
Friend or Foe: Discerning Benign vs Malicious
Software and Malware Family

Aaron Walker∗, Tapadhir Das∗, Raj Mani Shukla† and Shamik Sengupta∗
∗Department of Computer Science and Engineering

University of Nevada, Reno, Reno, USA
Email: awalker@unr.edu, tapadhird@nevada.unr.edu, ssengupta@unr.edu

†Department of Computer Science
University of Bristol, Bristol, UK

Email: raj.shukla@bristol.ac.uk

Abstract—Malware remains one of the gravest threats to
cybersecurity, second only to social engineering or a lack of user
security awareness. This is especially true for Windows systems
in enterprise environments. As malware continues to evolve and
frustrate legacy detection and prevention mechanisms, additional
approaches are necessary to ensure security resilience. Machine
learning offers many opportunities to better combat malware
threats through the advantage of big datasets. Our research
highlights how machine learning can be leveraged to identify
malware threats with rapid results, enabling cybersecurity pro-
fessionals to learn and adapt to these threats. The approach we
present in this paper produces an efficient methodology to discern
malware family and function through analysis of just the first
3,000 Windows system API function calls. We compare MLP,
CNN, and SVM networks to determine the best performance in
terms of accuracy and speed and find that MLP works the best
with our dataset.

Index Terms—Malware Detection, Malware Analysis, Malware
Signature, Machine Learning

I. INTRODUCTION

Malware, or malicious software, continues to threaten com-
puter systems and networks ranging from the home office
to corporate environments, including workstations, mobile
devices, and Internet-of-Things. Malware continues to be
successful because it is just as varied as the systems and
users they intend to compromise. As world events such as
technological innovations or a global pandemic alter the way
in which we use computing devices, threats from malicious
software continue to diversify, thereby continuing to frustrate
cybersecurity professionals who seek to ensure the safety of
the systems and networks they secure.

The threat of a malware-based compromise is particularly
severe for enterprise environments which rely heavily upon
Microsoft Windows systems. Malware compromises continue
to rank higher in frequency for Windows systems than any
other operating system [1], due in part to the prevalence of
Windows systems located both in the enterprise as well as
home environments. Malware-based compromises can result
in a ransomware attack, remote access to the compromised
system, data theft, or other forms of abuse by the malware
author or remote attacker.

This research is supported by NSF Award #1739032.

Many tools currently exist to aid in the fight against mal-
ware, including anti-virus or anti-malware software. However,
these tools are limited to known malware signatures. Endpoint
threat detection software is an advancement in the fight against
malware yet is mostly effective against known threats. Next-
generation firewalls add intrusion prevention to their list of
offerings while also relying on signatures and rules defined
in advance of new, unknown threats. This produces a land-
scape of tools and methodologies which require significant
investment in terms of both money and personnel to use them.
As the ways in which users interact with business networks
and applications change, the need for a dynamic approach to
cybersecurity is not always reflected in the security tools made
available, especially to those on a limited budget or time.

This has motivated us to develop a framework for an
approach to not only identify malware from benign software,
but also to discern malware family to provide greater threat
intelligence. Both malicious and benign software perform
many, many operations on a system when they are executed.
Analysis of hundreds of thousands of behaviors performed on
a system can be costly, time consuming, and may require
advanced cybersecurity training. However, machine learning
provides the opportunity to automate these tasks and produce
more legible results, especially for organizations which lack a
dedicated team of skilled human analysts.

Contribution: Our contributions in this paper include:

• An examination of Windows API system function calls,
observed through behavioral analysis of malicious and be-
nign software, provides machine learning models which
have higher real-world accuracy due to an understanding
of the differences between malicious and benign behav-
iors, as well as differences between malware families.

• A methodology of discerning malware and family through
analysis of the first 3,000 API function calls made by a
given software.

The rest of the paper is as follows: Section II presents an
overview of related work in the field of malware analysis. Our
proposed malware behavior analysis methodology, including
the hardware and software setup, malware dataset, and analysis
of the observed API calls are provided in Section III. Section



IV discusses our machine learning approach, experiments,
and a comparison between our proposed approach with other
prominent methods. The results of our experiments are dis-
cussed in Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

Machine learning is widely used in the field of cyberse-
curity and there are a number of different machine learning
algorithms available for research [2], including decision trees
and logistic regressions, to name but a few. Static analysis of
malware involves inspection of the code at rest and has been
shown to be successful in the classification of malware family
[3]. This includes the examination of the register, operation
codes, Portable Executable structured information and more.
Dynamic analysis has proven effective in cases where static
analysis would fail due to encryption or dynamic code loading
[4], making this approach more attractive for the extraction of
features for machine learning.

Dynamic analysis typically involves the use of a sandbox
environment, such as Cuckoo Sandbox [5] which reports
behaviors in terms of system API calls. Smith et al [6]
demonstrated the potential for understanding malicious API
calls through machine learning algorithms. The large number
of Windows API calls found in malicious as well as benign
software samples frustrates the process of feature selection for
machine learning algorithms. One approach is to categorize
the function calls based on their general function [7] [8] and
then evaluate the entropy of these categorical functions based
on Information Gain [9], which essentially is a measure of
how much information a randomly chosen data element in a
set will teach us about another randomly chosen element in
a set. Heuristic N-Grams analysis also adopts the Information
Gain technique and has been shown to be effective in dis-
tinguishing malware from benign software [10]. This shows
that while both benign and malicious software perform many
of the same Windows API calls, their relative frequencies are
distinguishable.

Another approach for selecting which Windows API calls
to use as features involve narrowing the scope of analyzed
malware samples to model specific malware families, such
as WannaCry ransomware [11]. Malware family classification
can be enhanced with machine learning models, as shown in
[8], however here we also see the same issues with feature
extraction and definition. Malware authors are aware of the
attempts of researchers and system defenders to identify
malicious software and often employ anti-analysis features
[12]. As a result there has been research into image processing
with deep learning – in this way, machine learning has been
used in malware classification based upon image processing,
using an extracted local binary pattern [13]. There is no
currently defined methodology for accurate, non-biased feature
extraction of malicious behavior observed through dynamic
analysis; therefore, it is not reasonable to assume that bias is
restricted without a systematic approach for the comparison
of machine learning models with differing datasets.

Fig. 1. Malware Data Preparation

III. MALWARE BEHAVIOR ANALYSIS

In order to programmatically observe the behavior of mal-
ware in an isolated setting, we designed an environment
to allow for the installation of Cuckoo and the analysis of
known malware samples in a virtual machine sandbox per the
installation instructions provided by Cuckoo [5]. Our goal was
to focus on the evaluation of potentially malicious software af-
fecting Windows operating systems, and the ability to discern
between malware types, families, and benign software. The
decision was made to focus on malware affecting Windows
systems due to the significantly larger amount of malware
compromises observed on Windows systems as compared
to other operating systems [1], and the relative threat such
malware presents to corporate environments.

A. Setup and Malware Dataset

Cuckoo was configured per the installation guide found on
the Cuckoo website [5], including two 64-bit Windows 7 vir-
tual machines installed on the Ubuntu host. Cuckoo supports
many virtualization software solutions but does assume the
usage of VirtualBox [14] by default, so for ease of setup we
chose this platform. VirtualBox is a free system virtualization
product developed by Oracle and it easily integrates with
Cuckoo for administration of the virtual machines.

Known malware samples were acquired from VirusShare
[15], an online resource of malicious software containing mul-
tiple versions of malware samples seen over time. This allows
for the observation of evolving behaviors as the methods of
exploiting system and application vulnerabilities changes with
new generations of malware.

B. API Collection Methodology

Once the analysis has been performed, Cuckoo generates a
report of the observed activity including, but not limited to,
changes to the registry, newly spawned processes, file creation
and access, virtual memory access, HTTP communication



to an external IP, and much more. When a malware file is
analyzed by Cuckoo, a report is generated including a list of
each behavior exhibited by the malware as it was executed in a
controlled environment. This report can be delivered in JSON
format, which can easily be parsed for the relevant behavior
artifacts. These artifacts are expressed through the Windows
API [16] system function calls made by the malware to affect
the system during execution. To make use of this information,
we gathered the names of the first 3,000 API function calls for
each malware analyzed. We found that less than this number
of API calls negatively affected the overall accuracy of our
machine learning models, while a greater amount provided
only little improvement to accuracy at the cost of a much
greater training time. We also analyzed several commonly
available software executables with Cuckoo to obtain API
call behavior for comparing malicious software against benign
software.

C. Malware Classification

The collection of malware available from VirusShare was
delivered without any identifiers. This meant that while it
was known that the supplied malware samples were mali-
cious, there were no labels to identify the malware by type
(virus, trojan, worm, etc.) or by family (Ramnit, Faceliker,
Brocoiner, etc.). As we were very interested in discovering any
similarities between malware types, we felt that identification
of our malware samples was important. VirusTotal [19] is an
online resource which allows for the comparison of the hash of
each unique malware file to any malware identified by various
antivirus vendors. Each of the antivirus vendors who reported
that a given malware file was indeed malicious assigned a
name for the family to which the malware belonged. These
malware family names vary as there is no set standard nomen-
clature. We chose to follow the naming convention used by
Microsoft antivirus, since a version of their antivirus software
is available on all modern Windows operating systems, making
this an appropriate baseline. As shown in Figure 1, the labeled
API calls made by each malware were then collected according
to their family label.

These Microsoft antivirus signatures were referenced to
assign a malware family to each malware file. For the current
research data set, this resulted in 23 family designations for the
set of unique malware. We then labeled representative malware
samples by these family names and collected the full Windows
system API function calls for each malware file. For ease of
reference, we assigned unique identifiers to each malware as
described in Table I.

D. Benign Software API Collection

In addition to behavioral analysis of malware, we also
collected Windows API calls for known benign software. This
was performed to compare the behavior of benign software to
malware for the purpose of showing that our machine learning
methodology can discern benign activity through API analysis.
The choice of what benign software to use was arbitrary,
with a tendency to collect software that might be commonly

TABLE I
MALWARE BY ANTIVIRUS SIGNATURE CLASSIFICATION & BENIGN

SOFTWARE SET

ID Signature ID Benign Executable
M1 Virus:VBS/Ramnit.gen!A B1 7-Zip 32-bit [21]
M2 Virus:VBS/Ramnit.gen!C B2 7-Zip 64-bit [21]
M3 PUA:Win32/Puamson.A!ml B3 Avira Antivirus [22]
M4 TrojanClicker:JS/Faceliker.M B4 CCleaner [23]
M5 Trojan:JS/Iframeinject B5 Google Chrome [24]
M6 Trojan:HTML/Redirector.CF B6 Epson scanner
M7 Trojan:Win32/Skeeyah.A!bit software [25]
M8 Exploit:HTML/IframeRef.gen B7 GifCam animated
M9 Virus:VBS/Ramnit.B gif software [26]
M10 TrojanClicker:JS/Faceliker.D B8 GIMP image
M11 TrojanClicker:JS/Faceliker.C editor [27]
M12 Trojan:JS/Redirector.QE B9 OpenVPN [28]
M13 Trojan:JS/BlacoleRef B10 Ultrasurf proxy [29]
M14 PUA:Win32/Presenoker B11 Microsoft Visual
M15 Trojan:HTML/Brocoiner.D!lib Studio Code [30]
M16 TrojanClicker:JS/Faceliker!rfn
M17 Trojan:Win32/Vibem.O
M18 Trojan:HTML/Redirector.EP
M19 Exploit:HTML/IframeRef
M20 TrojanClicker:JS/Faceliker.A
M21 Exploit:HTML/IframeRef.DM
M22 Trojan:HTML/Phish
M23 PUA:Win32/Kuaiba

downloaded by common computer users. Each of the benign
software files were executed in the Cuckoo sandbox and API
calls were observed in the same manner as for the malware
analysis. The benign software executables as well as their
reference labels are described in Table I.

IV. MACHINE LEARNING FRAMEWORK

Our dataset of malicious and benign Windows API calls
provided a description of the behavior each software per-
formed upon the Windows system in our Cuckoo sandbox
environment. Frequency analysis of these APIs for malware
classification has been performed in the past [20], however we
felt that the goal of our experimentation should be to discover
what relationships might be observed between malicious and
benign software through inspection of these API calls. To that
end, we decided to make use of machine learning for analysis
of API calls made by our software dataset to determine if this
data was suitable for the task. We chose to use the machine
learning algorithms described below to devise models which
compare three sets of input data for multi-class classification.
For each experiment, API calls for three software executables
(malicious or benign) were used for input into these models.
The APIs were input into the algorithms one at a time, so the
API function names are considered in chronological order by
label.

A. Machine Learning Algorithms Used

We chose to implement three machine learning algorithms
for our experimentation, namely Multilayer Perceptron (MLP),
Convolutional Neural Network (CNN), and Support Vector
Machine (SVM). These models were chosen for their ap-
plicability to classification prediction problems and accuracy
performance.



Fig. 2. MLP & CNN Network Graphs

1) Multilayer Perceptron: We built a learning network
using MLP as shown in Figure 2. This consisted of five dense
layers with input dropout of 40%, compiled with a categorical
cross-entropy loss function and the Adam optimizer. As noted
previously, we found the greatest success in our experimenta-
tion when using a network created through MLP. Therefore,
the analysis in Section V reflects the results from our MLP
learning model.

2) Convolutional Neural Network: We built a learning
network using CNN as shown in Figure 2. This consisted
of three convolutional layers with an input dropout of 50%,
compiled with a categorical cross-entropy loss function and
the Adam optimizer.

3) Support Vector Machine: Finally, we built a learning
network using SVM. We used the linear kernel function with
the one-versus-one function for multi-class classification.

4) Comparison of Algorithms: We experimented with mul-
tiple ratios of training and testing data, including 80/20, 70/30,
60/40, and 50/50, respectively. We found that in general the
best performance for these machine learning algorithms for
our data came with a 70/30 split between training and test
data sets.

A comparison of the accuracy of these machine learning
algorithms with respect to our data is shown in Figure 3. Here
it is shown that the overall accuracy of the MLP algorithm
performs better than CNN or SVM for each experiment.
For example, experiment 1.3 resulted in an overall accuracy
of 88% when MLP was used, as opposed to accuracies of
50% and 54% for CNN and SVM, respectively (more details
regarding experiments and experiment numbers are provided
in the next section). The only experiments where MLP did
not perform better than the other algorithms were in the cases
of experiment 3.3 where CNN was 2% more accurate and

experiment 7.2 where both CNN and SVM were 1% more
accurate. Given these small values of difference in accuracy
while MLP excelled in all other experiments, we refer solely
to the experimental results from usage of the MLP model in
subsequent sections.

We feel it is important to try to explain why these algorithms
behaved so differently. First, MLP maps the features from the
input space to the output space – meaning that it takes input
and then adjusts the weights during the optimization such that
an optimal function is generated. This creates a more robust
mapping from the input to the output so that the relationship
can be learned with greater reliability when optimized. MLP
can efficiently be used with a limited number of features, such
as with our problem. Since our problem uses few features,
MLP maps our functions from input to output spaces with the
high accuracy.

CNN operates by taking convolutions of the input. CNN
typically extracts a very low level of information from the
input and thus helps in the classification task. The convolution
and pooling layers in the CNN are typically used to extract
features from image data, although they are also useful for
one-dimensional data when spatial information is of interest.
However, there is no spatial information in our dataset and
therefore CNN probably is not performing better than MLP
because of limited low-level data extraction.

SVM finds hyperplanes in a n-dimensional space, where
the different classes are separated by the boundaries of the
resulting planes. If the different classes are well separated,
then SVM can be very effective as the defined boundaries
can easily classify the dataset. It is probable that our dataset
does not have well separated classes. Therefore, SVM does
not work as effectively and more complex mapping between
input and output using MLP performs better.

Overall, our MLP networks performed with greater accuracy
than our CNN or SVM networks. As a result, we have included
only the MLP results in this paper and in our appendix
available online at [31].

In addition to its increased overall accuracy with our Win-
dows API dataset, our MLP approach performed much faster
than traditional CNN by a significant amount. Three days were
required for training and testing each experiment using our
CNN network, on average. By comparison, our MLP network
required an average of four hours per experiment.

B. Experimentation

Seven experiments were devised for testing the machine
learning models described in the previous section. This in-
cluded the following:

1) Benign vs Trojan vs Virus
2) Benign vs Trojan vs Trojan
3) Benign vs Benign vs Benign
4) Benign vs Benign vs Malware
5) Trojan vs Virus vs PUA
6) Trojan vs Trojan vs Trojan
7) Related Malware (by signature)



Fig. 3. Comparison of MLP Algorithm Accuracy

These experiments were purposefully chosen to assess the
ability of our MLP networks to discern malware families as
well as benign software from a variety of input sets of API
data. Each experiment consisted of three tests, where each test
concerned sets of input API calls from three different software
sources. Therefore, the experiments are referred to as 1.1, 1.2,
1.3, 2.1, 2.2, 2.3, and so on through 7.1, 7.2, and 7.3.

For example, our first experiment involved the input of a
benign software, a trojan, and a virus. Our third test within
the first experiment is then referred to as 1.3 and involved
the benign Avira Antivirus (B3), the trojan Win32/Vibem.O
(M17), and the virus VBS/Ramnit.B (M9). The results from
our MLP network are recorded in Table II.

Similarly, our seventh experiment involved the input
of three related malwares. Test 7.1 involved APIs ob-
served from three variants of the Ramnit virus, includ-
ing VBS/Ramnit.gen!A (M1), VBS/Ramnit.gen!B (M9), and
VBS/Ramnit.gen!C (M2). The results from our MLP network
are recorded in Table III.

Extensive results from our experimentation can be found in
our online appendix [31].

TABLE II
STATISTICS FOR EXPERIMENT 1.3

Precision Recall F1-score Support
M17 0.98 0.78 0.87 880
B3 0.83 0.86 0.84 914
M9 0.85 1.00 0.92 906

Accuracy 0.88 2700
Macro Avg. 0.89 0.88 0.88 2700

Weighted Avg. 0.89 0.88 0.88 2700

TABLE III
STATISTICS FOR EXPERIMENT 7.1

Precision Recall F1-score Support
M1 1.00 0.96 0.98 913
M9 0.55 0.74 0.63 882
M2 0.61 0.42 0.50 905

Accuracy 0.71 2700
Macro Avg. 0.72 0.71 0.70 2700

Weighted Avg. 0.72 0.71 0.70 2700

V. ANALYSIS OF RESULTS

Our initial experimentation included the experiments 5.1 -
7.3, including the classification of three sets of trojans, viruses,
and potentially unwanted programs (PUA), three sets of trojans
of different malware families, and three sets of related malware
families. We found success in our machine learning model’s
ability to discriminate between different malware types, as
can particularly be seen in Table II. These experiments show
that there is enough of a difference in the API calls made by
the malware Trojan:Win32/Vibem.O and Virus:VBS/Ramnit.B
in particular to make this methodology useful for learning
the type of malware being analyzed. In this way, we show
that classification of malware by family is possible through
observation of API function calls to learn distinct patterns.

We also saw success in the discrimination of mal-
ware of related families - in particular, our model could
discern the difference between Virus:VBS/Ramnit.gen!A,
Virus:VBS/Ramnit.B, and Virus:VBS/Ramnit.gen!C with high
accuracy in experiment 7.1 and shown in Table III. However,
we were not quite as successful in experiments 7.2 and 7.3
concerning Faceliker and iframeRef variants, respectively. We
believe this is because there is more of a functional difference
between the Ramnit variants, as analysis of the malware
behavior shows differences in how these viruses compromise a
victim computer. This suggests that our methodology is useful
for determining differences in actions between malware vari-
ants of the same family and could be helpful for fingerprinting
malware evolution.

Expanding our scope to include benign software in ex-
periments 1.1 - 4.3 allowed us to determine what impact
was provided by including benign software in our learning
methodology. We found a much higher average accuracy for
these experiments, compared to the experiments concerning
only malware. We believe that the variety of benign software
used in our experimentation was varied enough in function to
not reflect a distinct difference in behavior from malware, as
both the benign and malicious software used perform similar
functions on a Windows system (file read/writes, registry
changes, creation of processes to inject code, etc.). However,
we found interesting results when comparing similar exper-
iments which were differentiated by the inclusion of benign
software.

For example, experiment 4.1 involved three malware in-
puts - namely, Virus:VBS/Ramnit.B, Trojan:JS/Redirector.QE,
and PUA:Win32/Puamson.A!ml. Experiment 1.1 replaced
PUA:Win32/Puamson.A!ml with the 32-bit 7-Zip executable
which resulted in a change from an overall accuracy of 40% to
68%. We believe that this increase in accuracy is a result of the
variance in API calls made by benign software as opposed to
malware. Experiments 3.1 - 3.3 include only benign software
inputs while experiments 6.1 - 6.3 include only trojan malware
inputs and the former reports a greater ability to classify over
the latter. This suggests that the API calls for malware lack the
entropy found in benign software API calls. This would then
possibly explain the greater ability to differentiate malicious



from benign software over malware of the same type.
These results show that our approach provides a means of

understanding the nature of malware by learning the behavior
of different malware types and family relationships. This
benefits the cybersecurity incident responder by providing an
additional means of malware analysis, where the relative risk
presented by a certain malware not matching a current an-
tivirus signature can be assessed by its behavioral relationship
to known malware families.

VI. CONCLUSION

Our research showed that it was possible to discern mal-
ware and benign software through learning the Windows
system API function calls made by different classifications
of software. The novelty of this approach can be found in
how accurately it performed, given the sparse input of single
API function call names. This produced a framework for
quickly learning the differences between software to accu-
rately predict, not only if a given software is malicious or
benign, but also to classify malicious software by family
type. The accuracy of this approach increased when including
disparate software types and we believe that the overall,
general accuracy will be increased by adding additional classes
with a mix of benign and malicious software. While not a
replacement for current malware detection mechanisms, this
approach supplied a quick tool for accurate malware analysis
as part of a cybersecurity incident response process to provide
greater insight and visibility into the nature of malware. One
that, otherwise, may be unavailable for many cybersecurity
professionals.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of
Research & Innovation and the Cyberinfrastructure Team in
the Office of Information Technology at the University of
Nevada, Reno for facilitation and access to the Pronghorn
High-Performance Computing Cluster.

REFERENCES

[1] Malwarebytes. Malwarebytes State of Malware Report 2021. Mal-
warebytes, February 2021. https://resources.malwarebytes.com/files/
2021/02/MWB StateOfMalwareReport2021.pdf.

[2] Liu, Qiang, Pan Li, Wentao Zhao, Wei Cai, Shui Yu, and Victor
CM Leung. ”A survey on security threats and defensive techniques of
machine learning: A data driven view.” IEEE access 6 (2018): 12103-
12117.

[3] Sun, Bowen, Qi Li, Yanhui Guo, Qiaokun Wen, Xiaoxi Lin, and Wenhan
Liu. ”Malware family classification method based on static feature
extraction.” In 2017 3rd IEEE International Conference on Computer
and Communications (ICCC), pp. 507-513. IEEE, 2017.

[4] Feng, Pengbin, Jianfeng Ma, Cong Sun, Xinpeng Xu, and Yuwan Ma.
”A Novel Dynamic Android Malware Detection System With Ensemble
Learning.” IEEE Access 6 (2018): 30996-31011.

[5] Cuckoo Foundation. “Automated Malware Analysis.” Accessed July 25,
2020. http://www.cuckoosandbox.org/.

[6] Smith, Michael, Joey Ingram, Christopher Lamb, Timothy Draelos,
Justin Doak, James Aimone, and Conrad James. ”Dynamic Analysis
of Executables to Detect and Characterize Malware.” In 2018 17th
IEEE International Conference on Machine Learning and Applications
(ICMLA), pp. 16-22. IEEE, 2018.

[7] Daku, Hajredin, Pavol Zavarsky, and Yasir Malik. ”Behavioral-Based
Classification and Identification of Ransomware Variants Using Machine
Learning.” In 2018 17th IEEE International Conference On Trust,
Security And Privacy In Computing And Communications/12th IEEE
International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE), pp. 1560-1564. IEEE, 2018.

[8] Pektaş, Abdurrahman, and Tankut Acarman. ”Malware classification
based on API calls and behaviour analysis.” IET Information Security
12, no. 2 (2017): 107-117.

[9] Gandotra, Ekta, Divya Bansal, and Sanjeev Sofat. ”Zero-day malware
detection.” In 2016 Sixth International Symposium on Embedded Com-
puting and System Design (ISED), pp. 171-175. IEEE, 2016.

[10] Darshan, SL Shiva, MA Ajay Kumara, and C. D. Jaidhar. ”Windows
malware detection based on cuckoo sandbox generated report using
machine learning algorithm.” In 2016 11th International Conference on
Industrial and Information Systems (ICIIS), pp. 534-539. IEEE, 2016.

[11] Chen, Qian, and Robert A. Bridges. ”Automated behavioral analysis
of malware: A case study of wannacry ransomware.” In 2017 16th
IEEE International Conference on Machine Learning and Applications
(ICMLA), pp. 454-460. IEEE, 2017.

[12] Jain, Aruna, and Akash Kumar Singh. ”Integrated Malware analysis
using machine learning.” In 2017 2nd International Conference on
Telecommunication and Networks (TEL-NET), pp. 1-8. IEEE, 2017.

[13] Luo, Jhu-Sin, and Dan Chia-Tien Lo. ”Binary malware image classifi-
cation using machine learning with local binary pattern.” In 2017 IEEE
International Conference on Big Data (Big Data), pp. 4664-4667. IEEE,
2017.

[14] Oracle, “Welcome to VirtualBox.org!” Accessed January 25, 2021.
https://www.virtualbox.org/.

[15] VirusShare. VirusShare.com. Accessed July 25, 2020. http://virus
share.com/.

[16] Kennedy, John, Michael Satran, and Mark LeBlanc. ”API Index -
Windows Applications.” Windows Applications — Microsoft Docs.
May 30, 2018. Accessed March 23, 2019. https://docs.microsoft.com/en-
us/windows/desktop/apiindex/api-index-portal.

[17] Microsoft. “TrojanDownloader:JS/Vigorf.A.” Microsoft
Security Int., June 30, 2016.
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia
-description?Name=TrojanDownloader%3AJS%2FVigorf.A.

[18] Reyes, Maureen. “WORM.JS.BONDAT.AC.” Threat Encyclopedia -
Trend Micro HK, December 13, 2018. https://www.trendmicro.com/
vinfo/hk/hreat-encyclopedia/malware/worm.js.bondat.ac.

[19] VirusTotal, “Virustotal : Free online virus, malware and url scanner,”
https://www.virustotal.com/en/documentation/, January 2014.

[20] Walker, Aaron, and Shamik Sengupta. ”Malware Family Fingerprinting
Through Behavioral Analysis.” In 2020 IEEE International Conference
on Intelligence and Security Informatics (ISI), pp. 1-5. IEEE, 2020.

[21] 7-Zip, “7-Zip.” Accessed January 25, 2021. https://www.7-zip.org/.
[22] Avira, “Download Security Software for Windows, Mac, An-

droid & IOS: Avira Antivirus.” Accessed January 25, 2021.
https://www.avira.com/.

[23] CCleaner, “Speed up & Optimize Your PC with CCleaner.” Accessed
January 25, 2021. https://www.ccleaner.com/.

[24] Google, “Google Chrome - Download the Fast, Secure Browser from
Google.” Accessed January 25, 2021. https://www.google.com/chrome/.

[25] Epson, “Epson Drivers,” Accessed January 25, 2021.
https://ftp.epson.com/drivers/ESU 451.exe.

[26] GifCam, “GifCam.” Accessed January 25, 2021.
http://blog.bahraniapps.com/.

[27] GIMP, “GIMP.” Accessed January 25, 2021. https://www.gimp.org/.
[28] OpenVPN, “VPN Software Solutions & Services For Business,” Novem-

ber 20, 2020. https://openvpn.net/.
[29] Ultrasurf, “ULTRASURF’S REACH.” Accessed January 25, 2021.

https://ultrasurf.us/.
[30] Microsoft, “Visual Studio Code - Code Editing. Redefined,” April 14,

2016. https://code.visualstudio.com/.
[31] Aaron Walker, Tapadhir Das, Raj Mani Shukla, and Shamik Sengupta.

”Friend or Foe: Discerning Benign vs Malicious Software and Malware
Family.” https://git.io/J3kHS. February 2021.


