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Abstract

Increasing demand for computing has lead to
the development of large-scale, highly optimized
data centers, which represent large loads in the
electric power network. Many major computing
and internet companies operate multiple data centers
spread geographically across the world. Thus, these
companies have a unique ability to shift computing
load, and thus electric load, geographically. This paper
provides a “bottom-up” load shifting model which uses
data centers’ geographic load flexibility to lower CO5
emissions. This model utilizes information about the
locational marginal COs footprint of the electricity
at individual nodes, but does not require direct
collaboration with the system operator. We demonstrate
how to calculate marginal carbon emissions, and assess
the efficacy of our approach compared to a setting where
the data centers bid their flexibility into a centralized
market. We find that data center load shifting can
achieve substantial reductions in COs emissions even
with modest load shifting.

1. Introduction

Data centers form the computing infrastructure
that sustains the internet [1l], enables the revolution
in artificial intelligence [2] and provides computing
services and data storage for individuals and companies
across the world [3]. Between 2010 and 2018, there
was an estimated 550% increase in the number of
global data center workloads and computing instances,
along with a 26-fold increase in data center storage
and 11-fold increase in internet protocol traffic [4].
This increase in computing load has happened alongside
a shift from smaller and medium sized data centers
towards computing in large-scale facilities that are
highly optimized and efficient, so-called hyper-scalar
data centers. These data centers currently consume
around 1-2% of electricity both in the United States
[5] and the world [4]. With the demand for cloud
computing services and the number of hyper-scale
data centers expected to increase, there is a growing
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acknowledgement that the environmental footprint of
data center electricity consumption is a concern.
Hyper-scalar data centers are hosted and operated
mostly by large companies like Amazon, Facebook,
Google, Microsoft and Alibaba [6, [7]. Several of
these major companies have announced policies aimed
to reduce the carbon footprint of the services they
provide [8, 9], both through improved efficiency and
by investing in or contracting with renewable power
generation. In 2019, Google matched a 100% of their
energy consumption with renewable energy purchases,
and is currently working to become 24/7 carbon
free through the use of so-called carbon-intelligent
computing which shifts computing to less CO5 intensive
hours or locations [10]. Ongoing research aims
to enable zero carbon cloud computing [11] and
start-up companies are developing solutions to enable
low-carbon, low-cost data center computing [[12].

While the environmental footprint is important,
access to reliable electricity supply is also crucial
for reliable operation of the data centers. To
mitigate potential bottlenecks in electricity supply, cloud
computing companies take a number of steps to increase
efficiency and reliability. Efficiency gains are important
to curb the overall need for electricity. In the past
decade, a main focus has been to increase the power
usage effectiveness (PUE), defined as the ratio between
the total power used by a data center to the power
consumed for computation. For example, the average
PUE of Google data centers during the twelve months
preceding Q1 of 2020 is 1.11 PUE, down from 1.21
in 2008. We note that for highly efficient data centers
like these, temporal load shifting achieved through, e.g.,
pre-cooling [13], is typically not possible or effective,
but instead can be achieved by, e.g., load migration,
shutdown and idling of servers and storage clusters,
and cooling relative to load reduction [[14} [15]. Gains
in efficiency can also be achieved by reducing the
amount of computing required to perform a certain
computing task, by, e.g., utilizing flexible, real-time load
balancing algorithms for routing similar search queries
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to a data center that can process them more efficiently
[16]. Furthermore, to ensure reliability, companies may
maintain several copies of important data, such that
some computing tasks can be performed at multiple
locations in case of a data center outage. Since large
scale companies operate data centers at various locations
spread across the world, they have an unprecedented
opportunity for shifting load geographically among
data centers, by adapting the algorithms that direct
everything from search queries to large scale computing
jobs. They can also shift load temporally, by deferring
non-urgent computing jobs to off peak times of the day.

In this paper, we consider how hyper-scale
computing companies can geographically  shift
computing tasks and electric load to reduce COs
emissions from electric power generation. We will
assume that (i) the data centers are large-scale, highly
efficient facilities where load shifting is mainly achieved
by shifting computing loads, (ii) to ensure reliability,
the data centers are run in a way that enables some
computing tasks to be executed at different locations,
and (iii) the data centers are willing to pay a markup on
their electricity represented through a price of CO5 to
reduce the CO5 footprint of their operations. To guide
data center load shifting, we propose to use locational
marginal COs emissions at individual nodes of the
electric grid which, in analogy to locational marginal
prices, provide information about how an increase in
load at a given location (at a given point in time) will
change the overall CO4 emissions of the grid.

Related work on data center load shifting
investigated benefits of integrating data centers
into demand response programs [17] as well as
possible demand response and pricing schemes data
centers could employ [18| [19]], modelling the impact
of geographical load shifting from a computational
perspective, aiming to achieve reductions in cost
[20, 115, 21], considering shifts between multiple
electricity markets [20] and cooperation between data
centers [21]. Others have investigated geographical
redistribution to reduce the CO- footprint based on the
average amount of renewable energy in the generation
mix, e.g. [22 23], or the impact of data center siting
on the absorption of renewable energy [24, 25]. Several
companies [26] provide about the average CO intensity
of electricity, and [23]] show that the time of day matters
for load shifting. However, none of these existing works
consider that even if a region has excess renewable
energy (i.e., is experiencing energy curtailment), this
renewable energy may not be available in all locations
in the grid. The locational aspect is captured in the
concept of locational marginal CO, emissions [27, 28],
which demonstrates that nodal carbon intensity varies

across the grid [27] and is useful for guiding renewable
energy investments [28]. However, this work did not
consider data centers or load shifting.

An important aspect of our work is that we assume
that the data centers and independent system operators
(ISOs) do not necessarily share the same objectives or
willingness to pay for COs emission reductions. The
electricity markets clear based solely on economic cost,
accounting for operational and security constraints; CO2
management is not among the considerations. While
this could change in the future, adjusting the markets is
a long process. Therefore, we seek a more “bottom-up”
method by which market participants can shift their own
load to reduce the overall CO, emissions of the grid.

To summarize, the contribution of this paper is to
propose a market participant driven, bottom up approach
to load shifting which relies on information regarding
the locational marginal CO2 emission at each network
node. We use this metric to pose a user-centered
optimization problem, where data centers adjust their
loads the goal of reducing cost and COs emissions.
These load shifts happen outside of ISO market clearing
actions, and can be realized within a grid, or between
different grids. In our case study, we compare this
approach to two benchmark approaches. We first
compare our proposed method to a similar bottom up
approach, which uses the average CO, emissions of
electricity in the grid instead of the locational marginal
prices. We next compare our results with ISO-run
centralized approaches where the data centers provide
their shifting capacity in the energy market and/or the
ISO includes CO; costs in the market clearing objective.

The remainder of the paper is organized as follows.
In Section 2 we discuss how we represent data center
flexibility in shifting load. In Sections 3 and 4 we
present the underlying mathematics for calculating the
Locational Marginal COy Emissions and set up the
specific optimization problems used to to assess this
load shifting approach. Different objective function
scenarios are consider to determine the effect of
including specific CO, weights in the objective function,
compared to solely economic costs. In Section 5 we
present the results of our analysis applied to the IEEE
RTS GMLC network model. We summarize and discuss
the results in Section 6.

2. Modelling data center flexibility

Geographical shifting of computing load requires
consideration of many important aspects including
latency, availability of data, reliability, and the
management of computing resources to handle
computational tasks over widely different scales. To
ensure reliability of services like search or access to
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emails, companies are able to perform the necessary
computing at multiple locations in case a data center
experiences an outage. This reliability is on par or
exceeds the reliability we are accustomed in the electric
grid. We posit that as computation becomes more
power constrained and environmentally responsible,
both the cost and the carbon intensity of the local
power supply may be taken into consideration in such
load balancing algorithms. In this paper, we make
no explicit assumptions about how this is done. We
simply assume that given appropriate incentives and
the right signal, highly optimized systems such as
those run by technological giants like Google and
Amazon can enhance existing algorithms to follow
such signals within a certain set of limits. We next
develop a simplified model to represent how this
computing load flexibility could translate into flexibility
for spatial shifting of electric load in order to help meet
environmental goals.

Data center representation We consider data centers
represented by the set C in the model. We assume that
the initial allocation of computing loads result in the
electric load P, ; for each of the data centers ¢ € C, and
denote the change in load at data center ¢ resulting from
spatial shifting by APy ;. We further introduce directed
variables s;; > 0 (and s;; > 0) to represent the amount
of load transferred from data center ¢ to data center j
(or j to 7). We further enforce that s;; = 0. This is
related to the concept of virtual links described in [29].
To represent the ability of data centers to shift load, we
introduce the following constraints.

Lossless load shifting The shifted load APy ; is equal
to the sum of load transferred to the data center and the
load transferred from the data center,

APyi = jec Sii = 2agec Siks
and the sum of all load shifts equal zero,
>icc APy =0. (1b)

By forcing all computations to sum to zero, we ensure
that all computing tasks are performed at the current
time step. We do not consider temporal opportunities
to delay computation for later. We further note that
our formulation assumes that the same computation task
will require the same amount of energy at both data
centers. However, it could easily be generalized to
consider the case the electricity needed to perform a
certain computing task is higher (or lower) at a different
location due to, e.g., access to different hardware or less
immediate access to the necessary data.

VieC (1a)

Shifting limitations To represent limits on the ability
of data centers to shift load, we introduce the constraints,

—€ - Pgi <AP;; <€ - Py,
0 <4 < My

VieC (2a)
Vij € C x C. (2b)

Here limits the maximum change in load, ¢; that we
can achieve at data center ¢ as a percentage of its original
load. Eq. enforces the direction of the shift s;; and
limits it to a maximum value M;;. These may represent
practical limits or operational choices.

3. Data Center-Driven CO, Reduction

We assume that data centers act as price takers or
retail customers in the electric markets, and can shift
their load outside of the market clearing. We are
interested in understanding how their position as large
scale loads can enable the data centers to reduce the
overall carbon footprint of the grid. Intuitively, it might
seem rational to simply shift load to the region where
the electricity has the lowest CO; intensity, e.g. the
location with the highest share of renewable energy (as
has been proposed in [22} 23]]). However, this renewable
energy might already be used by other loads, and other
potentially CO» intensive sources of electricity might
be asked to increase their generation output if the load
increases further. While the average COs intensity of
the electricity consumed by the data center might be
lower in such a location, the overall CO, emissions
may actually increase. The question therefore becomes
how to shift load in a way that replaces the use of CO2
intensive generation with cleaner generation sources.
We will achieve this by considering the locational
marginal CO; footprint of electric loads across the grid.

Specifically, we consider a market setting where the
ISO clears the market using a DC optimal power flow
(OPF) formulation at short time intervals, e.g., every
5-15 min as is common in many markets across the
United States. The assumption is that by observing the
current market outcome the data centers try to adjust
their loads to reduce the CO, emissions from generation
ahead of the next market clearin The proposed model
assumes that the data centers have knowledge of the
current locational marginal prices (LMPs) of electricity
[30l], which are made publicly available in real time, and
either knowledge or prediction of the marginal carbon
footprint of loads at different nodes. This is currently
not publicly available, but it is possible that ISOs
could publish information about the marginal carbon
footprint of loads in the future, or that approximate
models could be developed using historical data, driven
by ISO-reported current LMPs and binding constraints.

!For simplicity and proof of concept, we assume that the market
clearing is frequent enough that it is reasonable to assume that the

other loads and generation remains relatively constant. More realistic
models will be addressed as part of future work.
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To derive the model employed in this paper, we first
revisit the standard DC OPF which is commonly used
for electricity market clearing. Next, we explain how to
determine the marginal CO4 footprint of electric loads,
and then we describe how to use this information to
reduce the overall CO5 emissions of the grid.

3.1. DC Optimal Power Flow

We start by presenting a stylized, but representative
mathematical model for the DC OPF which is
commonly used for electricity market clearing [31,[30].

We consider an electric network with a set of A/
nodes (also commonly referred to as buses), with |[NV| =
N. The set of generators G contains a total number
of |G| = N, generators, and the subset of generators
connected to node ¢ are denoted by G;. Transmission
lines connect the different nodes in the network. The
set of transmission lines is denoted by £, with element
(i,7) € L representing the line between node i to j. The
set of all loads in the system is given by D and contains
both data center loads C and non-data center loads D\C.
Note that there may be more than one data center load
connected at each electrical node. The non-data center
loads j € D\C are also denoted by Py, 4» but do not have
the ability to shift load, giving AP, ; = 0. The set of
loads connected at node 7 is denoted by D; C D.

The market clearing is formulated as a standard DC
OPF with decision variables = [ P,] where P, are
the generation variables, 6 are the voltage angles at each
node and n = N + N, is the number of decision
variables. The DC OPF seeks to minimize generation
costs subject to demand, line flow and generation
constraints, and is given by

min ¢’ P, (3a)

0,Pq

st > veg Poe =2 sep, Pae =
> iiigerBii(0i—0;),
—PHm™ < —Bi;(0:—0;) <PI™, V(i,j) € L (3c)

Vie N (3b)

Pin < Py < P Vieg  (3d)

Oref = 0. (3e)

Here, the cost function minimizes the cost of generation,
with ¢ representing the cost vector. Eq. is the nodal
power balance constraint, while (3c), represent
the transmission line and generator capacity constraints.
Here, 8;; € R are given susceptance values, Pf;m is
the transmission capacity (which we assume is the same
in both positive and negative directions of the flow) and
P;"i” and P;"“* are generator limits. Finally, sets

the voltage angle at the reference node to zero.

3.2. Locational Marginal CO; Emissions

Given a solution z* = [0* P;] to (3), we would
like to determine the locational marginal CO5 emissions
(LMCE) of electricity. We define this as the change
in COy emissions for the overall system incurred by
consuming an additional unit of load (1 MWh) at a given
node. This definition is closely related to the definition
of the locational marginal price (LMP), which describes
the change in overall system cost incurred by a similar
change in electric consumption. While the LMPs reflect
changes in the cost function of the DC OPF and are
thus easily obtained as the dual variables of the nodal
power balance constraints , the situation is different
when computing the sensitivity of CO, emissions to
load shifts, since the CO5 emissions are not reflected
in the cost function.

Short-hand form of the DC OPF As a starting point,
we identify that the linear optimization problem (3)) can
be written in the short-hand form

min ¢’z (4a)
st. Ge=h (4b)
K <f (4c)

where ¢ is an extended cost vector that includes zeros for
the 6 variables, G € RIV+DXn and b € RVH! are the
parameter matrix and vector of the equality constraints
@b, @e), and K € RENs+2ILDxn apnd f ¢ R2No 24
are the parameter matrix and vector of the inequality

constraints (3c), (3d).

Optimal basis From linear optimization theory [32],
we know that there exists at least one basic optimal
solution x* to this optimization problem which has n
binding constraint These binding constraints include
all of the equality constraints in (@b}), as well as a subset
of the inequality constraints in (4c) which are satisfied
with equality at optimality. Together, this set of binding
constraints form an optimal basis A € R"™"™ b €
R™. Without loss of generality we assume the equality
constraints comprise the first NV rows of 4, . Given
the optimal basis A, we can write the system of linear
equations Az* = b which is satisfied at the optimal
solution. In this model, the data center loads are fixed
values that appear in the first N entries in right-hand
side vector b. We next want to consider the impact of
changes to the data center load. For a small change in
load, leading to small change in b, we can assume that
the binding constraints at the optimal solution remain

21f several generators with the same cost are connected to one node,
any combination of generation from these generators will be optimal.
Of these infinitely many optimal solutions at least one of them has n
binding constraints.
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the same. In this case, the linear relation Axz* = b can
be used to calculate the LMCE sensitivities.

CO;, sensitivity factors Mathematically, we want to
consider A(z* + Ax) = b+ Ab, which is equivalent to

AAz = Ab. (5)

Here, the only change in the right hand side vector is
due to the change in the load, such that Ad can be
represented by

T
Ab=| > APyy -+ Y APy 0---0| (6)

LeDy LeDn

We recall here that while the summation in (6) is over all
loads, APy ¢ is non-zero only for data center loads. We
also note that our formulation allows for more than one
data center can be located at the same electrical node.
Given (6)), we can assess how a change in the load will
change the optimal value of the decision variables Az =
[A APy]. From (5)), we obtain the linear relation

A0 1 |AP
I R O
Here, we are specifically interested in the relationship

between a change in load AP, and a change in the
optimal generation dispatch A P,, given by

AP, = B- AP, )

where B is a matrix consisting of the last N, rows and
first N columns of A~1.

Let g be a cost vector that measures the COq
emissions of each generator per MWh. Multiplying each
side of (8] on the left by g gives us the following

ACOQ:g‘APg:g]'B-APd:)\C(bAPd (9)

This provides the sensitivity of the change in COq
emissions to the change in load. We note that Aco, are
local sensitivity factors that are only valid in the vicinity
of the optimal solution. If the load changes AP, are
sufficiently large, i.e. large enough to change the set of
constraints that is binding at optimum, (9) will only be
an approximate representation.

3.3. Optimal Data Center Load Shifting

With the above sensitivity factors, we formulate a
new optimization problem which seeks to shift data
center load in a way that minimizes CO5 emissions
while also accounting for the cost of electricity. The
assumption is that the load shifting will be used by the
system operator in a subsequent market clearing based
on the DC OPF , but with data center modified loads.

Objective function Our goal is to minimize the
amount of CO. emissions as expressed by (9) while
considering the cost of electricity and the cost of other
negative impacts of shifting load. To do this, we
introduce a new parameter p which represents a cost per
COs ton omitted by a generator. This parameter could
either be related to a regulatory cost for CO5 emissions,
or represent the willingness of data centers to pay for
CO; reductions. We also consider a parameter d;; which
represents the cost of shifting load 1 MWh of load from
the data center at node ¢ to the data center at node j,
which could either be a direct monetary cost or a penalty
to capture negative effects such as increased latency.
With this, the objective function can be expressed as

Ampin (PAco, + Amp) APy £ Jiccwe dijsij. (10)
dsS

The first term minimizes total cost, with pAco, APy
representing the change in cost associated with changes
in the CO, emissions due to the load shift AP,
and A vpA P, representing the change in the cost of
electricity represented by the LMPs Apyp. The second
term minimizes the cost of shifting load.

Data center flexibility To ensure that the data center
load shift A P, respects the flexibility limits of the data
centers, we include the load shift constraints (1)), (2).

Optimal Data Center Load Shifting  With the
above modelling, the optimal data center load shifting
(ODC-LS) problem is given by

min  CO; emissions and cost (11)
d>S

s.t. Data center flexibility (1)),

4. Assessing the Benefit of Data Center
Load Shifting

The model for optimal data center load shifting
demonstrates how data centers can utilize their spatial
load shifting flexibility to impact the electricity market
outcomes, while reducing the overall COy emissions
from the system and/or their own electricity cost. This
naturally raises the question of how the market outcome
resulting from this process compares with a situation
where the ISO either takes a more active role in reducing
CO9 emissions and/or the data centers bid their load as a
service in the electricity market. A common hypothesis
is that the ISO, by optimizing the use of data center
flexibility to reduce cost, inherently will strive to utilize
more of the cheaper (presumably renewable) generation
sources and thus indirectly reduce CO5 emission.

To investigate whether this hypothesis holds true, we
present three different models that combine generation
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scheduling, CO5 emission minimization and utilization
of data center load shifting in different ways.

4.1. Model 1: Data Center-Driven Load
Shifting

Our first model is data center driven load shifting
described in Section 3] This model includes three steps:
1) The ISO solves the (3) for a given load profile P;.

2) Provided information about the LMPs A /ps and
the locational marginal COy emission Aco,, the data
centers solve to obtain the optimal load shift A P},

min CO, emissions and cost (M1)
d

s.t. Data center flexibility (1)),

3) The ISO solves (3) with new load P} = P, + APj.
Different objective functions represent different
preferences for cost minimization and CO4y mitigation,
which we will refer to as foaiance, fco, and feost.
(1) foaiance: If we choose an intermediate value for p,
we get a solution that balances the reduction in COq
emissions with the cost of electricity.
(2) feost: If we choose to set the cost of CO5 to zero,
p = 0, we would obtain the solution with the lowest
possible generation cost.
(3) fco,: If we either use a very large value for p
or ignore the cost of electricity by artificially setting
Avp = 0, we obtain the solution with the lowest
possible carbon emissions.

4.2. Model 2: DC OPF with CO, emission cost

Our second model is the DC OPF (3)) with a modified
objective function. Specifically, we consider an
objective function that minimizes both COy emissions
and overall generation cost, given by

min (p- g7 +c')- P, (12)

g

As above, p is the cost associated with carbon emission,
g is the rate of emissions for each generator and c
represents the generation cost of each generator. This
provides us with the following optimization model,

min CO, emissions and system cost (M2)

gs

s.t. DC OPF constraints (3b)-

As with Model 1, we consider the three different
versions of the objective function, with fpeiance
corresponding to intermediate values for the COs cost p,
fco, corresponding to an the objective function where
we only focus on COs emission reductions by setting

¢ = 0, and f.,st corresponding to the more standard
objective function where we disregard any cost of CO»
by setting p = 0. Unlike Model 1, this model does not
include load shifting.

4.3. Model 3: DC OPF with load shifting

Our third model is similar to Model 2, but assumes
that the data centers bid their load flexibility into the
market. Thus, the cost of data center load shifting
and the data center flexibility limits must be taken into
account. The nodal power balance constraint is also
adapted to reflect that AP, is now an optimization
variable. This gives rise to the following optimization
problem,

i * T T . .. .. ..
P, (prg" + ") Py Xy dysy  (M3)

8.t ZEEQiPQaZ _Zée‘Di (de + APd,g) =
> jigerbii(0i—0;), Vie N

Data center flexibility (I)),
DC OPF inequality constraints (3¢)-(3e)

We consider the same three variations of the cost
function fyarance, fco, and feos: as for Model 2. In all
cases, we consider the same value for d;;

4.4. Relationship between models

When considering the models outlined above, some
of the relationships between optimal generation cost
and CO, emissions above can be deduced when the
binding constraints of the original DC OPF do not

change after shifting. Denote pg?st, pl()?th and pifl)rbon
the generation cost associated with Model ¢ using

feosts footn and fearpon respectively. For each model

¢ we have that p((;f))st < pl()i)th < piia)rbon but we also

observe relationships between the models.

Lemma 1. pglt < pga)st < pg)st

Proof. Model 2 can be thought of as a special case of
Model 1 where ¢; = 0 for all 2. Model 1 starts at the
optimal value for Model 2 then will only shift load if the

cost decreases, therefore pé?st < pgi)st Similarly, any

optimal solution for Model 1 will also be feasible for

Model 3, therefore p(g) < p(l) O

cost cost*

Similarly, if we let Eﬁ;)st,Eé?th and Eﬁi)rbon be
the CO2 emissions from optimal generation profile of

Model i using feost, footh and feqrbon respectively. As
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in the case of generation costs, for each model ¢ we have

that Eiziz)rbon < Eé?th < Eg))st We also observe the

following relationship between models.

and B < g®

carbon — carbon®

< E?

carbon

Lemma 2. E(S)

carbon

Proof. Model 2 is a special case of Model 3 where all
€; = 0, therefore, Model 3 will only shift to a solution

with fewer CO, emissions giving E® < g®

. ) > carbon — c.arbon'
As above, since any optimal solution for Model 1 is also

feasible for Model 3, B3 < p(1) O

carbon carbon*

5. Case study: IEEE RTS-GLMC System

We test the performance of the models outlined in
Sections [3] and ff] on a power network test case with a
significant share of renewable generation sources.

5.1. Test system

We test our model on the IEEE RTS-GMLC network
which has has 73 nodes, 158 generators and 120 lines.
All parameters of this system can be found at [33]. We
designate nodes 14,16,17,18,19,20,23, 65, 66,69, 70
to be data centers and set the load at each of these nodes
to be 400 MW. The total load of the system is 11, 681
MW and data centers account for 4400 MW or 37.7%
of the total system load.

The generators in this network are designated as oil,
coal, natural gas, hydro, nuclear, wind, storage and solar
generators. We use data from the U.S. Department of
Energy [34] to get a CO- emissions factor for each
type of generator. The CO; emissions are zero for
the hydro, nuclear, wind and solar generators. For the
oil, gas and coal power plants we use emission values
of 0.7434, 0.9606 and 0.6042 metric tons of COy per
MWh, respectively. Using [35] as guidance, we impose
a tax of $30 per metric ton of CO, giving p = $30. In
addition, we set the cost of data center load shifting to
d;; = $0, limit the shift between any two data centers
to M;; = 400 MW for all data center pairs 7j and set
the maximum fraction of load that can be shifted to
€; = 0.05 for all data centers 7.

This network has many nodes with multiple
generators of the same type and the same cost
function. In order to avoid a situation with infinitely
many optimal solutions and consistently obtain a basic
optimal solution, we add a small noise vector [36]
to the objective value to distinguish between identical
generators at each node. This creates a relative merit
order for dispatch for those generators.

Node Shift Fuel || Node Shift Fuel

No. [MWh] Type No. [MWh] Type
9 3.9 Gas 144 45.8 Solar
11 -74 Gas 156 14.8 Wind
41 -31.2 Coal 157 1.6 Wind

135 39.2 Solar

Table 1. Predicted generation change after load

shift.

Node Shift Fuel Node Shift Fuel
No. [MWh] Type No. [MWh] Type
9 4.52 Gas 135 9.5 Solar
11 -6.7 Gas 144 3.4 Solar
12 -33 Gas 149 11.8 Solar
13 -33 Gas 150 11.2 Solar
18 5.6 Gas 151 10.3 Solar
41 -35.3 Coal 155 2.3 Wind
74 4 Nuclear 156 15.7 Wind
127 32.3 Solar 157 1.9 Wind

Table 2. Actual generation change after load shift.

5.2. Data Center-Driven Load Shifting

5.2.1. Load Shifting based on Locational Marginal
CO; Emissions We start by analyzing how the data
center-driven load shifting impacts the system cost and
CO, emissions when we use the objective fpqiance and
set p = 30.

The initial DC OPF leads to a generation dispatch
which costs $129, 320 and emits 3,977.1 tons of COs.
There is 480.6 MW of curtailed renewable energy. If we
distribute the CO, emissions equally across all loads, the
data centers are responsible for 37.7% or 1,498.2 tons
of CO,. Using (M1) to predict the optimal change in
load leads to an increase of +20 MW on nodes 17, 18,
65, 69 and 70 and a decrease of —20 MW on nodes 16,
19, 20, 23 and 66. We note that each of the data centers
is shifting the maximum allowable amount of 20 MW
per data center, leading to a shift of 100 MW from high
to low Aco, locations. Thus, the total shift cumulatively
represent only 2.27% of the data center load and 0.85%
of the total system load.

The predicted generation changes obtained from
running (M) are shown in Table [I] The predicted
generation shift reduces the CO2 emissions by 72.3 tons
and decreases renewable energy curtailment by 101.4
MW. When we rerun the DC OPF with the shifted
load, we obtain the generation changes described in
Table [2| leading to a new generation dispatch which
costs $126,970, emits 3,905.5 tons of COs.. This
corresponds to a cost saving of $2350 (—1.82%), a
reduction in total CO5 emissions of 71.6 tons (—1.80%),
and the renewable energy curtailment is reduced by 97.8
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3 (a) Locational Marginal CO; Emissions Aco,

Model 1 Ao, | Cost[$] Emissions [CO; tons]
feo, 127,960 3,886.0 (—2.29%)
Sfralance 126,970 3,905.5 (—1.80%)
feost 126, 600 3,908.5 (—1.72%)

3 (b) Average CO; Emissions Ao, =

Model 1 \,, z | Cost[$] Emissions [CO; tons]
fco, 128,130 3,968.4 (—0.22%)
Sfralance 126, 600 3,908.5 (—1.72%)
feost 126,600  3,908.5 (—1.72%)

Table 3. Cost and emissions after load shifting
(including % change relative to original DC OPF),
based on Model 1 and different objective functions.

MW. We observe that the CO5 emission reduction and
generation changes predicted by are not entirely
accurate but the net reduction in COs is similar.

While the CO, emission reduction percentages may
seem small relative to the overall system emissions,
we note this reduction was achieved by shifting only
0.85% of the total system load. Furthermore, the
1.80% decrease in carbon emissions was achieved while
simultaneously reducing the overall cost of electricity
generation. These results highlight how this approach
over time could provide substantial reductions in COq
emissions without increasing system cost.

5.2.2. Impact of the choice of cost function We
next analyze the impact of using different cost functions.
Table [3] (a) lists the results we get by rerunning the
DC OPF after the load shifts AP, obtained with
each objective function fco,, foaiance and fco,. We
observe that the load shift obtained with fco, leads
to the solution with the lowest CO5 emissions, but
the highest generation cost, while f.,s; provides the
cheapest solution with the highest CO5 emissions. This
indicates that there is a difference between minimizing
generation cost versus CO» emissions, suggesting that
although renewable generation sources are typically
cheaper, minimizing cost is not the same as minimizing
CO; emissions. It is however worth noting that all three
load shifts lead to solutions that are both cheaper and
have lower CO, emissions than the original DC OPF.

5.2.3. Comparison with Load Shifting based on
Average CO; Emissions The locational marginal
CO4 emissions Aco, consider the marginal change in the
CO; emissions that occur by increasing or decreasing
load at a given node in the grid. Existing literature
[22} 23] has proposed to shift load based on the average
CO; emissions per MWh of electricity across an entire
region of the grid. We now compare the performance
of load shifting based on the average and locational

marginal CO; shifting.

The average COs emissions can be calculated in
the following way. Given N generators Pz =
[Pc1,---,Pa n] in one region R and a CO, emission
value for each generator g = [g1, ..., gn], the average
carbon emissions A, r is defined as

- QTP.q
/\(w,’R = Z7NZ1 Pa .. (13)

Using this definition, we define a new version of
Model 1 where Aco, is replaced with Ay, = in the cost
functions fco, and fiaiance. We note a few qualitative
differences between A,, = and Aco,. First, with Aco,,
each node is assigned its own marginal CO4 value. This
value is determined under consideration of transmission
grid congestion and binding generation constraints, as
described in Section [3.2] and provides information
about the increase in CO, emissions associated with
an increase in load at this node. In comparison, with
Aav,R, €very node in region ¢ is given the same value.
Furthermore, this value provides information about the
average COy emissions associated with the current load
in the region, and provides no information about how the
emissions will increase or decrease if we shift additional
load into the given node.

To compute the A\, = for our test case, we use the
three areas R1, Ro and R3 in the RTS-GLMC system.
Region R; is comprised of nodes 1 — 24, Ry of nodes
25 — 48 and R3 of nodes 49 — 73. Based on the intial
DC OPF solution and , we obtain A\, 7, = 0.42,
Aav, Ry = 0.55 and gy r, = 0.15. We next utilize
our modified version of Model 1 where Aco, is
replaced with A4, , to obtain new load shifts AP, and
rerun the DC OPF with these load shifts.

The results for all three objective functions are given
in Table [3| (b). We first observe that f.,s:, which is
independent of both A,, = and Aco, results in the same
solution as in Table [3| (a). Further, fyaiance With Mgy =
gives the same solution as f.,s, and results in lower
cost and higher CO2 emissions than fpuiance With Aco,.
The most interesting result is obtained with cost function
fco, and Mgy z. When we use fco, in combination
with A\g, R, the data center load shifting only achieves a
very small decrease in overall CO4 emissions, leading to
a higher overall CO5 emissions than with any other load
shifting solution. This happens despite a shift of 80 MW
load from regions with high average CO- emissions
to regions with lower average COy emissions. These
results demonstrate that shifting data center load based
on average CO- emissions may not be very effective,
and highlight the value of understanding and calculating
locational marginal carbon emissions.
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5.3. Comparison of Models

Next, we compare the outcomes of the different
models (M1)-(M3), which represent varying levels of
cooperation between the data centers and the ISO, in
combination with the three different objective functions
fco,, fraiance and feost. We use the same parameter
values as described in Section 3.2l The results are
summarized in Table [ (cost) and Table [5] (emissions).

fC02 fbulance fcost
Model 1 | 127,960 126,970 126,600
Model 2 | 138,980 130,860 129,320
Model 3 | 137,850 127,950 126,530

Table 4. Optimal generation costs [$] for the IEEE
RTS GMLC System

fCOz fbalance fcost
Model 1 | 3,886  3,905.5 3,908.5
Model 2 | 3,731.7 3,795.8 3,977.1
Model 3 | 3,642.5 3,700.3 3,884.6

Table 5. Optimal CO; emissions [MW] for the IEEE
RTS GMLC System

As expected from our analysis in Section4.4] we see
that the best way to minimize cost and carbon is to use
Model 3 with f.,s: and fco, respectively. Intuitively,
this is as expected since Model 3 has the most flexibility
and complete knowledge of all constraints in the system
(as opposed to Model 1, which only has access to local
knowledge). It is interesting to note that even when
trying to decrease cost, Model 3 gives a generation
profile that emits fewer COy emissions than Models
1 and 2. This suggests that if the system operator
has control over shifting loads, then not only could
generation costs decrease, but CO5 emissions could as
well. However, this result is case specific. We have
also observed instances where the data center-driven
load shifting with the explicit objective of reducing CO2
emissions is more effective than the indirectly aiming
to reduce emission by providing more flexibility to the
cost-minimizing market clearing.

It is important to note that while the results obtained
with Model 3 are more effective at reducing both cost
and CO,, implementing such a model would require the
data centers to commit to the provision of flexibility
ahead of time, and allow the ISO to make decisions
that impact their operations. Finding good ways of
facilitating this interaction is ongoing research. On
the other hand, Model 1 requires limited changes
to existing market structures. The main question is
whether the data centers can obtain information about
the locational marginal carbon footprint, either from

the ISO or through independent estimates. We would
also like to point out that Model 1 and the concept of
locational marginal COy emissions can be used to shift
load between two or more different electric grids that
are operated by different ISO:s.

Finally, we want to point out that the results obtained
Model 1 yield both lower cost and lower emissions
relative to the results obtained from Model 2 (which
represents the current market clearing and does not
include load flexibility). This indicates that data centers
operators could have a similar impact — and a similar
responsibility — as electric system operators when it
comes to reducing COz emissions and maintaining
access to affordable electricity.

6. Conclusions

In this paper, we propose a bottom-up approach
to load shifting where data centers utilize their ability
to shift load geographically to explicitly reduce CO-
emissions. The bottom-up model relies on locational
marginal CO, emissions at individual nodes of an
electric power network, which provide information
about the change in CO4 emissions due to an increase in
load at a given node. These values change in real time
in response to varying system conditions, but can be
calculated based on the solution to a standard DC OPF
and knowledge of generators’ marginal CO5 emissions.
We compare our proposed method with (1) a bottom-up
load shifting model based on average CO5 emissions
across a grid, and (2) two centralized market clearing
models, both requiring ISO participation. We find that
shifting based on the locational marginal CO5 emissions
can achieve significant reductions in COs, while also
reducing cost. Our proposed method outperforms
shifting based on average CO5 emissions, which in some
cases lead to an increase in overall CO5 emissions, but is
not as effective as integrating data center flexibility into
the overall market clearing.

These findings raise several directions for future
work. It remains an open question how to compute
locational marginal COy emissions in real-time in
practice, or to determine how ISOs and data centers
can exchange information to achieve the best possible
load shifts. Other questions include studying the impact
of COs prices and obtaining a better understanding of
cumulative COs reductions and market impacts over
time. Finally, examining opportunities for carbon
reduction via temporal flexibility could also be an
effective way to reduce carbon emissions.
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