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Abstract

Protecting network protocols within an encrypted tunnel,

using technologies such as Virtual Private Networks (VPNs),

is increasingly important to millions of users needing solu-

tions to evade censorship or protect their traffic against in/on-

path observers/attackers. In this paper, we present a series of

attacks from two threat models: an attacker that can inject

spoofed packets into the network stack of a VPN client (called

client-side), and an attacker that can spoof packets on the In-

ternet and send them to a VPN server (called server-side). In

both cases, we assume that the attacker is in/on-path, and can

count encrypted bytes or packets over time. In both threat

models, we demonstrate attacks to infer the existence of, in-

terfere with, or inject data into TCP connections forwarded

through the encrypted VPN tunnel. In the server-side threat

model, we also demonstrate an attack to hijack tunneled DNS

queries and completely remove the protections of the VPN

tunnel. For the attacks presented in this paper, we (1) assess

their feasibility in terms of packet rates and timing; (2) test

their applicability against a broad range of VPN technologies,

types, and vendors; and (3) consider practical issues with re-

spect to real-world attacks. We followed an ethical disclosure

process for all attacks presented in this paper. Client-side at-

tacks were addressed with two CVEs and partially mitigated

by a series of updates from some operating system and VPN

client vendors. Server-side attacks have not been addressed

and are still feasible with all operating systems and VPN

servers that we tested.

1 Introduction

Virtual Private Networks (VPNs), and other related technolo-

gies that form an encrypted tunnel for Internet traffic, have be-

come pervasive security and privacy tools that are relied upon

by a wide variety of users. As examples: government agen-

cies use VPNs to help protect national secrets; at-risk users

such as journalists and activists use tools that include VPNs,
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Lantern, Orbot, Psiphon, etc. [23] to protect free speech and

free assembly; and everyday users use similar technologies

to connect to the Internet via untrusted networks, or simply

to remain private online. VPNs were originally developed to

provide point-to-point access to remote resources, and later

retrofitted to forward any traffic generated at higher layers

in the network stack of a device running a VPN to a remote

VPN server through an encrypted tunnel. But, what security

and privacy guarantees do VPNs, as they are implemented

today, actually provide?

In this paper, we present attacks on connections that are

tunneled inside a VPN. Irrespective of VPNs, attacks on net-

work connections have traditionally fallen into two categories:

(1) In/on-path attacks, in which an attacker is part of the net-

work infrastructure and routes the packets to/from the client

and server so they can easily infer connections, count packets,

and interfere with data streams; and (2) Blind off-path at-

tacks in which side-channel inferences are necessary to carry

out that attack because the attacker cannot see packets in tran-

sit to learn about values such as sequence numbers. We refer

the reader to Marczak et al. [22] for a formal definition (and

distinction) of in- vs. on-path1. Because our attacks are easier

to implement as in-path rather than on-path (though both are

possible), we sometimes use simply “in-path” throughout the

rest of this paper.

Network protocols such as TCP or DNS contain secret ran-

domized values to protect them from off-path attacks, i.e.,

attackers who do not see communications going back and

forth between client and server but attempt to interfere with,

or infer information about, connections via side-channels in

protocol implementations. For example, previous works have

shown that off-path attackers can infer the existence of con-

nections [3], count packets between end-points [18], or even

interfere with or inject data into the data stream [11, 15].

To mitigate such attacks, the TCP protocol randomizes the

ephemeral port chosen by a client making a connection re-

quest, and the initial sequence number is randomized by both

1Basically, on-path attackers can delay or drop packets while in-path

attackers cannot.





VPN network NAT.

• Server-side attacks inject packets by spoofing them to

the VPN server, appearing to come from a remote ap-

plication server. Such packets can be spoofed from ef-

fectively anywhere on the Internet, but since our attacks

assume that the attacker can view encrypted VPN traffic

(to count encrypted packets or bytes over time), server-

side attacks must, for all practical purposes, be carried

out by a router that is in-path between the VPN server

and VPN client. Because the packet arrives at the VPN

server on the same interface as legitimate packets, and is

otherwise indistinguishable from a legitimate packet in

terms of header information, we believe that server-side

attacks will be much more challenging to mitigate.

There is no operating system implementation detail, VPN

design decision, or configuration setting that we can point to

as being the vulnerability that enables our server-side attacks.

Rather, our server-side attacks are based on the general ar-

chitecture that defines how VPNs work. Filtering packets for

tunneled connections by interface (typically using a firewall

rule) or technologies such as Linux’s network name spaces

are ways to effectively mitigate our client-side attacks in most

cases, but the client-side attacks are still good demonstrations

of blind in/on-path attacks.

We demonstrate this new category of vulnerability by per-

forming the following series of attacks against connections

protected by an encrypted VPN tunnel:

1. A client-side attack to infer and hijack TCP connections

from the perspective of a malicious network adjacent at-

tacker (e.g., a WiFi Access Point).

2. A server-side attack to infer and hijack TCP connections

from the perspective of a middle router in-path between

the VPN server and the VPN client.

3. A server-side attack to hijack DNS queries from the per-

spective of a middle router in-path between the VPN server

and the VPN client.

For the sake of clarity, we assert the following about

our attacks:

• Both client- and server-side attacks work regardless

of the strength of the VPN’s encryption. Because we

inject packets into the network stack of the VPN client

or VPN server at the ends of the tunnel, where either en-

cryption has not happened yet or decryption has already

happened, our attacks are independent of any cryptogra-

phy implementation of the VPN tunnel.

• While client-side attacks can be mitigated by rea-

soning about which interface a packet arrives on to

distinguish between spoofed and legitimate packets,

server-side attacks cannot be mitigated in this way.

For our server-side attacks, spoofed packets arrive on

the same interface as legitimate traffic, and can be iden-

tical in every other way. No vendors have proposed any

mitigation for our server-side attacks, and all VPNs and

OSes that we tested are still vulnerable.

Responsible disclosure: Our work resulted in the assignment

of two CVEs, CVE-2019-9461 and CVE-2019-14899. The

former is because Android responds to unsolicited packets

sent to an incorrect interface in plaintext2, and the latter is be-

cause all UNIX-like operating systems that we tested (Linux,

BSD, and Apple’s macOS and iOS) respond to unsolicited

packets sent to the incorrect interface, and although the re-

sponses are encrypted, reveal enough information to infer the

existence of connections and the correct sequence and ac-

knowledgment numbers. In both cases, we show that the ker-

nel of these operating systems before disclosure does not cor-

rectly discriminate packets meant for the VPN interface from

normal traffic, which allows us to blindly probe the client until

we have the information needed to inject arbitrary data into

the connection. For all route-based VPN apps/configurations

that we tested before our disclosure, we found them to be

vulnerable on affected OSes.

However, despite major OS and VPN vendors issuing

patches in response to our disclosure (e.g., Android, Apple,

and WireGuard), many of our attacks presented in this pa-

per are still possible even with the latest versions. There are

two reasons our attacks stay unmitigated. First, for client-side

attacks, operating systems often need the weak host model

for connectivity reasons, e.g., so a mobile device can switch

seamlessly between different cellular interfaces. Thus the fil-

tering of malicious packets needs to be precise and is probably

best carried out by the VPN client application because it has

the most information about the VPN tunnel configuration.

The other reason why many of our attacks remain unmiti-

gated is because, despite our disclosures, no vendors have

proposed or implemented any mitigation for our server-

side attacks. Our server-side attacks are not associated

with any vulnerability; instead, they only assume that the

VPN server correctly performs network address transla-

tion.

3 Background

Here we present prerequisite background information, some

of which (VPN Basics in Section 3.1) is general and the rest

of which only applies to specific attacks for specific proto-

cols, operating systems, or implementations. For example,

IP source address validation (Section 3.2) is only directly

relevant as a solution for client-side attacks.

2Our attacks do not assume this behavior, but it is something we noticed

during testing that is specific to Android.



3.1 VPN Basics

There are two commonly used methods for controlling traffic

in VPN software: policy-based implementations and route-

based implementations. Route-based VPNs, which are the

most common tunneling methods used in typical commodity

VPNs, use virtual interfaces on both the client and server to

act as endpoints on a virtual network. In the typical config-

uration, the VPN software on the client device modifies the

routing table to send all of the traffic to the tunneling interface

(e.g., tun0) by giving it a more specific route than the default

gateway. All of the traffic that is received by the tunneling

interface is encrypted and encapsulated by the VPN software

and then routed on the public-facing interface to the VPN

server, where it is NATted to the VPN server’s public IP and

sent on to the ultimate packet’s destination over the Internet.

Policy-based VPNs, however, do not use an additional inter-

face as an endpoint for a virtual connection, but instead use

firewall rules to determine which traffic belongs to the VPN

and encrypts any traffic matching the policy.

The purpose of VPNs is to prevent anyone in-path between

the VPN client and the VPN server from seeing the con-

tents of the user’s traffic, and it is generally assumed that this

portion of the tunnel is protected. Even if an attacker can

see the packets sent between the VPN server and the final

server (e.g., a web server), they would not be able to determine

the VPN client on the other side of the VPN server through

analysis of the packets alone. An attacker can still perform

traditional in-path attacks between the VPN server and web

server, particularly when the application-generated traffic is

not additionally encrypted by SSL/TLS standards. However,

the encrypted tunnel between the VPN client and VPN server

is meant to prevent these attacks from happening between the

VPN client and VPN server.

3.2 IP Validation in Modern Protocol Stacks

On modern Linux, and other UNIX-like systems, source ad-

dress validation for IPv4 is disabled by default, meaning that

any packet received on any interface will be processed by the

kernel, and if that IP address is a known local address, for-

warded to the application or service associated with it. This is

known as the weak host model.3 In modern operating systems,

this allows a user to have multiple interfaces receiving pack-

ets from the same source (e.g., multi-homing), thus providing

redundancy and more reliable network connectivity as users

roam across network access technologies.

In an attempt to address the lack of source address valida-

tion, the concept of reverse path was developed in RFC 2827

and RFC 3704, which added filtering to check that incoming

packets are routable via the interface on which they are re-

ceived [7]. That is, if the packet is not routable through the

3In the strong host model, a packet received on an interface is only routed

if the destination IP address is associated with the interface.

incoming interface, the packet should be dropped, and only

if the packet is routable through the incoming interface, will

it be routed to its destination. This is implemented in most

Linux-based systems through the rp_filter kernel variable,

which offers three options defined in RFC 3704:

1. Strict Mode: In this mode, the source address from an

incoming packet is compared to the Forwarding Informa-

tion Base (FIB) and the packet is dropped if the incoming

interface is not the best outgoing interface for responding

to the packet.

2. Feasible Mode: In this mode, the source address from in-

coming packets is compared against the FIB, but maintains

alternative routes and only drops packets which are not

routable at all via the incoming interface.

3. Loose Mode: This mode compares the source address for

incoming packets against the FIB, but will only drop the

packet if it is not routable via any local interface.

RFC 3704 recommends using strict mode unless there is

a specific reason for using feasible or loose mode, e.g., in

multihomed networks. A mobile phone offers an example of

a device that relies on asymmetric routing, since it will likely

have a WiFi interface and multiple interfaces for receiving

packets from cell towers. The mobile phone needs to main-

tain persistence as the user switches networks as they travel

beyond the range of their current cellular tower, change their

WiFi network, re-connect to the network after losing coverage,

get IP addresses re-assigned due to Carrier-Grade NATs or

DHCP [24,26], or switch from WiFi to mobile and vice versa.

The reasons cited in a git commit from November 2018 to

the systemd project [27] for setting the default for reverse

path filtering to loose mode included default route changes

(e.g., plugging in an Ethernet cable while connected to WiFi)

and connectivity checks. As a result, most Linux distributions

using systemd, such as Arch, Debian, Fedora, and Ubuntu,

will no longer drop packets with source addresses matching a

connection inside the tunnel (using the tun0 interface), and

will accept them on any interface.

For our client-side attacks, this lack of source address vali-

dation gives an in-path attacker the ability to spoof packets

to potential virtual IPs on the client machine and learn the

virtual IP used by the tun0 interface for the VPN connection.

Additionally, the attacker can spoof packets with the source

address of a given end-host to the virtual address and deter-

mine if an active connection exists by the timing and size of

the client’s responses, as we will describe in the next section.

This is the root cause of our client-side attacks.

In an effort to prevent DDoS attacks, RFC 2827 establishes

methods for limiting spoofed attacks by performing ingress

filtering on the provider’s routers between the client and the

network edge. These recommendations are defined in BCP 38

and BCP 84 and require that the router that provides connec-

tivity to downstream users drop packets that contain source



addresses not included in the prefixes they provide connec-

tivity for [7]. These rules mirror the strict, feasible, and

loose modes listed above for reverse path filtering on client

machines. Previous work has shown that BCP 38 and BCP 84

are not universally implemented [37] across the Internet, but

even if all the machines on the network edge implemented the

filtering described in BCP 38 and BCP 84, this does nothing

to prevent routers in the core of the Internet from spoofing

source addresses. Additionally, these recommendations do not

consider an attack from a malicious provider at the network

edge, such as a state-level ISP.

3.3 Challenge ACKs and PSH/ACKs

The original specification of TCP in RFC 793 considered a

connection to be reset if a RST packet was received anywhere

in the receive window [1]. This made it relatively easy for an

off-path attacker to reset connections compared to requiring

the exact sequence number blindly, so RFC 5961 introduced

the concept of a challenge ACK [30]. When a TCP host re-

ceives a RST in the receive window but where the sequence

number is not an exact match, it sends a challenge ACK that

should cause a RST with an exact sequence number as a re-

sponse from the remote host only if that remote host truly has

no record of the connection. Thus in-window RSTs succeed

only when the off-path attacker guesses the exact sequence

number or the remote host that is the other party to the TCP

connection effectively agrees that there is no connection. For

our purposes in this paper, the important aspect of challenge

ACKs is that they are part of an actual connection and therefore

get TCP timestamps added to them.

The PSH flag in TCP informs a receiver that data should be

pushed up to the application layer immediately. Combining

PSH with ACK is a way to ensure that both a sequence and

acknowledgment number for a connection are committed into

the state of the connection and related data is sent to the ap-

plication, even if overlapping sequence and acknowledgment

numbers are received with different data later.

4 Vulnerability Set Overview

As discussed in Section 2, there is no operating system im-

plementation detail, VPN design decision, or configuration

setting that we can point to as being the vulnerability that

enables our server-side attacks. Because blind in/on-path at-

tacks are a general class of attacks, which we demonstrate in

this paper by focusing on VPNs and attacking two specific

protocols (TCP and DNS) as examples, in this section we

review the general set of vulnerabilities that in/on-path attack-

ers pose to a user’s connections. We then consider how each

of these vulnerabilities can be extended into the threat model

of a blind in/on-path attacker attacking connections inside a

VPN tunnel.

Table 1 discusses and compares the feasibility of five dif-

ferent in-path attacks for three different scenarios:

• “No VPN”, where users are not protecting their traffic with

VPN tunnels so all attacks are “trivial” because the attacker

can see and spoof or modify any byte, header, or data.

• “Ideal VPN”, where users benefit from a hypothetical VPN

where the existence of packets and their size and timing

are completely hidden from the attacker. The dominant

paradigm for reasoning about what kinds of attacks are

possible against connections that are tunneled through an

encrypted VPN tunnel is based on “Ideal VPN” implemen-

tations, but modern VPN technologies are far from this

model.

• “Real-world VPNs” subject to blind in-path attacks. All the

VPN technologies that we tested fall under this category

and the five attacks are practical in this scenario. This calls

into question the current paradigm for reasoning about what

security properties VPN tunnels provide.

The objective of this paper is to demonstrate the feasibility

of the attacks against “Real-world VPN” implementations.

Due to the fact that the TCP connections inside the VPN

are tunneled, the headers of the tunneled connection are not

visible to the attacker as shown in Figure 1, but it is possi-

ble to infer the information in the headers by analyzing the

responses from the client and server to spoofed packets. Us-

ing the methods described below, we can determine if a user

has an active connection to a given IP address and find the

SEQ and ACK numbers required to reset or hijack the TCP

connection from either the perspective of a network adjacent

user or an in-path router between the victim and the VPN

server. Similarly, for DNS, we can infer when a DNS query

is likely to have been made for a given domain by the victim

machine and spoof acceptable responses back to the client via

the server’s NAT.

Our client-side attacks are network adjacent attacks where

the client does not have reverse path filtering or any other kind

of source address validation enabled (Section 4.2), and we

take the role of the attacker (e.g., a WiFi Access Point) and

spoof packets of the tunneled connection to the wireless or

Ethernet interface where they are processed by the kernel on

the victim’s machine. If we can correctly guess the four-tuple

associated with an active connection, the kernel will respond

to these packets and we can determine from examining their

timing and size that there is an active connection. Once we

determine that there is an active connection, we can continue

to spoof packets and use the client’s responses to narrow

down the sequence and acknowledgment windows, giving us

everything we need to inject data into the connection.

Our server-side attacks are from the perspective of the ISP,

or any in-path router en-route to the VPN server4 as shown

4For asymmetric routes, it is actually the route from VPN server to VPN

client that matters. We assume that the attacker is positioned in the network

so as not to be affected by asymmetric routing.



Attack No VPN Ideal VPN Real-world VPN

Infer the existence of a

TCP connection

Trivial, look at port and IP address fields

in the TCP and IP headers

TCP and IP headers are protected by

encryption

Ports and IP addresses can be inferred via

packet timings and sizes (see Section 4.2)

Reset a TCP connec-

tion

Trivial, spoof a RST based on ports and IP

addresses

RST cannot be injected because of the

encrypted VPN tunnel, and port and IP

address information is hidden by the

encrypted VPN tunnel

RST can be injected at the client end of the

VPN tunnel depending on client OS and

configuration, RST can be injected at the

server end of the VPN tunnel regardless of

OSes or configurations (See Section 4.2.3)

Hijack a TCP connec-

tion to inject arbitrary

data

Trivial if there is no application-layer

encryption/authentication (such as TLS),

simply read the sequence and acknowl-

edgement numbers from the TCP header

Regardless of application-layer encryp-

tion/authentication, data cannot be in-

jected because of the encrypted VPN

tunnel

Sequence and acknowledgment numbers

can be inferred via packet timings/sizes,

data packets can be injected just like above

(see Section 4.2.3)

Hijack a DNS query Trivial, intercept it and reply with the fake

one

DNS query and response are protected

by the VPN tunnel encryption

Ports can be inferred, transaction IDs brute

forced, DNS responses injected at the

server end of the VPN tunnel regardless

of OSes or configurations (see Section 4.3)

Perform a man-in-the-

middle attack

Easy, if the attacker is in-path and has a

valid SSL/TLS certificate

VPN tunnel would protect the traf-

fic even if the attacker has a valid

SSL/TLS certificate for a tunneled con-

nection

Easy, if a server-side attacker is in-path

and has a valid SSL/TLS certificate (see

Section 6.3)

Table 1: In/on-Path attacks and how they change the way we should think about VPNs and other technologies based on encrypted

tunnels. In the No-VPN case, in/on-path attacks are trivial. In the Ideal VPN case, we consider a hypothetical VPN in which

packets and their size and timing are completely hidden from the attacker. The Real-world VPN scenario considers real-world

VPN implementations in which blind in/on-path attacks are feasible.

in Figure 1 (See Section 4.3). The process is essentially the

same, except that the packets are not being sent to the incor-

rect interface; instead, they are instead sent to the VPN server

(which should be reachable from anywhere on the Internet)

with the same properties as legitimate traffic. Attacking con-

nections at the server-side end of the tunnel has two major

advantages. The first advantage is that there is no way for

the VPN server to distinguish between attacker probes and

legitimate packets from the actual connection because they

will be identical and come in from the same interface. The

other advantage is that any router along the path between the

VPN client and the VPN server can now carry out the attack;

they only need the (very common) ability to spoof packets

on the Internet with arbitrary return IP addresses. A major

challenge for attacking TCP at the other end of the tunnel is

that packet loss, packet reordering, and packet delay can play

a significant factor. Conceptually, the prospect of attacking at

the other end of the tunnel renders all the types of mitigation

offered for our client-side attacks moot because they are all

based on reasoning about interfaces and IPs.

4.1 Attack Considerations and Scope

Our attacks have many aspects to them that are dependent

on the attacker’s position in the network, the protocol being

attacked, and whatever types of Network Address Translation

(NAT) or filtering may be being applied. It is important to

note that any tunneled protocol can be attacked from either

side of the tunnel (spoofing to the VPN client or VPN server),

and our attacks on TCP and DNS/UDP are simply based on

our choice to demonstrate simple attacks for illustration of the

underlying concepts. While we chose to distinguish between

client-side and server-side attacks for the presentation in this

paper, leading to network adjacent and in-path attacks, respec-

tively, it is important to note that injecting packets either way

combined with the powerful primitive that a blind in/on-path

attacker can count encrypted bytes or packets over time can

lead to many different attacks. For example, an in-path at-

tacker could carry out some of our attacks that are labeled as

network adjacent if they had the ability to spoof packets to

the client from arbitrary return IP addresses despite not be-

ing network adjacent (e.g., in the absence of NAT and bogon

filtering). We only mention the possibility here and it is not

part of our main presentation. In fact, two major advantages,

from the perspective of the attacker, of spoofing packets to

the VPN server rather than the VPN client are:

• It is safe for the attacker to assume that the VPN server has

an Internet-routable IP address. Thus any type of bogon

filtering applied by routers between the attacker and VPN

server is moot. It also means that the attacker can reach the

VPN server without having to go through any NAT.

• The VPN server has a well-defined behavior that the at-

tacker can use to inject traffic into the tunnel, which is that

NAT is specified in RFCs (particularly RFC 2663 [29]) to

work based on the five-tuple of protocol, source and des-

tination IP address, and source and destination port. So

an attacker can easily infer the ephemeral port5 and then

inject data into the VPN tunnel at will. This is compared to

spoofing packets to the client, which requires that the client

5This ephemeral port is chosen by the VPN server, but typically is chosen

to match the ephemeral port chosen by the client when possible. Our server-

side attacks only care what the ephemeral port of the VPN server is, it does

not matter if they match.



respond with some type of error that enters the tunnel and

carries information that is useful to the attacker.

We also want to stress that the specifics of any attack we

present do not represent vulnerabilities in themselves. For

example, for inferring the sequence number to reset or hijack

a TCP connection for client-side attacks we take advantage of

the fact that TCP challenge ACKs are larger than RSTs because

they contain an optional timestamp that RSTs do not. This is

only the simplest one of a plethora of ways we could have

implemented this part of that specific attack, and changing

that behavior of challenge ACKs will not prevent the attack.

The underlying vulnerability is a more general one: secret

randomized values are used to protect protocols from blind off-

path attackers but those values currently have no protection

against being inferred by a blind in-path attacker.

4.2 Client-side Attacks

In the case of the client-side attacks, which we assume are

network adjacent for this paper, we consider a person using

a VPN because they are concerned about their security and

privacy on a public WiFi access point. When connected to the

VPN, all of their packets are routed through the local gateway

on to the VPN server, and the gateway will only see encrypted

packets traveling between the local IP of the client and the

public IP of the VPN server. Since the gateway does not know

the virtual IP address assigned to the tun0 interface, the public

IP address of the web server that is communicating with on

the other end of the tunnel, or the the ports associated with

either end of the connection, they cannot perform traditional

in-path hijacking attacks.

A client-side attacker can, however, infer the existence of

connections to a given website, determine the sequence and

acknowledgment numbers of an existing TCP connection,

and reset that connection with a TCP RST. In the case that

there is no additional encryption at the application layer, via

SSL/TLS or otherwise, they can also inject arbitrary data into

the connection. To perform this attack, the attacker needs to

perform the following steps, further outlined in Figure 2:

1. Determine the VPN client’s virtual IP address;

2. Use the virtual IP address to make inferences about active

connections; and

3. Use the replies to unsolicited packets to determine the

sequence and acknowledgment numbers of the active con-

nection to hijack the TCP session.

4.2.1 Phase 1: Finding the Client’s Virtual IP

In the first part of client-side attacks, after the client has con-

nected to the malicious access point and then to the VPN

server, we probe the connected user with SYN packets across

the virtual IP space, which for most VPNs is a subset of the

10.0.0.0/8 block, to solicit a response from the victim machine

that leaks information about the state of the active connection

inside the encrypted VPN tunnel, allowing us to infer both the

existence of a VPN connection and the victim’s private IP ad-

dress on the VPN server’s subnet. For example, if the attacker

spoofs a SYN packet to the device’s WiFi interface with the

source address of the local network gateway (and this works

the same for any other interface, such as a cellular network),

Linux will always respond with a RST with the source address

of the virtual IP address in plaintext.

Furthermore, when sending a SYN packet to the incorrect

virtual IP address, the packet is dropped and there is no re-

sponse from the victim machine. A SYN packet sent from the

access point gateway to the correct private VPN IP address,

however, will send a RST packet on the wireless interface noti-

fying the gateway that the address is receiving packets which

were not intended for it. Conversely, probing with SYN/ACK

packets will generate the exact opposite behavior, responding

with RST packets for each SYN/ACK packets with the incorrect

private IP, and not responding at all when sending SYN/ACK

packets to the correct private IP.

Note that for server-side attacks this phase can be skipped

because the server will NAT the spoofed packet to the client

for us based on port information.

4.2.2 Phase 2: Making Inferences About Active Connec-

tions

Similarly, for client-side attacks, if we want to determine if

a VPN user is connected to any particular application server

address over the VPN tunnel, we can send SYN or SYN-ACKs

from that address to the victim’s private VPN IP across the

entire ephemeral port space. The observed behavior for both

SYN and SYN/ACK packets is similar to that of the SYN probe

used above to determine the private VPN IP address. That is,

when sending a SYN packet to the correct four-tuple, a RST

packet will be sent on the wireless interface, but when sending

to the incorrect four-tuple, nothing is sent back to the gateway.

After we have determined that there is an active VPN con-

nection on a connected device, we will test for an active con-

nection by spoofing SYN packets from a given server IP to the

VPN user. We can assume that the website will be running

on either port 80 or 443, and since we learned the victim’s

virtual interface IP from the previous step, we now only need

to scan the entire ephemeral port space6, looking for a RST to

indicate that there is an active connection.

4.2.3 Phase 3: Hijacking Active Connections

Finally, once we have determined that the user has an active

TCP connection to an external server on a given port, we

632768 to 60999 on most Linux machines, for example.









seek to demonstrate that a blind in-path attacker can remove

the VPN encryption layer and perform the man-in-the-middle

attack to strip off TLS encryption of the HTTPS traffic.

For Experiments VI we tested the client-side attack against

different operating systems to determine if they are vulnera-

ble, and tested a variety of OS combinations for VPN client

and VPN server for the server-side attacks to confirm that it is

independent of OS. Additionally, since Android was a particu-

lar focus of our study in the early stages of our research effort,

we also tested the client-side attacks against 35 VPN apps and

services (a complete list is in the artifact associated with this

paper) with Android as a client. This was for Experiment VII

. Our selection procedure for deciding which VPN services

and apps to examine was based on their popularity and market

presence according to data gathered from the Google Play

Store, Apple App store, and App Annie. We also included

apps such as Wang VPN, Lantern, Psiphon, and Orbot which

are commonly recommended within the security community,

or actively used in nations with pervasive information con-

trols. These tests were performed on a number of flagship

mobile devices running the most recent operating system ver-

sion and security updates, which at the time of writing was a

Google Pixel 3 XL running Android 10 (with November 2019

security updates). We also tested older Android devices (all

belonging to the research team) that are no longer officially

supported but still in widespread use. For the server-side at-

tacks on DNS, we tested against, or derived DNS timeouts

from, a variety of DNS clients, as detailed in Section 6. This

included a variety of browsers and operating systems.

Our experimental methodology differs between client- and

server-side attacks for two main reasons: server-side attacks

are independent of operating system or VPN version or con-

figuration, and server-side attacks would most likely be car-

ried out by large national-level ISPs—an environment that is

currently beyond our scope to be able to test. Thus for client-

side attacks we focus on testing a wide variety of OSes and

VPNs and producing realistic performance numbers, while

for server-side attacks we focus on demonstrating feasibility.

6 Results

In this section, we measure the success rate and time required

for performing the attacks listed in Table 1 using the methods

described in Sections 4.2 and 4.3. The exception is the TLS

interception attack, demonstrated in Section 6.3, for which

we do not report performance metrics given its particular

nature. We outline all the information that can be monitored

for each protocol and the consequences of this information

being inferred.
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Figure 5: Results of client-side attack on a WiFi network.

6.1 Client-side TCP Attack (Experiments II

and III: Timing and Success Rate)

In this case, we break-down the results for each phase of the

attack as described in Section 4.2. The success rate of the

entire attack is illustrated in Figure 5.

6.1.1 Phase 1

In the first phase of the client-side attack, where we deter-

mine the virtual IP address assigned to the client, we need

to scan the /24 of the assigned virtual IP space. Although

VPN providers can theoretically use any IP address in the

IANA-reserved blocks for private networks (e.g., 10.0.0.0/8,

100.64.0.0/10, 172.16.0.0/12 or 192.168.0.0/16), we found

that most of the VPN servers we tested only used a subset of

the 10.0.0.0/8 block, with only WireGuard servers on Mull-

vad using addresses in the 172.16.0.0/12 block. Additionally,

we identify that the way that these addresses are used and

assigned to clients is predictable in many providers. For exam-

ple, NordVPN assigns users an address based on the operating

system they are using. Android devices are assigned addresses

in the 10.7.0.0/16 block, with Linux and macOS/iOS assigned

addresses in 10.6.0.0/16 and 10.8.0.0/16, respectively.

For this phase of the attack, we assume that the attacker

is familiar with the VPN server the client is connected to, so

they will know the scheme for assigning virtual IPs. How-

ever, even if the attacker does not know anything about the

server the victim is connected to, scanning an entire /16 only

takes around 8 seconds using our attack script, so it does not

significantly increase the time the attack takes to complete.

6.1.2 Phase 2

To make inferences about active connections, our attacker

is not concerned with scanning every possible IP the victim

could potentially be connected to, but is performing a targeted

attack from a list of given websites or IP addresses and online

services, such as a nation-state’s list of banned websites or



specific non-web applications. For our evaluation, we only

tested against NeverSSL to illustrate the efficiency of the

attack against a single website. We also assume that the server

the user is connecting to is using port 80 or 443 but the attack

can be performed for any TCP port. We can determine within

6 seconds if the victim is connected to a given website during

this phase by completing the four-tuple for this connection

through scanning the ephemeral port space of the client.

6.1.3 Phase 3

The primary difference in the time it takes for phase 3 to

complete is the attacker sniffing false acknowledgements as

it probes a significantly large range of sequence or acknowl-

edgment numbers. For example, the attacker may sniff a false

acknowledgement during the spread of the entire sequence

number range, it will continue to probe the small range around

that false sequence number until it finds no responses are

being triggered from the victim. At that point it will retry

scanning the entire range again until it finds an in-window

sequence that will repeatedly trigger responses. The tests that

took longer in time had to retry more of the scans and send

more packets to the victim, or the sequence number was sim-

ply later in the search space by chance.

During our attempts, the 8.4% of the failures were all during

this phase. Based on the specifics of our attack script, there

will always be a ~5% chance the attacker resets the connection

as it probes. During the last scan for an in-window sequence

number, the attacker sends TCP RST packets in blocks of 20

to the victim. A RST packet sent with an in-window sequence

number will trigger a response, but the connection will be

completely reset if the exact sequence in use is hit. During

our tests, 6.1% of the failures were due to the connection

being completely reset by the attacker. The other 2.3% of the

failures were mostly due to our script failing to ensure that

an inferred value is indeed triggering responses because of

traffic analysis challenges. Many of the failures found the

exact sequence within 100 bytes of the one in use, but sniffed

false challenge ACKs and did not resend enough empty PSH-

ACKs to ensure it was indeed the exact sequence in use.

6.2 Server-side DNS Attack (Experiment IV:

Success Rate)

Against each different DNS timeout tested in the experiments,

the attacker was able to infer the ephemeral port in use quick

enough on average to start attempting to brute force responses

with the correct TXID back to the victim. The attack script

was able to infer the port in use by the client in 3.96 seconds

on average. Additionally, our script took an average of 6.89

seconds to scan through the entire 65k transaction ID range.

The attacker could potentially scan at a faster rate, but risks

overloading the client socket’s receive buffer and as a result

decreasing the accuracy of the injection attack.

As expected, the success rate of the attacker increased as

the DNS query timeout on the client also increased. This

allowed the attacker to try every possible TXID the client

could have chosen before the UDP socket was closed. The

main results of the three experiments are shown below:

• 15 second DNS timeout (e.g., Android 11) - 75.3% suc-

cessful injects

• 10 second DNS timeout (e.g., Ubuntu 20.04) - 48.1% suc-

cessful injects

• 5 second DNS timeout (e.g., Firefox 80.0.1) - 11.6% suc-

cessful injects

6.3 Real-World Example (Experiment V)

We successfully demonstrated that a blind in-path attacker can

remove the VPN encryption layer and perform the man-in-

the-middle attack to strip off TLS encryption of the HTTPS

traffic, in a setup meant to emulate the Iranian attacks on

Facebook from 2009 referenced in Section 5.

We assume that the user is actively using Facebook during

the attack. This is an underlying assumption to any man-in-

the-middle attack, namely that the user is using the service

while the attack is happening. DNS time-to-live (TTL) values

depend on many factors such as website, web browser poli-

cies, recursive DNS resolver, and location, but values on the

order of minutes are common. For both Firefox and Chrome

we observed that, in our environment, while a user is using

Facebook they will make a DNS request for facebook.com

about every two minutes. We also assume that we know the

IP address of the DNS server the victim client is using for

domain name requests. Since many VPN providers default

to specific DNS servers this is a likely case. We know the

destination IP address and port of the DNS server, and we

know that post-NATing the source IP address will be the

VPN server’s IP address. For our example attack we could

continually scan for open NAT table entries by repeatedly

carrying out the process of guessing the ephemeral port (i.e.,

the source port chosen by the VPN server), but to avoid con-

stantly sending the VPN server traffic we wait until we have

fingerprinted a likely DNS request for facebook.com based

on the size of an encrypted packet from VPN client to VPN

server. Then, we carry out our VPN injection attack as per

Section 4. Recall that this involves DoSing the DNS server

so that we do not need to race with any valid response, infer-

ring the ephemeral port number using a blind in-path attack,

and then brute forcing the transaction ID (TXID) to inject a

spoofed DNS response.

For route-based VPNs, such as WireGuard, there is a simple

way to use DNS spoofing to cause a subsequent connection to

be made outside the VPN tunnel. By returning the IP address

of the VPN server itself as the response to the DNS query we

can cause the new connection to leave the VPN client machine



unencrypted and outside the VPN tunnel because a specific

routing rule exists for that IP address to make sure packets sent

to the VPN server for the tunnel are not themselves coerced

into the tunnel. The new connection will be a separate TCP

connection, so can be easily distinguished by the attacker even

if the destination port on the VPN server is the same. Because

the attacker is, by definition, in the path from VPN client to

VPN server, the attacker is in a position to perform any kind

of man-in-the-middle attack on this new connection. For our

example attack we use DNAT and mitmproxy10 version 5.2,

along with a forged certificate for facebook.com, to remove

all encryption so that we can see and modify traffic to/from

the facebook.com server at will.

6.4 Different OSes and VPN Apps (Experi-

ment VI Testing OSes and Experiment VII

Testing VPN Apps)

For the client-side attack we tested it against a wide variety

of operating systems and Android apps. See the artifact11.

for a complete list of operating systems and vendors that

we tested, all of which were vulnerable. Notably, we tested

a variety of VPN-like technologies such as Orbot, Lantern,

Psiphon, TunnelBear, and others that are not advertised as

VPNs. Essentially, all Linux- and BSD-based12 operating

systems were vulnerable before our ethical disclosure process,

including Android and Apple devices. For client-side attacks,

we only tested route-based VPNs (the vast majority of VPNs

are route-based) and they were all vulnerable. We did not test

policy-based VPNs, Windows OSes, or Tor [13] as part of

Experiments VI and VII because we did not believe them to

be vulnerable to the client-side attack due to separate network

namespaces, the strong host model, and SOCKS interfaces

being in user space, respectively. We later confirmed that

these three OSes and apps are not vulnerable to the client-side

attack.

For server-side attacks there is not a concept of a vulnerable

VPN technology or OS, because the attack takes advantage

of NAT when working as specified. Nonetheless, we tested

with both policy-based (IKEv2/IPSec) and route-based (Open-

VPN and WireGuard) VPNs on a variety of OS combina-

tions for client/server: Windows/Windows, Windows/Linux,

Linux/Linux, and macOS/Linux. For Windows as a server

we only tested OpenVPN. It is not common for Windows to

serve as a VPN server, and is not supported by OpenVPN

(we had to mirror best practices configuration from Linux as

closely as possible), but we wanted to underline the point that

the server-side attacks are independent of operating system or

10https://mitmproxy.org
11Also available at https://git.breakpointingbad.com/

Breakpointing-Bad-Public/vpn-attacks
12For the purposes of this paper, we consider Apple OSes to be BSD-based

in the loose sense that they borrow heavily from the FreeBSD networking

stack.

implementation by having a VPN setup that did not involve

Linux- or BSD-based OSes in any way. We specifically tested

Windows 10 v20H2 as the client and Windows Server 2019

v1809 as the server. Note that Tor does not use NAT to mul-

tiplex connections on exit nodes, so is not vulnerable to our

server-side attacks.

6.5 Operating System and VPN Protocol Dif-

ferences

The client-side TCP attacks are possible on each operating

system that we tested, but interestingly, each operating system

has some nuances in the way in which it handles different

kinds of spoofed packets. For example, BSD-based operating

systems, including macOS (Sierra, High Sierra, and Mojave)

and iOS (through version 12.4.1) require an additional step

to determine the victim’s virtual IP address. Android has an

additional vulnerability that allows parts of the attack to be

performed in plaintext, but we were able to make inferences

about the encrypted packets we received which allowed us to

perform the attack with only a moderate amount of effort.

The attacker is able to use the packet size of the encrypted

communication to infer whether or not they are spoofing the

correct four tuple. Each time the attacker guesses the correct

four tuple in the spoofed SYN packet to the client, it will re-

spond with an ACK through the encrypted connection with the

VPN server. Since every single ACK the client sends through

the tunnel is encapsulated in the exact same size encrypted

packet, they can easily infer which encrypted packets are in-

deed ACKs instead of RSTs. The connection can be reliably

tested by sending a specific count of spoofed four-tuple pack-

ets, then counting the number of matching packet lengths

flowing from the victim to the VPN server.

Multiple versions of iOS and BSD (note that iOS uses the

FreeBSD network stack) were also found to be vulnerable,

but we focused our efforts to reverse engineer routing on

Linux/Android rather than BSD. Thus we only report here the

small changes we made to our attack for it to work on these

other OSes.

The constant size in which VPNs send challenge-ACKs

within varies based on the protocol. For example, on Ubuntu

18.04, the OpenVPN protocol sends encrypted TCP packets

of size 79, while iOS sends encrypted IPsec UDP packets

of length 108 bytes for the triggered responses. An in-path

attacker can reliably infer which encrypted packets are empty

ACKs by sniffing the traffic long enough with any VPN proto-

col. It is important for the attacker to ensure that the outgo-

ing client packet sent directly following each spoofed packet

matches the appropriate ACK size for that encrypted VPN com-

munication. Our attacks currently assume the attacker knows

what type of VPN protocol is being used. Using traffic analy-

sis and metadata, the attacker should have a clear idea of the

VPN protocol being used.



7 Limitations and Discussion

Here we discuss the limitations and generality of the attacks

we have presented.

7.1 Client-side Attack Limitations

Since enabling reverse path filtering will negatively impact

the performance and reliability of networking on a number

of devices, the recommended mitigation to prevent our attack

is to add a pre-routing iptables or nftables rule to drop

packets destined for the client’s virtual IP address.

7.2 Server-side Attack Limitations

While these types of mitigation address the client-side attack

for most non-mobile devices, source address validation (rather

than reasoning about interfaces) is required for mitigation as

we move further down the path closer to the VPN server. Re-

search has shown that the majority of networks on the Internet

do not even perform the most basic kind of source address val-

idation [21], namely dropping packets entering their network

that claim to be from their network. Source address validation

becomes impossible once traffic flows reach BGP-powered

routers on the Internet where asymmetric routing is possible.

For DNS, the victim application initiating the queries will

typically determine if there is a DNS cache and if so, the

length of time before that DNS entry expires. Therefore, once

an attacker has inferred an existing web connection they can

assume another query if the user visits the website again after

the DNS record TTL value (or sooner depending on caching

policies) [4, 5]. Additionally, they can get an estimate on the

size of the target lookup by connecting to the same VPN

server and crafting the same lookup.

Another obstacle for the attacker is mistaking other vic-

tim to DNS server UDP flows that are not for the correct

target domain name. For example, the attacker wants to inject

the wrong IP for facebook.com, but the client also sends a

query for google.com around the same time. Thus two UDP

flows are being NATed and the attacker might discover the

ephemeral port for the wrong flow. To address this issue, the

attacker can drop packets headed from the VPN client to the

VPN server for a short period of time (i.e., 5 seconds) in order

to ensure there are no more lookups sent from the client while

we attempt to infer the port for a specific flow.

7.3 Generality of the Attack

To better understand the generality of the attacks we have

presented, it is instructive to separate our attacks into the two

types: client- and server-side. Our set of client-side attacks

effectively require the attacker to be on the same physical

network as the victim client for one of their live interfaces, i.e.,

adjacent in the link layer. Network adjacent attacks involve

spoofed packets directly from the attacker to the victim as

physical frames. However, our server-side attacks require only

that the attacker be a router (or network adjacent to a colluding

router) along the path from VPN client to VPN server. For

these attacks the spoofed packets are routed over the Internet

from the attacker to the VPN server. In either case, the spoofed

return IP address is typically a server (such as web or DNS)

the victim is accessing via a tunneled connection through the

VPN tunnel.

When reasoning about the generality of both types of at-

tacks the main considerations are:

• TLS/SSL in the application layer for the tunneled con-

nection: While encryption of the VPN tunnel does not

prevent our attacks, application-layer encryption (e.g., TLS-

based protocols like HTTPS) prevents injecting data into

the socket. Yet, inferring the existence of a VPN-tunneled

TCP/IP connection and resetting that connection are possi-

ble despite application-layer TLS/SSL. Hijacking a TCP/IP

connection to inject data is only possible in the absence of

TLS/SSL, however hijacking DNS for standard DNS con-

figurations is possible and, for route-based VPNs (which

are more common than policy-based), can lead to the pos-

sibility of stripping off application-layer encryption, as de-

tailed in Section 6.3 in our real-world example. Further-

more, application-layer encryption is less commonly used

by at-risk populations globally than by typical users from

more developed countries. We scraped all websites marked

as potentially blocked by the Citizen Lab [20] using Se-

lenium and found that, for example, 26% of websites in

China and 51% of websites in Brazil have at least one

unencrypted element.

• Necessity of knowing the timing of a connection or

DNS request, along with the IP address or domain: For

our attacks to succeed we have to predict the timing of the

connection or DNS request, or at least continue carrying

out the attack until the connection or request happens. We

also have to know the IP address that will be connected

to or the domain name that will be requested. In our real-

world example in Section 6.3 we observed that a user using

Facebook will make DNS requests for facebook.com ev-

ery two minutes, for example. That is all the information

we need to carry out the attack, we do not need to predict

the exact timing (but can, using traffic analysis to observe

encrypted VPN packet sizes likely to be the DNS requests

we are looking for).

• Some of our attacks having been mitigated by patches:

Many (but not all) operating systems or VPN client vendors

have applied some kind of patch to mitigate our client-side

attacks in response to our disclosure. These patches largely

amount to filtering out the spoofed packets because they

come in from an interface that is not the virtual interface

for tunneled VPN traffic. See Section 1 for details of our

responsible disclosure process. We are not aware of any

patches or planned patches to mitigate our server-side at-



tacks, despite having ethically disclosed them to multiple

OS and VPN vendors on August 13, 2020. It is possible

that attacks could be detected based on, e.g., anomalies in

fields such as the TTL, or monitoring incorrect guesses of

fields such as port numbers, but no vendors have put forth

a proposal to do so.

• Reverse path filtering, martian filtering, and BCP 38

and 84: Reverse path filtering comes in two forms: on

hosts and in network routers. Strict mode as per RFC 3704

effectively stops our client-side attacks, loose or feasible

modes do not. Reverse path filtering on the VPN server

as a host does not affect the server-side attacks, because

spoofed packets enter on the same interface as real packets.

All source and destination IP addresses in our server-side

attacks are routable Internet IP addresses, so Martian or

bogon filtering are moot. BCP 38 and BCP 84 were ad-

dressed in Section 3. We assume that a state-level attacker

in collusion with an ISP could easily remove any BCP 38

and BCP 84 restrictions and carry out the attack.

• VPN configurations, implementations, and OS diver-

sity: There are many different configurations of VPNs,

which can affect the VPN client, VPN server, or both. For

our client-side attacks, a detailed discussion of how oper-

ating system and VPN configuration can affect the attacks

is in Section 6.5. For our server-side attacks, the operat-

ing system and VPN configuration of the VPN client do

not matter. Most VPN servers perform Network Address

Translation (NAT) on the VPN server, and all NAT im-

plementations have the behavior that we are exploiting:

packets with the correct ephemeral port are NATed into

the encrypted VPN tunnel while packets with the incor-

rect port are not. There are alternative implementations of

VPNs that do not involve NATs, such as Outline which uses

a SOCKS proxy13. Essentially, however, the same principle

applies: in general spoofed packets with correct fields get

tunneled and those with incorrect fields do not, meaning

that an attacker that can see the encrypted tunnel can make

inferences. Policy-based routing on the VPN client does

not affect the underlying vulnerability for our server-side

attacks, but our current method for causing connections to

be made outside the VPN tunnel via DNS spoofing assumes

that the client is using a route-based VPN client.

At the most basic level, all of our attacks combine two key

elements: the ability to spoof packets that are either directly

routed into the encrypted tunnel or the response to them is,

and the ability to view traffic transiting the VPN tunnel even if

the attacker cannot decrypt it. The mere existence, timing, and

number of bytes of ciphertext leaks a lot of security-critical

protocol information (such as port numbers and sequence

13See https://getoutline.org. Our server-side attack does not work

unmodified on Outline because of a fast-close behavior for DNS traffic, we

have not analyzed Outline’s security against blind in/on-path attacks beyond

that.

numbers) when an attacker is able to spoof packets. While

it may be possible to secure TCP and DNS within encrypted

tunnels by applying the appropriate filtering, these are only

two protocols and there are still many critical UDP-based

applications (e.g., NTP).

7.4 Summary and Recommendations

Because of the generality of blind in-path attacks for VPN

tunnels we recommend the following:

• For transport layer protocols such as TCP, and for any

application-layer transport-like functionality built on top of

datagrams (such as DNS built on top of UDP), the security

of each protocol should be examined with respect to the

threat of a blind in-path attacker on a case-by-case basis.

Among protocols that we leave for future work are QUIC,

NTP, SCTP, and BGP.

• For training materials for at-risk users and any communi-

cation with users about the security and privacy benefits of

VPNs, it should be made clear that VPNs are not a substi-

tute for application-layer security (such as HTTPS or DNS

over HTTPS, i.e., DoH).

• To the extent possible, VPN configurations should use ab-

stractions that are at a higher level than the network routing

layer. For example, SOCKS proxies provide some pro-

tection against the attacks presented in this paper when

properly applied.

• VPN architectures should apply IP address and interface

filtering whenever possible. In addition to filtering already

discussed, such as client-side firewall rules to stop spoofed

packets from reaching the virtual interface, VPN providers

should also consider protecting the path from DNS servers

to the VPN server.

While we have broadly studied a variety of encrypted tun-

nel protocols that fall under the umbrella of VPNs, including

OpenVPN, Wireguard, L2TP/IPSec, IKEv2/IPSec, and PPTP,

there are also many such protocols that do not fall under the

VPN umbrella such as SSH tunnels and VXLANs. We leave

evaluation of these for future work.

8 Related Work

The main aspect of our work that distinguishes it from any

prior work is the combination of applying traffic analysis of

an encrypted tunnel with spoofed packets.

8.1 Security Analysis of VPN Services

There have been various studies around investigating the

potential security and privacy aspects of VPN services. Perta

et al. [25] manually investigated the network behavior of

14 VPN services and presented a DNS hijacking attack that



allowed traffic to be captured in clear. A more comprehensive

study conducted by Khan et al. [17] on the commercial

VPN ecosystem highlighted the lack of transparency in

VPN policies and claims made to consumers. The work

also elaborated on instances of leakages and active traffic

manipulations by VPN providers. In the mobile space,

there have also been extensive studies [16, 36], which

have evaluated various VPNs apps in the Android app

store. Their evaluation revealed the presence of malware,

traffic redirection, DNS leaks, lack of encryption, Javascript

injection and TLS interception by VPN providers. As a

result of the lack of trust in the VPN ecosystem, researchers

have also suggested decentralized approaches for VPN

services [12, 31]. While previous work on the security of

VPN services has mainly focused on the trust model and

the correctness of the implementation of the protocols, our

work specifically looks at the VPN security from a broader

network routing perspective.

Several studies have looked at VPN routing issues at a

more rudimentary level than our study. Perta et al. [25] and

Ikram et al. [16] reported how misconfigurations in the VPN

routing tables can enable DNS traffic leakage and hijacks.

In contrast, our work hijacks DNS queries that are protected

by the VPN tunnel and the threat model is any router in-path

between the VPN client and VPN server. Appelbaum et al. [6]

found various security vulnerabilities in VPN routing and sug-

gested mitigation techniques for vendors. Similarly, another

work [2] investigated the leakage of a VPN user’s local IP

address through the WebRTC-API and detailed the privacy

risks associated with this. While these works revealed issues

with routing and VPNs, we are not aware of any study before

our own work that illuminated how the combination of packet

spoofing with traffic analysis can reveal the randomized secret

numbers that protocols use to protect against attacks such as

inference of connections or hijacking.

8.2 Off-path Attacks

The first step in hijacking a connection is detecting the pres-

ence of an active TCP/IP connection. Watson [33] demon-

strates how critical this step is for performing blind spoofing,

session hijacking, and packet injection attacks, as well as TCP

reset attacks, by taking advantage of a TCP specification of

accepting out-of-order packets that are within the range of a

window size, decreasing the search space by a factor of the

window size. Other works have demonstrated attacks to infer

the existence of a connection completely off-path [3,18]. Such

attacks typically involve placing canaries, finding collisions,

and/or making statistical inferences. For our attacks presented

in this paper, an attacker simply needs to sit in-path and guess

a correct four-tuple by probing the ephemeral port space, and

then see the tunneled response as an encrypted VPN packet.

This does require that we assume one host’s IP and port (e.g.,

a web server), but this is the same assumption made by Cao

et al. [11] and others to perform off-path TCP/IP hijacking

attacks. Additionally, the number of devices that are vulnera-

ble to our blind in-path attacks extends beyond Linux to other

UNIX-based systems and mobile devices, as well as versions

which have been patched to prevent the behavior exploited by

Cao et al.

While off-path attacks that have nothing to do with VPNs

or other encrypted tunnel technologies are a serious problem,

they generally can be fixed by slightly changing the behavior

of an implementation or randomizing other numbers for the

protocol. For example, to address the attack by Cao et al.

the Linux kernel randomized the total number of challenge

ACKs that are sent per second, i.e., the rate limit that led to the

side-channel. While this could potentially still be inferred by

an off-path attacker, a blind in-path attacker such as we have

presented in this paper can trivially count packets. In general,

it is much more difficult to hide the existence, timing, and

size of network packets from an in-path attacker than from

an off-path attacker. Off-path attackers by definition cannot

perform traffic analysis of encrypted packets for the tunnel.

8.3 Traffic Analysis of Encrypted Tunnels

A number of works have made inferences based on analyz-

ing the existence, size, and timing of encrypted packets for

encrypted tunnels, such as works that fingerprint websites in

encrypted tunnels [10, 32] or works that focus on censorship

evasion [14, 34, 35]. None of these works combine packet

spoofing with traffic analysis to subvert tunneled protocols,

rather they focus on other higher-layer metadata such as the

structure of the HTTP being served to a web client to identify

the fingerprint of known web content.

9 Conclusions

We have demonstrated a general and serious problem (using

attacks on popular VPN implementations as examples): in/on-

path attacks to subvert protocols that are protected inside en-

crypted tunnels. Our attacks were demonstrated for the TCP

and DNS protocols tunneled inside VPNs, but the underlying

vulnerability applies to any attempt to use an encrypted tunnel

to protect any protocol that uses randomly-generated secret

values to protect against off-path attacks. This challenges the

current understanding of real-world VPN’s security by show-

ing that even a properly configured and secured VPN that

has applied all known security patches is still vulnerable to

connection tampering from a malicious actor with the ability

to control the gateway or any router between the VPN client

and VPN server. In summary, all route-based VPNs and all

UNIX-like operating systems that we tested were vulnerable

to our client-side attacks before disclosure. Client-side attacks

have been partially mitigated. Sever-side attacks are indepen-

dent of VPN configuration or OS, so long as the VPN uses



the OS’s NAT implementation on the VPN server. Despite

full disclosure, no type of mitigation has been proposed or

implemented by any vendor with respect to our server-side

attacks.
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