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Abstract

Populating the different types of data for a design repository is a difficult
and time-consuming task. In this work, we report on techniques to automate
the population of data related to product function. We explore a preliminary
method to automate the generation of the functional chains of components
from new products based on hierarchical data from an existing design repos-
itory. We use datasets of various scale and specificity to find correlations
between functions and flows for components of products in the Design Repos-
itory. We use the results to predict the most likely functions and flows for a
component, and then verify the accuracy of our algorithm by cross-validating
a subsection of the data against the automation results. We apply existing
grammar rules to order the functions and flows in a linear functional chain.
Ultimately, these findings suggest methods for further automating the process
of generating functional models.

1 INTRODUCTION

Product design in engineering is a well-studied process [1], yet many aspects remain
difficult and hard to define after decades of research, especially the early stages
of concept generation. However, that concept generation phase is the one part of
the design process where there is the most room for creativity and innovation [2].
Additionally, the concept generation phase is the least costly time of the design
process to integrate major changes[3] and exploration during this phase should be
encouraged. We use the term designers broadly to refer to those who are working
in their field to develop new concepts or products, as well as iterating on existing
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concepts and products. During concept generation in product design, designers
focus on gathering accurate customer needs, determining engineering specifics,
deriving the functionality of the intended product, and ideating potential form
solutions.

Functional decomposition is a well-known abstraction technique that allows
designers to develop a graphical representation of a product’s functionality as a
functional model [3] [4]. There has been extensive work done to develop consistency
in the nomenclature, beginning with the development of the Functional Basis terms
[5] [6]. However, as Nagel et al. [7] point out, there is still inconsistency in user
input in the structure of functional models. Novice and experienced designers all
have difficulty building functional models because of the complicated process, and
this can lead to the functional modeling process being entirely omitted from the
concept generation phase. Yet we know that concept generation is more complete
when function is considered [3]. Figure 1 shows how incorporating functional
modeling early into the design phase can shift the majority of resources in the
project lifecycle earlier in the design process when the cost of making changes is
low, but the impact of those changes is high. While the above is true, designers are
often more comfortable with component-based solutions, and tend to focus more on
components rather than the functionality of a sub-assembly or product. This type of
design often benchmarks existing products during the concept generation phase [8].

Figure 1: Cost Analysis Over Time During Concept Generation

Eckert and Stacey [9] designate the term “source of inspiration” for the con-
scious use of previous designs in the design process. Design repositories can provide
designers with data at multiple levels of abstraction, such as components, functional
representations (e.g. functions and flows), or high level customer needs responses,
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offering a central location for “source of inspiration” products. Our research uses
data from an existing design repository, know as the Design Repository, to support
this type of reuse in design. Our data-driven design (DDD) approach leverages
research from the multi-decade long project developing a design repository [10] [11]
[12] [13] [14]. For our purposes, we define data-driven design as methodologies
for extracting information and insights from data and existing research to improve
design processes [15].

We utilize the extensive previous work on the repository and expand the most
recent work; the Form Follows Form approach [16]. The Form Follows Form (FFF)
approach is based on the concept that most designers think in terms of components
rather than function when in the concept generation phase. Utilizing this concept, we
capture the underlying functionality of the chosen components using data from the
design repository [16]. In the FFF approach, Bohm et al. calculated the frequency
of function and flow associated with components separately. Our research continues
to build on this concept by developing a combined association between component
and function-flow of CFF, to predict the most likely functions and flows associated
with each component. We choose to only consider the incoming flows to simplify
our analysis, as we found in analyzing our datasets that less than 5% of the results
have different inflow and outflow. With this data, we build linear functional chains
for components. These linear functional chains will ultimately help us develop a
method for automating the creation of functional models. As this research develops,
machine learning from the combined CFF combinations is anticipated to help
eliminate errors such as illogical or impossible CFF combinations in attempting to
combine them later during functional modeling automation.

There is significant research on developing consistency in the grammar and
syntax of functional models [5] [6][13]. The Design Repository has this consistency
in language built into the data, for example, functions are entered using the Func-
tional Basis terms [5], and components with the Component Basis terms [13]. This
terminology allows us to create correlations that remain consistent throughout the
datasets.

Our immediate research objectives are to 1) mine the design repository for
datasets 2) calculate frequencies of CFF combinations and apply a classification
threshold with an automation algorithm, 3) validate the accuracy of the automation
algorithm, and 4) apply existing rules to develop linear functional chains based on
our findings.
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2 BACKGROUND

2.1 The Design Repository

A design repository is a product database where data can be searched and retrieved
at different levels of abstraction to help improve design knowledge and data-driven
design decisions[10]. A well-populated repository offers designers a wealth of
information to aid in decision making. The Design Repository1 we are using is
comprised of 142 consumer-based electro-mechanical products and is housed online
through the Design Engineering Lab at Oregon State University. Each product is
divided into seven main categories of design information: artifact, function, failure,
physical, performance, sensory, and media-related information types. A visual
reference of the data schema (i.e., the connections between data) is shown in Figure
2 [11]. The repository database was created by reverse engineering products, and
ultimately determining the existing connection between the component and function
and flow. By using existing products, these CFF connections are also known to
exist, however the limitation we are wrking with is there are connections that exist
beyond the products in the database. As we grow the data in the repository we will
also grow the CFF connections, as well.

While there is significant research and information available on how to build
functional models [3] [4] [17], Sridharan and Campbell point out that even though
there is a formal language, the Functional Basis [5] [6], repeatability is still chal-
lenging among students and researchers[18]. To help solve the consistency issue
with building functional models, Nagel et al. [7] developed grammar rules. When
applied correctly, these grammar rules help determine the appropriate order of the
linear functional chains. Additional researchers, Sridharan and Campbell and Bohm
and Stone, developed grammar rules and tested their rules with students building
functional models. The students, given the grammar rules, created more consistent
functional models, and had a better understanding of functional decomposition than
the students without the grammar rules[14] [16]. Bohm and Stone developed rules
associated with individual functions and dictate the allowed incoming and outgoing
flows [16]. We found several of the grammar rules in the previous research applica-
ble to our current research. We apply these grammar rules to the data returned from
the automation algorithm. While there are some limitations, the functional basis
language was used for its repeatability and openness at the time, in that the physics
of the solution is not required to be known [17].

1The Design Repository is a database of design information. A basic web interface is available at
ftest.mime.oregonstate.edu/repo/browse
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Figure 2: Design Repository Data Schema [11]

2.2 Machine Learning and Data Mining

Data mining and machine learning are general terms that refer to many different
techniques of using information to predict results. The work that we are doing is
considered data mining because our algorithms extract knowledge from the data and
do not alter it based on the findings, which would be considered machine learning.
However, we borrow some of the terms and methods that are traditionally applied
to machine learning problems to find patterns within our data.

A classifier is an algorithm learns from data, finds patterns within it, and then
predicts whether something is or is not within a class. An example is a classifier
that predicts whether or not an email is spam[19]. The machine learning algorithm
looks at examples of emails that a person has labeled as spam or not spam and
finds patterns within them to label any other email as spam or not spam[20]. The
accuracy of this classifier is quantified by testing it against other emails labeled as
spam or not spam and recording which predictions were correct and incorrect.

We are using data mining techniques to find the frequency of occurrence of
CFF combinations in products in the design repository. We use that frequency
information to predict what functions and flows a component will have in a new
product.



6 Edmonds et al.

2.2.1 Frequency

In our previous work [21], we used the Apriori algorithm to find associations
between component and function-flow. During data analysis, we found that using
association rules was excessive for the results we wanted to obtain. We simplified our
calculations, focusing on the frequency of CFF combinations, which is numerically
equivalent to the confidence metric from association rules. The Form Follows Form
approach uses a similar method of calculating the frequency of the function and
flows correlated with each component [16].

Frequency determines the probability of two items appearing in the same itemset.
In our datasets, we find the frequency by calculating how often a component and
function and flow appeared together. The frequency values for all CFF combinations
for each component sum to 100%, regardless of the number of functions and flows
per component. For example, the CFF combination screw and couple solid appears
in the consumer products dataset 589 times out of 647 total CFF combinations for
the component screw, so the frequency of that combination is 589/647 or 91%.

Sometimes a CFF combination may only appear once if it is an unlikely combi-
nation or is a specialized component or function only appearing in one product in
the repository, such as pressure gauge and indicate mechanical. In these cases, the
frequency that the CFF combination occurs is 100%.

2.2.2 Threshold

In our work, we are predicting the functions and flows for components, and our
threshold is a cutoff that predicts that the top 70% of functions and flows would be
likely for future components. This 70% threshold was developed based on previous
research by Bohm, who found that 70% of functions and flows are realized within
the first 30% of unique instances of a particular component, which he credited
to the Pareto optimal gaming theory [16]. Additional optimization research has
been done on the threshold values finding the optimum range to start at 55%,
however in this work we chose to stick with the more conservative value of 70%
[22]. Our automation algorithm orders the frequencies from largest to smallest,
sums the frequencies of each CFF combination, and applies a 70% threshold to
each component. This algorithm is different from a traditional classifier that would
discretely label a class based on individual probability. We found in our data analysis
that the 70% threshold is often the point where adding additional functions and
flows for a component contributed a negligible delta to the sum of frequencies and
decreased the accuracy of the automation results.
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2.2.3 Cross-Validation

A common method to find the accuracy in a machine learning classifier is known
as cross-validation, which withholds a subset of data from the initial set, so the
machine learning algorithm does not learn from this subset. This subset is then used
to find the accuracy of how well the classifier performed at predicting results [23].
Testing with data from which the classifier did not learn is essential for reducing
bias in the results [24]. The subset of withheld data is known as the testing set and
the rest of the data that the machine learning algorithm processes is known as the
training set.

Due to the variability in data, cross-validation is often performed multiple times
with different testing and training sets and averaged over all iterations. Kohavi found
that 10-fold cross-validation produces the best results for most applications even
when additional computational power is available [25], so we use this method to
determine the accuracy of our automation algorithm using the metrics of precision,
recall, and the F1 Score. The general method is known as k-fold cross validation[26].

In our previous work, we used a single product (a Delta jigsaw) for our testing set,
and the Black and Decker dataset was our training set [21]. This initial exploration
helped us gain valuable insight into the initial stages of this process, but cross-
validation is a more robust method.

2.2.4 Precision, Recall, and the F1 Score

The method and effectiveness of calculating accuracy varies based on the type of
data being used. Simple accuracy is calculated as a ratio of correct responses to
total responses. In our case, a correct response is when the data mining algorithm
finds a function-flow combination for a component that matches the testing set.
Simply counting correct responses misses some of the additional ways in which
the automation can be wrong. Precision, recall, and the F1 score account for these
cases by using the confusion matrix shown in Table 1 to calculate ratios of the true
positives, false positives, and false negatives [27]. Note that true negatives are not
included in the calculation for metrics because, for many systems, including ours,
most results are true negatives, and including these in our accuracy calculations
would highly increase our results and make the classifier appear to be performing
better than it is.

Precision is the ratio of correct CFF combinations to all CFF combinations
identified by the automation algorithm (Equation 1). This number is the ratio of
CFF combinations that were identified as being in the product that are actually in
the product.

Recall is the ratio of correct CFF combinations to all CFF combinations found
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Table 1: Accuracy Confusion Matrix

Predicted CFF?
Yes No

Yes True Positive False NegativeActual CFF? No False Positive True Negative

in the automation algorithm (Equation 2). This number is the ratio of the actual
CFF combinations that were correctly predicted.

The F1 Score is the harmonic mean of precision and recall that equally balances
the importance of the two metrics and punishes extremes (Equation 3). F1 is a more
powerful metric than simple accuracy and provides a better analysis of the ability of
an automation algorithm to predict results.

Precision =
T P

T P+FP
(1)

Recall =
T P

T P+FN
(2)

F1 =
2⇤ precision⇤ recall

precision+ recall
(3)

3 METHODS

In this work, we mine the design repository for data to find the most likely functions
and flows correlated with each component for several datasets. We refer to this
correlation as component-function-flow (CFF). We are building on previous work
using association rules, where we found associations between component-function-
flow on a single dataset (12 Black and Decker products) [21]. Here, we expand
our learning datasets as well as our validation methods. We chose three data
subsets from the repository driven by component: 23 products with the component
heating element, 32 products with the component blade, and 44 products with the
components container/reservoir. We applied our automation algorithm (described
later) on each dataset separately and calculated the accuracy of its ability to predict
function and flows for an input component. We then compared the accuracy results
of each of the three data subsets to a dataset containing all 142 consumer products
from the design repository and an additional subset containing 12 products that
were all made by Black and Decker.

We chose products with the heating element, blade, and container/reservoir
components in an attempt to single out products with similar functionality. We
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chose the Black and Decker products because this was the most extensive dataset
available to provide a company product portfolio, which offers a subset of products
based on construction rather than functionality. We hypothesize that narrowing the

dataset to functionality based on component will yield more accurate function and

flow prediction results. The Black and Decker and consumer product datasets serve
as reference datasets to test our theory. We developed an automation algorithm in
Python, which calculates and sums the frequency of each CFF appearing in each
dataset. The algorithm applies a classification threshold to the top 70% sum of
frequencies for each component. The correlations found within the 70% threshold
in our data mining process can then be used to predict the linear functional chain of
a component.

Step 1. Retrieve Datasets. To extract information, we query the repository
to create five test datasets: 1) all consumer products; 2) all Black and Decker
consumer products to represent a general product family by the same manufacturer;
and three subsets of consumer products with 3) heating element, 4) blade and 5)
container/reservoir as a component in the assembly to represent products with a
similar component and functionality. We chose to combine reservoir and container
into one dataset because of the similarity of functionality, and combining them
allowed us to have a similar size dataset as the other two component-based datasets.

Step 2. Automated frequency and thresholding Next, we apply an automa-
tion algorithm to each of the five datasets, implemented in Python v3.7. First, the
algorithm calculates the frequency of the functions and flows for each component
in the input dataset; then, those values are sorted from largest to smallest, summing
to 100%. The threshold is applied to capture the top 70% of the sum of frequency
values for each component in each dataset, based on the Pareto Frontier from the
Form Follows Form method [16]. The results from the electric cord component
from the blade dataset provide a simple example in Table 2.

Table 2: Example dataset to illustrate threshold automation for the component
Electric Cord

Electric cord Frequency
delta

Running sum of
frequency Threshold

Import electrical 0.35 0.35 Keep
Transfer electrical 0.3 0.65 Keep
Export electrical 0.15 0.8 Keep
Position solid 0.12 0.92 Reject
Couple solid 0.08 1 Reject

For the electric cord example, the frequency of the first two functions and flows
sums to 65%, so the third is added to the list to reach the 70% threshold, which
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brings the sum to 80%. Our method assumes that capturing approximately 70% of
the total frequencies will begin to give an accurate representation of the functions
and flows that a component usually performs. Additionally, this Pareto optimal
threshold is the point where adding additional functions and flows for a component
usually contributed a negligible delta to the sum of frequencies and increased the
error in the automation results.

Step 3. Cross-Validation. As a means of verifying the accuracy of the automa-
tion algorithm, we use a 10-fold cross-validation method to find the precision, recall,
and F1 score of each iteration. The design repository categorizes products by an
identification number, which we randomize and separate into ten folds.

For example, the blade product dataset contains 32 products. This number is not
divisible by ten without a remainder, and our data requires each product to remain
intact, so we actually have eleven folds. Ten folds have three products each, and the
eleventh fold has the remaining two products.

We apply the frequency calculation and thresholding algorithm three times for
each dataset that we queried. The first validation is a traditional cross-validation and
finds the accuracy of the automation algorithm when the training set comes from the
component-specific dataset (blade, heating element, reservoir/container), and the
testing set is also the component-specific dataset. The second validation finds the
accuracy when the training set is the consumer products dataset, and the testing set
is the component-specific dataset. The third validation uses the Black and Decker
dataset as the training set and the component-specific dataset as the testing set.

We stray from traditional cross-validation in two of three of these validation
tests by selecting the folds for the testing set and training set from different datasets.
This method gives us a cross-reference for accuracy between datasets and allows us
to see if one dataset is better at predicting results for itself or for another dataset. The
three variations of accuracy testing are shown in Table 3. These three validations
were performed for each of the three component-specific datasets, resulting in nine
F1 scores.

One of the benefits of traditional cross-validation is that the testing set is with-
held from the training set to reduce bias in the results. With this method of validation,
when the testing set and training set come from different datasets, the folds contain
some overlapping data. To combat bias, we made sure to remove all products in the
fold for the testing set that were also in the folds for the training set.

Step 4. Apply Grammar Rules to Determine Linear Functional Chain.
After analyzing and organizing the results of the top 70% of the functions and flows,
we apply the grammar rules described in section 2.1 to the results to determine the
linear order of the functions in the functional representation. For the electric cord
example in Table 2, the three functions are import, transfer, and export. They all
have the same flow of electrical energy between them. The grammar rules developed
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Table 3: Validation Cases

Validation Number Testing Set Source Dataset Training Set Source Dataset
1 Component-specific Component-specific
2 Component-specific Consumer products
3 Component-specific Black and Decker products

by both Nagel et al. [7] and Bohm et al. [16] state that the import function occurs
first and only once per flow in a chain of components, so it is placed first. The
grammar rules also state that export is the last function in a chain of components,
which leaves transfer as the middle function in this chain. A visualization of this
process can be seen in Figure 3.

Figure 3: Example of Grammar Rule application

4 RESULTS

4.1 SQL Query

The results of our SQL query can be seen in Figure 4. The total number of CFF
combinations is the number of times a component has a particular function and flow
regardless of the number of times they repeat in the dataset. The number of unique
combinations is the number of times a component has a particular function and flow
at least once, and additional instances of that combination are no longer unique.
The number of products in each dataset can be seen in Table 4.
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Figure 4: Query Results

4.2 Automated Frequency Calculation and Thresholding Algorithm

The algorithm returned CFF combinations for all five datasets filtering out the
combinations that were above the threshold. Figure 5 shows the CFF combinations
for four components in the consumer products dataset, results above the black line
are the CFF combinations found within the threshold. As seen in Figure 5, the
70% threshold is often the point where adding additional functions and flows for
a component contributed a negligible delta to the sum of confidence. In order to
remain consistent, all of the results are taken from the consumer database.

As seen in Figure 5 A, the component screw had one result above the threshold
because the frequency result for couple solid is 91%, the remaining 17 functions and
flows only contribute to 9% of the results . While screw only has one result, blade
(Figure 5 D) is representative of a component with more function and flows returning
11 results above threshold, an additional 21 results below threshold were not shown,
for clarity in the figure. Washer and heating element can also be seen in Figure 5.
Additionally, components with the most results were reservoir, circuit board and
wheel with 22, 20, and 16 function and flow combinations in threshold respectively.
We found that 98% of the dataset has at least 2 or more CFF combinations per
component.

Frequency is calculated as the ratio of the number of times the CFF combination
occurs over the total number of CFF combinations for that component. Returning
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to the screw example, the function and flow screw couple solid occurs the most at
589 times out of a total of 647. Conversely the consumer products dataset had 200
CFF combinations that only occurred once, which returns a ratio of 1/1 or 100%
frequency. The other four datasets followed this same trend with a larger percentage
of results occurring once or twice and a lower percentage occurring more than 20
times. As we expand the data in the repository we hope to decrease the number of
times a CFF combination occurs only once.

(a) Screw (b) Washer

(c) Heating Element (d) Blade

Figure 5: Frequency Algorithm Results for Components in the Consumer Products
Dataset

4.3 Using F1 Scores to Validate Accuracy

We used the 10-fold cross validation method to quantify the accuracy with precision,
recall, and the F1 score when applying the top 70% of the most frequent functions
and flows found for a component for each of the three testing datasets. The number
of products in each dataset, the size of a single fold (which is also the size of a
testing set), and the size of the remaining nine folds (the size of the training set) is
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shown in Table 4.

Table 4: Sizes of Testing and Training Sets

Dataset Number of Products Size of Testing Set
(Size of Single Fold)

Size of Training Set
(Size of Nine Folds)

Blade 32 3 29
Heating Element 23 2 21
Reservoir 44 4 40
Consumer 142
Black and Decker 12

Each training dataset is tested against three testing datasets, itself, consumer
products, and Black and Decker products. The results of the average F1 scores
are shown in Table 5. For each of the three testing datasets, we performed a sin-
gle factor ANOVA test to see if there is a significant difference in our F1 scores
across the training datasets. We found that all three testing datasets (blade, reser-
voir/container, and heating element) were significantly different with a=0.05. We
then performed a two-sample t-Test assuming equal variances to determine within
each testing dataset, which training sets were significantly different. Within each
testing dataset, there was a significant difference found for all combinations, except
the comparison of Blade and Black and Decker within the Blade testing set. The
direction of the significant difference trends toward the consumer products dataset,
which consistently had the highest F1 score.

Table 5: F1 Scores

Testing dataset: Blade Testing dataset: Reservoir Testing dataset: Heating Element
Training dataset F1 scores Training dataset F1 scores Training dataset F1 scores
Blade 0.4354 Reservoir 0.3967 Heating Element 0.4044
Consumer 0.4471 Consumer 0.4072 Consumer 0.4067
B&D 0.4419 B&D 0.2937 B&D 0.3215

4.4 Linear Functional Chains

In this section, we test the automation process described in the methods by building
likely functional chains for four single components, which are the same four compo-
nents featured in section 4.2, Figure 5. The results of the functional linear chains can
be seen in Figure 6. Screw is a very simple example with only one function and flow.
As demonstrated in the results, components vary in complexity and therefore vary
in functional chains. This complexity is based both on the component itself, such as
the difference between screw and blade, but is also based on the product in which
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the component performs the function, for example blade within a knife versus blade
within a more complex product like a jigsaw. We apply the following grammar
rules adapted from Bohm and Stone, to the blade functional chain; a) import is
automatically placed as the first function for a chain and b) export is automatically
placed as the last function for a chain [16]. The grammar rules also dictate that the
convert function has separate inflows and outflows; therefore the automation would
branch off the function-flow export thermal from convert mechanical. This same
rule is applied to the results of heating element, convert electrical is branched off
into transfer thermal.

Figure 6: Component Based Linear Functional Chains
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5 DISCUSSION

In review, we mined the Design Repository for CFF combinations, we then applied
a Pareto optimal threshold to find the most likely combinations, developed linear
functional chains for individual components, and by validating the accuracy of
the frequency calculation and thresholding algorithm, we were able to test our
hypothesis. We hypothesized that restricting the training set to constitute products
that all share a similar component would give more accurate results for automating
the generation of linear functional chains. For example, products having the compo-
nent blade would have more similar functionality with other products having the
component blade as opposed to products outside that dataset. As stated before, we
found support with this hypothesis in previous work, using one product, the Delta
jigsaw, as a validation method [21].

In this research, we had four general findings: Finding 1: With more ro-
bust validation methods, the results in Table 5 show that learning from the most

possible products will return a higher accuracy than any restricted-size dataset.

The component-specific datasets had lower accuracy when cross-validated against
component-specific data than when cross-validated against all consumer products.
The Black and Decker dataset is the smallest, containing 12 products, and consis-
tently had the lowest F1 score when used as the training set. The consumer products
dataset is the largest, containing 142 products, and consistently had the highest F1
scores.

Finding 2: We suggest that because the F1 score is calculated for an entire
testing set, which often contains rare components that might have only one function
and flow in the testing set, this may decrease the overall accuracy of function and
flow results per component. As is often the case in large datasets, the accuracy of
the data input can be a concern. Over the 20 years of the development of the Design
Repository, many different contributors have worked on this project. This turnover
has led to some inconsistencies in the data; for example, container and reservoir
are often used interchangeably or as seen in Figure 5, screw is 91% correlated with
couple solid but there are 17 other results, which could be due to individual input
variations. This noise of the additional rare or mislabeled CFF combinations in the

datasets can certainly reduce the accuracy of the results, especially for the larger

consumer products dataset.

Finding 3: While finding 1 suggests that learning from more data returns
more accurate results, restricting the dataset based on the component may return
more refined results for functionality. For example, the heating element, and
reservoir/container component-specific datasets have six CFF combinations for
the component heating element, the consumer products dataset has 10, and the
blade dataset only returned one result. Heating element and reservoir/container
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have a high overlap in products, such as coffee makers, but blade products are
unlikely to contain heating element as a component. There may be times when a

designer desires more refined results and a smaller learning dataset can be used if

the products have the component of interest in the learning set.

Finding 4: In developing the linear functional chains, we demonstrated more
simple examples, such as screw and washer. As complexity increases, grammar
rules are necessary to order the function and flow results. Only two existing grammar
rules applied to our findings in heating element and blade. As we expand our work

in developing linear functional chains, we will need to expand on the research

around grammar rules to create additional rules required to connect flows at the

interface of components. Individual analysis allows for the development of new
rules to handle each situation, but automation is possible based on investigating the
interactions between component, function, and flow. While significant future work
is required to fully automate the functional modeling of a product, these findings
offer a starting point.

6 CONCLUSION

Functional modeling is a complicated and challenging process for both novice
and expert designers. However, during concept generation in product design, it is
imperative to derive the functionality of the intended product because the function
of the product is critical in linking customer needs to a form solution. We know
from research, designers often think and design in component-based solutions. Our
research finds connections between component and function and flow, information
that can provide the designer with the functional breakdown of components. A
functional approach to design is specialized; functional design accounts for variance
in design for different purposes. We used data from the Design Repository to
find the CFF combinations for five datasets: all consumer products, a Black and
Decker consumer product family, and consumer products with the component blade,
heating element, and reservoir. Our automation algorithm orders the frequencies
from largest to smallest, sums the frequencies of each CFF combination, and uses a
threshold of 70% of the sum of frequencies of combinations for each component.
This threshold is the point where most of the functionality is preserved with a
minimal contribution of error.

We then applied existing grammar rules to create component-based linear func-
tional chains, the first step in automating functional modeling. Our results confirm
the notion that function and flow correlations can be used to build a linear functional
chain of individual components within a product. We found that the accuracy of
data mining depends on the size and quality of the learning set used, with larger
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datasets providing more accurate results. However, using a broad or narrow dataset
will depend on the goals of the designer.

Research has found inconsistency among designers when building functional
models. We think that our future work towards an automated functional model
generator will ultimately help standardize the language and syntax used in functional
models, just as the work on Functional Basis and Component Basis terms have
helped improve language and syntax consistency in the repository. As we have seen
in the data in the design repository, designers are individuals dealing with human
bias and perceptions; automation can help create more uniform functional models.

This uniformity will improve the process of designers contributing to the design
repository, and enable more products to be added with higher consistency. The
repository provides the user with a wealth of information; however, in its current
form, the repository can be challenging to navigate for novice users. As stated
above, streamlining the process of adding new products with automating functional
modeling allows not only individual products to be added by users but also the
addition of entire repositories. Enabling products to be entered by users will further
increase the size and quality of the data in the Design Repository and increase the
accuracy of our automation process. This automation will also allow engineers to
design a new product based on components and receive the functionality of the
components.
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