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ABSTRACT

Cooperative Co-evolutionary Algorithms effectively train policies
in multiagent systems with a single, statically defined team. How-
ever, many real-world problems, such as search and rescue, require
agents to operate in multiple teams. When the structure of the
team changes, these policies show reduced performance as they
were trained to cooperate with only one team. In this work, we
solve the cooperation problem by training agents to fill the needs
of an arbitrary team, thereby gaining the ability to support a large
variety of teams. We introduce Ad hoc Teaming Through Evolu-
tion (ATTE) which evolves a limited number of policy types using
fitness aggregation across multiple teams. ATTE leverages agent
types to reduce the dimensionality of the interaction search space,
while fitness aggregation across teams selects for more adaptive
policies. In a simulated multi-robot exploration task, ATTE is able
to learn policies that are effective in a variety of teaming schemes,
improving the performance of CCEA by a factor of up to five times.
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1 INTRODUCTION

Cooperative co-evolutionary algorithms (CCEA) have proven ef-
fective in learning policies in multiagent systems with statically
defined teams [6-8]. Often, real-world agents must work with teams
other than a single static team. CCEA does not promote learning
across multiple teams, leading to policies that do not transfer well
to other teams. For example, CCEA could train a series of robots to
perform search and rescue. However, if one of these robots needed
to work with a team in another area, it would struggle as it does
not have any experience working with this new team.
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Developing this ability to work with a variety of teams is the
goal of ad hoc teaming [9]. Learning ad hoc teaming policies is chal-
lenging as it compounds the number of interactions an agent needs
to learn. Agent types reduce this interaction space by assuming
that agents are not entirely unique, and instead fit the mold of one
of a few agent types [2]. Rather than learning to coordinate with
every agent separately, each agent learns to work with a limited
number of agent types [3]. Current methods of learning ad hoc
teaming policies include ATSIS and PLASTIC, but are not designed
for domains where a team of agents must learn to cooperate in a
continuous state-action space [4, 5].

In this work, we propose Ad hoc Teaming Through Evolution
(ATTE) to train policies that operate effectively in multiple teams.
This method first divides the problem into sub-tasks each agent
may need to complete. Using an extension of CCEA, agent types are
evolved to select these tasks in multiple teams. These agent types
are continually randomly assigned to each agent in the system to
simulate team variety. Then, fitness aggregation assigns fitnesses to
promote better teamwork. Random agent type assignment and fit-
ness aggregation were included to promote learning across different
teams, thus generating more robust teaming policies.

The main contribution of this work is to learn multiple policies
that enable agents to be members of diverse teams. Experimental
results in an exploration domain show that ATTE produced policies
which consistently scored up to five times higher than the baseline
in terms of average performance across teams. These results confirm
that AT TE learns adaptive policies that enable more robust teaming.

2 AD HOC TEAMING THROUGH EVOLUTION

We introduce Ad hoc Teaming Through Evolution (ATTE) as a
method of learning robust cooperation across varying teams. ATTE
evolves a group of agent types that are randomly distributed to the
agents in the system. Through this random teaming and fitness
aggregation, these agent types learn to coordinate with each other
in multiple teams.

ATTE begins with an environment to receive fitnesses from,
along with multiple populations of policies. Each population repre-
sents an agent type that can be copied to any agent in the system. At
the beginning of each episode, we randomly assign an agent type to
each agent to simulate team variety. Then, one policy is randomly
selected from each population and copied to the agents of that type.
Each policy is evaluated in the environment and the global fitness
is added to the history of the policy being tested. This is repeated
until all members of each policy have had one fitness added to each
member’s fitness history. Then the average of this history is the
fitness assigned to each member of the population. This method
of fitness aggregation reduces the fitness noise introduced by the
random teaming combinations.
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Figure 1: The paths of the 8 agents are shown, moving to-
wards and viewing the two highest Pols. The colors of the
paths represent the agent type. The Pol shapes and values
are also shown.

At the end of an episode, the best policies are selected and copied.
The copies mutate and their fitness histories are reset as their pre-
vious history no longer an accurate representation of their perfor-
mance.

3 RESULTS

We test our algorithm on the Rover Domain, a multi-robot explo-
ration domain [1]. In the basic formulation of this problem, a group
of rovers must explore a desired two-dimensional location and suc-
cessfully observe various points of interest (PoI). These Pol are
represented as n-sided polygons that require observation of each
side by a separate rover. Rovers are only evaluated for each Pol
that is fully observed. Each Pol contains a value proportional to its
importance. To solve this task, agents must form groups around
the Pols and observe them, while prioritizing the higher valued
locations.

Each robot in this domain contains two types of continuous
sensors: Pol sensors and rover sensors. Each sensor is capable of
viewing a 90-degree area from the robot. To fully view their sur-
roundings, each robot contains four of each type of sensor, spaced
evenly around the robot, for a total of eight sensors. Robots can
take continuous actions consisting of linear and angular movement
along the plane of the world.

In our experiments, we employ a modified version of the Rover
Domain in which the Pols have an additional shape attribute. The
robots themselves only have the ability to observe a Pol of a single
specific shape. The robots are also aware of which shape of Pol
they can view.

Performance in each experiment is defined as the average global
fitness received by all combinations of three agent types distributed
amongst eight agents. The resulting score represents the agents’
ability to work well in every possible team configuration. Each
performance score is the average of eight statistical runs with error
shading representing the standard error. This performance metric
is scaled to a maximum value of 1.0.

In this experiment, six Pols were divided into two shapes. Half the
agents could view one shape and the other half could view the other
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Figure 2: Fitness curves for teams of 8 agents, averaged
across 45 team combinations. ATTE was compared to CCEA,
with ATTE consistently achieving a max fitness across mul-
tiple teams.

shape. Each Pol needed three agents for successful observation. To
complete this task, each agent needed to move towards the highest
valued Pol with a shape they could observe, shown in figure 1.

ATTE is compared to a baseline CCEA algorithm, each with a
population size of 50. Figure 2 shows the learned performance over
time. ATTE significantly outperforms CCEA, reaching an optimal
score. The learned policies were able to achieve the maximum
score across all 45 teaming combinations, while CCEA struggled.
This shows ATTE’s ability to produce policies that perform well in
multiple teams.
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