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Sphagnum peat mosses have an extraordinary impact on the global carbon
cycle as they control long-term carbon sequestration in boreal peatland eco-
systems. Sphagnum species engineer peatlands, which harbour roughly a
quarter of all terrestrial carbon, through peat accumulation by constructing
their own niche that allows them to outcompete other plants. Interspecific
variation in peat production, largely resulting from differences in tissue
decomposability, is hypothesized to drive niche differentiation along micro-
habitat gradients thereby alleviating competitive pressure. However, little
empirical evidence exists for the role of selection in the creation and main-
tenance of such gradients. In order to document how niche construction
and differentiation evolved in Sphagnum, we quantified decomposability
for 54 species under natural conditions and used phylogenetic comparative
methods to model the evolution of this carbon cycling trait. We show that
decomposability tracks the phylogenetic diversification of peat mosses,
that natural selection favours different levels of decomposability correspond-
ing to optimum niche and that divergence in this trait occurred early in the
evolution of the genus prior to the divergence of most extant species. Our
results demonstrate the evolution of ecosystem engineering via natural selec-
tion on an extended phenotype, of a fundamental ecosystem process, and
one of the Earth’s largest soil carbon pools.
1. Introduction
Sphagnum is arguably the most important plant genus for terrestrial carbon sto-
rage worldwide. These mosses both create and dominate boreal peatland
ecosystems through their ability to sequester huge amounts of carbon in peat
soil that forms when rates of growth surpass those of decomposition [1–3].
Indeed, it is likely that more carbon is bound in living and dead Sphagnum
than in any other genus of plants [4]. Consequentially, this genus has a pro-
found influence on global climate despite the relatively recent diversification
of most extant species, perhaps 7–20 Ma during a period of climatic cooling
in the Northern Hemisphere [5].

Peat formation is facilitated by the production of plant tissue that decom-
poses slowly in the water-logged, acidic and nutrient-poor conditions of
peatlands, which give these mosses a competitive edge over other plants
[6,7]. However, a prominent feature among many Sphagnum species is their
height-above-water-table niche thought to result from interspecific differences
in rates of peat accumulation. Some species form hummocks elevated up to a
metre above the surrounding water table, whereas others live in hollows at
or near the water table [8,9]. This niche differentiation can result in the coexis-
tence of 20 or more species of Sphagnum within peatlands by alleviating the
ecological pressures associated with competition among congenerics.
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Our understanding about the evolution of Sphagnum
species having such different rates of tissue decay is incom-
plete. Early comparative studies of Sphagnum found that
hummock-forming species both grow and decay more
slowly than hollow-dwelling species [10,11]. Reciprocal trans-
plant experiments showed these differences occurred
regardless of the microhabitat in which the experiment was
conducted and decay generally occurred faster in the hum-
mock microhabitat [12,13], suggesting that differences in
decomposability among species are not caused primarily by
environmental factors. Recent studies have expanded the
number of Sphagnum species sampled and biochemical corre-
lates associated with such processes [14–16], showing that
hummock-forming species tend to have higher amounts of
structural carbohydrates and lignin-like phenolics in their
cell walls. For some of these metabolites, variation is influ-
enced by environmental conditions (e.g. the water-soluble
phenolics studied by [17]) in addition to having strong gen-
etic components. Nevertheless, low decomposability is an
emergent property of litter biochemistry that results in the
creation and maintenance of hummocks.

However, it is unclear how natural selection impacted the
evolution of tissue decomposability despite the oft-quoted
tenet that peat accumulation is adaptive for Sphagnum.
Empirical studies have demonstrated that interspecific
variation in height-above-water-table (i.e. formation of hum-
mocks), and some of the functional traits hypothesized to
underlie position along this hydrological gradient are phylo-
genetically conserved [18,19]. Various measures of growth,
decomposability and litter biochemistry show evolutionary
covariance with height-above-water-table and might rep-
resent adaptive syndromes in Sphagnum related to niche
[19]. Such syndromes of covarying traits are hallmarks of
natural selection [20,21] but the evolutionary mechanisms
by which these traits evolved in Sphagnum remain largely
unknown. Furthermore, only laboratory-based measure-
ments of decomposition rate in previous studies had
detectable phylogenetic signal, and it is unknown if such pat-
terns of interspecific variation are realized under natural
conditions.

Therefore, we quantified variation in biomass decompo-
sability for 54 species to understand how this trait evolved
during Sphagnum diversification. We competed phylogenetic
models of trait evolution that varied in the degree to which
natural selection explained patterns of interspecific variation
and in the heterogeneity of evolutionary forces across
lineages. We hypothesized that selection favours different
levels of decomposability corresponding to different microha-
bitat preferences, and that decomposability coevolved with
realized niche along the hydrological height-above-water-
table gradient in response to natural selection. These analyses
provide an opportunity to link plant traits to niche differen-
tiation within communities and to link such niche
differentiation to global scale carbon sequestration.
2. Material and methods
(a) Study species
We sampled 54 Sphagnum species that spanned the phylogenetic
breadth of the genus, representing the majority of those species
distributed in North America. Our sampling came from a total
of 198 collections and 48 localities throughout North America.
On average, each locality had 3.7 different species present, and
each species was found at 3.3 different localities. Previous phylo-
genetic analyses of Sphagnum used full organellar genome
sequences and resolved five subgenera: Rigida, Sphagnum, Acuti-
folia, Cuspidata and Subsecunda [22]. Subgenus Rigida, composed
of two–four species, is sister to the rest of the genus. The clade
containing the predominantly hummock-forming subgenera
Sphagnum and Acutifolia is reciprocally monophyletic to that con-
taining the largely hollow-dwelling Subsecunda and Cuspidata,
suggesting that divergence along the hydrological gradient
occurred relatively early during the diversification of the
genus. Most species are recognized as typically forming hum-
mocks or growing in hollows, but some are polymorphic (e.g.
S. angustifolium in subgenus Cuspidata) or cannot easily be cate-
gorized as either hummock or hollow species (e.g. species in
subgenus Rigida).

(b) Trait quantification
Biomass decomposability was measured in a mass loss exper-
iment conducted at McLean Bogs (Tompkins County, NY;
42.5488° N, 76.2662°W). This bog, formed following the most
recent glaciation, has been used in other experiments studying
peatland ecology [23,24] and is an ideal place to quantify Sphag-
num functional traits under natural conditions. Samples of
Sphagnum, totalling 54 species, were collected from throughout
North America. Freshly collected litter was dried at room temp-
erature and the top 5 cm of the dried plants [25,26] were placed
into 5 × 5.5 cm fibre 25-micron mesh bags (Product F57, ANKOM
Technology). Thirty-seven species were represented by multiple
collections, and we attempted to marginalize possible intraspeci-
fic variation in litter quality by pooling an equal amount of plant
material from each collection. This pooling was performed as we
were interested in quantifying species mean decay rates for
analysis using phylogenetic comparative methods rather than
quantifying intraspecific variation per se. Bags were heat sealed
using an impulse sealer (Product HS, ANKOM Technology),
and initial mass was measured to the nearest milligram. At
least 10 replicate litter bags were prepared for each species,
with the exception of S. fitzgeraldii for which only nine were pre-
pared due to lack of material. Litterbags were placed just beneath
the surface of living Sphagnum in the bog for 2 years (May 2017
through May 2019). Litterbags were then air-dried for one week
at room temperature. Per cent mass loss data were then used to
calculate the exponential decay constant (K, yr−1) for each litter-
bag and species means were calculated [13,27]. One litter bag for
S. torreyanum was damaged during retrieval and was not
included in the data analyses.

Quantitative data for the niche descriptor height-above-
water-table (dm) were available for 34 of the 54 species sampled
[28]. These niche data were used to fit evolutionary models and
test for evolutionary covariance with biomass decomposability.

(c) Phylogenetic inference
Genetic data were used to reconstruct phylogeny. Sequences
from six nuclear, seven plastid and two mitochondrial loci
were obtained from GenBank. Nuclear loci included a ribosomal
internal transcribed spacer (ITS), two introns in the LEAFY/FLO
gene (LL and LS) and three anonymous regions (rapdA, rapdB and
rapdF). Plastid loci included photosystem II reaction centre
protein D1 ( psbA), photosystem II reaction centre protein T
( psbT-H), plastid ribosomal gene (rpl16), ribulose-bisphosphate
carboxylase oxygenase large subunit (rbcL), ribosomal small
protein 4 (rps4), tRNA (Gly) (UCC) (trnG) and the trnL (UAA)
59 exon-trnF (GAA) region (trnL). Mitochondrial loci include
NADH dehydrogenase protein-coding subunits 5 and 7 (nad5
and nad7). Multiple sequence alignment was performed using
PAGAN2 v. 1.53 [29] and gap-rich regions were removed from
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the resulting alignments using the ‘-automated1’ heuristic algor-
ithm in trimAl v. 1.2 [30]. The concatenated dataset was analysed
with ModelFinder [31] in IQ-TREE v. 2.1.2 [32] to determine the
best partitioning scheme [33] and substitution model strategy
using the parameters ‘-m TESTMERGE -mset JC,HKY,GTR’
using the Bayesian information criterion.

Phylogenetic inference was performed in RevBayes v. 1.1.0
[34,35]. We estimated relative divergence times with strict mol-
ecular clocks assigned to each dataset partition. Multi-locus
datasets such as this have previously been unable to confidently
resolve deep nodes in the Sphagnum phylogeny, so we enforced a
backbone constraint of subgeneric relationships, (Rigida,((Sphag-
num,Acutifolia),(Cuspidata,Subsecunda))), to reflect the strongly
supported topology recovered from analysis of nearly full mito-
chondrial and plastid genomes [22]. Two independent Markov
chain Monte Carlo (MCMC) runs of 5E4 generations were
conducted with parameters and trees sampled every five gener-
ations following a burn-in period of 1E4 generations. Each
MCMC run had 23 different moves performed in a random
move schedule with 186 moves per generation. The resulting
samples were analysed using Tracer v. 1.7 [36] to check for statio-
narity and convergence on a joint posterior distribution. Finally,
the tree samples from both runs were combined and summarized
in a maximum a posteriori tree.
9

(d) Comparative analyses
The simplest model that we evaluated was white noise (WN) in
which the species trait values are unrelated to phylogeny. The
Brownian motion (BM) model incorporates species covariance
and predicts increased trait variance through time at a constant
rate [37]. The covariance structure for the BM model is given by
the tree where the internal branch lengths are used to calculate
the off-diagonal variance-covariance matrix entries; when these
entries are set to zero, species’ covariances are absent and this
model is equivalent to WN. The third model we considered,
Lambda [38], allows for covariance entries to be less than predicted
under BM but still reflect some phylogenetic signal. The Ornstein–
Uhlenbeck (OU) model also allows for deviation from a pure BM
model in that trait values are pulled towards some optimum value
and has been described as a model of stabilizing selection [39,40].

We also evaluated other models that allowed evolutionary
processes to vary across different parts of the phylogeny. Species
were assigned to either ‘hummock’, ‘hollow’ or ‘polymorphic/
neither’ regimes. A Mk model of evolution was used to infer
ancestral states for internal nodes of the phylogeny using the
‘rerootingMethod’ function in the R package phytools v. 0.7-70
[41–44]. The root of the tree and the node representing the
most recent common ancestor of the clade containing all subge-
nera except Rigida were assigned to the ‘polymorphic/neither’
regime as the marginal estimates provided roughly equal sup-
port for assignment to either ‘hummock’ or ‘hollow’ regimes.
Variation in evolutionary rates was considered in a multi-rate
BM (BMS) model, variation in adaptive optima was considered
in a multi-peak OU (OUM) model, and variation in both
adaptive optima and evolutionary rates was considered in a
multi-rate, multi-peak OU (OUMV) model [45,46].

Evolutionary models were fitted in both maximum-likelihood
and Bayesian frameworks to understand how biomass decomposa-
bility evolved during the diversification of Sphagnum. Maximum-
likelihood analyses were implemented in the R programming
environment. The WN, BM, OU and Lambda models were fitted
using the package geiger v. 2.0.7 [47]. The BMS, OUM and
OUMV models were fitted using the package OUwie v. 2.5 [48].
Models were compared with the Akaike information criterion
(AIC) scores corrected for small sample size (AICc) and relative
model likelihood was determined with Akaike weights using the
package qpcr v. 1.4-1 [49].
Bayesian analyses were implemented in RevBayes. Model
parameters were estimated using two MCMC runs of 5E4 gener-
ations, sampling every five generations and preceded by a burn-
in period of 1E4 generations. The resulting samples were
analysed using Tracer v. 1.7 [36] to check for stationarity and
convergence on a joint posterior distribution. The marginal like-
lihood of each model was estimated using the stepping-stone
power posterior method with 1E2 stones traversing the posterior
and prior distributions [50]. These marginal-likelihood estimates
(mL) were used to compare models using both Bayes factors and
relative model probability calculated from the following
equation:

PðModelÞ ¼ mLModelP
i mLi

¼ eðlnmLModel�lnmLMaxÞ
P

i eðlnmLi�lnmLMaxÞ :

All evolutionary models were fitted using the average decay
constant (K, yr−1) across replicate litter bags for each species and
the maximum a posteriori tree. We considered the variance and
standard error for Bayesian and likelihood analyses, respectively,
as intraspecific variation and measurement error can affect such
modelling substantially [51]. Finally, we fitted these models in a
likelihood framework using a randomly selected subset of
1E3 trees from the posterior tree distribution to account for
phylogenetic uncertainty.

We fit a reversible-jump MCMC (rjMCMC) model to allow
the data to determine the most probable location of selective
regime shifts on the phylogeny in the model fitting multiple
adaptive optima (i.e. OUM) rather than providing a priori
regime assignment. In this model, each branch had an equal
probability for such a regime shift in decomposability (K, yr−1).
The model parameters were estimated using two MCMC runs
of 5E4 generations, sampling every five generations and pre-
ceded by a burn-in period of 1E4 generations. We visualized
the results of the rjMCMC model using the R package RevGadgets
v. 1.0.0 [52].

Finally, we tested for evolutionary covariance of biomass
decomposability and the niche descriptor height-above-water-
table. First, tips in the maximum a posteriori tree that did not
have niche descriptor data were pruned using the R package
ape v. 5.4-1 [53]. Next, all evolutionary models were fitted
using the niche descriptor data. Finally, a phylogenetic general-
ized least-squares (PGLS) model was fitted using the R
package caper v. 1.0.1 [54] to determine if decomposability was
a significant predictor of niche. PGLS was performed as the
residual errors of an ordinary least-squares regression model
had phylogenetic signal indicated by comparison of AICc
values among BM, WN and Lambda models and significant
one-tailed likelihood ratio tests of both BM and Lambda
models against the WN model (BM: LR = 7.2, d.f. = 1, p = 7.4 ×
10−3; Lambda: LR = 7.2, d.f. = 2, p = 2.8 × 10−2).

Information about the choice of priors for Bayesian analyses
can be found in the electronic supplementary material, tables
S1–S3.

(e) Other statistical analyses
We fitted phylogenetic linear mixed-effects models in R using
restricted maximum likelihood with the package phyr v. 1.1.0
[55] to determine if the fixed effect of the microhabitat regime
was a significant predictor of biomass decomposability. The
data were analysed unaggregated, and we treated species iden-
tity as a random effect. To account for phylogeny, we used the
maximum a posteriori tree to estimate the correlation structure
among species. Residuals were visually inspected for normality,
and Levene’s test [56] was used to test for homogeneity of var-
iance using the R package car v. 3.0-10 [57]. Likelihood ratio
tests were performed to conduct hypothesis testing. Data were
log-transformed, and outliers were removed to meet assumptions
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Figure 1. Phylogenetic relationships and trait data for 54 peat moss species suggest that interspecific variation in litter decomposability relates to the phylogeny of
Sphagnum. (a) The Bayesian maximum a posteriori tree depicting evolutionary relationships with labelled bipartitions receiving support less than 1.0 posterior
probability. (b) Species mean decay constant (K, yr−1) ± s.e.m. Colour indicates microhabitat preference for hummock (blue), hollow (green) or polymorphic
(black) species. Box plots depict the medians (centre lines), means (closed circles), upper/lower quartiles (box limits), 1.5 x interquartile ranges (whiskers) and
outliers (open circles). (Online version in colour.)
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of the model. Analysis using the raw data, although violating
some assumptions of the model, still recovers a significant effect
of microhabitat regime albeit at a higher significance level (LR =
7.9, d.f. = 2, p = 1.9 × 10−2).
3. Results
Reconstructed evolutionary relationships among Sphagnum
species suggest that interspecific variation in biomass decom-
posability is related to the peat moss phylogeny. Mean
species decomposability (K, yr−1) ranges from 0.153 to 0.269
in hollow lineages, from 0.077 to 0.264 in hummock lineages,
and from 0.136 to 0.241 in polymorphic lineages. When
values for species mean decomposability are mapped onto
the tree, it is evident that species in the largely hummock-
forming clade, containing subgenera Sphagnum and Acuti-
folia, have lower decomposability than species in the largely
hollow clade, containing subgenera Subsecunda and Cuspidata
(figure 1). Analysis using phylogenetic linear mixed models
indicates a significant effect of habitat regimeondecomposability
(LR = 19.1, d.f. = 2, p= 7.2 × 10−5), suggesting that litter produced
by hummock-forming species decays more slowly than hollow-
dwelling species. While the backbone relationships among sub-
genera were constrained to those reconstructed using
organellar genome sequences, we found that evolutionary
relationships within subgenera are largely well-supported with
the majority of bipartitions having greater than 0.95 posterior
probability in each subgenus: Sphagnum (approx. 57%),Acutifolia
(75%), Subsecunda (approx. 88%) and Cuspidata (approx. 69%).
However, some regions of the phylogeny, such as those



Table 1. Comparison of evolutionary models indicates the presence of adaptive trait optima for litter decomposability (K, yr−1) in Sphagnum. Model
abbreviations and brief descriptions are provided. For maximum-likelihood results, delta AICc (ΔAICc) values and corresponding AICc weights (Wi) are provided
for each model. For Bayesian results, the Bayes factor relative to the model with the largest marginal-likelihood estimate (2ln(BF)) and corresponding model
probability (P(Model)) is provided.

model abbr. description

likelihood Bayesian

ΔAICc Wi 2ln(BF) P(model)

white noise WN trait variance increases over time with no

phylogenetic signal

19.46 0.00 32.81 0.00

Brownian motion BM trait variance increases over time with

phylogenetic signal

32.00 0.00 40.47 0.00

Lambda Lambda trait variance increases over time with

phylogenetic signal that can be weaker than

BM

8.91 0.01 38.64 0.00

Ornstein–Uhlenbeck OU trait variance increases over time with

phylogenetic signal

17.38 0.00 21.26 0.00

trait values are pulled towards some optimum

value

multi-rate Brownian

motion

BMS trait variance increases over time with

phylogenetic signal

29.71 0.00 45.76 0.00

regimes have separate evolutionary rates

multi-peak Ornstein–

Uhlenbeck

OUM trait variance increases over time with

phylogenetic signal

0.00 0.83 0.00 0.79

regimes have separate adaptive optima

multi-peak, multi-rate

Ornstein–Uhlenbeck

OUMV trait variance increases over time with

phylogenetic signal

3.25 0.16 2.68 0.21

regimes have separate evolutionary rates and

adaptive optima
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relationships among species in the S. capillifolium complex, were
not confidently resolved. Nevertheless, this phylogenetic uncer-
tainty was accounted for in our analysis as models of trait
evolution were fitted with 1000 different trees from the Bayesian
posterior tree distribution.

Using the phylogeny and trait data, we competed seven
models to better characterize the mode and tempo of evolution
in Sphagnum biomass decomposability (table 1). Models that
incorporate natural selection and predict separate trait optima
for litter decomposability among microhabitat regimes outper-
form all other models that do not include such optima. The
model that best describes the evolution of biomass decomposa-
bility is a multi-peak Ornstein–Uhlenbeck process (OUM),
wherein there exist separate optima toward which stabilizing
selection pulls trait values (figure 2). In our maximum-
likelihood analyses, the OUM model has the lowest corrected
Akaike information criterion (AICc) score and the majority of
the AICc weight (table 1). The OUM model maximum-
likelihood estimate for optimum biomass decomposability (K,
yr−1) in the hummock selective regime is 0.138 ± 0.008, while
that in the hollow regime is 0.204 ± 0.008 and that in the poly-
morphic regime is 0.171 ± 0.015. The model incorporating
separate trait optima and evolutionary rates among regimes
(OUMV) also performs well, receiving substantial evidence
based on AICc scores and nearly all of the remaining AICc
weight. Similar results are obtained from Bayesian model selec-
tion, where the OUM model has the highest marginal-
likelihood and model probability. Our findings are robust
when measurement error is considered in model fitting (elec-
tronic supplementary material, table S4). Additionally, the
results are robust to phylogenetic uncertainty in maximum-
likelihood analyses with OUM as the best model for 98.6% of
1000 trees from the posterior distribution and the Lambda
model preferred for 1.4% of trees (electronic supplementary
material, table S5). Additional analyses that did not require a
priori hypotheses about the location of possible shifts in adap-
tive optima for decomposability support the finding of
selective regime divergence early during Sphagnum diversifica-
tion, with different hummock and hollow selective regimes
recovered at 0.94 posterior probability (figure 2).

We also found that the divergence of optimum decompo-
sability in the ancestors of the crown groups within
Sphagnum resulted in separate optimum niches to which
species are adapted. Our analyses show that the position of
species along the microtopographic gradient height-above-
water-table is not only phylogenetically conserved but that
the predominantly hummock and hollow clades of Sphagnum
have separate adaptive optima for realized niche (electronic
supplementary material, table S6). Using likelihood, we are
unable to confidently fit models that incorporate separate



Acutifolia

Sphagnum

Rigida

Subsecunda

Cuspidata0.20

0.15
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0.20

0.14
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Figure 2. Adaptive optima for litter decomposability (K, yr−1) in the genus Sphagnum. (a) We found support for the hypothesis that species in hummock (blue),
hollow (green) and polymorphic (teal) regimes have separate optima towards which trait values are pulled. (b) Bayesian reversible-jump MCMC analysis suggests a
shift from lower (blue) to higher (green) optimum decay constant occurred in the ancestor to the clade containing subgenera Subsecunda and Cuspidata at 0.94
posterior probability. (Online version in colour.)
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rates of evolution for each regime due to the presence of
saddle points. These saddle points also exist when fitting
the decomposability data using only the 34 species for
which height-above-water-table data are available suggesting
that our inability to fit these models stems from a lack of stat-
istical power. Nevertheless, the OUM model best describes
the evolution of height-above-water-table in a likelihood fra-
mework and is nearly indistinguishable from the preferred
OUMV model in our Bayesian analyses. These models
suggest that the hummock species have a higher adaptive
optimum for height-above-water-table than species in the
hollow or polymorphic regimes and that shifts in this
optima occurred concomitantly with corresponding
decreases in biomass decomposability (figure 3). Finally,
PGLS regression indicates that decomposability under
natural conditions is a significant predictor of species niche
(F(1,32) = 9.8, p = 3.8 × 10−3, adjusted R2 = 0.21; figure 4).
4. Discussion
The evolution of Sphagnum biomass decomposability is a
result of natural selection and divergence in trait optima
among species with different niches occurred prior to the
diversification of the genus. We found that variation in
decomposability under natural conditions and niche prefer-
ence along with height-above-water-table track phylogenetic
relationships in Sphagnum. Moreover, we found that the coe-
volution of decomposability and niche is driven by selection
and not merely a consequence of random evolutionary walks.
Therefore, the construction of boreal peatlands, and the
microhabitat niches therein, via Sphagnum decomposability
highlights the importance of this specific functional trait to
carbon cycling at an ecosystem scale. Perhaps too often, the
term ‘ecosystem engineering’ is applied to environmental
changes that are not at the ecosystem scale per se. Neverthe-
less, our findings in Sphagnum represent a unique case of
natural selection shaping the evolution of ecosystem engin-
eering through phenotypes that extend beyond the plants
themselves.

Both our maximum-likelihood and Bayesian analyses
provided support for the hypothesis that hummock species
have less biomass decomposability than hollow species due
to a shift in the selective regime. The differences between
adaptive optima for biomass decomposability may seem
small, but the predicted consequences over time are dramatic:
litter produced from hummock species is predicted to take
over a year longer to lose half of its initial biomass when com-
pared to that produced by hollow species. The presence of
adaptive optima among clades of Sphagnum for litter decom-
posability parallels recent findings in flowering plants and
suggests that selection might act on this functional trait
throughout the land plant phylogeny [58,59], perhaps in
part due to pleiotropic effects on other functional traits
such as growth or secondary metabolism.

Evolutionary rate estimates in the OUMV model indicate
that decomposability evolves faster in hummock lineages,
which likely reflects the slightly larger variance of decay con-
stant values among species and greater homoplasy in niche
preference within the predominantly hummock-forming sub-
genera Sphagnum and Acutifolia. For example, S. portoricense,
in the typically hummock-forming subgenus Sphagnum, is a
largely tropical species that grows close to the water table
and has a much higher biomass decomposability than the
related S. alaskense that forms moderately sized hummocks.
Similar results were obtained from fitting the OUMV model
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Figure 3. The adaptive optima for biomass decomposability (K, yr−1) have corresponding optima in a realized niche along the height-above-water-table (dm)
microhabitat gradient. (a) Species in the hummock regime have higher (green) optimum height-above-water-table than do species in polymorphic or hollow
regimes. (b) Species in the hummock regime have lower (blue) optimum decomposability than do species in polymorphic or hollow regimes. (Online version
in colour.)
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to the quantitative height-above-water-table data in a Baye-
sian framework and under likelihood using standard error,
suggesting that the increased rate of evolution in decomposa-
bility within predominantly hummock-forming clades is
recapitulated by an increased rate of evolution in a realized
niche.

Phylogenetic conservatism of biomass decomposability
suggests a strong genetic basis for this trait and, combined
with the finding that natural selection shapes trait variation in
Sphagnum, represents a fascinating model of the ‘extended phe-
notype’ where genetic variation produces variation in
organismal artefacts, which create the environmental conditions
that, in turn, select across levels ofbiological organization [60,61].
It must be acknowledged that the quality of the initial plant litter
can be influenced by environmental conditions and, while we
attempted to marginalize such effects in our experiment, future
studies might improve upon this work by quantifying intraspe-
cific variation explicitly and addressing the relative importance
of genotype, environment and genotype-by-environment inter-
action in determining litter decomposability. With emerging
genomic resources for Sphagnum generated by a genus-wide
sequencing project [62], these findings set the stage for elucidat-
ing the specific genomic targets of selection that underlie the
evolutionof adaptive trait syndromes associatedwith hummock
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and hollow niches. Additionally, such an increase in our under-
standing of how peat moss species differ in functional traits can
help better inform ecological models of nutrient flux both glob-
ally and within peatlands, better forecast the fate of peat
carbon stocks and improvepredictions of howcommunity struc-
ture within peatland ecosystems might respond as Earth’s
climate rapidly changes.
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