
DBSpinner: Making a Case for Iterative Processing
in Databases

Sofoklis Floratos∗, Ahmad Ghazal, Jason Sun†,
Jianjun Chen†, Xiaodong Zhang∗

∗The Ohio State University, Columbus, Ohio, USA
†ByteDance US Lab

Abstract—Relational database management systems (RDBMS)
have limited iterative processing support. Recursive queries were
added to ANSI SQL, however, their semantics do not allow
aggregation functions, which disqualifies their use for several
applications, such as PageRank and shortest path computations.
Recently, another SQL extension, iterative Common Table Ex-
pressions (CTEs), is proposed to enable users to perform general
iterative computations on RDBMSs.

In this work1, we demonstrate how iterative CTEs can be
efficiently incorporated into a production RDBMS without major
intrusion to the system. We have prototyped our approach on Fu-
turewei’s MPPDB, a shared nothing relational parallel database
engine. The implementation is based on a functional rewrite that
translates iterative CTEs to other existing SQL operators. Thus,
query plans of iterative CTEs can be optimized and executed
by the engine with minimal modification to the code base. We
have also applied several optimizations specifically for iterative
CTEs to i) minimize data movement, ii) reuse results that remain
constant and iii) push down predicates to avoid unnecessary data
processing. We verified our implementation through extensive
experimental evaluation using real world datasets and queries.
The results show the feasibility of the rewrite approach and the
effectiveness of the optimizations, which improve performance
by an order of magnitude in some cases.

I. INTRODUCTION

The vast majority of Relational Database Management
Systems (RDBMSs) use the Structured Query Language
(SQL) [1], which defines what data need to be retrieved and
hides how data is processed. However, SQL is limited in
expressing iterative computations. Examples of such iterative
processing are the single source shortest path (SSSP) query
that computes the shortest path between two points and the
PageRank (PR) query that finds the most important nodes in
a graph.

The current SQL standard supports recursive processing [2]
through views or CTEs but it is limited to recursive union
computations. This limitation is due to the assumption that
a recursive query needs to reach a fixed point. Fixed point
semantics in the context of SQL means that each iteration in
recursion uses the previous iteration as input and stops at a
fixed point where the input is the same as the output. This
occurs when both input and output are empty. Thus, recursive
queries cannot be used to express general purpose iterative
computations like the PR query. Aggregate functions are not

1This work was done while Ahmad Ghazal, Sofoklis Floratos, Jason Sun
and Jianjun Chen were working with Futurewei.

allowed in the recursive part of the query, the termination
condition is implied and tuples can only be appended to the
result and not updated.

Many users that need to execute iterative queries, usually
switch from RDBMSs to specialized graph processing en-
gines [3], [4], [5], [6], [7] that support custom vertex-based
APIs [8] or Datalog [9] systems that can optimize recursive
queries [10], [11], [12], [13], [14], [15] more effectively. Most
of these solutions offer high performance, a critical aspect
for many applications. However in our work, we explore the
alternative scenario in which users have already stored their
data into a RDBMS and want to avoid transferring them to a
new engine, a step that can be very expensive or infeasible.
Moreover, some users may prefer to use SQL as their preferred
API, instead of learning a new one, or they may want to
use the result of an iterative query directly as an input to
another SQL query. In other words, our solution tries to
accommodate users that prefer exchanging valuable productive
time spent on integrating a new system into their workflow for
performance, a requirement that came directly from multiple
clients. Thus, we do not propose to replace or compare a
SQL-based approach with any of these solutions but instead
we explore an efficient way to enable relational SQL-based
systems to run iterative queries.

Despite the fact that SQL is not a popular option for iterative
processing yet, mainly due to the limitations imposed by the
fixed point semantics, recent efforts [16], [17] have explored
the possibility of extending recursive CTEs and proposed new
SQL structures and operators that can accommodate iterative
queries on relational data. Note that these SQL extensions
are complementary to recursive queries and address use cases
like the PR query. Recursive queries can still be used for
hierarchical iteration like bill of materials.

The authors of [17] propose an implementation that creates
stored procedures and executes them in the RDBMSs, while
the authors of [16] create a middleware between the user
and a target database engine. Both proposed frameworks,
involve solutions that are implemented outside the system.
We illustrate the logic of [16] using the PR query applied
on a table that captures the connections between web pages
(source page, destination page and other additional informa-
tion). The computation starts with scanning the connection
table and computes an initial rank for all pages. The page rank
information is treated as a working table materialized at the

target DBMS. It also gets updated by examining paths between
pages through neighbours. Exploring such paths is a sequence
of self joins and updating the rank is done through an update
DML statement. In summary, the external solution in [16]
interacts with the DBMS through the following operations:
create and insert into temporary tables, issue self join queries,
update and finally drop these temporary tables.

Although the external approach is flexible, as the user can
choose the database engine of his/her preference and avoid
data transforming and loading steps, it has some limitations.
First, it is hard for external solutions to maintain ACID
properties for long query executions. In addition, the workload
manager is unaware of the iterative query as a whole and treats
each of the basic operations as a query by itself. Furthermore,
the basic operations sent to the DBMS are more heavy
than needed. For example, intermediate results are explicitly
defined as temporary tables which impose metadata overhead.
The DML used in the external approach to initialize and update
intermediate results is also an overkill, since it implies locking
and other transaction overhead related to these operations.
Finally, these external solutions do not have system specific
optimizations, leaving space for performance improvement.

We propose a solution that addresses all the above limi-
tations imposed by external implementations. Our approach
extends mainly the planner and optimizer in order to support
iterative CTEs natively. Other components, such as the parser
and the database kernel, require some minor modifications
that are also described. However, the overall solution is based
mainly in a functional re-write that takes place inside the
planner, while reusing existing structures and resources of the
system. Our goal is to support iterative CTEs in a non-invasive
way. The approach is prototyped on Futurewei’s MPPDB
database [18] (MPPDB for the rest of the paper), a scalable
commercial relational database. We choose MPPDB, an OLAP
solution, instead of a traditional RDBMS as iterative queries
are mainly used in an analytical environment.

The MPPDB parser extension covers the new grammar for
iterative CTEs and produces a parse tree similar to regular and
recursive CTEs. The key implementation relies on converting
the iterative CTE specification to a logical query tree inside the
planner. This conversion is done through a new rewrite rule
that converts the iterative CTE to existing DBMS operators
like scans, joins and aggregations. The update logic mentioned
before can be done through a scan from a temporary table to
another temporary table. For the iteration logic, we have added
a new simple operator that allows conditional redirection to a
previous step in the execution plan. The proposed solution
basically creates a single plan for queries involving iterative
CTEs in order to solve all the problems discussed above.

The optimizer simply works for the rewritten iterative query.
No changes are needed for cost based optimizations or the
cost subsystems to handle iterative CTEs. We modified two
rule based rewrites for iterative CTEs: predicates push down
and common results rewrite. Pushing predicates cannot be
done in a similar way as regular CTEs and need to be
modified. In addition, there are more opportunities to share

intermediate results among different parts of a query plan. If
there are joins between tables in the iterative part, then in some
cases, they can be materialized once, at the beginning of the
query, and reused multiple times. We evaluate the proposed
methodology by using real data and iterative queries such as
PR, SSSP and a query that Forecasts the number of Friends
(FF) through a geometric sequence. We test the efficiency
of our functional rewrite and explore extensively when our
proposed optimizations can accelerate the query execution. We
observe an order of magnitude faster execution for optimized
iterative queries in some cases.

We would like to re-iterate a few key differences between
our approach and the procedural one. First, all the limitations
mentioned for external solutions, also apply to stored proce-
dures and UDFs. In general, procedural solutions are used not
as an alternative to SQL but rather when direct SQL is not
possible. Stored procedures and UDFs need to be written as
a custom made solution to an iterative problem. The DBMS
optimizer treats the UDF as a black box and processes each
statement of the stored procedure in isolation. This leads to
higher cost of application development and lower performance
than a declarative SQL solution.

In summary, our contribution is to provide an effective
implementation and necessary system optimizations for it-
erative CTEs in commercial RDBMSs through non-invasive
extensions to their relevant components inside the engine. The
extensions introduce two new execution operators: rename and
loop. The optimizer extensions focus on adjusting existing
optimizations, such as predicate push down, and extracting
common results to work for iterative CTEs.

The rest of the paper is organized as follows: Section II con-
tains background information on iterative CTEs and Section III
describes how they can be implemented natively. Section IV
presents the functional rewrite and Section V describes the
optimizations that can be applied. Section VI discusses the
extensions that need to be done in the execution engine.
Section VII presents the experimental studies. Section VIII
discusses related work and finally, Section IX concludes.

II. BACKGROUND

This section describes the original SQL extension proposed
in [16] and discusses the drawbacks of a middleware approach
to motivate our work. We use the PR query as an example for
iterative CTEs throughout the paper. The rank computation
itself was extensively discussed in [19] and expressed using
iterative CTEs in [16]. To describe the computation, we
assume that all edges of the graph are stored in a relation
named edges that has three attributes, src, dst and weight. Each
tuple in that relation can be mapped to a graph as an edge that
goes from node src to node dst and has an assigned number
weight. We also denote the resulted rows of iteration i as Ri.

Recursive views and CTEs were the first efforts to support
iterative processing and became part of the SQL ANSI [2].
Recursive queries cannot be used for iterative processing that
requires aggregation due to the fixed point semantics. Iterative
CTEs allow a termination condition explicitly defined by the

1 --Create tables
2 CREATE TABLE IntermediateTable (node int,
3 rank float, delta float);
4 CREATE TABLE PageRank (node int,
5 rank float,delta float);
6

7 --Non iterative Query
8 INSERT INTO PageRank
9 SELECT src, 0, 0.15
10 FROM (SELECT src FROM edges
11 UNION SELECT dst FROM edges);
12

13 --Iteration 1
14 DELETE FROM IntermediateTable;
15

16 INSERT INTO IntermediateTable
17 SELECT PageRank.node,
18 PageRank.rank + PageRank.delta,
19 0.85 * SUM(IncomingRank.delta
20 * IncomingEdges.Weight)
21 FROM PageRank
22 LEFT JOIN edges AS IncomingEdges
23 ON PageRank.node = IncomingEdges.dst
24 LEFT JOIN PageRank AS IncomingRank
25 ON IncomingRank.node = IncomingEdges.src
26 GROUP BY PageRank.node,
27 PageRank.rank + PageRank.delta;
28

29 UPDATE PageRank
30 SET rank = IntermediateTable.rank,
31 delta = IntermediateTable.delta
32 FROM IntermediateTable
33 WHERE PageRank.node = IntermediateTable.node;
34

35 --Iteration 2
36 ...

Fig. 1: PR Query using multiple SQL statements

user. Thus, they can be used to support more generic iterative
computations as aggregations are permitted in the iterative part
of the query. Before we describe how iterative CTEs work, let
us consider how PR can be implemented through a custom
made SQL-based application as shown in Figure 1.

The PR query in Figure 1 is expressed by multiple SQL
statements. Lines 1 to 5 create the main and working tables.
Lines 7-11 execute the non-iterative part and Lines 14 to 34
execute the iterative part of the query once. Then, the iterative
part needs to be executed again for N number of iterations
by copying Lines 14 to 34 multiple times. Part of the iterative
computation is to update the page rank result. This solution
works if N is known which is not always the case.

The SQL extension in [16] proposes iterative CTEs to
address the problems mentioned above by allowing the user
to describe the iterative computation and explicitly define its
termination condition. An iterative CTE named R contains a
non-iterative part R0, and an iterative one Ri. As in recursive
CTEs, R0 is executed only once, while Ri is executed multiple
times. A major difference between the two SQL structures
is that iterative CTEs update the working table, instead of
adding new tuples. Moreover, the query terminates when the
termination condition T c is satisfied. This does not only give
the user the flexibility to define explicit termination conditions,
but also removes the assumptions for fixed point semantics.

Thus, aggregate functions can be used in Ri. The termination
condition according to [16] can be based on data, metadata
and delta values. When T c is based on data, then the system
checks if the regular SQL expression given by the user is
satisfied by the main CTE table. If T c is based on metadata,
then the system checks the number of iterations or the number
of updates performed. Finally, if T c is based on delta values,
then the system compares the latest version of the dataset
with the previous one. Further details regarding the syntax
and semantics of T c can be found in [16]. The general form
of an iterative CTE is:

WITH ITERATIVE R AS (R0 ITERATE Ri UNTIL T c) Qf

The SQL in Figure 2 is an example of an iterative CTE
that computes PR for all pages. At the beginning, the system
executes R0 and stores the result into the main CTE table.
Then, for each iteration, it needs to i) execute Ri and store the
result in the working table, ii) update the main CTE table with
the rows that exist in the working table and, iii) check if T c is
satisfied in order to determine if another iteration is needed.
To update the main table correctly, a unique row key/identifier
needs to exist. In SQL, each tuple is considered part of a set
and thus, without a unique identifier, updated values cannot
be mapped to the original ones. If a primary key column is
specified by the user in the schema of the involved tables,
the system uses it to perform the update, otherwise it creates
unique row IDs. Moreover, the system throws a run-time error
if the user defines a CTE in which the iterative part results into
a working table with duplicates of a single row/key. This is
necessary, as there will be two (or more) updates for the same
row in the main table and thus, the system will not know how
to handle it. In this case, the user needs to redefine the iterative
part and explicitly specify how duplicates need to be resolved
through an aggregation, group by etc. After the completion
of the iterative part, the system performs the query Qf and
returns the final result to the user.

1 WITH ITERATIVE PageRank(Node, Rank, Delta)
2 AS (SELECT src, 0, 0.15
3 FROM (SELECT src FROM edges
4 UNION SELECT dst FROM edges)
5 ITERATE
6 SELECT PageRank.node,
7 PageRank.rank + PageRank.delta,
8 0.85 * SUM(IncomingRank.delta
9 * IncomingEdges.Weight)
10 FROM PageRank
11 LEFT JOIN edges AS IncomingEdges
12 ON PageRank.node = IncomingEdges.dst
13 LEFT JOIN PageRank AS IncomingRank
14 ON IncomingRank.node = IncomingEdges.src
15 GROUP BY PageRank.node,
16 PageRank.rank + PageRank.delta
17 UNTIL 10 ITERATIONS)
18 SELECT Node, Rank FROM PageRank;

Fig. 2: PR Query using iterative CTEs

Iterative CTEs in [16] are implemented as part of a mid-
dleware system that eliminates the need for custom SQL
scripts as the one shown above. This approach, decouples the

SQL extension from the execution engine, providing a system
independent solution. However, as other middleware solutions,
this comes with several limitations. First, the query is executed
as multiple INSERT, SELECT and UPDATE statements in a
loop. This makes the query processing complicated as it is
hard for the target engine to process failures and aborts. The
entire query execution can be enclosed into a long transaction
but it is not efficient and requires more intimate logic of the
underlying DBMS transaction support and semantics. Second,
the DBMS workload manager (if any) has no knowledge
about the iterative CTE query and processes each of the
basic operations one by one. Thus, scheduling and resource
management is done at per statement basis and not for the
entire iterative query. Third, the basic operations sent to the
DBMS cause overhead. For example, the iterative results are
maintained using creation, updates and dropping of temporary
tables. The temporary table creation and dropping operations
are DDL with metadata that pose overhead and extra locks.
The DML used to initialize and update intermediate results
requires locks and transaction management which adds to
the overhead and complexity of the solution. Finally, the
middleware approach may not benefit from certain query op-
timizations that can be applied only for complete query plans.
Examples are push down predicates or optimizations that find
common parts and benefit from them. Iterative CTEs have
not been part of RDBMSs before and thus, there is no prior
implementation known for effectiveness or performance. All
these issues motivated us to investigate an effective approach
that integrates iterative CTEs into the system and turns them
into a reality in a production environment.

III. NAIVE IMPLEMENTATION

In this section, we describe how iterative CTEs can be
implemented within a RDBMS and overcome the limitations
introduced by external solutions. Our testbed is Futurewei’s
MPPDB. For every SQL query that involves one or more
iterative CTEs, our implementation in MPPDB, constructs a
single query plan that eventually gets executed by the engine.
This is similar to how regular or recursive CTE queries are
processed by the database system. We reuse regular CTE
structures to create, process and update temporary results in
order to avoid the need for explicit DDL and DML operations
like the ones used by external solutions. Finally, a new simple
operator is needed to handle the loop of iterative CTEs,
something that we further discuss in Section VI.

Before providing further details, we highlight the advan-
tages of supporting a native solution that uses a single query
plan. First, it ensures that ACID proprieties will be handled
by the system without the need to create long transactions.
Second, the workload manager can schedule iterative CTEs
in the same way as other native database operations and
queries, as a single execution plan can be examined as one
processing unit. Third, unnecessary overhead introduced by
DDL and DML operations is avoided. Finally, existing query
optimizations and cost estimation can be applied by the

planner to the entire iterative CTE and not only to individual
SQL statements that are part of a bigger query.

TABLE I: Logical Plan of the PR query in MPPDB

Step ID Description
1 Materialize PageRank with the results of the union

operation between the selection of src and dst from
table edges.

2 Initialize counter to zero.
3 Materialize Intermediate Results with the results of

the join between PageRank with edges and then with
the results of self-join with PageRank using GROUP
BY in attribute nodes.

4 Rename Intermediate Results to PageRank.
5 Increment counter by 1.
6 Go to step 3 if counter < 10.

Our implementation inside MPPDB, applies the same exe-
cution flow as the one used by external solutions but without
DDL and DML operations. The insert logic is implemented
through the materialization of intermediate results which is a
common execution operator in many DBMSs and used to store
results of intermediate join and aggregate operations. Updates
can also be implemented through another materialization with
the proper selection of old and new values. To demonstrate
our approach, we use the PR query as an example. Table I
illustrates the abstract description of the logical plan which is
used by the planner in order to produce the actual physical
plan, similar to what happens with other more traditional
SQL structures. Step 1, inserts the non-iterative part into a
temporary result called PageRank by using a regular WITH
SQL object. Step 3, executes the iterative part which computes
the page rank using ranks from neighbors and connections
from the edges table. We want to highlight that PageRank is
both input and output. Thus, we use another intermediate result
to hold the values. If the query updates the entire dataset then,
the system just renames the intermediate result to PageRank
to avoid finding the updates and making unnecessary data
movement in step 4. The rename is a new and simple step that
got added to MPPDB. Steps 2 and 5 are also new additions
to the execution engine to handle the loop and require support
by other parts of the system as well.

Supporting general iterative processing in MPPDB involves
extensions to the parser, rewrite subsystem, planner and exe-
cution engine. The parser handles the syntax, semantics and
access rights for the SQL query. It also outputs a logical
query tree (parse tree format) and passes it over to the
rewrite subsystem. This part of the system is broken down
into functional and optimization rewrites. Functional rewrites
transform some operators not supported by the execution
engine to other low level operators. Common examples are
view reference expansion (plugging view definitions into the
query tree) and transforming complex OLAP functions like
CUBE or ROLLUP to a UNION of simple aggregate queries.
Teradata [20] processes recursive and temporal queries [21],
[22] through functional rewrites as well. Optimization rewrites
(rule and cost based) get the logical plan from the functional
rewrites and produce an optimized query plan tree. Examples

of optimization rewrites are predicate push down, UNION
simplification, join elimination, etc. The join and aggregate
planner converts the logical tree from the rewrite subsystem
to a physical tree that includes join ordering and implemen-
tation, aggregation methods and data shuffle decisions. Then,
the execution plan is further optimized through LLVM code
generation and passed to the execution engine. During the
final step of query processing the executor performs the actual
query execution and returns the results to the user. To enable
MPPDB to process iterative CTEs, we extended most of the
components inside the system but without introducing major
alterations to the code. The changes are summarized below:

• Parser changes: Most of the changes in the parser have
been done to accommodate the new syntax introduced
by iterative CTEs and to produce a new parse tree node
that contains crucial information for the execution of the
query such as the non-iterative part, the iterative part
and information regarding the termination condition. The
details of the parser extension are straightforward and
thus, we will not give any further details.

• New functional rewrite rule: Inside the rewrite subsys-
tem, we added a new rewrite rule to transform iterative
CTEs into lower level operations similar to the PR
example illustrated in Table I. Section IV explains the
logic of this new rewrite rule.

• New optimization rewrite rule: MPPDB has numerous
rules and cost based optimizations which can be applied
without further changes to the logical query tree produced
by the functional rewrite component. However, two of
them require changes related to iterative CTEs, such
as common result rewrite and predicate push down.
Section V describes these changes.

• Planner changes: The join and aggregation planners
do not need further changes to process the produced
logical tree. However, a minor modification is required
to recognize and pass to the physical plan, two new
execution operators that accommodate loop and rename
functionality. Again, the changes and implementation in
this component are straightforward and thus, we will not
provide further details.

• Execution engine changes: The execution engine is
extended to cover two new simple operators: loop and
rename. Nothing else is needed since the rewritten query
plan is based on existing DBMS operators. This discus-
sion is covered in Section VI.

IV. CORE ALGORITHM

The core implementation of iterative CTEs in MPPDB is
done through a functional rewrite that expands the parse tree
into a sequence of SQL operators that cover the non-iterative
part, the iterative part and the loop logic that allows multiple
iterations. We use PR as an example to illustrate the mechanics
of the functional rewrite and provide the generic algorithm
used inside the planner.

Figure 3 depicts the tree of the PR query after being
processed by the parser. The figure does not show the full

SELECT

EDGES

SELECT

EDGES

UNION

CTE
Type: Iterative

SELECT

LOOP
Type: Metadata
Con: Iterations
N: 10GROUP BY

LEFT OUTER JOIN

EDGESPAGERANK

LEFT OUTER JOIN PAGERANK

R₀ T�

Rⁱ

Fig. 3: PR Query Parse Tree in MPPDB

detailed tree but focuses on the main nodes that cover the
operators. The root is a selection from the iterative CTE
Pagerank, which is an extension of the existing CTE node.
The CTE node is marked as ”iterative” to differentiate it from
regular and recursive CTEs. The non-iterative part is a UNION
operation extracting the src and dst from the edges table. The
iterative part is a GROUP BY on top of two left outer joins
involving the main CTE result and edges. Another child of the
CTE describes the termination condition based on “UNTIL
10 ITERATIONS” which is of type “Metadata”.

The functional rewrite expands the iterative CTE into a
sequence of regular SQL operations that perform the needed
computation. Figure 4 illustrates the result of the rewrite which
is a tree that represents the logical query plan generated
by MPPDB in the planner after processing the parse tree
illustrated in Figure 3. The rewrite process is similar to
other functional rewrites that take place in the planner, like
view expansion or complex OLAP functions. In this case,
it generates a sequence of operations that compute the non-
iterative and iterative part. The first materialize node computes
R0 which can be any SELECT statement. The iterative part
is another materialize step that has a GROUP BY applied
on top of the two outer joins required by Ri and explained
before. Finally, the last step is a rename operation that puts
the intermediate results back into the main PageRank result. In
queries that do not update the entire dataset, the planner adds
before the rename, a SELECT that selects the old values from
Pagerank and the new ones from intermediate result using
the column that serves as a unique row identifier. Thus, in
the next iteration, the main CTE relation will contain both
updated and non-updated values. The PR query in Figure 2
updates the entire dataset as there is no WHERE clause in Ri

(i.e. Lines 6-16). For this reason, Lines 5 and 6 are executed
in Algorithm 1. In the SSSP query, shown in Figure 7, there is
a WHERE clause in Ri (i.e. Lines 7-17) that updates only the
explored nodes and not the entire dataset, thus Lines 8,9 and
10 from Algorithm 1 are executed. Note that the logical plan
shown in Figure 4 is a simplified version of the original one,
used for demonstration purposes and that the generic algorithm
used by the planner of MPPDB can be found in Algorithm 1.

UNION

SELECT EDGES

SELECT EDGES

MATERIALIZE
<<Intermediate>>

Step ID 3

GROUP BY

LEFT OUTER JOIN

EDGESPAGERANK

LEFT OUTER JOIN PAGERANK

LOOP
Type: Metadata

N: 10

Expr: NONE

Step ID 5,6

MATERIALIZE
<<PageRank>>

Step ID 1

Rename
From: <<Intermediate>>

To: <<PageRank>>

Step ID 4

Fig. 4: PR Logical Tree in MPPDB

A crucial element in the execution of an iterative CTE
is to determine when the termination condition is satisfied.
As mentioned before, the termination condition can be based
on data, metadata or delta values. In MPPDB this part is
implemented by the loop operator in the query plan tree. The
implementation of this part in the functional rewrite depends
on the type of termination condition which is identified by
the parser variable Type (as illustrated in Figure 3) and is
passed to the planner through the new iterative CTE object. A
simple new operator called loop which handles the conditional
execution flow is added. The functional re-write checks if the
parse tree is an iterative CTE and adds the loop operator in the
logical plan tree. Then, it fills in all the needed information
required by each different type of termination condition from
the parse tree. The new operator captures three pieces of infor-
mation: 1) type of the termination condition (Metadata, Data or
Delta), 2) number of iterations or updates with an indicator to
distinguish between the two options and 3) the SQL expression
used for the data and delta termination conditions along
with an extra indicator that accommodates the ANY keyword
(further described in [16]). For the PR example, the query
requires explicitly 10 iterations, thus the termination condition
is based on metadata. The loop operator in the logical query
plan tree is populated with <<Type:metadata, N:10,
Expr:NONE>> as illustrated in Figure 4.

Finally, the planner initializes the loop operator right after
the execution of the non-iterative part and updates it at the
end of each iteration. For the simple case of the PR query,
MPPDB starts a new counter (step ID 2 in Table I and Line 2
in Algorithm 1) before the execution of Ri and then increases
the counter (step ID 5 in Table I and Line 11 in algorithm 1)
before checking if another iteration is needed (step ID 6 in
Table I and Lines 12-13 in algorithm 1).

V. OPTIMIZATION TECHNIQUES

In the previous section we described how the planner
performs a functional rewrite and transforms the iterative
CTE into known SQL operations. During that process, it tries
to minimize unnecessary data movement by eliminating the

Algorithm 1: Functional Rewrite of an iterative CTE
1 materialize R0 into cteTable;
2 initialize loop operator;
3 materialize Ri into workingTable;
4 if Ri does not have a WHERE clause then
5 rename workingTable to cteTable ;
6 recreate workingTable ;
7 else
8 mergeTable as (select case

when cteTable.col1 !=
workingTable.col1
then workingTable.col1
else cteTable.col1
end,
. . .
from cteTable left join workingTable
where cteTable.key = workingTable.key;

9 rename mergeTable to cteTable;
10 delete tuples from workingTable;
11 end
12 update loop with data from current iteration;
13 if conditional execution in loop returns true then
14 continue from Line 3
15 return Qf ;

need to transfer data from the intermediate result back to the
main one when possible. We further discuss the optimization
of iterative CTEs in this section and explore elimination of
unnecessary data movement in Section VII.

The optimizer treats iterative CTE queries like any other
regular SQL statement. It applies heuristic optimization
rewrites like join elimination, outer to inner join conversions,
etc. It also applies cost based rewrites, join re-ordering and
aggregate planning as usual. No changes are needed for cost
based optimizer or the cost subsystem (statistics, cost formu-
las, .. etc). However, two rule based optimizations required
special considerations for iterative queries. First, predicate
push down need to be restricted. A filter on an iterative
reference cannot be applied blindly during the execution of the
iterative part as it might eliminate relevant intermediate results.
Second, joins in the iterative part that produce the same result
in each iteration can be avoided and with them, redundant
computations as well. The next two sections describe the
changes to the optimizer for these two special cases.

A. Common Result Optimization

Common result rewrite is an optimization performed by
RDBMSs that identifies, materializes and reuses blocks of
a query that are the same. In this way, the system avoids
recomputing identical parts of the execution plan more than
one time. To illustrate how MPPDB materializes constant parts
in iterative CTEs, we consider a modified version of the PR
query that calculates the rank of only the active nodes in the
graph. For this example, we add table VertexStatus that
contains the availability of a node in the form of a tuple
<node, status> (i.e. nodes that are unavailable in the
vertexStatus will not be considered in the rank calcu-
lation). The modified query is called PR-VS and it the same

UNION

SELECT EDGES

SELECT EDGES

MATERIALIZE
<<Intermediate>>

Step ID 3

MATERIALIZE
<<COMMON#1>>

Step ID 2

GROUP BY

LEFT OUTER JOIN

COMMON#1PAGERANK

LEFT OUTER JOIN PAGERANK
LOOP

Type: Metadata

N: 10

Expr: NONE

Step ID 5,6

MATERIALIZE
<<PageRank>>

Step ID 1

Rename
From: <<Intermediate>>

To: <<PageRank>>

Step ID 4

JOIN

VERTEXSTATUS

EDGES

Fig. 5: Logical plan that materializes common results

as the PR query with adding a join with vertexStatus in
the iterative part as :

1 JOIN vertexStatus AS avail_pr
2 ON avail_pr.node = IncomingEdges.dst
3 WHERE avail_pr.status != 0

The rewrite in general, should be cost-based since it is not
always more efficient to apply this optimization. First, reusing
common results mandates materializing them, which can be
expensive in terms of memory consumption due to the lack of
pipe-lining. Second, this optimization might impact other ones,
such as predicate push down. For example, if the common
result originates from a query block that is a view/in-line
view, then it might not be possible to apply predicate push
down, since it will make the result not common anymore.
Implementing common result optimization as a cost-based
rewrite, is a complex problem and it is outside the scope
of this paper. Some systems, like Teradata, implemented this
optimization as a post join planning heuristic.

Common result rewrite is crucial for iterative CTEs since the
iterative part may include repetitive joins for tables other than
the iterative reference. Such joins, can be materialized once
outside the loop and used throughout the iterative part. We
extended MPPDB to include this optimization as a heuristic
rewrite applied on the logical query tree (i.e. rule-based
rewrites). We decided to implement this optimization as a
heuristic and not as a cost-based optimization for two reasons.
First, iterative CTEs mostly materialize intermediate results
as illustrated in Section IV and thus, materialization of the
common part does not add much overhead. Second and most
importantly, the system avoids recomputing the same results
not only once but for as many times as the number of
iterations performed. Thus, the benefit of this optimization
highly outweighs other possible drawbacks or techniques.

The logical query plan generated in the planner by the
above query is similar to the original PR query in Figure 4.
The main difference is that the iterative part (step ID 3 in

Table I) has three joins, involving a self join, a join with
edges and another join with vertexStatus. The common
rewrite optimization materializes the join between edges
and vertexStatus prior to the execution of the iterative
part (i.e. COMMON#1 in Figure 5). Then, the iterative logical
query fragment is rewritten using this intermediate result, as
depicted in Figure 5. The common result is computed in step
2 and reused multiple times in step 3. For the general case of
identifying common parts in the logical tree of the iterative
part, the system needs to reorder the joins as, for example,
vertexStatus may not be joined directly with edges. However,
join reordering is straightforward for inner joins but complex
for outer joins [23] and thus, this is something that we will
explore in future work.

B. Predicate Push Down

Predicate push down is a key rewrite rule in RDBMSs. The
rewrite covers a few different cases where a predicate is pushed
within or across query blocks (a query block corresponds to a
select or sub-select statement). MPPDB has a wide coverage
of predicate push down, including cases of similar rewrites
that pull up or move around predicates.

For iterative CTEs, predicate push down across blocks (from
the parent into the iterative CTE block) cannot be applied like
other regular SQL statements. For example, if the main query
in Figure 2 has the filter ”SELECT Node, Rank FROM
PageRank WHERE Node = 10” that restricts the results
to only node 10, then for regular CTEs, the system will push
the predicate ”Node = 10” into the CTE. However in the
PR query, such a predicate push down leads to incorrect result,
since nodes other than 10 (i.e. neighbors) are needed for the
correct computation of the rank during the iterative part. Note
that there are more opportunities for predicate push down
for recursive queries (see [20], [24]) since results are built
incrementally through the recursive UNION.

1 WITH ITERATIVE forecast (node,friends,friendsPrev)
2 AS(SELECT src AS node, count (dst) AS friends,
3 ceiling (count(dst) *
4 (1.0-(src%10)/100.0)) AS friendsPrev
5 FROM edges GROUP BY src
6 ITERATE
7 SELECT node AS node,
8 round(cast((friends / friendsPrev)
9 * friends AS numeric),5) AS friends,
10 friends AS friendsPrev
11 FROM forecast
12 UNTIL 5 Iterations)
13 SELECT node, friends
14 FROM forecast WHERE MOD(node,100) = 0
15 ORDER BY friends DESC LIMIT 10;

Fig. 6: FF query

An example of an iterative CTE where a predicate push
down can be applied, is the one in Figure 6. The query
forecasts the number of friends (FF) as a growth factor of
the previous year. The main query block picks one percent of
the result as a sample using the predicate ”MOD(node,100)
= 0”. Given that the query has no self join or aggregate

functions on forecast, MPPDB is able to push the main
query predicate MOD(node,100) = 0 to the non-iterative
part (i.e. from Line 14 to Line 5) eliminating in this way
a lot of unnecessary processing. This optimization is quite
efficient when it can be applied, as depending on the selectivity
of the pushed predicate, it can improve the performance by
orders of magnitude. We further explore the properties of this
optimization in Section VII.

VI. EXECUTION ENGINE CHANGES

As mentioned in Section III, the plan generated by the
planner contains already known operations to the engine in
order to avoid an expensive implementation and most im-
portantly, to enable the system to reuse existing optimization
techniques. However, we still need to add two new simple
operators, rename and loop, to enable iterative processing and
to ensure an efficient execution. This section describes the
implementation of the two operators inside the executor.

A. Rename Operator

In Section IV, we discussed how the rename operator is used
to rename a reference to a temporary result. The execution
engine has a lookup table that manages intermediate results
in memory and consists of two columns. The first column has
the name and the second one is a structure that has the schema
along with a pointer to the memory location used to store the
intermediate results. The rename operator looks up the old
name and updates it with the new value. If the new name
already exists (already points to some existing intermediate
results) then MPPDB simply removes that entry and releases
the memory associated with it.

B. Loop Operator

The other new operator is called loop and as described
in Section IV, is used to explicitly handle the conditional
execution flow introduced by iterative CTEs and their termi-
nation logic. This new operator needs to simply check a single
variable (we named it continue), and point to the next SQL
operator. For our case, if the value of this variable is true, it
will point to the next iteration, otherwise, it will point to the
end of the iterative part. The implementation for this part of
the loop operator is simple, as it requires only two execution
node pointers and an if statement. The termination condition
captured in the continue variable is implemented for the three
cases described before as follows:

• Metadata: If the query needs to terminate after N
iterations or updates then the system uses a counter that
gets updated during the execution of the iterative part,
based on number of iterations or number of updated rows.
If at the end of an iteration, the counter satisfies N then
the continue variable becomes false.

• Data: When the termination condition is based on a
SQL expression, then the operation that is equivalent
to the query ”SELECT count(*) FROM cteTable
WHERE expr;” is executed by the system in order to
count how many rows in cteTable satisfy expr, the

SQL expression defined by the user. Continue becomes
false, if the count exceeds N in the query.

• Delta: If the termination condition is based on delta
values, then similar logic as before is used to check how
many rows get updated in the current iteration relative to
the previous one. For this case, we also keep data from
the previous iteration.

VII. EXPERIMENTS

We evaluated our rewrite approach by running different iter-
ative queries that vary in terms of complexity and used datasets
from [25] with different sizes. We tested the effectiveness of
the proposed optimizations and found that minimizing data
movement in each iteration can decrease execution time by
48%, materializing parts that remain constant for all iterations
can improve the performance by 21% and pushing down
predicates to avoid unnecessary data processing when possible,
can improve the performance by least an order of magnitude.
For a very small number of iterations, the non-iterative part
has a higher weight and as such, optimized and non-optimized
CTEs have similar performance. As we increase the number
of iterations the effectiveness of the applied optimizations
depends on the query and more specifically on Ri. We discuss
how different properties of the queries that we have tested
impact the effectiveness of the proposed optimizations. Finally,
we also compare optimized iterative CTEs with stored proce-
dures that perform the equivalent computation and observed
that CTEs can be executed at least 25% faster than stored
procedures and in cases where predicates can be evaluated
early, the difference can be much higher.

1 WITH ITERATIVE sssp (Node, Distance, Delta)
2 AS (SELECT src, 9999999, CASE WHEN src = 1
3 THEN 0 ELSE 9999999 END
4 FROM (SELECT src FROM edges
5 UNION SELECT dst FROM edges)
6 ITERATE
7 SELECT sssp.node,
8 LEAST (sssp.distance, sssp.delta),
9 COALESCE(MIN(IncomingDistance.delta
10 +IncomingEdges.weight), 9999999)
11 FROM sssp
12 LEFT JOIN edges AS IncomingEdges ON
13 sssp.node = IncomingEdges.dst
14 LEFT JOIN sssp AS IncomingDistance ON
15 IncomingDistance.node=IncomingEdges.src
16 WHERE IncomingDistance.Delta != 9999999
17 GROUP BY sssp.node,
18 LEAST (sssp.distance, sssp.delta)
19 UNTIL 10 ITERATIONS)
20 SELECT Distance FROM sssp WHERE Node = 10;

Fig. 7: SSSP Query using iterative CTEs

A. System Setup

During our experiments, we report the results using a server
with Intel Xeon CPU E5-2680 v4 and 512GB of RAM. The
operating system running on the machine is CentOS 7.8. To
evaluate our system, we chose different iterative queries. The
PageRank queries: PR as in figure 2 and its modified version
PR-VS, the Single Source Shortest Path (SSSP) (which can be

0
1
2
3
4
5
6
7
8

5 10 15 20 25

Ex
ec
ut
io
n
Ti
m
e
(s
ec
)

Number of Iterations

Baseline Rename

FF query with DBLP Dataset

0
10
20
30
40
50
60
70

5 10 15 20 25

Ex
ec
ut
io
n
Ti
m
e
(s
ec
)

Number of Iterations

Baseline Rename

FF query with Pokec Dataset

0
5

10
15
20
25
30
35
40

5 10 15 20 25

Ex
ec
ut
io
n
Ti
m
e
(s
ec
)

Number of Iterations

Baseline Rename

PR query with DBLP Dataset

0

200

400

600

800

1000

5 10 15 20 25

Ex
ec
ut
io
n
Ti
m
e
(s
ec
)

Number of Iterations

Baseline Rename

PR query with Pokec Dataset

Fig. 8: Using MPPDB with the rename operator

found in Figure 7 and is also published at [16]) and a query
that Forecasts the number of Friends (FF) through a geometric
sequence (Figure 6). Each one of these queries have different
properties. The PR query processes the entire dataset in each
iteration, while the SSSP query only nodes that are connected
to the source. The FF query contains a very inexpensive
iterative part as there are no joins or aggregations and the
selectivity of the final part can be controlled by changing the
value of “X” in ”MOD(node, X) != 0” from 10 to 100
etc. For all queries, we used a termination condition based
on metadata that explicitly defines the number of iterations.
Finally, we used the DBLP dataset [26] that has 1,049,866
rows, the Google web dataset [27] that has 5,105,039 rows
and the Pokec dataset [28] that has 30,622,564 rows.

B. Minimizing Data Movement

In this experiment, we explore how minimizing data move-
ment in each iteration and avoiding synchronization between
the main and working tables could result in faster execution
times. Although this is not an optimization that was explicitly
described in Section V, it was mentioned in Section IV as
part of the rename operator. We think that it is important to
demonstrate its necessity and discuss its properties.

Using the current methodology described in Section IV,
queries that update the entire dataset, use only the rename
operation. The fact that the new version of the dataset will
completely overwrite the old one, makes the process of trying
to find which rows have been updated by the last iteration
redundant. Moreover, instead of transferring data to the tem-
porary table and then back to the main one, we can use in
the next iteration, the data that already exist in the temporary
table, eliminating in that way unnecessary data movement. In
our prototype, this is accomplished by renaming the temporary
table to the main one. In this experiment, we compare the
baseline execution that moves data from the intermediate table
back to the main one (instead of using the rename operator)
and also tries to identify updated rows even in queries that
update entire datasets.

As can be seen in Figure 8, by minimizing data movement
between each iteration and omitting the redundant update
of the main table, we can improve performance up to 48%
for the FF query. However, to understand the efficiency of
this optimization, we need to analyze the iterative part of

each query. In the FF query, the Ri is quite inexpensive as
it computes a new value based on the previous one. Thus,
there are no expensive operations (i.e. joins or aggregations).
The most expensive part of the computation is to move and
identify updated data between the working and the main table.
Thus, by minimizing this cost, we can see a great performance
improvement. On the other hand, when the query contains an
expensive iterative part, then the performance improvement is
not significant as can be observed by the PR query in Figure 8.
The reason is that the Ri of the PR query contains multiple
expensive joins that take much more time than just moving
data around and updating the main table. For this reason, this
optimization does not yield a great performance improvement
or might not have any significant benefit as it focuses on
optimizing a part of the query that already takes a very small
percentage of the total execution time.

To conclude, this optimization should always be applied
when possible (i.e. when there is no WHERE clause in the
iterative part) as it always yields better or similar performance.
However, the effectiveness highly depends on how expensive
the iterative part of the query is.

C. Common Result Optimization

To test the effectiveness of materializing constant parts
in iterative CTEs, we used the versions of the queries (for
both PR and SSSP) that perform the computation only in
nodes that are available by doing an additional join with
the vertexStatus table as defined in PR-VS. In this
optimization, we can see that by analyzing the iterative part of
the query and materializing the part that remains constant, we
can improve the performance by 20% (queries using the DBLP
dataset in Figure 9). For some other cases, the performance
improvement might not be that high, but is still significant at
around 10% (queries using the Pokec dataset in Figure 9). In
both queries, we materialize a big part of the FROM clause that
performs multiple expensive joins that yield the same results
in each iteration, something that takes a significant amount of
computation time in the baseline implementation.

The effectiveness of this optimization depends i) on the
number of iterations and ii) on how much time the materialized
fixed part takes to be computed. The more iterations the query
needs to satisfy T c, the more redundant computations the
baseline execution will need to perform. Thus, this optimiza-

0

10

20

30

40

50

5 10 15 20 25

Ex
ec
ut
io
n
Ti
m
e
(s
ec
)

Number of Iterations

Baseline Materialize Common Part

PR query with DBLP dataset

0
5

10
15
20
25
30
35

5 10 15 20 25

Ex
ec
ut
io
n
Ti
m
e
(s
ec
)

Number of Iterations

Baseline Materialize Common Part

SSSP query with DBLP dataset

0

200

400

600

800

1000

5 10 15 20 25

Ex
ec
ut
io
n
Ti
m
e
(s
ec
)

Number of Iterations

Baseline Materialize Common Part

PR query with Pokec dataset

0
100
200
300
400
500
600
700

5 10 15 20 25

Ex
ec
ut
io
n
Ti
m
e
(s
ec
)

Number of Iterations

Baseline Materialize Common Part

SS query with Pokec dataset

Fig. 9: Using MPPDB while reusing common parts

0
1
2
3
4
5
6
7
8

0.01 0.25 0.5 0.75 0.99

Ex
ec
ut
io
n
Ti
m
e
(s
ec
)

Selectivity

Baseline Push Down Predicate

DBLP dataset

0
10
20
30
40
50
60
70

0.01 0.25 0.5 0.75 0.99

Ex
ec
ut
io
n
Ti
m
e
(s
ec
)

Selectivity

Baseline Push Down Predicate

Pokec dataset

Fig. 10: Using MPPDB while pushing down predicates for the FF
query

tion is pivotal in order to enable long iterative queries to be
executed within reasonable time. Also, the bigger the constant
part of Ri is, the bigger the performance improvement will
be, as the system will be able to execute once and materialize
most of the computation. This can also be seen from the
difference in performance improvement between the DBLP
and Pokec datasets. The DBLP dataset has 317,080 nodes
and 1,049,866 edges whereas the Pokec dataset has 1,632,803
nodes and 30,622,564 edges. The constant part (i.e. table
vertexStatus) has as many tuples as nodes, thus in the DBLP
dataset is proportionally larger than the one in the Pokec
dataset. Finally, the effectiveness is not affected by the query
itself as both PR and SSSP queries demonstrate the same
performance improvement patterns. This is expected as the
optimization targets to minimize redundant computations in
the FROM clause (similar for both PR and SSSP queries) and
not on the SELECT or WHERE clauses.

D. Pushing Down Predicates

With this optimization we can observe more than an order of
magnitude performance improvement if the selectivity of the
predicate that we push is high as can be seen in Figure 10.
We configured the FF query to run for 25 iterations and
different selectivities. We achieved that by modifying the query
as described in Section VII-A. A major limitation for most
RDBMSs is that predicates are pushed mainly within the
WHERE and FROM clause but not inside CTEs. In the FF query,
we can see that the execution time for the baseline, remains the
same independently of the selectivity. This happens because

0 50 100 150 200 250

FF

PR

SSSP

Execution Time (sec)

Q
ue

ry

Stored Procedure Iterative CTE

Google dataset

0 200 400 600 800 1000

FF

PR

SSSP

Execution Time (sec)

Q
ue

ry

Stored Procedure Iterative CTE

Pokec dataset

Fig. 11: Iterative CTEs and stored procedures

the system evaluates the CTE, and then filters out tuples using
the predicate in Qf thus, making the predicate selectivity
irrelevant. However, by pushing the predicate as described in
Section V, we see that the system eliminates tuples that do not
contribute to the final result but still take a significant amount
of time to be processed.

Moreover, by pushing the predicate to the non-iterative part,
the system effectively reduces the time needed to perform
a single iteration as it processes a smaller amount of data.
Similar to the previous optimization, this means that the more
iterations the query needs to perform, the more performance
benefit this optimization will yield. Finally, the optimization
is not affected by the dataset size and properties but only by
the selectivity of the predicate that is pushed from the final
part of the query to the non-iterative part.

E. Iterative CTEs vs Stored Procedures

Although we articulated before that declaring SQL is more
efficient than stored procedures, we have further compared
the performance between iterative CTEs and stored procedures
as experimental evidence. We ran the PR, SSSP (both using
vertexStatus) and FF (with 50% selectivity) queries using
both iterative CTEs and stored procedures. We do not show
the stored procedures code in this paper due to space limitation
but we provide a brief description. For each query, we wrote
a procedure that executes R0 one time and then a loop that
executes Ri for 25 times. Finally, we rewrote Qf to call the
store procedure and return the final result to the user instead
of retrieving the data from a CTE table.

In Figure 11 we observe that optimized iterative CTEs
are at least 25% faster than the equivalent stored procedures
for the PR and SSSP queries and can be more than 80%
faster for the FF query. The performance improvement for
the PR and SSSP queries comes mainly from the fact that
the system materializes the constant parts in Ri and uses
the rename operator when possible, while for the FF query,
the performance improvement comes mainly by evaluating
predicates in Qf earlier. Another important observation is that
when the queries need to perform more iterations, then the
optimized iterative CTEs are even more efficient as redundant
computations have a higher impact on the cost.

VIII. RELATED WORK

One of the main applications of iterative processing is
graph queries. Data management systems for graphs got a lot
of attention recently due to the explosive growth of related
applications like semantic web and social media. Two main
approaches were taken to build graph processing engines:
specialized graph systems like those in [29], [30], [31], [3],
[32], [4], [33], [34], [35], [7], [19], [36] and SQL systems with
graph extensions. Their difference is the mature yet complex
SQL versus the custom vertex-based APIs [8] that are not as
widely used. These no-SQL approaches describe computations
in form of push or pull [37] communication between nodes
in a graph. Our focus in this section is to discuss prior work
related to extending SQL to support graph processing.

One approach to extend relational systems to support graph
processing is by introducing new graph operators [38], [17].
Also, new extensions that convert UDFs [39] or vertex-centric
queries [40] to SQL have been proposed. There are also
systems that construct graph structures in RDBMs and use
pointers from these structures to relations [41]. We believe that
the above solutions are more intrusive to existing RDBMSs
and require expensive implementations.

Recursive SQL queries [42], [43], [20], [24], [44] was a
more native extension that mainly required changes to the API
and not much to the engine itself. Also, a large number of
publications focuses on Datalog [9] in order to accommodate
a wider variety of recursive queries [45], [46], [10], [11],
[12], [13], [47], [14], [15] efficiently. Despite that recursive
queries are suitable to express some graph algorithms, they
still cannot express effectively purely iterative computations.
For this reason, iterative CTEs have been proposed [16], a SQL
structure that constitutes the theoretical base for our work.

There is also some recent work in the context of improving
performance of analytic applications written in procedural or
mix of procedural and SQL. The authors in [48] proposed tech-
niques to turn PL/SQL to SQL UDF or SQL recursive CTEs.
Given the limitation of recursive queries, most conversion falls
into the UDF which is less efficient than regular SQL. Even
though this work is quite recent, we think it is promising
and can greatly benefit from our proposed SQL extension
which allows more PL/SQL being converted to SQL rather
than the less efficient UDF option. The work in [49] provided
optimization techniques to stored procedures which is quite

useful for the general purpose stored procedures processing
but not as good as cases where the application can be done
completely in SQL. The authors in [17] also proposed an
iterate operator similar to our loop operator. However, their
approach relies on a complex engine extension to support
graph operators natively. Also, accelerating iterative query
plans for RDBMSs using GPUs has been studied in the context
of nested SQL queries [50].

Finally, optimizations on purely iterative processing have
been proposed in the context of parallel data flow systems [51],
array databases [52] and MapReduce [53], [54] but their
techniques cannot be applied directly to RDBMSs as the
proposed optimizations depend on heterogeneous architectures
and thus, on different assumptions and limitations.

IX. CONCLUSION

In this work, we propose a new and effective approach for
implementing iterative SQL queries in RDBMSs. We describe
how an iterative CTE can be rewritten using regular SQL
operators and how the internal components of a RDBMS can
be extended. We highlight the importance of a native solution
and implement our approach in Futurewei’s commercial MP-
PDB. Furthermore, we propose effective optimizations that i)
minimize data movement, ii) reuse results that remain constant
and iii) eliminate unnecessary data processing by evaluating
predicates as early as possible. We evaluated our changes
to the query optimizer which shows an order of magnitude
improvement in some cases. Future work include estimating
number of iterations for more accurate optimizer costing and
expanding our optimization techniques by considering join
reordering issues as mentioned in Section V-A.

REFERENCES

[1] C. J. Date, A guide to the SQL standard: a user’s guide to the standard
database language SQL. Addison-Wesley Professional, 1997.

[2] S. Finkelstein, N. Mattos, I. Mumick, and H. Pirahesh, “Expressing
recursive queries in SQL,” ANSI Document X3H2-96-075r1, 1996.

[3] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed graphlab: A framework for machine learning
and data mining in the cloud,” Proc. VLDB Endow., vol. 5, no. 8, pp.
716–727, Apr. 2012.

[4] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi, “Naiad: a timely dataflow system,” in Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles.
ACM, 2013, pp. 439–455.

[5] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson,
“From ”think like a vertex” to ”think like a graph”,” Proc. VLDB Endow.,
vol. 7, no. 3, pp. 193–204, Nov. 2013.

[6] G. Wang, W. Xie, A. Demers, and J. Gehrke, “Asynchronous large-scale
graph processing made easy,” in CIDR ’13, 2013.

[7] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the GPU,”
in PPoPP ’16, 2016, pp. 11:1–11:12.

[8] R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex:
a survey of vertex-centric frameworks for large-scale distributed graph
processing,” ACM Computing Surveys (CSUR), vol. 48, no. 2, p. 25,
2015.

[9] S. Ceri, G. Gottlob, and L. Tanca, “What you always wanted to
know about datalog (and never dared to ask),” IEEE Transactions on
Knowledge and Data Engineering, vol. 1, no. 1, pp. 146–166, 1989.

[10] W. E. Moustafa, V. Papavasileiou, K. Yocum, and A. Deutsch, “Data-
lography: Scaling datalog graph analytics on graph processing systems,”
in 2016 IEEE International Conference on Big Data (Big Data). IEEE,
2016, pp. 56–65.

[11] J. Seo, S. Guo, and M. S. Lam, “Socialite: Datalog extensions for
efficient social network analysis,” in Data Engineering (ICDE), 2013
IEEE 29th International Conference on. IEEE, 2013, pp. 278–289.

[12] J. Seo, J. Park, J. Shin, and M. S. Lam, “Distributed socialite: a datalog-
based language for large-scale graph analysis,” Proceedings of the VLDB
Endowment, vol. 6, no. 14, pp. 1906–1917, 2013.

[13] A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie, and C. Zan-
iolo, “Big data analytics with datalog queries on Spark,” in Proceedings
of the 2016 International Conference on Management of Data. ACM,
2016, pp. 1135–1149.

[14] A. Shkapsky, K. Zeng, and C. Zaniolo, “Graph queries in a next-
generation datalog system,” Proceedings of the VLDB Endowment,
vol. 6, no. 12, pp. 1258–1261, 2013.

[15] J. Wang, M. Balazinska, and D. Halperin, “Asynchronous and fault-
tolerant recursive datalog evaluation in shared-nothing engines,” Pro-
ceedings of the VLDB Endowment, vol. 8, no. 12, pp. 1542–1553, 2015.

[16] S. Floratos, Y. Zhang, Y. Yuan, R. Lee, and X. Zhang, “Sqloop:
High performance iterative processing in data management,” in 2018
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2018, pp. 1039–1051.

[17] K. Zhao and J. X. Yu, “All-in-one: Graph processing in RDBMSs
revisited,” in Proceedings of the 2017 ACM SIGMOD International
Conference on Management of Data. ACM, 2017, pp. 1165–1180.

[18] L. Cai, J. Chen, J. Chen, Y. Chen, K. Chiang, M. Dimitrijevic, Y. Ding,
Y. Dong, A. Ghazal, J. Hebert et al., “Fusion insight libra: huawei’s
enterprise cloud data analytics platform,” Proceedings of the VLDB
Endowment, vol. 11, no. 12, pp. 1822–1834, 2018.

[19] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Maiter: An asynchronous
graph processing framework for delta-based accumulative iterative com-
putation,” IEEE Trans. on Parallel and Distributed Systems, vol. 25,
no. 8, pp. 2091–2100, Aug. 2014.

[20] A. Ghazal, D. Seid, A. Crolotte, and M. Al-Kateb, “Adaptive optimiza-
tions of recursive queries in Teradata,” in Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data. ACM,
2012, pp. 851–860.

[21] M. Al-Kateb, A. Ghazal, and A. Crolotte, “An efficient SQL rewrite
approach for temporal coalescing in the Teradata RDBMS,” in Inter-
national Conference on Database and Expert Systems Applications.
Springer, 2012, pp. 375–383.

[22] M. Al-Kateb, A. Ghazal, A. Crolotte, R. Bhashyam, J. Chimanchode,
and S. P. Pakala, “Temporal query processing in Teradata,” in Pro-
ceedings of the 16th International Conference on Extending Database
Technology. ACM, 2013, pp. 573–578.

[23] A. Rosenthal et al., “Outerjoin simplification and reordering for query
optimization,” ACM Transactions on Database Systems, vol. 22, no. 1,
pp. 43–74, 1997.

[24] C. Ordonez, “Optimizing recursive queries in SQL,” in Proceedings of
the 2005 ACM SIGMOD international conference on Management of
data. ACM, 2005.

[25] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[26] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowledge and Information Systems, vol. 42,
no. 1, pp. 181–213, 2015.

[27] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community
structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters,” Internet Mathematics, vol. 6, no. 1, pp. 29–123,
2009.

[28] L. Takac and M. Zabovsky, “Data analysis in public social networks,” in
International scientific conference and international workshop present
day trends of innovations, vol. 1, no. 6, 2012.

[29] M. J. Anderson, N. Sundaram, N. Satish, M. M. A. Patwary, T. L. Willke,
and P. Dubey, “Graphpad: Optimized graph primitives for parallel and
distributed platforms,” in Parallel and Distributed Processing Sympo-
sium, 2016 IEEE International. IEEE, 2016, pp. 313–322.

[30] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “Graphx: Graph processing in a distributed dataflow
framework.” in OSDI, vol. 14, 2014, pp. 599–613.

[31] M. Han and K. Daudjee, “Giraph unchained: Barrierless asynchronous
parallel execution in pregel-like graph systems,” Proc. VLDB Endow.,
vol. 8, no. 9, pp. 950–961, May 2015.

[32] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”

in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. ACM, 2010, pp. 135–146.

[33] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J.
Anderson, S. G. Vadlamudi, D. Das, and P. Dubey, “Graphmat: High
performance graph analytics made productive,” Proceedings of the VLDB
Endowment, vol. 8, no. 11, pp. 1214–1225, 2015.

[34] H. Wang, L. Geng, R. Lee, K. Hou, Y. Zhang, and X. Zhang, “Sep-
graph: finding shortest execution paths for graph processing under a
hybrid framework on GPU,” in Proceedings of the 24th Symposium on
Principles and Practice of Parallel Programming. ACM, 2019, pp.
38–52.

[35] Q. Wang, Y. Zhang, H. Wang, L. Geng, R. Lee, X. Zhang, and G. Yu,
“Automating incremental and asynchronous evaluation for recursive
aggregate data processing,” in Proceedings of the 2020 ACM SIGMOD
International Conference on Management of data. ACM, 2020.

[36] J. Zhong and B. He, “Medusa: Simplified graph processing on GPUs,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 6,
pp. 1543–1552, 2014.

[37] M. Besta, M. Podstawski, L. Groner, E. Solomonik, and T. Hoefler, “To
push or to pull: On reducing communication and synchronization in
graph computations,” in Proceedings of the 26th International Sympo-
sium on High-Performance Parallel and Distributed Computing. ACM,
2017, pp. 93–104.

[38] L. Passing, M. Then, N. Hubig, H. Lang, M. Schreier, S. Günnemann,
A. Kemper, and T. Neumann, “SQL-and operator-centric data analytics
in relational main-memory databases.” in EDBT, 2017, pp. 84–95.

[39] K. Ramachandra, K. Park, K. V. Emani, A. Halverson, C. Galindo-
Legaria, and C. Cunningham, “Froid: Optimization of imperative pro-
grams in a relational database,” Proceedings of the VLDB Endowment,
vol. 11, no. 4, 2017.

[40] J. Fan, A. G. S. Raj, and J. M. Patel, “The case against specialized graph
analytics engines.” in CIDR, 2015.

[41] M. S. Hassan, T. Kuznetsova, H. C. Jeong, W. G. Aref, and M. Sadoghi,
“Empowering in-memory relational database engines with native graph
processing,” arXiv preprint arXiv:1709.06715, 2017.

[42] F. Bancilhon, “Naive evaluation of recursively defined relations,” in On
Knowledge Base Management Systems. Springer, 1986, pp. 165–178.

[43] F. Bancilhon and R. Ramakrishnan, “An amateur’s introduction to recur-
sive query processing strategies,” in Readings in Artificial Intelligence
and Databases. Elsevier, 1988, pp. 376–430.

[44] C. Ordonez, “Optimization of linear recursive queries in SQL,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22, no. 2, pp.
264–277, 2010.

[45] Y. Bu, V. Borkar, M. J. Carey, J. Rosen, N. Polyzotis, T. Condie,
M. Weimer, and R. Ramakrishnan, “Scaling datalog for machine learning
on big data,” arXiv preprint arXiv:1203.0160, 2012.

[46] M. Mazuran, E. Serra, and C. Zaniolo, “Extending the power of datalog
recursion,” The VLDB Journal, vol. 22, no. 4, pp. 471–493, 2013.

[47] A. Shkapsky, M. Yang, and C. Zaniolo, “Optimizing recursive queries
with monotonic aggregates in deals,” in Data Engineering (ICDE), 2015
IEEE 31st International Conference on. IEEE, 2015, pp. 867–878.

[48] C. Duta, D. Hirn, and T. Grust, “Compiling pl/SQL away,” in CIDR ’20,
2020.

[49] K. Park, H. Seo, M. K. Rasel, Y.-K. Lee, C. Jeong, S. Y. Lee, C. Lee,
and D.-H. Lee, “Iterative query processing based on unified optimization
techniques,” in Proceedings of the 2019 ACM SIGMOD International
Conference on Management of data. ACM, 2019, pp. 54–68.

[50] S. Floratos, M. Xiao, H. Wang, C. Guo, Y. Yuan, R. Lee, and X. Zhang,
“Nestgpu: Nested query processing on gpu,” in Data Engineering
(ICDE), 2021 IEEE 37th International Conference on, 2020.

[51] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl, “Spinning fast
iterative data flows,” Proceedings of the VLDB Endowment, vol. 5,
no. 11, pp. 1268–1279, 2012.

[52] E. Soroush, M. Balazinska, S. Krughoff, and A. Connolly, “Efficient
iterative processing in the scidb parallel array engine,” in Proceedings of
the 27th International Conference on Scientific and Statistical Database
Management. ACM, 2015, p. 39.

[53] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop: Efficient
iterative data processing on large clusters,” Proceedings of the VLDB
Endowment, vol. 3, no. 1-2, pp. 285–296, 2010.

[54] M. Onizuka, H. Kato, S. Hidaka, K. Nakano, and Z. Hu, “Optimization
for iterative queries on MapReduce,” Proceedings of the VLDB Endow-
ment, vol. 7, no. 4, pp. 241–252, 2013.

	Introduction
	Background
	Naive implementation
	Core Algorithm
	Optimization Techniques
	Common Result Optimization
	Predicate Push Down

	Execution Engine Changes
	Rename Operator
	Loop Operator

	Experiments
	System Setup
	Minimizing Data Movement
	Common Result Optimization
	Pushing Down Predicates
	Iterative CTEs vs Stored Procedures

	Related work
	Conclusion
	References

