation error of anytime networks trained with SGD

and OSGD on the ImageNet dataset. As was the case for CIFAR-10

(Table 1), OSGD improves the accuracy of later output stages.

lower accuracy than an independent network with same size.

Note that OracleEach is impractical, as it assumes impossible

latency prediction and no-overhead in swapping networks

across inputs. These accuracy-under-deadline results are

consistent with the accuracy-latency curves in Figure 9.

5.5. Evaluation on ImageNet

Finally, we train a width-nested ResNet-50 and depth-nested

Sparse ResNet-66 on the large-scale ImageNet (ILSVRC

2012) dataset (Deng et al., 2009), using both SGD and

OSGD. All networks are trained for 90 epochs, with learning

rate decreasing from 0.1 to 0.0001. Table 3 reports top-1

and top-5 validation error rates. These results are consistent

with our previous findings on CIFAR. On ImageNet, OSGD

significantly improves the accuracy of later stages (larger

subnetworks) compared to standard SGD.

6. Conclusion

We propose a new class of neural network architectures,

which recursively nest subnetworks in both width and depth.

We also propose Orthogonalized SGD, a novel variant of

SGD customized for training such architectures with re-

balanced task-specific gradients. We evaluate them with a

variety of network designs and achieve high accuracy and

run-time flexibility. Our experiments demonstrate synergy

between our architecture and optimizer: our anytime net-

works perform almost as well as independent non-anytime

networks of the same size.

Acknowledgments. This work is supported by NSF

(grants CNS-1764039, CNS-1764039, CNS-1514256, CNS-

1823032), ARO (grant W911NF1920321), DOE (grant

DESC0014195 0003), and the CERES Center for Unstop-

pable Computing. Continuing support for this line of re-

search is provided in part by NSF grant CNS-1956180.

References

Bilen, H. and Vedaldi, A. Universal representations: The

missing link between faces, text, planktons, and cat

breeds. arXiv preprint arXiv:1701.07275, 2017.

Orthogonalized SGD and Nested Architectures for Anytime Neural Networks

Bucilua, C., Caruana, R., and Niculescu-Mizil, A. Model

compression. In SIGKDD, 2006.

Caruana, R. Multitask learning. Machine learning, 1997.

Chen, C., Seff, A., Kornhauser, A., and Xiao, J. Deepdriving:

Learning affordance for direct perception in autonomous

driving. In ICCV, December 2015.

Chen, Z., Badrinarayanan, V., Lee, C.-Y., and Rabinovich,

A. Gradnorm: Gradient normalization for adaptive loss

balancing in deep multitask networks. arXiv preprint

arXiv:1711.02257, 2017.

Collobert, R. and Weston, J. A unified architecture for

natural language processing: Deep neural networks with

multitask learning. In ICML, 2008.

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Fei-Fei,

L. Imagenet: A large-scale hierarchical image database.

In CVPR, 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:

Pre-training of deep bidirectional transformers for lan-

guage understanding. arXiv preprint arXiv:1810.04805,

2018.

Dietterich, T. G. Ensemble methods in machine learning.

In MCS, pp. 1–15, 2000.

Dollar, P., Wojek, C., Schiele, B., and Perona, P. Pedestrian

detection: An evaluation of the state of the art. TPAMI,

2011.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N.,

Tzeng, E., and Darrell, T. Decaf: A deep convolutional

activation feature for generic visual recognition. In ICML,

pp. 647–655, 2014.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and

Koltun, V. CARLA: An open urban driving simulator. In

CoRL, pp. 1–16, 2017.

Eigen, D. and Fergus, R. Predicting depth, surface normals

and semantic labels with a common multi-scale convolu-

tional architecture. In CVPR, 2015.

Farajtabar, M., Azizan, N., Mott, A., and Li, A. Orthogonal

gradient descent for continual learning. arXiv preprint

arXiv:1910.07104, 2019.

Figurnov, M., Collins, M. D., Zhu, Y., Zhang, L., Huang, J.,

Vetrov, D. P., and Salakhutdinov, R. Spatially adaptive

computation time for residual networks. In CVPR, pp. 7,

2017.

Fowers, J., Ovtcharov, K., Papamichael, M., Massengill,

T., Liu, M., Lo, D., Alkalay, S., Haselman, M., Adams,

L., Ghandi, M., et al. A configurable cloud-scale dnn

processor for real-time ai. In ISCA, pp. 1–14. IEEE Press,

2018.

Greff, K., Srivastava, R. K., and Schmidhuber, J. Highway

and residual networks learn unrolled iterative estimation.

ICLR, 2017.

Grubb, A. and Bagnell, D. Speedboost: Anytime prediction

with uniform near-optimality. In AISTATS, pp. 458–466,

2012.

Han, S., Mao, H., and Dally, W. J. Deep compres-

sion: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015.

Han, S., Mao, H., and Dally, W. J. Deep compression:

Compressing deep neural networks with pruning, trained

quantization and huffman coding. ICLR, 2016.

Hashimoto, K., Xiong, C., Tsuruoka, Y., and Socher, R. A

joint many-task model: Growing a neural network for

multiple nlp tasks. arXiv preprint arXiv:1611.01587,

2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual

learning for image recognition. In CVPR, pp. 770–778,

2016.

Hinton, G., Vinyals, O., and Dean, J. Distilling

the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015.

Hoffmann, H. and Maggio, M. PCP: A generalized ap-

proach to optimizing performance under power con-

straints through resource management. In ICAC, pp. 241–

247, 2014.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,

W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:

Efficient convolutional neural networks for mobile vision

applications. arXiv preprint arXiv:1704.04861, 2017.

Hu, H., Dey, D., Hebert, M., and Bagnell, J. A. Learning

anytime predictions in neural networks via adaptive loss

balancing. In AAAI, 2019.

Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L.,

and Weinberger, K. Q. Multi-scale dense convolutional

networks for efficient prediction. In CoRR, 2017a.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,

K. Q. Densely connected convolutional networks. In

CVPR, 2017b.

Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W.,

Pazhayampallil, J., Andriluka, M., Rajpurkar, P., Migi-

matsu, T., Cheng-Yue, R., et al. An empirical evaluation

of deep learning on highway driving. arXiv preprint

arXiv:1504.01716, 2015.

Orthogonalized SGD and Nested Architectures for Anytime Neural Networks

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K.,

Dally, W. J., and Keutzer, K. Squeezenet: Alexnet-level

accuracy with 50x fewer parameters and ¡0.5mb model

size. arXiv preprint arXiv:1602.07360, 2016.

Jastrzebski, S., Arpit, D., Ballas, N., Verma, V., Che, T.,

and Bengio, Y. Residual connections encourage iterative

inference. ICLR, 2018.

Kendall, A., Gal, Y., and Cipolla, R. Multi-task learning

using uncertainty to weigh losses for scene geometry and

semantics. In CVPR, pp. 7482–7491, 2018.

Kokkinos, I. Ubernet: Training a universal convolutional

neural network for low-, mid-, and high-level vision using

diverse datasets and limited memory. In CVPR, 2017.

Krizhevsky, A. and Hinton, G. Learning multiple layers of

features from tiny images. Technical report, University

of Toronto, 2012.

Larsson, G. Discovery of visual semantics by unsuper-

vised and self-supervised representation learning. arXiv

preprint arXiv:1708.05812, 2017.

Larsson, G., Maire, M., and Shakhnarovich, G. Fractal-

net: Ultra-deep neural networks without residuals. arXiv

preprint arXiv:1605.07648, 2016.

Lee, H. and Shin, J. Anytime neural prediction via slicing

networks vertically. arXiv preprint arXiv:1807.02609,

2018.

Lin, S.-C., Zhang, Y., Hsu, C.-H., Skach, M., Haque, M. E.,

Tang, L., and Mars, J. The architectural implications of

autonomous driving: Constraints and acceleration. In

ASPLOS, pp. 751–766, 2018.

Long, M. and Wang, J. Learning multiple tasks with deep

relationship networks. arXiv preprint arXiv:1506.02117,

2, 2015.

McGill, M. and Perona, P. Deciding how to decide: Dy-

namic routing in artificial neural networks. arXiv preprint

arXiv:1703.06217, 2017.

Misra, I., Shrivastava, A., Gupta, A., and Hebert, M. Cross-

stitch networks for multi-task learning. In CVPR, 2016.

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. Efficient

neural architecture search via parameters sharing. ICML,

2018.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A.

Xnor-net: Imagenet classification using binary convo-

lutional neural networks. In European conference on

computer vision, pp. 525–542. Springer, 2016.

Ren, M., Pokrovsky, A., Yang, B., and Urtasun, R. Sbnet:

Sparse blocks network for fast inference. In CVPR, pp.

8711–8720, 2018.

Seltzer, M. L. and Droppo, J. Multi-task learning in deep

neural networks for improved phoneme recognition. In

ICASSP, 2013.

Simonyan, K. and Zisserman, A. Very deep convolutional

networks for large-scale image recognition. In ICLR,

2015.

Søgaard, A. and Goldberg, Y. Deep multi-task learning with

low level tasks supervised at lower layers. In ACL, 2016.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,

A. Going deeper with convolutions. CVPR, 2015.

Teerapittayanon, S., McDanel, B., and Kung, H. Branchynet:

Fast inference via early exiting from deep neural net-

works. In CVPR, 2016.

Teichmann, M., Weber, M., Zoellner, M., Cipolla, R., and

Urtasun, R. Multinet: Real-time joint semantic reasoning

for autonomous driving. In IV, 2018.

Veit, A. and Belongie, S. Convolutional networks with

adaptive inference graphs. In ECCV, 2018.

Viola, P. and Jones, M. J. Robust real-time face detection.

IJCV, pp. 137–154, 2004.

Wang, Y., Lai, Z., Huang, G., Wang, B. H., van der Maaten,

L., Campbell, M., and Weinberger, K. Q. Anytime stereo

image depth estimation on mobile devices. In ICRA,

2019.

Wu, Z., Valentini-Botinhao, C., Watts, O., and King, S.

Deep neural networks employing multi-task learning

and stacked bottleneck features for speech synthesis. In

ICASSP, 2015.

Wu, Z., Nagarajan, T., Kumar, A., Rennie, S., Davis, L. S.,

Grauman, K., and Feris, R. Blockdrop: Dynamic infer-

ence paths in residual networks. In CVPR, pp. 8817–8826,

2018.

Xie, S., Zheng, H., Liu, C., and Lin, L. SNAS: stochastic

neural architecture search. ICLR, 2019.

Xu, Z., Weinberger, K., and Chapelle, O. The greedy

miser: Learning under test-time budgets. arXiv preprint

arXiv:1206.6451, 2012.

Xu, Z., Kusner, M., Weinberger, K., and Chen, M. Cost-

sensitive tree of classifiers. In ICML, pp. 133–141, 2013.

Orthogonalized SGD and Nested Architectures for Anytime Neural Networks

Yang, Y. and Hospedales, T. Deep multi-task representation

learning: A tensor factorisation approach. arXiv preprint

arXiv:1605.06391, 2016.

Zagoruyko, S. and Komodakis, N. Wide residual networks.

arXiv preprint arXiv:1605.07146, 2016.

Zamir, A. R., Sax, A., Shen, W., Guibas, L. J., Malik, J.,

and Savarese, S. Taskonomy: Disentangling task transfer

learning. In CVPR, pp. 3712–3722, 2018.

Zhu, L., Deng, R., Maire, M., Deng, Z., Mori, G., and Tan,

P. Sparsely aggregated convolutional networks. ECCV,

2018.

Zhuravlev, S., Blagodurov, S., and Fedorova, A. Addressing

shared resource contention in multicore processors via

scheduling. ASPLOS, 45(3):129–142, 2010.

Zilberstein, S. Using anytime algorithms in intelligent sys-

tems. AI magazine, pp. 73, 1996.

Zoph, B. and Le, Q. V. Neural architecture search with

reinforcement learning. ICLR, 2017.

