FLUID: RESOURCE-AWARE HYPERPARAMETER TUNING ENGINE

Peifeng Yu "' Jiachen Liu“' Mosharaf Chowdhury '

ABSTRACT

Current hyperparameter tuning solutions lack complementary execution engines to efficiently leverage distributed
computation, thus ignoring the possibility of intra- and inter-GPU sharing, which exhibits poor resource usage.
In this paper, we present Fluid, a generalized hyperparameter tuning execution engine, that coordinates between
hyperparameter tuning jobs and cluster resources. Fluid schedules evaluation trials in such jobs using a water-
filling approach to make the best use of resources both at intra- and inter-GPU granularities to speed up the tuning
process. By abstracting a hyperparameter tuning job as a sequence of TrialGroup, Fluid can boost the performance
of diverse hyperparameter tuning solutions. Our experiments show that Fluid can speed up synchronous BOHB by
100%, and BOHB and ASHA by 30% while having similar final accuracy.

1 INTRODUCTION

Deep learning has become ubiquitous in recent years. The
effectiveness of deep learning models, however, is highly
sensitive to hyperparameters (Melis et al., 2017), which
control the model architecture and/or training process, and
have to be set before training. Naturally, hyperparameter
tuning has taken a central stage in machine learning clus-
ters. Because of the high-dimensionality of the search space,
thousands of different hyperparameter settings often have to
be evaluated before finding a final set for training in produc-
tion. For instance, 2000 GPU days of reinforcement learning
(Zoph et al., 2017) or 3150 GPU days of evolution (Real
et al., 2018) are needed to obtain a state-of-the-art archi-
tecture for CIFAR-10 and ImageNet. In addition, a recent
report suggested that over 86% of the jobs in a Microsoft
GPU cluster with 5000 unique users perform hyperparame-
ter tuning (Mahajan et al., 2019; Jeon et al., 2019).

Hyperparameter tuning is an optimization loop in order to
find the best set of hyperparameters that are likely to produce
the highest validation accuracy. A hyperparameter tuning
job contains a large group of training trials, each with its own
configuration. It gets feedback from running previous trials
before selecting new ones to explore until reaching a target
accuracy or stopped by the user. Distributed computation
is commonly used to speed up the tuning process (Li et al.,
2018; Hutter et al., 2011; Falkner et al., 2018).

Unfortunately, current hyperparameter tuning solutions can-

“Equal contribution 'Department of Electronic Engineering
and Computer Science, University of Michigan, Michigan, USA.
Correspondence to: Peifeng Yu <peifeng@umich.edu>.

Proceedings of the 4" MLSys Conference, San Jose, CA, USA,
2021. Copyright 2021 by the author(s).

not efficiently leverage distributed computation. Instead of
planning a group of training trials as a whole, each training
trial is often independently submitted to a cluster manager,
most of the time as a single task running on a single worker
GPU (Guetal., 2019; Jeon et al., 2019). The cluster manager
then launches those trials without considering the possibility
of intra-worker and inter-worker sharing, failing to make
good use of the available resources. For example, there can
be more workers than training trials, which can lead to re-
source underutilization if each training trial only uses one
worker. Moreover, a single training trial may not fully oc-
cupy one worker; the single-trial-to-single-worker mapping
then leaves room to further improve resource utilization
when there are more training trials than workers. Even the
state-of-the-art cluster managers, which support users to
submit a collection of jobs (Mahajan et al., 2019), focus on
fair sharing of resources between multiple users but leave it
up to the users to decide how to execute them.

In an attempt to better utilize cluster resources, some recent
works have proposed fully asynchronous execution methods
(Li et al., 2018; Falkner et al., 2018) that launch a new
trial whenever there is an idle worker in their allocation of
resources. However, this execution strategy tightly couples
the concurrency of the tuning algorithm itself to the number
of available workers. In addition to problems caused by the
single-trial-to-single-worker mapping mentioned above, it
fails to concentrate resources on promising hyperparameter
configurations. Although all resources are used in this case,
many configurations do not necessarily do useful work —
i.e., their results are discarded rather than used to guide the
generation of the final configuration.

In this paper, we observe that the root cause of the sub-
optimal use of resources in current hyperparameter tuning



Fluid: Resource-Aware Hyperparameter Tuning Engine

solutions is their indifference to how trials are executed. But
it is also unrealistic to leave the burden to ML researchers
expecting them to manually determine good execution strate-
gies when tuning hyperparameters. We, therefore, take a
different approach and propose to decouple the execution
strategy from hyperparameter tuning algorithms into a sep-
arate execution engine. This has the following advantages:
a) by separating the concern between tuning algorithms and
execution engines, both components can evolve indepen-
dently; b) resource usage can be optimized, which results in
faster tuning speed for any tuning algorithms, benefiting a
wider range of applications.

However, the wide variety of algorithms, the dynamicity
of hyperparameter tuning workloads and the differences in
training trial profiles make it non-trivial to design a general-
ized hyperparameter tuning execution engine that can make
efficient use of resources and speed up evaluating a group
of hyperparameter configurations.

To this end, we propose Fluid, an algorithm- and resource-
aware hyperparameter tuning execution engine that coordi-
nates between the cluster and hyperparameter tuning algo-
rithms. By abstracting hyperparameter tuning job as a se-
quence of TrialGroups, Fluid provides a generic high-level
interface for hyperparameter tuning algorithms to express
their execution requests for training trials. Fluid then auto-
matically schedules the trials considering both the current
workload and available resources to improve utilization and
speed up the tuning process.

Fluid models the problem as a strip packing problem where
each rectangle has different shapes and the goal is to mini-
mize the height of the strip. The intuition behind Fluid is to
grant more resources to more demanding/promising config-
urations, such as those with larger training budget, higher
resource requirement, or higher priority. By combining tech-
niques like elastic training and GPU multiplexing, Fluid is
able to change the trial size including scaling out and in a
trial across many GPUs and within one respectively. We
also propose heuristics to solve the strip packing problem ef-
ficiently and prove that their performance is bounded within
2x of the optimal.

To the best of our knowledge, we make the following contri-
butions:

* Fluid is the first generalized hyperparameter tuning exe-
cution engine. It captures the characteristics of a hyper-
parameter tuning algorithm as a sequence of TrialGroups
and models TrialGroup scheduling as a strip packing
problem;

* Fluid proposes efficient heuristics with theoretical guar-
antees to solve the packing problem and it applies elastic
training and GPU multiplexing to enforce the solutions;
and

Hyperparameter Tuning Algorithm

[ Config Generation ]

E@l]@

- ———— -

2
®

[ Evaluation & Execution ] :

R ————

Figure 1. Hyperparameter tuning today: The tuning algorithm
which implicitly contains execution logics interacts with the cluster
directly.

* Fluid can boost the performance of various hyperparame-
ter tuning algorithms with higher utilization and shorter
end-to-end time. According to our experiment, Fluid
can speed up synchronous BOHB by 100%, BOHB and
ASHA by 30%, with similar final accuracy.

2 MOTIVATION
2.1 Background and Related Work
2.1.1 Hyperparameter Tuning Algorithms

Figure 1 gives an overview of how hyperparameter tuning
algorithms work in general. @ The hyperparameter config-
urations are generated and passed on for evaluation; @ the
evaluation logic creates corresponding training trials and
submits them directly to the cluster; @ the training trial
finishes execution and the tuning algorithm gets notified;
@ the results are passed back to the generation mechanism
for future trial generations.

There are five primary trends in existing hyperparameter
tuning algorithms tweaking parts of the aforementioned
process to accelerate the evaluation and searching process
for a good set of hyperparameter.

1. Parallel search: Parallel hyperparameter search ap-
proaches (Michie et al., 1994; Bergstra & Bengio, 2012)
taking the idea of grid/random-based search introduce
parallelism to speed up evaluation. However, because
finding the best configurations in a large space requires
guidance, random search-based methods cannot quickly
converge to good configurations.

2. Model-based search: Model-based hyperparameter
search approaches (Friedrichs & Igel, 2005; Shahriari
et al., 2016; Bergstra et al., 2011) sequentially generate
better hyperparameter configurations based on feedback
from previous evaluation results. However, such adap-
tive selecting and evaluating process is inherently se-
quential and thus not suitable for the large-scale regime.

3. Early-stopping: Early-stopping evaluation strate-
gies (Dombhan et al., 2015) aim at detecting and stopping
poor configurations earlier in order to avoid wasting
resources on unpromising configurations. Successive



Fluid: Resource-Aware Hyperparameter Tuning Engine

Method ‘Para. Model Early Async. | Exec.
Grid/Rand. v

SMBO v

Hyperband v v

BOHB v v v v Asyn
ASHA v v v Asyn
PBT v v

HyperSched v v v v

Table 1. An overview of common hyperparameter tuning algo-
rithms and how they employ the techniques mentioned in §2.1.1.
The last column indicates if they have dedicated execution logic.

Halving (Karnin et al., 2013), for example, iteratively
kills the poor trials and allocates more training time to
the top fraction of trials. However, under this iterative
process, only a few promising configurations end up
being evaluated end-to-end, creating triangular shaped
resource usage pattern over time, which degrades the
resource efficiency in distributed environments.

4. Asynchronous search: Fully asynchronous algorithms
(Li et al., 2018) always align the number of training
trials with the number of workers, which aim at fully
utilize all the resources to evaluate configurations. How-
ever, these algorithms fail to concentrate resources on
promising configurations but spend them on exploring
hyperparameter search space.

5. Hybrid approach: Hybrid approaches combine the
ideas of the four trends aforementioned (Alvi et al.,
2019; Li et al., 2016; Falkner et al., 2018; Li et al., 2018;
Jaderberg et al., 2017).

2.1.2 The Default Execution Logic

As already discussed, current hyperparameter tuning meth-
ods focus on speeding up searching mostly in the algorithm,
while hardly considering their interactions with the cluster.

In fact, as shown in Table 1, only a few algorithms have
dedicated execution logic. Most others simply assign one
pending job on one idle worker and maintain a FIFO queue.
Some newer ones, such as ASHA and BOHB (Li et al.,
2018; Falkner et al., 2018), use a simple fully asynchronous
strategy to launch a new trial whenever there is an idle
worker. Although HyperSched (Liaw et al., 2020) has its
own execution logic on the top of ASHA that makes use of
distributed training when deadline approaches, this logic is
too specific to generalize to other tuning algorithms.

Overall, the execution logic is tightly coupled with the eval-
uation logic in tuning algorithms, and they lack any general-
ization to be efficiently applied to every algorithm.

ASHA BOHB
5}
=
S
=
HyperBand SyncBOHB
o}
2
-
S
=

 — ——— S —

0% 20% 40% 60% 80% 100%

Figure 2. GPU utilization of 4 algorithms on the CIFAR-10 task,
running to completion. Each algorithm has 8 workers and each
data point is averaged over a 30 seconds window.

2.2 Motivation

Our work is motivated by the low resource utilization in
existing hyperparameter tuning algorithms. Here we illus-
trate that the default execution strategy fails to efficiently
use all available resources, while asynchronous execution
strategies aim to increase utilization but not all resource
usage contribute to selecting the final configuration.

2.2.1 Resource (Under-)Utilization

We consider four representative algorithms — ASHA, Hy-
perband, BOHB, and Synchronous BOHB - to understand
their resource usage characteristics.

In Figure 2, we observe ample room for improvement in
terms of resource usage. The underutilization has two root
causes: a) No trial is running during the purple-shaded time
slots in a particular worker. Distributed training can be used
to balance workloads from other workers onto these free
ones; b) Even when a GPU is used, the overall utilization
is at most 60%, suggesting that a single trial often cannot
fully saturate the GPU. Multiple trials can be stacked/packed
together to reduce the average trial completion time.

2.2.2 Case Study: Lack of Elasticity Reduces Utilization

In the default setting of many early-stopping based algo-
rithms like Successive Halving, the number of available
workers is static while the number of trials is diminishing.
Training trials are executed on the workers in a FIFO order.

In Table 2, we set up a basic Successive Halving based
tuning session and measure the average resource utilization
as well as tuning speed over varying number of workers.
(See Section 6 for details about the CIFAR-10 task.) As we
can see, when the number of workers increases, the tuning
process is indeed faster but the resource utilization is lower.



Fluid: Resource-Aware Hyperparameter Tuning Engine

# Workers Util. Runtime
2 81.20% 2356
4 63.00% 1432
8 45.80% 1073
16 47.00% 475
32 25.20% 432

Table 2. Resource utilization and runtime over different number of
workers with Successive Halving

While more workers can help with the beginning stages of
Successive Halving, latter stages only have a smaller number
of trials; even though there are idle workers, the algorithm
is unable to make use of them. Furthermore, increasing
resource allocation further is of no use.

2.2.3  Case Study: High Utilization # Useful Work

To increase utilization, a common fully asynchronous exe-
cution strategy is starting a new trial whenever there is an
idle worker. As a result, the tuning algorithm can use all
available workers, and its training concurrency is bounded
by the number of workers.

Unfortunately, our analysis of ASHA, a popular asyn-
chronous tuning algorithm, shows that not all work is useful
work. In this experiment, we measure the best accuracy vs
total GPU seconds and wall clock time over different train-
ing trial concurrency levels (Figure 3a and Figure 3b). We
observe that as we increase the training trial concurrency,
the best configuration is not necessarily identified faster;
however, more GPU seconds are consumed to reach the
same search target.

This is because the hyperparameter tuning is an exploration
and exploitation process. Even though more workers are
kept busy working on something fresh (exploration), not
necessarily all the work done contribute to the final con-
figuration’s generation (exploitation), which makes it fail
to concentrate resources on promising configurations. To
this end, instead of blindly improve the resource utilization,
hyperparameter tuning should spend its resource where it
counts the most. An ideal evaluation and execution strategy
should achieve the target accuracy with shorter wall clock
time and smaller total GPU seconds.

3 FLUID

In this section, we start with the problem statement and
review the challenges Fluid must solve to become a general-
ized execution engine for hyperparameter tuning. Then we
introduce the high-level interface used by Fluid and how it
interacts with other components in a hyperparameter tuning
job. Finally, we illustrate the intra- and inter-GPU sharing
considerations in Fluid.

#...workers
@& —4 8§ 116 24 —32 64
@
<
~ 008
z
096
3
= mon H

o 109 ) 0 200D A0M) GO
Walll..Clok .. Time:..(8) Totall. . GRUL. Sarandss

(a) Wall clock time (b) GPU Seconds

Figure 3. ASHA best validation accuracy over wall clock time and
total GPU seconds (averaged across 3 ASHA jobs respectively)

3.1 Problem Statement

Given a hyperparameter tuning job and available resources,
the objective of Fluid is to carefully allocate resources to
each training trial in the job such that resources are effi-
ciently used and the makespan is minimized. In addition,
Fluid should generalize to most hyperparameter tuning al-
gorithms and react to cluster resource changes.

Fluid must address the following challenges.

1. The wide variety of tuning algorithms There are
many strategies for hyperparameter tuning, each of
which generates configurations and evaluates their per-
formance in different ways (§2.1.1). It is challenging
to design a general execution engine that can take
algorithm-aware scheduling decisions and minimize the
makespan of a collection of training trials (§3.2).

2. Highly dynamic training workloads and resources
Training trials generated by hyperparameter tuning dy-
namically change over time due to the use of early-
stopping strategy (§2.1.1). Cluster resource allocation
can also be dynamic for fairness and efficiency reasons.
Hence, it is challenging to capture the dynamic resource
usage to reallocate correspondingly.

3. Heterogeneity in training trial profiles Differences in
hyperparameters across training trials may cause differ-
ent resource demands and be given different amounts
of training budgets. Hyperparameter configurations may
react differently for different resource allocations too.
This challenges the execution engine to treat different
trial profiles accurately (§3.4 and §4.2.2).

3.2 The TrialGroup Abstraction

To generalize different hyperparameter tuning algorithms,
we introduce an abstraction called TrialGroup between the
tuning algorithms and Fluid. Algorithms can use this simple-
yet-rich interface to express their training requests, and Fluid
works with this consistent model to schedule executions.

A TrialGroup is a group of training trials with a training



Fluid: Resource-Aware Hyperparameter Tuning Engine

—
— i —

: Fluid <= E
=

Figure 4. With Fluid, the tuning algorithm @ submits Trial-
Group according to its evaluation strategy and gets feedbacks
back anytime they are available. Fluid itself manages the job

execution and handles resource changing events.

budget associated to each trial in the group. At any time,
trials may be removed from the group due to completion or
requested termination from the algorithm. The optimization
goal for such a TrialGroup is to minimize its makespan,
such that all the results are available as early as possible.
TrialGroup is the basic unit of scheduling in Fluid.

Although the definition of TrialGroup is simple, we find it
quite expressive for modeling hyperparameter tuning algo-
rithms’ training trial execution requirements. In the most
simple case: grid/random search, where all training trials are
created at the same time and have a fixed amount of budget,
all trials fit nicely in one TrialGroup. For more involved
algorithms discussed in Section 2.1.1, where new iterations
of the algorithm may be added based on previous feedbacks,
all trials from a single iteration forms a TrialGroup. This
essentially creates a sequence of TrialGroups, each has its
own makespan minimized individually.

3.3 Fluid Overview

Figure 4 illustrates Fluid’s position in the stack. Fluid coordi-
nates between the cluster and tuning algorithms, decoupling
the execution logic from any single tuning algorithm. The

tuning algorithm submits TrialGroup to Fluid over time.

During the tuning process, intermediate results are re-
ported back so that new trials may be created or existing
ones removed.

The action of Fluid will only be triggered when new Tri-
alGroups are added or some resources are freed. Based on
the real-time resource usage reported by the cluster,
Fluid uses StaticFluid (S4.2) to schedule any new Tri-
alGroups onto idle resources. It then reactively waits for
more events to handle. When some resource are freed up
and no pending job in the queue towards the end of the Trial-
Group, Fluid adapts DynamicFluid (S4.3) to reallocate
resources with the concern of any overhead.

3.4 Parallelism in Multiple Granularities

Minimizing the TrialGroup makespan ultimately translates
to making better use of the underlying hardware resources
in parallel. However, as shown in Section 2.2, relying on
creating massive amount of trials as the single source of
parallelism is neither enough to saturate individual workers
nor applicable to many model-based tuning algorithms.

In Fluid, in addition to the number of trials, parallelism
is sourced from within the training trial by using existing
techniques like Multi Process Service (MPS) (NVIDIA,
2020a) (or Multi-Instance GPU (MIG) (NVIDIA, 2020b)
more recently) and automatic distributed training. NVIDIA
MPS allows multiple processes to run on a single GPU
at the same time with different CUDA streams, providing
intra-GPU parallelism. Distributed training is a established
technique to use multiple parallel workers to reduce the
training trial’s job completion time, providing inter-GPU
parallelism (Dean et al., 2012). In addition, resource elastic-
ity (Or et al., 2020) realizes resource reallocation on the fly
providing more flexibility in scheduling.

Fluid uses both inter-GPU and intra-GPU parallelism to per-
form resource allocation in a water-filling scheme. However,
distributed training has communication overhead, while
GPU sharing inevitably creates interference; both degrade
performance. Therefore, we incorporate dynamic overhead
measurement into Fluid’s design (§4.2.2) and assess the
marginal benefit before using both techniques to increase
parallelism in intra- and inter-GPU granularities.

4 FLUID ALGORITHM

The scheduling problem of a hyperparameter tuning job, a
sequence of TrialGroups, can be broken down into solving
several independent TrialGroup scheduling problems. In this
section, we begin with formulating this single TrialGroup
scheduling as a strip packing problem (§4.1).

Since the hyperparameter tuning can be simplified as two
actions (§3.3), trial arrival and departure, we then propose
two heuristics to make full use of resources respectively
under two conditions: a) new TrialGroup is launched to
be scheduled; b) resource is freed to be allocated. We first
introduce StaticFluid and how it uses GPU sharing
to schedule incoming TrialGroup with the concern of shar-
ing overheads (§4.2). We provide theoretical analysis for
our StaticFluid in the appendix. Then, we introduce
DynamicFluid which uses resource elasticity to reallo-
cate freed resources while being robust to overheads (§4.3).

4.1 Problem Definition

Let the TrialGroup scheduling be represented as a strip
packing problem I = {A, M}. Each rectangle a; in A =



yperparameter Tuning Engine

1 [a] 4 .m
5 2 (@) 4 5 12
£ 3a 12
3 4 |a, J30 ay 10 ay 10
5
(¢) Fluid

Figure 5. Toy example: default, optimal and Fluid for 4 training
trials scheduled on 5 workers

{a1,- - ,a;} with width and height corresponds to a trial
with allocated resources and remaining runtime. It is worth
noting that in our problem setting, each rectangle’s width w;
determines its height h; . h; ., thus implies the relationship
between different resource allocation and its corresponding
runtime for this trial. Strips in M = {my,--- ,m,} with
identical width 1 and infinite height represents n available
identical resources for current hyperparameter tuning jobs.

Fluid utilizes both intra- and inter-GPU sharing to achieve
higher utilization of GPU resources and minimize the Trial-
Group makespan. Hence, a training trial can be assigned to
a real number amount of resources, where the fractional part
of the resources represents a worker that will be shared with
other trials, and an overall > 1 resources means the trial
must be placed across workers using distributed training.
The goal is to find a non-overlapping orthogonal packing
of these k rectangles (taking into account different size op-
tions) into n strips such that the maximum height of strips
is minimized.

4.2 StaticFluid

4.2.1 Algorithms

Since minimizing the height of strip packing is NP-
hard (Hochbaum & Maass, 1985), Fluid proposes an effi-
cient heuristic StaticFluid to find an approximate solu-
tion. At a high level, Fluid’s resource allocation is performed
using a water-filling scheme to balance the relationship be-
tween workloads and resources by “evenly” allocating re-
sources to current evaluation trials in order to minimize the
TrialGroup makespan.

Consider a grid search example with 5 GPUs and 4 trials
{a;}i=% arrived at the beginning with training budget 4s,
4s, 12s and 30s respectively. As shown in Figure 5a, the de-
fault FIFO scheduler treats each training trial independently
without considering the different impact on the TrialGroup
makespan; thus, it performs poorly because of stragglers
and resource underutilization.

Intuitively, a good schedule would prioritize resources to
long training trials to mitigate the straggler and minimize
the makespan. As shown in Figure 5c, Fluid distributes the
longest training trial a4 onto three workers and packs shorter
training trials a; and a9 together on one worker. In this way,

Algorithm 1 StaticFluid
1: def STATICFLUID(TrialGroup A, Idle Resources M")
2 Sort a; by h; 1 in non-increasing order
3: for all a; € Ado
hi1 1
4.
5

w; = min(max(sz ™ nl, ), d)
Allocate a; with w; resources

straggler is mitigated and resources are fully utilized. Fluid’s
static heuristic comes close to the optimal schedule for this
example (Figure 5b).

As shown in Algorithm 1, Fluid allocates resources w; based
on the ratio of each trial’s runtime h; ; to the sum of runtime
> hj 1 in the TrialGroup. Fluid then schedules the trials in
non-increasing order of resources onto the idle worker set.
To avoid performance degradation from GPU sharing, we
limit the maximum intra-GPU sharing to ¢ and maximum
inter-GPU training to d, which we discuss in more details
in Section 4.2.2.

Formally, we give Theorem 1 without concerning any over-
head, whose proof is included in Appendix A.3.

Theorem 1. In the ideal situation, FluidStatic is a 2-
approximation algorithm.

4.2.2  Accounting for Overheads

Fluid adapts MPS and distributed training to realize intra-
GPU sharing and inter-GPU training. These inevitably
causes interference and overheads that hurt training per-
formance. We account for such possibilities by tracking
marginal benefits.

Intra-GPU Overhead Under the assumption that trials
of the same hyperparameter tuning job are similar to each
other, Fluid regards similar trends for diminishing marginal
benefit for packing one more trial from the same TrialGroup.
Fluid determines the optimal number of concurrent trials ¢
on a GPU by finding out the inflection point where marginal
benefit degrades below a threshold Oyy,.

We define the marginal benefit O for packing the p** trial
on a worker as

p—1 avg(T”)

oP =1-— TN /o
p avg(Tr-1)

(p>1)

where TP = {t;}'=" is the set of training time per itera-
tion for p training trials. The marginal benefit of reduced
average trial completion time is usually diminishing with
the increasing packing overhead. Fluid ensures the packing
benefit over packing overhead by limiting the number of
concurrent training trials under the optimal number ¢ where
c=argmax, OF > Oy.



Fluid: Resource-Aware Hyperparameter Tuning Engine

Inter-GPU Overhead The speed-up brought by dis-
tributed training is not linear because of communication
overheads. Such communication overheads are often deter-
mined by the size of model parameters and the number of
workers (Shi & Chu, 2017).

Fluid determines the maximum degree of parallelism d for
an evaluated configuration using the Paleo framework (Qi
et al., 2017) to estimate the cost of training neural networks
in parallel. It ensures the scaling benefit over scaling over-
head by limiting the number of distributed worker to less
than d.

Problem Setup To consider these realistic factors for our
strip packing problem, we define the relationship between
runtime h; ., and resources w for trial a; as

1 _
h B h@lOéiw ! w e (0, 1)
LW T Ry pw—1

where h; 1 is the trial runtime on one worker. «; € [1, ﬁ)
is a measure of the packing overhead for trial a;. 8; €
1,1+ %) is a measure of the scaling overhead for trial a;.
This definition of h; ,, ensures the following result.

Theorem 2. In the real situation, StaticFluid(I) <
max(2 OPT(I) + max(hy )o=1,2 OPT(I)37 1)

We prove that StaticFluid has theoretical guarantee
even when practical resource sharing overheads is consid-
ered (Appendix A.3).

4.3 DynamicFluid

In addition to scheduling incoming TrialGroup, Fluid also
need to handle the dynamic changing resource usage caused
by job departure and cluster resource changes.

As shown in Figure Sc, there is still a resource gap before
the TrialGroup completes, which leaves space to further im-
prove the utilization and minimize makespan. Therefore, we
extend the heuristic StaticFluid to DynamicFluid
that reallocates the incoming idle resources on the fly with
the help of resource elasticity .

Ideally, DynamicFluid updates the resource allocation
plan w’ using resource elasticity with the same formula in
Algorithm 1 when new resources are freed. However, using
resource elasticity to adjust parallelism will inevitably in-
cur overhead. Hence, Fluid considers scaling overhead € to
avoid performance degradation and frequent parallelism ad-
justment. As shown in Algorithm 2, Fluid updates resources
w; « w, for trial a; at the end of current iteration only
when it does not lead to performance degradation.

In addition to resource usage change caused by job de-
parture, some cluster schedulers (Mahajan et al., 2019)

Algorithm 2 DynamicFluid

def DYNAMICFLUID(TrialGroup A, Total Res. M)
Sort a; by h; 1 in non-increasing order
for all ¢; € Ado
w} = min(max( in’htl n),1),d)

1:
2
3
4
5: if w; > w; and i oy + € < i,
6
7
8

Update a; with w; resources > Scale up
else if U); < w; and w;(hmu; + 6) < wihm,i
Update a; with w; resources > Scale down

may dynamically change resource allocation for fairness
or efficiency. Fluid can handle such change by triggering
DynamicFluid when resources are updated.

5 FLUID IMPLEMENTATION

We implemented Fluid as an executor for Ray Tune (Liaw
et al., 2018). In addition to the implementing our execution
algorithm, tuning algorithms in Tune were adapted to make
use of the TrialGroup interface, which translates to one extra
function call per algorithm class when applicable, to signify
the creation of new TrialGroups.

In order to adjust training trials’ number of worker at run-
time with lower overhead, we also implemented training
elasticity technique similar to the one proposed by recent
work (Or et al., 2020).

One important input of the Fluid algorithm is the packing
overhead measurement o; € [1, —%5) and distributed over-
head measurement j3; € [1, 1+ ). These numbers depends
on many factors of the training process and are affected by
the hardware in use. It is an active field of research to predict
them given a particular configuration. In Fluid, instead of
predicting, we use a trial-and-error approach by measuring
these numbers on real hardware. Leveraging the iterative na-
ture of deep learning training process, only a few iterations
is enough to have reasonable measurements. Fluid thus uses
a small fraction of resources to profile current trials and
reuse the result throughout the whole tuning session.

6 EVALUATION

We evaluate Fluid with a range of hyperparameter optimiza-
tion algorithms, including Grid/Random Search, PBT, Suc-
cessive Halving, Hyperband, BOHB and ASHA (Michie
et al., 1994; Bergstra & Bengio, 2012; Jaderberg et al., 2017;
Karnin et al., 2013; Li et al., 2016; Falkner et al., 2018; Li
et al., 2018). Our evaluation shows the following key high-
lights:

* Fluid can speed up diverse hyperparameter tuning work-
loads around 10%-70%, while improve cluster effi-
ciency up to 10%—-100%.



Fluid: Resource-Aware Hyperparameter Tuning Engine

Task Base # of Arch. T #.O.f T t
as Model Params.  Lrining arge
Param.
CIFAR-10 AlexNet 3 4 Acc. >= 90%
WLM RNN 4 6 PPL <= 140
DCGAN CNN 0 2 Inception
>=15.2

Table 3. List of workloads
ASHA...+...Fluid BOHB...+...Fluid

i
| M LWlll Irlll: |

Ll

b

Worker

Worker

0% 20% 40% 60% 80% 100%
Figure 6. GPU utilization of 4 algorithms on the CIFAR-10 task
using Fluid, running to completion. Each algorithm has 8 workers
and each data point is averaged over a 30 seconds window.

* Fluid can improve the trade-off between resource effi-
ciency and hyperparameter searching speed, and opti-
mize both simultaneously.

* Fluid’s benefits are robust under different kinds of envi-
ronment setup and training workloads.

6.1 Experiment Setup

Testbed We built our testbed on Chameleon Cloud (Kea-
hey et al., 2020). Each node has an Intel Xeon Gold 6126
CPU with NVIDIA Quadro RTX 6000 GPU. The intercon-
nection is 10G ethernet.

Workloads We create our set of workloads (Table 3) us-
ing different deep learning tasks including computer vi-
sion, natural language processing and adversarial learning.
The CIFAR-10 task includes the tuning of an variation of
AlexNet on an image classification task maximizing accu-
racy; The WLM task tunes the training of a multi-layer
RNN on the word-level language modeling task minimizing
perplexity; The DCGAN task tunes two multiple-layer CNN
network, creating a generative model on the MNIST dataset.
The tuning target is maximizing the inception score.

In all tasks, the tuned hyperparameters include training pa-
rameters like learning rate, batch size, etc., as well as ar-
chitectural parameters like number of CNN layers, size of

layers, type of models, etc..

Tuning algorithms We compare the performance of 5
hyperparameter tuning algorithms with and without Fluid:
PBT, Hyperband, ASHA, synchronous BOHB (SyncBOHB)
and BOHB. These algorithms include both synchronous
stage-based strategies and asynchronous strategies, covering
most of the situation that may appear during hyperparameter
tuning process, including stopping, promotion and so on.

Metrics The improvement in hyperparameter tuning job
makespan is our key metric. The makespan is defined as
the end-to-end time needed for a given problem to reach a
certain metric target. For example, the time needed to reach
90% accuracy for the CIFAR-10 task and the time needed
to reach 140 ppl for language models. We also measure
resource utilization improvement to indicate Fluid’s effort
on improving resource usage.

6.2 Macrobenchmarks

We first report the performance improvement of Fluid over 5
tuning algorithms on all three tasks in Figure 7. The average
GPU utilization of those runs are reported in Figure 8. In
addition, we report the utilization heatmap similarly as in
§2.2 on the CIFAR-10 task in Figure 6.

The benefit of Fluid varies over algorithms. We see a pattern
that synchronous stage-based strategies (SyncBOHB, Hy-
perband) can gain more benefit 30%—100% on job makespan
and resource usage with the help of Fluid due to underuti-
lization of resources, while asynchronous strategies (ASHA,
BOHB), in spite of their original high resource utilizations,
see 10%-30% improvements. PBT always has a constant
number of trials running, so the benefit of Fluid is limited.
But Fluid can still help PBT to scale out to more concurrent
trials, which improves the overall time to reach target.

Fluid’s benefit comes from the following: a) Resource under-
-utilization due to mismatch between training trials and avail-
able resources over time. b) Stragglers due to algorithm’s
synchronous nature. ¢) Insufficient concurrency when the
number of running trials is tied to the number of workers.

The rest of this section gives detailed insights into the im-
provement of synchronous stage-based tuning algorithms
and fully asynchronous algorithms. We then move on to mi-
crobenchmarks in which we break down the improvement
of individual techniques.

6.2.1 Benefit on Synchronous Stage-based Strategy

In Figure 9, we measure the best accuracy over time for
synchronous stage-based strategy BOHB using different
number of workers. Our results show that the tuning speed
up is not in proportion to the increase of available workers.
However, with the help of Fluid, we are able to achieve



Fluid: Resource-Aware Hyperparameter Tuning Engine

=
= é M Without...Fluid 8 With...Fluid - B Without...Fluidill With...Fluid = B Without...Fluid With...Fluid
g g 150 2= 400
w5 40 2 c &

1< . H

g ! sg 100 S
3 20 SR & 200
o> g o5 IS
E Eg Ed
R == =

S 0 0 0

BOHB PBT BOHB PBT BOHB SyncBOHB
ASHA Hyperband ~ SyncBOHB ASHA Hyperband SyncBOHB ASHA Hyperband
(a) CIFAR-10 (b) WLM (c) DCGAN

Figure 7. Time to reach target. Data averaged over 5 runs. Errorbar represents standard deviation. PBT on DCGAN did not finish in
reasonable time and thus excluded from the report.

B Without...Fluidill With.. Fluid

B Without...Fluidi With...Fluid

B8 Without...Fluid® With.. . Fluid

=] o =
2 2 2
g 1.0 2 1.0 £ 1.0
= = =
35 5 3
4 05 205 005
5 & S
5 53 o
2 g 2
< 00 < 0.0 < 0.0
BOHB PBT BOHB PBT BOHB SyncBOHB
ASHA Hyperband ~ SyncBOHB ASHA Hyperband ~ SyncBOHB ASHA Hyperband
(a) CIFAR-10 (b) WLM (c) DCGAN
Figure 8. Average utilization
5}
2
. 2 0.8 H
S :
o 0.8 7 —_
< g |
—_ > 0.6
< : £l
Z L # workers % 04 - ASHA:..4 i\s;oArk er; ASHA:...16
g 06 q Jfrtea— ~- SyncBOHB:4  — w/ Fluid: 4 m o, Pl 4. Fluid:.. 6 il Fiuids. 16
m “::, —-SyncBOHB:8 — w/ Fluid: 8 02 Ww/...rlud:... w/...rlud:...o w/...rFluda:...
_g_; SyncBOHB: 16— w/ Fluid: 16 : Tt ' ' '
0.4 : : : : , 2 4 6 8 10 12 14
0 5 10 15 20 25 Since...Start...(min)

Since Start (min)

Figure 9. Validation accuracy over time for SyncBOHB w/ and
w/o Fluid on the CIFAR-10 task. Data averaged over 5 runs.

better scalibility. The experiment was done on the CIFAR-
10 task using SyncBOHB on 4, 8, 16 GPUs respectively.

6.2.2  Benefit on Fully Asynchronous Strategy

In Figure 10, we measure the max accuracy over time for
fully asynchronous strategy ASHA using 4, 8, 16 GPU work-
ers respectively. Our results show that the performance of
fully asynchronous strategy largely depends on the number
of workers. And in this particular case, 8 workers works the
best. With the help of Fluid, we can easily set the concur-
rency for ASHA regardless of the number of physical work-
ers, because Fluid is able to adjust the number of concurrent
running trials. ASHA can therefore achieve the optimal bal-
ance. As a result, with Fluid, we are able to achieve similar
performance as 8 GPUs using only 4 or better performance
with more GPUs.

Figure 10. Validation accuracy over time for ASHA w/ and w/o
Fluid on the CIFAR-10 task. Data averaged over 5 runs. Fluid is
set to have 8 concurrent trials regardless of # workers.

6.3 Microbenchmarks
6.3.1 Benefit of Intra-GPU Sharing

In Figure 11a, we compared the performance of hyperparam-
eter optimization algorithms with and without MPS packing.
We show the speed up of Fluid with MPS as the only en-
abled mechanism, compared to the original algorithm. For
the sake of discussion, we choose Grid Search in this exper-
iment to avoid influences from other factors.

Our results show that MPS Packing provides a significant
performance increase especially on tuning relatively large
TrialGroup with small model size. We experiment with Grid
Search on three training workloads from small to large, and
for each training workloads, we evaluate 9, 27, 81 configu-
rations on 8 GPUs.



Fluid: Resource-Aware Hyperparameter Tuning Engine

CIFAR-10 I DCGAN

WLM

(a) Intra-GPU only (b) Inter-GPU only

Figure 11. Speed ups break down of intra- and inter-GPU trainig

CL3_

D; CIFAR-10 I WLM
< 27

O

o 1

o

£ 1l J

Small Medium

Number...of...Trials

Large

Figure 12. Relative speed up given trial runtime variance
6.3.2 Benefit of Inter-GPU Training

Similarly, we enable only inter-GPU mechanism in Fluid,
and compare the performance gain using the Grid Search.
With 8 GPU workers, we limit the trial number to smaller
than that to explicitly trigger the inter-GPU distributed train-
ing. Our results show that inter-GPU distributed training
provides a significant performance increase especially on
tuning relatively small TrialGroup with large model size.
The results are shown in Figure 11b. Fluid effectively uti-
lizes the idle distributed resources and achieve tuning speed
up especially when the gap between number of trials and
number of workers is large.

6.4 Sensitivity Analysis
6.4.1 Effect of Runtime Variance

In Figure 12, we show how Fluid performs with differ-
ent trial runtime variance. Our results show that Fluid can
achieve better speed up or resource utilization improvement
especially when trials’ runtime variance is large, which can
be attribute to DynamicFluid which adjusts resources
at runtime. We experiment with Grid Search on tuning dif-
ferent training workloads, and for each training workloads,
we evaluate 9 configurations with different degree of job
runtime variance on 8 GPUs .

6.4.2  Effect of Packing Overhead

By manually modify tasks to include controllable artificial
packing overhead, we are able to assess Fluid’s reaction
under different packing conditions.

The results reported in Figure 13a shows the speed up ratio
of completion time of GridSearch with Fluid, with 1.5, 2, 10
times packing overhead, relative to those without using
Fluid. The experiment is given 27 hyperparameter configu-

CIFAR-10 ' DCGAN WLM

HEx 2% Ak Ik 4 & ik

(b) 3 trials GridSearch

(a) 27 trials GridSearch on 8 workers

Figure 13. The speed up of Fluid with GridSearch with varying
packing and scaling overhead.

rations and has 8 workers in total.

When the overhead is relatively small, Fluid still sees pos-
itive marginal benefit to packing. With 10x overhead, the
intra-GPU packing is effectively disabled and Fluid’s per-
formance becomes the same as the original algorithm.

6.4.3  Effect of Scaling Overhead

In Figure 13b, we show how Fluid reacts across various
scaling overhead. Our results show that Fluid can achieve
different degrees of speed-up under different scaling over-
head by detecting model’s scalability. We experiment with
Grid Search on scaling different training workloads, and for
each training workloads, we evaluate 3 configurations on 4,
8, 16 GPUs. In this experiment we disable the intra-GPU
packing mechanism. Going from 4 GPUs to 8 gains sizable
performance benefit across all 3 tasks. But CIFAR-10 and
DCGAN does not benefit from adding more GPUs. In fact,
the added GPUs are not used at all, because Fluid detects
there will be high scaling overhead associated if these work-
loads scaling beyond enough. In real settings, those idle
GPUs will be used by other trials.

7 CONCLUSION

Fluid is a generic hyperparameter tuning execution engine
that decouples execution logic from tuning algorithms, with
the high-level TrialGroup interface for tuning algorithms to
express their execution needs. Fluid can boost the perfor-
mance of diverse hyperparameter tuning solutions.

ACKNOWLEDGMENTS

We thank the Chameleon team for providing GPU servers,
which made many experiments on Fluid possible. We also
thank all the SymbioticLab members for their helpful com-
ments and feedback. This research was supported in part by
NSF grants CNS-1845853, CNS-1900665, CNS-1909067
and a gift from the KLA Corporation.



Fluid: Resource-Aware Hyperparameter Tuning Engine

REFERENCES

Alvi, A., Ru, B., Calliess, J.-P., Roberts, S., and Os-
borne, M. A. Asynchronous batch Bayesian optimisa-
tion with improved local penalisation. In Chaudhuri,
K. and Salakhutdinov, R. (eds.), Proceedings of the
36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research,
pp- 253-262, Long Beach, California, USA, 09—15 Jun

2019. PMLR. URL http://proceedings.mlr.

press/v97/alvil9a.html.

Bergstra, J. and Bengio, Y. Random search for hyper-
parameter optimization. Journal of Machine Learning

Research, 13(10):281-305, 2012. URL http://jmlr.

org/papers/v13/bergstral2a.html.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. Algo-
rithms for hyper-parameter optimization. In Proceedings
of the 24th International Conference on Neural Informa-
tion Processing Systems, NIPS’ 11, pp. 2546-2554, Red
Hook, NY, USA, 2011. Curran Associates Inc. ISBN
9781618395993.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,
Mao, M., aureclio Ranzato, M., Senior, A., Tucker,
P, Yang, K., Le, Q. V,, and Ng, A. Y. Large scale
distributed deep networks. In Pereira, F., Burges,
C. J. C, Bottou, L., and Weinberger, K. Q. (eds.),
Advances in Neural Information Processing Sys-
tems 25, pp. 1223-1231. Curran Associates, Inc.,
2012. URL http://papers.nips.cc/paper/

4687-large-scale-distributed-deep—-networ

pdf.

Dombhan, T., Springenberg, J. T., and Hutter, F. Speeding
up automatic hyperparameter optimization of deep neural
networks by extrapolation of learning curves. In Proceed-
ings of the 24th International Conference on Artificial In-
telligence, IJCAT’ 15, pp. 3460-3468. AAAI Press, 2015.
ISBN 9781577357384.

Falkner, S., Klein, A., and Hutter, F. BOHB: robust and
efficient hyperparameter optimization at scale. CoRR,
abs/1807.01774, 2018. URL http://arxiv.org/
abs/1807.01774.

Friedrichs, F. and Igel, C.
of multiple svm parameters. Neurocomputing,
64:107 — 117, 2005. ISSN 0925-2312. doi:
https://doi.org/10.1016/j.neucom.2004.11.022.  URL
http://www.sciencedirect.com/science/
article/pii/s0925231204005223. Trends
in Neurocomputing: 12th European Symposium on
Artificial Neural Networks 2004.

Evolutionary tuning

Gu, J., Chowdhury, M., Shin, K. G., Zhu, Y., Jeon, M.,
Qian, J., Liu, H., and Guo, C. Tiresias: A GPU cluster
manager for distributed deep learning. In /6th USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI 19), pp. 485-500, Boston, MA, February
2019. USENIX Association. ISBN 978-1-931971-49-2.
URL https://www.usenix.org/conference/
nsdil9/presentation/gu.

Hochbaum, D. S. and Maass, W. Approximation schemes
for covering and packing problems in image processing
and vlsi. J. ACM, 32(1):130-136, January 1985. ISSN
0004-5411. doi: 10.1145/2455.214106. URL https:
//doi.org/10.1145/2455.214106.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. Sequential
model-based optimization for general algorithm config-
uration. In International conference on learning and
intelligent optimization, pp. 507-523. Springer, 2011.

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M.,
Donahue, J., Razavi, A., Vinyals, O., Green, T., Dunning,
I., Simonyan, K., Fernando, C., and Kavukcuoglu, K.
Population based training of neural networks. CoRR,
abs/1711.09846, 2017. URL http://arxiv.org/
abs/1711.09846.

Jeon, M., Venkataraman, S., Phanishayee, A., Qian, J.,
Xiao, W., and Yang, F. Analysis of large-scale multi-
tenant GPU clusters for DNN training workloads. CoRR,
abs/1901.05758, 2019. URL http://arxiv.org/
abs/1901.05758.

%Sar'nin, Z., Koren, T., and Somekh, O. Almost optimal
exploration in multi-armed bandits. In International Con-
ference on Machine Learning, pp. 1238-1246. PMLR,
2013.

Keahey, K., Anderson, J., Zhen, Z., Riteau, P., Ruth, P.,
Stanzione, D., Cevik, M., Colleran, J., Gunawi, H. S.,
Hammock, C., Mambretti, J., Barnes, A., Halbach,
F., Rocha, A., and Stubbs, J. Lessons learned from
the chameleon testbed. In Proceedings of the 2020
USENIX Annual Technical Conference (USENIX ATC
’20). USENIX Association, July 2020.

Li, L., Jamieson, K. G., DeSalvo, G., Rostamizadeh,
A., and Talwalkar, A. Efficient hyperparameter opti-
mization and infinitely many armed bandits. CoRR,
abs/1603.06560, 2016. URL http://arxiv.org/
abs/1603.06560.

Li, L., Jamieson, K. G., Rostamizadeh, A., Gonina, E.,
Hardt, M., Recht, B., and Talwalkar, A. Massively paral-
lel hyperparameter tuning. CoRR, abs/1810.05934, 2018.
URL http://arxiv.org/abs/1810.05934.


http://proceedings.mlr.press/v97/alvi19a.html
http://proceedings.mlr.press/v97/alvi19a.html
http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
http://arxiv.org/abs/1807.01774
http://arxiv.org/abs/1807.01774
http://www.sciencedirect.com/science/article/pii/S0925231204005223
http://www.sciencedirect.com/science/article/pii/S0925231204005223
https://www.usenix.org/conference/nsdi19/presentation/gu
https://www.usenix.org/conference/nsdi19/presentation/gu
https://doi.org/10.1145/2455.214106
https://doi.org/10.1145/2455.214106
http://arxiv.org/abs/1711.09846
http://arxiv.org/abs/1711.09846
http://arxiv.org/abs/1901.05758
http://arxiv.org/abs/1901.05758
http://arxiv.org/abs/1603.06560
http://arxiv.org/abs/1603.06560
http://arxiv.org/abs/1810.05934

Fluid: Resource-Aware Hyperparameter Tuning Engine

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez,
J. E., and Stoica, I. Tune: A research platform for dis-
tributed model selection and training. arXiv preprint
arXiv:1807.05118, 2018.

Liaw, R., Bhardwaj, R., Dunlap, L., Zou, Y., Gonzalez, J.,
Stoica, 1., and Tumanov, A. Hypersched: Dynamic re-
source reallocation for model development on a deadline,
2020.

Mahajan, K., Singhvi, A., Balasubramanian, A., Batra, V.,
Chavali, S. T., Venkataraman, S., Akella, A., Phanishayee,
A., and Chawla, S. Themis: Fair and efficient GPU clus-
ter scheduling for machine learning workloads. CoRR,
abs/1907.01484, 2019. URL http://arxiv.org/
abs/1907.01484.

Melis, G., Dyer, C., and Blunsom, P. On the state of the
art of evaluation in neural language models. CoRR,
abs/1707.05589, 2017. URL http://arxiv.org/
abs/1707.05589.

Michie, D., Spiegelhalter, D., and Taylor, C. Ma-
chine Learning, Neural and Statistical Classification.
Artificial intelligence. Ellis Horwood, 1994. ISBN
9780131063600. URL https://books.google.
com/books?id=GsyPswEACAAJ.

NVIDIA. CUDA Multi-Process Service. https://web.
archive.org/web/20200228183056/https:
//docs.nvidia.com/deploy/mps/index.
html, 2020a. Accessed: 2020-02-28.

NVIDIA. NVIDIA Multi-Instance GPU. https://web.

archive.org/web/20201004004526/https:
//www.nvidia.com/en-us/technologies/
multi-instance—-gpu/, 2020b. Accessed:
2020-10-04.

Or, A., Zhang, H., and Freedman, M. Resource elasticity
in distributed deep learning. Proceedings of Machine
Learning and Systems, 2, 2020.

Qi, H., Sparks, E. R., and Talwalkar, A. Paleo: A perfor-
mance model for deep neural networks. In Proceedings
of the International Conference on Learning Representa-
tions, 2017.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Regularized
evolution for image classifier architecture search. CoRR,
abs/1802.01548, 2018. URL http://arxiv.org/
abs/1802.01548.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and de
Freitas, N. Taking the human out of the loop: A review
of bayesian optimization. Proceedings of the IEEE, 104
(1):148-175, 2016.

Shi, S. and Chu, X. Performance modeling and evaluation
of distributed deep learning frameworks on gpus. CoRR,
abs/1711.05979, 2017. URL http://arxiv.org/
abs/1711.05979.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning
transferable architectures for scalable image recognition.
CoRR, abs/1707.07012, 2017. URL http://arxiv.
org/abs/1707.07012.


http://arxiv.org/abs/1907.01484
http://arxiv.org/abs/1907.01484
http://arxiv.org/abs/1707.05589
http://arxiv.org/abs/1707.05589
https://books.google.com/books?id=GsyPswEACAAJ
https://books.google.com/books?id=GsyPswEACAAJ
https://web.archive.org/web/20200228183056/https://docs.nvidia.com/deploy/mps/index.html
https://web.archive.org/web/20200228183056/https://docs.nvidia.com/deploy/mps/index.html
https://web.archive.org/web/20200228183056/https://docs.nvidia.com/deploy/mps/index.html
https://web.archive.org/web/20200228183056/https://docs.nvidia.com/deploy/mps/index.html
https://web.archive.org/web/20201004004526/https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://web.archive.org/web/20201004004526/https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://web.archive.org/web/20201004004526/https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://web.archive.org/web/20201004004526/https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1711.05979
http://arxiv.org/abs/1711.05979
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1707.07012

Fluid: Resource-Aware Hyperparameter Tuning Engine

A ANALYSIS OF ALGORITHMS
A.1 Problem Formulation

Let the TrialGroup scheduling be represented as a strip
packing problem I = {A, M }. Each rectangle a; in A =
{a1,- - ,ax} with width and height corresponds to a trial
with allocated resources and remaining runtime. It is worth
noting that in our problem setting, each rectangle’s width w;
determines its height h; ,. h; 4, thus implies the relationship
between different resource allocation and its corresponding
runtime for this trial. Strips in M = {m4,--- ,m, } with
identical width 1 and infinite height represents n available
identical resources for current hyperparameter tuning jobs.

A.2 StaticFluid Algorithm

As shown in Algorithm 1, Fluid allocates resources w; based
on each trial’s runtime h; ; ratio among trials in the Trial-
Group. Fluid then schedules the trials in non-increasing
order of resources onto the idle worker set.

wi = =il (1)
) @)

A.3 Theoretical Results

Theorem 1 In the ideal situation, FluidStatic is a 2-
approximation algorithm.

Proof of Theorem 1.

Given an instance I = { A, M} of the strip packing problem
and let the optimal solution be OP'T(T). In the ideal case, no
overheads will occur, which means the job size (rectangular
area) remains the same for one job.

We break down this proof into proofs of two disjoint sub-
problems. First we show how this problem can be divided
into two sub-problems and then we prove the approximation
factor for each sub-problem separately.

After calculating the resources w; for each trial a; by Equa-
tion 2, we divide trials into a small set and a large set: one
with resources w,, < 1 and the other with resources w,, > 1.
The sub-problems are defined as scheduling small set of tri-
als a; on n—Y _ w, denoted as I and scheduling large set of
trials a, on ) w, denoted as I;. We simplify StaticFluid(-)
as Fluid(-) for convenience in the following proof.

Lemma 1. By applying our heuristic method, the result
makespan of original problem is no worse than the maximum
of the result makespan of two sub-problems:

Fluid(I) < max{Fluidsmau(ls), Fluidigrge (1) }

Proof of Lemma 1.

Since the trials in large trial set are ensured with w, re-
sources, all of them can be scheduled at the beginning. How-
ever, small trial set only has n — ) w, resources in total,

where n — Y w, < n — %n = Xz::tfn <S> wk < X
(X is the size of small trial set). Thus, trials in small trial set
may be scheduled when any resource becomes idle. Such
idle resources can belong to either small set or large set. If
the queued small trial is scheduled on resources belong to
the large set, the makespan would be shorter than waiting on
small set resources becoming idle. As a result, proving two
sub-problems separately is sufficient to bound our original

heuristic method.

Lemma 2. In the ideal situation, Fluidg,.(ls) <
2I_Ismall + max(hl)

Proof of Lemma 2.

For small trial set a, with n — > w, resources, this sub-
problem can be completely modeled as strip packing. Ac-
cording to our heuristic method, each small trial will be allo-
cated with % and longest trials are prioritized to be scheduled
onto most idle worker. We simplify our method to next-fit
decreasing height shelf-based algorithm, which means we
schedule trials in non-increasing runtime to an available
shelf and add a new shelf if previous shelves are full. Let’s
denote A; as the area of jy;, shelf, A =) Ajas the sum of
shelves’ area and H; as the height of j, shelf. Since the
area of rectangle is decreasing with the increase of packing
trials if the number of packing trials doesn’t exceed the opti-
mal number ¢, we have A < >~ hy 1 < Hypau(n— > wy),
where Hg,,,;; is defined as the largest average height of
small trial set. We have

1
Aj + Aj+1 > Hj+1 x 1 +Hj+1g > Hj+1

> Hj < Hy +2A = max(hi) + 24

3)
< max(h%) + 2(71 — Z wy)Hs7nall

Also, by taking one shelf as a whole trial with one unit
resources, this sub-problem can be reduced to shelf-based
job scheduling, which is to assign shelves to machines at
particular times in order to minimize the makespan. And our
heuristic becomes scheduling the shelf in non-increasing
runtime order onto the strip with smallest height. Denote
my, as the strip with largest height and H; as the height of
the last shelf assigned to my. If my only has one trial, then
this shelf has longest runtime which means it must be the



Fluid: Resource-Aware Hyperparameter Tuning Engine

optimal solution. If m have more than one shelf, we have

Fhlidsma”([s) = h(mk) <

=2Hnan + Inax(h;)
< 2H gl + max(hl)
“4)
Lemma 3. In the ideal situation, Fluidqpge (1) < 2H

Proof of Lemma 3.

For large trial set a,, with > w,, resources, this sub-problem
can be completely modeled as strip packing. Based on our
heuristic method, each trial a, will be scheduled on w,
machines.

w
) ty1 w;k
noow (5)
_ W Lhia Ly
lw*] _n

|

Since Y w, < n, every trial can get its own resources at
the beginning, which result in one-level packing.

Flujdlarge(ll) = max(hj,w) < 2H (6)

Combine the result of two sub-problems and Lemma 1, we
have

Fluid(]) < max(Fluidgmau(Ls), Fluidgrge (11))
< max(2H gpqn + max(hy),2H) o
< max(2OPT(I) + max(hy),2 OPT(I))
=20PT()

Theorem 2 In the real situation, StaticFluid(l) <
max(2 OPT(I) + max(hy)amT,2 OPT(I)37=1 ")

Proof of Theorem 2. In the real situation, we consider
the impact of GPU sharing overheads on the problem
set up: a) for rectangular with fractional width (trial us-
ing intra-GPU sharing), the relationship between height
and width is hi(w) = hiiar ', w € (0,1); b) for
rectangular with initegral width (trial using inter-GPU

training), the relationship between height and width is
hi(w) = 18071 € [1,d).

Lemmad. o € [1,;%)

Proof of Lemma 4.

Since Fluid ensures the performance of intra-GPU sharing
increases by packing with more trials by limiting the number

of packing trials under the maximum packing number ¢, we
h1 hi .
have < f4 < h1if1 < b < a < ¢, where aand b are

the number of packing trails.

>

=
Q

|
o

SaliS]
>

o=

1<a<

c—1

In addtion, we have ¢ < %5

Lemma 5. In the real situation, Fluidgnau(ls) <
1
2]_Isma,ll + Inadx(hl)O[E

Proof of Lemma 5.

Combine the result of Equation 4 and Lemma 4, we have

Fluidgmeu(Is) = 2H gmau + max(h1)

(3
< 2H o + max(hl)aﬁ

Lemma 6. 3 € [1, 441)

Proof of Lemma 6.

Since Fluid ensures the performance of inter-GPU sharing
increases with distributing on more workers by limiting
w < d,wehave hy < h1 <h% ifl<b<a<d.

h a—1 b—1
18 < h18
a b

d+1

1< <—=
SB<y=—

> e

In addtion, we have w < ﬁ

Lemma 7. In the real situation, Fluidigrge(l;) <
2HBF T
Proof of Lemma 7.

Similar to Equation 5, we consider extra term 3 on the



Fluid: Resource-Aware Hyperparameter Tuning Engine

height of rectangular:

w—1
b hj18;
jw = —————

w
_ Doty Uj
n w
w* gu-t1 > hia
Lw*]"™ n
——
H

Cha
©)

<2HBy!

Since ) w, < n, every trial can get its own resources at
the beginning, which result in one-level packing.

Fluidiarge (1) = max(hy,,) < 2H max (8} ~")

1 __1q ( 1 O)

< 2HpB?-1
Combine the result of two sub-problems and Lemma 1, we
have

Fluid(I) < max(Fluidmqu(Is), Fluidigrge (11))

< max(2H sman + max(h), QHBﬁfl)
L (11)
Based on Eq.2, we can derive the relationship between the
average height of the large trial set Hj,,4. and the average
height of the whole trial set H.

Slarge _ sz > Zwy

Ssmall n—w

x =

y N — Wy

Slm‘ge Ssmall

>
2wy T m— ) wy
Hlarge >H > Hsmall

Hlarge = = Hsmall

where S denotes the total trial size w x h of a trial set. Since
OPT(I) > H, we conclude

Fluid(I) < max(2 OPT(I)+max(hy)as1,20PT(I)37 1)



