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ABSTRACT

Long term robotic deployments are well described by sparse fitness
functions, which are hard to learn from and adapt to. This work
introduces Adaptive Multi-Fitness Learning (A-MFL), which aug-
ments the structure of Multi-Fitness Learning (MFL) [9] by injecting
new behaviors into the agents as the environment changes. A-MFL
not only improves system performance in dynamic environments,
but also avoids undesirable, unforeseen side-effects of new behav-
iors by localizing where the new behaviors are used. On a simulated
multi-robot problem, A-MFL provides up to 90% improvement over
MFL, and 100% over a one-step evolutionary approach.
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1 INTRODUCTION

Learning to succeed in remote, long-term multi-robot deployments
is challenging because some environmental disturbances are not
known a priori. Subsequently these disturbances cannot be mod-
eled in the learning process, and agents must adapt to them while
deployed.

Current state-of-the-art algorithms and methods such as deep
learning methods [2, 6, 8], reward shaping methods for multiagent
cooperation [7], and multi-task learning [3-5] are not designed
with long-term adaptation in multiagent systems in mind. Recently,
MFL has found success by separating execution of low-level tasks
from the solution to the overall mission [9]. While promising, MFL
is like other state-of-the-art methods as it cannot adapt to dynamic
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Figure 1: Illustration of the components of A-MFL and the
three phases they operate under: pre-training, hierarchy
training, and deployment adaptation.

environments during a deployment. We introduce A-MFL to address
adaptation during deployment by integrating new behaviors to
handle environmental disturbances without expensive relearning
of the agents’ controllers.

The main contribution of this paper is to adapt to unexpected
environmental changes in complex tasks by injecting new behav-
iors into trained agents and integrating new behaviors via value
iteration over similar low-leve behaviors while maintaining a fixed
top-level policy that stores the solution for the overall mission.

A-MFL enables cooperative operation in a dynamic environment
by adapting to changes that prevent robots from completing the
task, while respecting the challenges of implementing learning
algorithms on hardware platforms.

2 ADAPTIVE MULTI-FITNESS LEARNING

An adaptive learning structure enables agents to change their ac-
tions when they encounter a situation they currently do not know
how to solve. This is distinct from autonomous adaptation, where
the agents are deciding when and how to adapt to new situations.
A-MFL is a learning structure which make evolutionarily-trained
agents adaptive in the field with minimal re-training; it does not
enable fully autonomous adaptation with agent-generated behav-
iors.

The basis for adaptive learning in this work is behaviors, which
define A-MFL’s tiered structure and value-iteration populations.
Adaptive Multi-Fitness Learning (A-MFL) is able to adapt to the
changing environment by extending the behavior-focused hierar-

chy of MFL.
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This work formalizes behaviors as the pair of the policy and
the fitness used to train the policy. Identifying and exploiting the
differences between behaviors is the main challenge facing agent
teams.

2.1 Adaptive Learning with Behaviors

Adaptive Multi-Fitness Learning (A-MFL) learning uses a two-
tier hierarchy to take actions, where at the top level a neural net-
work evolves to optimize the sparse global fitness, and low level
actions are generated as a result of learned behavior policies.

As A-MFL adapts agents while deployed, three different phases
are used throughout the life-cycle of the robot: pre-training, hi-
erarchy training, and deployment adaptation. An illustrative
figure of A-MFL is shown in Figure 1.

In pre-training, numerous discrete behaviors are trained inde-
pendent of one-another. In hierarchy training the top level policy
is trained via neuroevolution to select between behavior pools. By
modeling the population as a multi-armed bandit, a single behavior
is picked from the population via e-greedy selection on the behav-
ior values and the selected behavior is used to physically execute
low-level actions. The global fitness signal is used to update the
value of each behavior, with G = 1 increasing the value and G = 0
decreasing it.

During deployment new behaviors are added to a behavior
population, and value-iteration resumes for that population. Adap-
tation to the environment happens without needing to re-train the
top level learning, and without impacting the selected behaviors in
other populations..

3 MULTI-ROVER EXPLORATION
EXPERIMENTAL DOMAIN

A-MFL is tested on a modified version of the Continuous Rover
Problem [1]. The goal for the team of rovers is to observe point of
interest (POI) scattered around a two-dimensional plane.

Two modifications are made from this domain. First, POI are
heterogeneous and must be observed in a specific order (Equation 1).
Second, some POI will become “sticky” and change how rovers
move around the environment. The fitness in Equation 1 measures
if the POI have been observed in the correct order, where I4 is a
Boolean function reporting if the team observed a type A POI, t4 is
the time at which the team observed a type A POI, and the others
as follows. Critically, the observation order is not known to the
rover team when they enter the world.

G=Iy-Ig-Ic-(ta <tg < tc) (1)

3.1 Baseline Comparisons

A-MFL is compared against a neural-evolved controller and MFL. To
equalize the knowledge given to A-MFL and MFL, every behavior
in A-MFL’s populations is an independent selection for MFL.

4 EXPERIMENTAL RESULTS

The results in Figure 2 show the first requirement for our rover
team; A-MFL is able to learn the general solution to the sequential
observation problem in the same way as MFL when both are pre-
sented with the same behaviors. In this situation, both MFL and
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A-MFL have access to every behavior; the earlier convergence of
A-MFL comes from the bundling of behaviors by similarity.
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Figure 2: Contrasting performance of direct control of the
rover, providing every single behavior policy as an indepen-
dent selection for MFL, and A-MFL.

4.1 A-MFL adapts to unachievable observations

Next, agents were trained on the standard environment with the
standard global fitness (Equation 1). Then, after this initial training,
the agents are deployed into an environment where Type A POI
are “sticky” and will stop agents if they move at a speed less than
two if they move within 3 units of the POIL New behaviors that can
move through the sticky area are injected into A-MFL at epoch five,
A-MFL quickly integrates these policies and increases the score to
1 as seen in Figure 3.
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Figure 3: MFL and A-MFL performance on the sticky domain.
When new behaviors are added to deal with the sticky POI,
A-MFL quickly resumes achieving high scores while MFL
cannot incorporate the new behaviors.

5 DISCUSSION

This paper introduces Adaptive Multi-Fitness Learning, a learning
structure for multiagent teams which learns to select behaviors
grouped by similarity. By grouping behaviors by similarity, a gen-
eral solution to the problem can be learned by the agent team using
whichever behaviors it learns to use. Then during deployment, sim-
ilar behaviors can be selectively changed to adapt to unforeseen
changes in the environment.
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