Robust Multi-object Matching via Iterative
Reweighting of the Graph Connection Laplacian

Yunpeng Shi* Shaohan Li' Gilad Lerman’
“Program in Applied and Computational Mathematics, Princeton University
fSchool of Mathematics, University of Minnesota
yunpengs@princeton.edu, {1i000743, lerman}@umn.edu

Abstract

We propose an efficient and robust iterative solution to the multi-object matching problem.
We first clarify serious limitations of current methods as well as the inappropriateness
of the standard iteratively reweighted least squares procedure. In view of these limitations,
we suggest a novel and more reliable iterative reweighting strategy that incorporates in-
formation from higher-order neighborhoods by exploiting the graph connection Laplacian.
We provide partial theoretical guarantees and demonstrate the superior performance of
our procedure over state-of-the-art methods using both synthetic and real datasets.

1 Introduction

The problem of matching multiple objects is crucial in many data-oriented tasks, such as structure from
motion (SfM) [21], simultaneous localization and mapping [4], multi-graph matching [28, 32, 33], community
detection [1] and solving jigsaw puzzles [15]. One important instance of this problem is multi-image
matching, where one is given a set of 2D images, whose 3D scenes include a fixed set of 3D points, and
each image contains a set of 2D keypoints that correspond to the set of 3D points. The goal is to recover the
correspondences between the keypoints of all images and the fixed 3D points, given measurements of keypoint
matches between some pairs of images. Ideally, a keypoint match between two given images aligns pairs of
keypoints that describe the same 3D point. In practice, measurements of keypoint matches can be corrupted. A
solution of this problem thus requires the design and analysis of methods with provable robustness to corruption.

The multi-object matching problem can be cast as permutation synchronization (PS) [22]. The latter problem
assumes a connected graph G(V,E), where each node has a hidden permutation of a fixed size. For example,
in image matching it is the correspondence between indices of the keypoints of the image and the 3D points.
These hidden permutations determine relative permutations between graph nodes. In the case of image
matching, the relative permutations represent the keypoint matches between pairs of images. Permutation
synchronization asks to recover the hidden permutations given measurements of the relative permutations.

The measured relative permutations can be highly corrupted. For example, in SfM, the pairwise keypoint
matches are commonly derived by SIFT [18] descriptors, whose accuracy is affected by the scene occlusion,
change of illumination, viewing distance and perspective. Moreover, repetitive patterns and ambiguous symme-
try in common objects of realistic scenarios result in malicious and self-consistent corruption of matches [31].

More work is needed to address such nontrivial practical cases of inaccurate pairwise measurements. Existing
guarantees for permutation synchronization often consider a “uniform” corruption model, which does not
reflect real scenarios. Uniformity is pursued in two ways: 1) Using the “uniform” Haar distribution on the
permutation group to generate corrupted relative permutations; 2) Choosing the corrupted edges in the graph
in a uniform manner, such as randomly corrupting an edge with the same probability, while assuming graphs
with uniform topology (e.g., generated by the Erd6s-Rényi model). Here we try to carefully understand the
drawbacks of previous approaches and develop instead a practically efficient method, with partial guarantees,
for nonuniform corruption. We find a surprising relationship of our proposed method to Cycle-Edge Message
Passing (CEMP) [17]; thus we also clarify CEMP and improve its implementation in our setting.
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1.1 Relevant Works

The most common methods of PS, which are described in [8, 13, 22], aim to solve a relaxation of a discrete least
squares (LS) formulation. Their LS term is an average of squared Frobenius distances between the estimated
and measured relative permutations. Due to the use of relaxation, the accuracy of the algorithms of [8, 13, 22]
is not competitive and the speed of the algorithm of [8, 13] is rather slow. Two other relaxations of the LS
formulation are MatchLift [8, 13] and MatchALS [34]. They have similar drawbacks as above, but their advan-
tage is the applicability to the setting of partial matching, where the number of keypoints vary among objects.
MatchALS is faster than MatchLift, whereas MatchLift is theoretically guaranteed under a special probabilistic
model. Wang et al. [30] improve the matching accuracy of [34] by incorporating a geometric constraint on
the pixel coordinates of keypoints. A tighter approximation algorithm to the non-convex LS formulation is the
projected power method (PPM). It was used earlier for solving the problems of angular synchronization [3, 25]
and joint alignment [7]. PPM for permutation synchronization was first briefly tested in [7] and later more
carefully studied in [14]. All the above LS-based methods are not suitable for nonuniform corruption scenarios.

There are three additional frameworks for solving some types of group synchronization problems [10, 17, 23].
However, [10] only handles Lie groups and [23] only deals with Gaussian noise without outliers, thus neither
[10] nor [23] applies to the setting of this paper. Cycle-edge message passing (CEMP) [17] handles all
compact groups, in particular, the permutation group, with both small sub-Gaussian noise and adversarial
outliers. However, its strong condition for recovery with adversarial outliers can restrict some interesting cases
of nonuniform corruption. Furthermore, it does not directly estimate group elements, but corruption levels. The
recent Message Passing Least Squares (MPLS) framework [24] aims to resolve the latter problem in practice.
However, this framework was only fully developed for the different problem of rotation synchronization.

1.2 This Work

These are the main contributions of this work:

* We clarify the serious limitations of the common least squares methods for the PS problem in handling
nonuniform corruptions. A rigorous argument appears in the second part of Theorem 5.2. We also clarify
why the standard iteratively reweighted least squares procedure is not a good solution for the PS problem.

* We propose (in §4.1) a simple method for estimating the corruption levels in PS. It directly uses the graph
connection Laplacian (GCL). We establish the equivalence of this method with the recent CEMP framework
[17] (with a properly chosen metric). Unlike CEMP, our procedure is fully vectorized, its computational
complexity linearly depends on the cycle size (see supplementary material) and is simpler to explain.

* We establish a new theory for our simple method, and thus also for CEMP, under a special nonuniform
setting (see Theorem 5.2). As far as we know, this setting has not been studied before.

* We propose an iteratively reweighted procedure for solving the PS problems, where the weights are
obtained by the above simple method. This procedure is similar to MPLS [24], but has some different
choices for the group of permutations (as opposed to rotations). We demonstrate the superior performance
of our proposed method in comparison to state-of-the-art methods using nontrivial synthetic and real data.

In §2 we mathematically define the PS problem and introduce notation. In §3 we demonstrate the limitations of
previous methods. We propose our method in §4 and provide some theoretical guarantees for a special nonuni-
form scenario in §5. We compare performance with previous methods in §6. At last, §7 concludes this work.

2 Preliminaries
We mathematically formulate our underlying problem, introduce notation and review the notion of GCL.

2.1 Permutation Synchronization

We formulate the PS problem, while also establishing some notation. For m €N, we denote by [mn] the set
{1,...,m} and by \S,,, the permutation group on m elements. For easier presentation, we equivalently represent
each element of \S,,, by an m x m doubly-stochastic binary matrix (which is orthogonal) and denote the set of
these matrices by &2,,,. In particular, any permutation o € S,,, can be represented as P € &2,,,, where P(i,j) =
1if o(i) =74 and P(i,j) =0 otherwise. Clearly, &, with matrix multiplication is isomorphic to .S,,,. The PS
problem is thus formulated as follows: For n, m €N, assume a graph G([n],E), where each node i is assigned
an unknown ground-truth absolute permutation matrix P;" € &7, (the star superscript emphasizes ground-truth
information). These absolute permutations determine the following set of ground-truth relative permutations
{X;‘J }ijer, where X = PfP;‘l =P Pj*T. The goal of PS is to recover { P;" };c[,) from measurements

{X}; j }ijer of the relative permutations. We use different letters P and X in order to distinguish between



absolute and relative representative permutation matrices. We note that X7, = X i*jT and we similarly assume
that X = X7 (where either X i or X7 are rovided). We may thus suppose that G([n],F) is undirected.
J 1] J 1] p! y pp!

An adversarial corruption framework assumes that Xij =X, on good edges E; C E and Xij #X7; on

bad edges Ey, = E'\ E; [17]. Following this framework and certain assumptions on £, and {XZJ Yijer,
one may try to prove or disprove exact recovery of { X hy }ijer by a PS algorithm of interest. One can further

assume a noise model for { X;; j tijer, and quantify the approximate recovery of { X7 }ije -

2.2 Further Notation and Conventions

PS solvers are often described using block matrices as follows. Denote by X the block matrix in R7™*7m
whose [¢,j]-th block is X, i5» for 45 € I, and zero otherwise. Denote by P € R™PXM the block matrix whose

i-thblock is P; € &,,,. Let 227", denote the space of block matrices in R™"*"™, whose blocks are in Z7,,,. For
amatrix A, A(7,7) indicates its (7,7)-th element, and for a block matrix B, B}i,j] indicates its [,5]-th block.

For A, BER* ! we denote their Frobenius inner product by (A,B) =Tr(ATB). We denote the blockwise
inner product of A, B€R™>™ by (A B)pjec € RF*!, where its (i,7)-th element is (A[i,j],B][i,j]).

We use I,,, 1,, and 0,, to represent the n x n identity, all-one and all-zero matrices, respectively. We also
denote the Kronecker product, elementwise multiplication and elementwise division of matrices by ®, ® and
@, respectively. For i € [n], let N (i), Ny (i) and Ny(¢) denote the sets of neighboring nodes of 7 in G([n],E),
G([n],E4) and G([n],E}) respectively. We use the shorthand notation w.h.p. to mean with high probability.

2.3 The Graph Connection Weight and Laplacian

Throughout the paper we will need to estimate edge weights that express the similarity of the measured
and ground-truth relative permutations. We thus assume in this section a weighted graph G([n],E) with
arbitrary edge weights {w;; };c g and review relevant definitions and notation. We form the weight matrix
W e R™*" such that W (i,5) = w;; for ij € E and W (4,5) =0 otherwise. We recall that the degree of
vertex @ € [n] is d; =3 n;ywi; and the degree matrix D € R™*™ is diagonal with D(i,i) = d;. The
adjacency matrix F is a weight matrix such that E(i,j) =1 for all ij € E. The graph connection weight
matrix (GCW), S, and the graph connection Laplacian matrix (GCL), L [26], are defined as follows:
S=Ww®1l,,6X and L=D®I,—S. e
Note that S;; =w;; X;; for all i, j € [n] and L;; = —w;; X;; for i # j € [n], and Ly; = d;1,,, for i € [n].
The normalized GCW is respectively defined as S = (D~'W)®1,,® X, so that gij =w;; X;;/d; for
i, j € [n]. Throughout the paper we iteratively estimate the graph weight matrix, GCW and normalized
GCW and denote their estimated values at iteration ¢ by W(;), S(;) and S'). In practice, we work with the
top eigenvectors of the GCW matrix (or the normalized one). Clearly, this is equivalent to using the bottom
eigenvectors of the GCL matrix, and we thus use the term GCL when referring to and naming our method.

3 Drawbacks of Existing and Possible Solutions

Most established methods for PS, such as [22, 13, 8, 14], are based on least squares optimization. That
is, they aim to find the set of absolute permutations whose relative permutations are “closest", in least squares
sense, to the measured ones. More specifically, they minimize the following objective function with g=2
(we formulate this problem with general ¢ > 0 for future reference):

min PPT—X,|4. o
{Rﬂ}ig[n]cﬂmijze:EH J ]”F

We note that the optimization problem in (2) with ¢=2 is equivalent to the following one:
Anax (PPT X). 3)
ceon,

Pachauri et al. [22] approximate the solution of (3) by stacking the top mn eigenvectors of the block matrix

X and then projecting each block of the resulting matrix on &2, by the Hungarian algorithm [19]. The
state-of-the-art method for solving (3) is the projected power method (PPM) [7, 14]. It first initializes
P( nHe 2 following [22], and then iteratively computes P(t+1), for t > 1, as follows:

P(t+1):Proj(XP(t)):a;gI;}iHHP_XP(t)H%" @
€EXL



The operator Proj is the blockwise projection onto &7, that is computed by the Hungarian algorithm.

Both PPM [7] and other least squares methods [13, 8, 22] may tolerate uniform corruption. However,
applications give rise to nonuniform corruption. For example, in image matching tasks that appear in 3D
reconstruction datasets, the images of the same object may come from different sources of different qualities
[27]. Matches of low quality images with other images are often erroneous. That is, their neighboring edges
in their corresponding graph G([n],E) are more likely to be corrupted. This heterogeneity of images results
in nonuniform topological structure of the bad subgraph G([n],E}). Unfortunately, none of the previous
methods can handle well such structure. We later try to quantify such a structure using a special nonuniform
model. We also aim to clarify the failure of these methods in handling it (see last part of Theorem 5.2).

In principle, the above problem with PPM and other least squares methods can be addressed by a proper
reweighting procedure that focuses only on good edges ij € E;,. A common global weighing method is
iteratively reweighted least squares (IRLS). It has been successfully applied for synchronization-type problems
with special continuous groups, such as SO(d) synchronization [3, 12, 29] and camera location estimation
[11, 20]. However, we claim that common IRLS methods for special synchronization problems with Lie
groups do not directly generalize to synchronization problems with discrete groups, such as .S,,. Indeed,
for our setting, standard IRLS aims to solve (2) with ¢ = 1, that is, with least absolute deviations. The
common hope is that the minimization of least absolute deviations instead of least squares deviations, which
corresponds to ¢ =2, is more robust to adversarial corruption. The standard IRLS solution to (2) with g=1
assumes an initial choice of { P; (o) }icn) C P and iteratively computes for ¢ > 1:

wis ) =1/max{|| P, o PT ) — X5l 0} (5)

{P: 1) ticpy = argmin > wNG PP — X7, (6)

'i}i€[n]cgzm71jeE

where ¢ is a small regularization constant used to avoid a zero denominator. Unlike Lie groups, the discrete

nature of permutations may result in zero residuals, PL(t)PjT( H— XZ]\ F, on a few edges in the first

few iterations of IRLS. These few edges with zero residuals, including the corrupted ones, are extremely
overweighed by (5). As a result, most of the “good" information on other edges is ignored; thus, IRLS can

produce poor solutions that are even worse than the given corrupted pairwise matches X. Moreover, the
solution of (6) typically involves relaxation, which may not be tight given poor edge weights. One may
use less aggressive reweighting functions for heavy-tailed noise [6]. However, they are not expected to work
well in our discrete scenario. One reason is that their weights are updated from the residuals. Since these
residuals lie in a discrete finite space with size m, there are very limited choices for the weights and the
solution of the weighted least squares problem at each iteration can easily get stuck.

4 Our Proposed Method

Our idea is to iteratively and alternately estimate weights that emphasize uncorrupted edges and thus emphasize
the underlying relative permutations. Similarly to IRLS, at each iteration the estimate of the absolute permu-
tations is improved by solving (6) with the new estimated weights, instead of those computed by (5). Unlike
IRLS, each edge weight is no longer determined by information obtained from only two nodes, but by infor-
mation obtained from cycles containing the two nodes. The information on cycles is easily obtained by direct
matrix multiplication. In §4.1 we explain how to initialize such weights. We establish a mathematical propo-
sition that clarifies this simple approach. We also prove the equivalence of our simple method with the more
involved CEMP framework [17]. In §4.2, we assume given weights and discuss weighted least squares (WLS)
formulations and solutions. Using the ideas of §4.1 and §4.2, we formulate our complete procedure in §4.3.

4.1 Weight Initialization

We estimate a good “‘similarity measure” and use it to estimate good edge weights. We remark that initial
good weights that concentrate around the good edges are crucial for our whole procedure. Indeed we use
a tight relaxation of a weighted least square formulation at each iteration and wrong weights can have a
bad effect on its solution. For each ij € F, we use the following (correlation) affinity, or similarity measure,

a;; = (Xi;,X};)/me€0,1]. We note that ij € E, if and only if a;; =1. One can choose the edge weight
w;; as the estimated a;; or an increasing function of it (we clarify our choice below).

The following property of the GCW matrix S motivates our procedure for choosing weights.



Proposition 4.1. Assume l € Z. and the setting of permutation synchronization with G([n),E), Fp, W, X*
and X. Assume that W (i,7) =0 for ij € Ey and W'(i,5) >0 for ij € E. Then the GCW matrix S satisfies

S'o(W'el,,)=X" ©)
where the equality is constrained to the blocks [i,j] € E and 1 is used for matrix power.

Our idea is to iteratively estimate the correlation affinity matrix A* = (X* X Yblock /T, by using Proposition
4.1 to approximate X * with an estimate of S'@(W'!®1,,) obtained at each iteration. For simplicity, we
assume that [ = 2. This basic idea is summarized in Algorithm 1 (due to its mentioned equivalence with CEMP
[17] we do not propose a new name for it). It initializes the weights by the adjacency matrix. It then performs
three steps at each iteration: Estimation of GCW; estimation of the affinity matrix; and estimation of weights.

Algorithm 1 CEMP (reformulated)

Input: measured relative permutations X, Adjacency matrix F, total time step t(, increasing { 5t}1t50:0
Wi, (0)=F
for t=0:ty do ~
Sinin(t) = (VVinil,(t) Y 1m) OX ~
At (t) = 7 (S 1y Wi 0y © 1) X biock
Wit (¢4-1) = XP(Bt Ainit, (1))
end for
Output: Ainit= Ajnir, (1)

We formally explained the second step by using Proposition 4.1 with | = 2 and approximating X*
with Sm]t w9 (VVﬁn ®»® 1,,). Let us gain some intuition for this formal expression. We claim that

(7) encodes the (I + 1)-cycle consistency relationship. For [ = 2, i.e., for 3-cycles, this relationship
is X3 X5, = X};. In order to explain this claim, we denote N(ij) = {k € [n] : ik, jk € E} and
Ny(ij)={ke[n ] ik,jk € Eq}. Our approximation, X0 for the (7,7)th block of X*, X*[i,7], or

3,(t)°
equivalently, for Sinit’(t)®(VVinit7(t)®1 )[i,j] or Slmt (t)[ ,j]/ e (t)( 7), can be written as

ij};;,; Zke]\l(ij)vvinit,(t) (ivk)mnit,(t) (k» )Xz'k’ij Z X Xk] U @)
! ZkeN(ij)vvinit,(t) (Z;k)vvinit,(t) (kaj) keN
Proposition 4.1 provides a condition for making the unexplajned appr0x1mat10n in (8) an equality. In view

of (8), we estimate a;; by ( X, X;gp?m /m.

Our third step uses the exponential function. In order to explain this choice, we note that if’ Ajy ;) — A*,

or equivalently X ap‘zr’; — X, as t— 00, then

Wit (141) (4:5) —>9XP<Bt <Xij,X;}>/m> =exp (_5; X5 — X5 ||2F> -exp(By). ©)
Due to the arbitrary normalization of Wiy (¢41)(4,7), which is evident from (8), we can ignore the term
exp(:). We note that this update rule is mathematically equivalent to the heat kernel used in Vector Diffusion
Maps [26]. By taking 3; — oo, we obtain that exp(—/3;[| X ; — X% /2m) — 1(ijer,y- This will clearly
result in equality in (8) (that is, Wiy (1) satisfies the requirements of Proposition 4.1) and consequently
Ayt (1+1) — A”™. Therefore, when t — oo and ; — 0o, A* is a fixed point of Algorithm 1.

Finally, we formulate the mentioned equivalence with CEMP [17] in the more general setting of group
synchronization. Consequently, the established theory for CEMP in [17] extends to our procedure (Proposition
4.1 only motivates our procedure but does not justify it). We recall that CEMP directly estimates the corruption

levels {d(X;;,X ;) }ijer for some metric d. It coincides with our approach when using the metric d(X,Y) =

IX — Y||F/(2m) for X, Y € 2,,. We note that since || X;; — X; S =2m— Z(X”,X* ), the corruption
level used by CEMP for ij € E is 1 —aj;, where aj; is the affinity of our procedure. Because the details of
CEMP for estimating the corruption levels are more involved than our ideas, we prefer not to review them here.

Proposition 4.2. Assume that X represents the measured relative permutations in permutation synchro-
nization, or more generally, the measured relative groups ratios in compact group synchronization, where
the group has an orthogonal matrix representation. Assume further the following semimetric on the
matrix-represented elements X, Y : || X =Y ||%/(2m) (which is metric for the permutation group). Then
CEMP with this semimetric and 3-cycles is equivalent to Algorithm 1. If one uses l-th powers with [ > 2
in Algorithm 1, then it is equivalent to CEMP with (I+1)-cycles and the same semimetric.



4.2 Weighted Least Squares Approximation of Permutations

We assume the approximated weights {w;; +) }ijc e at iteration ¢ >0, where at £ =0 the weights are obtained

by Algorithm 1. The GCW and normalized GCW matrices are S(;) and g(t). Using these weights, one
may approximate the absolute permutations as solutions of two different WLS problems. The first one, which

we advocate for, aims to solve the following weighted power iterations, which is a weighted analog of (4):
2

P, (111)=argmin Z wij 1y (Pi— X3Py )| forall i n]. (10)
P,ce Py,
JGN() F

We note that the solution of (10) is P, 1) :Proj(S(t)P(t)). The second WLS formulation aims to solve
2

3 wy(P-XuB)| | (11
ien]|| " (t )JEN(z) P
where d; ;) is the degree of node . To approximately solve (11), one can relax its constraint by requiring
that PT P =1I,,, and after projection onto %7, obtain that
Py 41)=Proj < argmin ||P S(f)PH > (12)
pPTP=Ip, .
The columns of the solution of the minimization in (12) are exactly the top m eigenvectors of S(;). An

analogue of (11) for SF(3) synchronization appears in [2]. We recommend using (10) over (11) as it is faster
and often more accurate in practice. However, since (12) does not require a prior estimate for P, we use it
for the initial estimate of the block matrix of absolute permutations, P(;). We report results for both methods.

{P; (t4+1) ticln)= argmin
{Pi}ie(n CPm

4.3 TIteratively Reweighted Graph Connection Laplacian

We combine together ideas of §4.1 and §4.2 to formulate the Iteratively Reweighted Graph Connected
Laplacian (IRGCL) procedure in Algorithm 2. The initial affinity matrix is computed by CEMP and the initial

Algorithm 2 Iteratively Reweighted Graph Connection Laplacian (IRGCL)

Input: X, {Bi}ie o 7, {at}tm“ AN M A F R RYXT (default: F(A)= A)
A= CEMP(X {3},
Wiy =F(A(@)
P1y=WLS(X ,W(y) by solving (12)
for t=1:t,. do
Xt) :P(t)P(t) i
Ay )= (X (1) X Dblock
Wl,(t) :eXP(OétAl,(t)) _
Siy=Wi»®1,)0X )
Ay y=1r (ST @(W? 1y @L1), X )block
Apy=(1-X ) A1)+ Az 1)
Wiy =F(Ay)
Py 11)=WLS(X W) by solving (10) (or possibly (12))
end for
Output: estimated absolute permutations Pz 4 1)

block of absolute permutations (1) is obtained by solving (12) (we explained above why (10) cannot be used
for initialization). At next iterations, the affinity matrix is obtained as a convex combination of two affinity
matrices as follows: (1— )\t)Al ) )+ At Az (). The matrix Ay () is dlrectly obtained by the newly estimated
absolute permutations. Its use is similar to that of standard IRLS. Indeed, in IRLS the residuals are updated, but
here we work with dot products instead of residuals (squared norms). It is easy to note that the matrix Ay () is
updated in a similar way to the procedure described in Algorithm 1. The permutations in ;1) are updated by
a WLS procedure. When using (12) for this purpose, we name the algorithm IRGCL-S (S for spectral). When
using (10) instead, we name the algorithm IRGCL-P (P for power iterations; this is our recommended choice).

The main difference between IRLS and our IRGCL is that IRGCL uses both the 1st and 2nd order
edge affinities: Ay ;) and A; (4, defined in the algorithm, to approximate A* and computes the WLS



weights W(;y. However, standard IRLS computes the WLS weights from only the 1st order affinities
(or equivalently residuals; see (5)), which are unreliable under high corruption. Indeed, we can write
Ay (3,0) =11 X450 — X ;]|%,/2m and note that the approximation of A* by Aj () can be poor when
X (4) deviates from X *. Therefore, we address this issue by gradually incorporating the 2nd order affinities
(in A2’(t)), which encode the 3-cycle consistency information (see explanation before (8)). We do this by
increasing \; towards 1 as ¢ increases. However, incorporating the information from A () during the first
few iterations can accelerate the convergence; we thus start with A\; =0.5.

Few more technical comments on Algorithm 2 are as follows. It contains two types of edge weights: W 4
for the CEMP-like reweighting for estimating A, (;) and W(;) for the WLS formulation that is used to solve
the absolute permutations. The latter weights are estimated using the affinity (1—X¢) Ay 1)+ Az (1) For

simplicity and to avoid additional parameters, we assume that F'( A ;) ) = Ay). For the same reason, we only in-
corporate second order affinities and avoid higher order ones. The default parameters are described in Section 6.

We further illustrate IRGCL in Figure 2 in the supplementary material. As is evident from this Figure, its basic
idea is similar to the MPLS [24] algorithm that was pursued for the different problem of rotation synchroniza-
tion. Nevertheless, there are two main differences between the two implementations. First, the reweighting
function F' of [24] is sensitive to zero residuals and requires iterative truncation that introduces additional
parameters. Second, [24] enforces Ay — 0 (as opposed to A\, — 1) and thus emphasizes the standard IRLS pro-
cedure, except for the first few iterations. The latter choice is mainly due to numerical experience with real data.
‘We further support this choice when explaining below the need for cycle information in PS due to zero residuals.

We do not have guarantees for Algorithm 2, but we believe it is successful due to the following properties. First,
it utilizes information from 3-cycles (reflected in the powers of the GCW matrix). We believe that this decreases
the sensitivity to its initialization (this is evident in numerical experiments). We further remark that the resulted
estimate is more robust to corruption with nonuniform graph topology. Indeed, using the cycle information
allows messages from G([n],E,) to propagate through the entire graph more easily and consequently correct
severely corrupted subgraphs with nonuniform topology. This claim is supported by the experiments with
nonuniform corruption. Second, since the 3-cycle consistency information helps more faithfully recover the un-
derlying corruption, it provides more accurate weights and consequently a better approximation to the relaxation
of the discrete WLS problem. At last, the elements of Aj (;) for each ij € E are essentially weighted averages
(ideally, expectations) of the 3-cycle consistency. The corresponding expectations are continuous and thus our
reweighting scheme smooths the space of edge weights. This may make the algorithm less likely to get stuck.

S Theoretical Guarantees for Nonuniform Corruption

As we mentioned in Section 1, previous work mainly addressed uniform corruption models, where the
degrees of the corrupted graph, G([n],E}) have little variation and the corruption probabilities are uniform
(see e.g., [8]). The theory of [17] considers arbitrarily corrupted relative permutations, however, it restricts the
maximal ratio of corrupted cycles and consequently restricts the degree of nodes in Ej. Here we consider a
toy model with non-uniform graph topology (with large variations in the degrees of the subgraph G([n],E}))
and with a relatively general class of distributions for the absolute and corrupted relative permutations.

We refer to our model as the superspreader corruption model. In this model, the bad edges are connected to a
single node g, so the set Ej, has a “star-shaped” topology. Moreover, we assume that most of the neighboring
edges of 4o are corrupted. The distributions for { P;" };c[,) and { X; }+jc , are general. We show that under
this model and an additional mild generic condition on the latter distribution, least-squares type methods, includ-
ing PPM, may fail, whereas CEMP (Algorithm 1) is able to achieve accurate estimation of A* in one iteration
as long as n and its parameter [ are sufficiently large. We remark that the generic theory established for CEMP
in [17] does not apply to the superspreader model. Our ideas of proof are also different from those of [17].

We first formulate this model. We then formulate the theorem, which is proved in the supplementary material.

Definition 5.1. The superspreader corruption model with parameters n €N, meN and 0<e,p<1€R;
distributions Dp and Dx on &,,; and superspreader node ig € [n] is a probabilistic model with the
Jollowing components: an Erdds-Rényi graph G (n,p) where p is probability of connection; ground-truth
absolute permutations { Py }ic[,) i.i.d. sampled from Dp; a set Ey, whose edges are of the form ioj, where j
is randomly sampled from N (iq) with probability 1—e; and corrupted measurements of relative permutations
{Xi;}tijer,, such that X;; is i.i.d sampled from Dx and for ij € Eg, X, =X E_Pi*lj;q-.

Theorem 5.2. Assume data generated by the superspreader corruption model with node i, parameters n, m
and 0<e,p<1, distributions Dp and D, and ground-truth and measured relative permutations { X by YijeE

and {Xij}ijeE, respectively. Let A* = <X*,)~(>h1,,ck/m, N:E<||Xioj*XZ,j||%|j GNb(iO))/(Qm), and



assume that for all k € Ny (io)
B (11X = X131 € Noio) ) SE (11 Xkia X=X I 16 € Nofio)) (3)
Then, for n="(1/(u2e?p?)), and By of CEMP, Ainit, (1) obtained by CEMP with one iteration satisfies w.h.p.

-1
HA,»,Z,-,’(I)—A*HOOS(Q—e)(Z—e—l—eeﬁo”E/Q) . (14)

On the other hand, for sufficiently small ¢, large n and some choices for Dx, any least squares method, in
particular PPM, does not result in good approximation of { X by }Yijer and subsequent good estimation of A*.

The proof easily clarifies that condition (13) means that when the number of corrupted edges in a 3-cycle is
enlarged from 1 to 2, then the cycle consistency decreases on average. A more precise statement of the second
part of the theorem s that if |[E(X,; P;") — Pl <£0/2 for 9 >0, such that 2e/2m+(1—2¢)eo < 1,
and Py # P, then PPM (and similarly any least squares method) cannot recover the ground-truth
permutations w.h.p. for n sufficiently large.

6 Numerical Experiments

Using synthetic and real data, we compared IRGCL-S&P (IRGCL-S and IRGCL-P) with the following
methods for PS: Spectral [22]; PPM [7]; IRLS-Cauchy-S&P (two methods that adapt the idea of [2] to PS,
while solving the WLS problem by either (10) for IRLS-Cauchy-P or (12) for IRLS-Cauchy-S); MatchLift [8]
and MatchALS [34]. For the last two methods we used the codes from https://github.com/zju-3dv/
multiway and their default choices. We implemented the rest of the methods using the default choices in the
corresponding papers. We use the following parameters for IRGCL-S&P: tg =5, tax = 100, 8; =min(2¢,40),
oy =min(1.2°71.40), \; =t/(¢t+1) and F(A)=A. We stop the algorithm whenever P, 1)=Py.

In §6.1 we report results on synthetic data with a nonuniform corruption model, where the supplementary
material further includes results with uniform corruption. In §6.2 we include results for real data.

6.1 Nonuniform Corruption Models

The following two models involve nonuniform corruption. For both models, we choose n =100, m =10
and assume an underlying complete graph G([n],E). Experiments with a more general ErdGs-Rényi graph
are reported in the supplementary material. We independently sample . nodes and for each sampled node
we independently corrupt its m,. incident edges. We remark that n. =1 corresponds to our superspreader
corruption model. We let { P }c[,) be i.i.d. sampled from the Haar measure on &, Haar(%,,,). We next

describe the generation of X;;, where ij € Ey, in the two models. It is maliciously designed so that the

distribution of X; ;P is no longer concentrated around P;*, but biased towards some other permutation matrix.
1. Local Biased Corruption Model (LBC): For each ij € Ey,

X, j~Haar(Z,,), otherwise. (15)

Note that PfP;T are self-consistent and since (Pf P;T, P P;T) <1, they tend to be far away from the
ground-truth P;" P;'7, and therefore the overall distribution of X P is far away from Py

2. Local Adversarial Corruption Model (LAC): For each ij € Ej: Xz-j =Qj; Pj*T, where Q; is sampled
by randomly permuting 3 columns of the m X m identity matrix. We remark that the LAC model is even
more malicious, since X;; P;" explicitly concentrates around the identity matrix.

We fix 1, =90 for LBC and m, =60 for LAC. We use the error 3, 1 X5 = X5 /e |1 X5

to compare the different methods. We created 20 random samples from each model and we computed average
errors and standard deviations for n. = 1,...,6. Figure 1 reports these average errors for the two different
models, while designating standard deviations by error bars.

We note that both methods are able to achieve near exact recovery under all tested values of n.. In particular,
they can exactly recover the ground-truth permutations under the super malicious LAC model, and outperform
all other methods. We remark that both IRLS-Cauchy-S&P perform better than Spectral and PPM. However,
their improvement is limited and cannot achieve exact recovery. MatchLift and MatchALS are better than
other least squares methods. However, they require hundreds of iterations and are thus slow.
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Figure 1: Average matching error under the LBC model (left) and LAC model (right).

6.2 Real Dataset

We compare the performance of the different methods on the Willow database [9], which consists of 5 image
datasets. Each image dataset contains 40-108 images of the same object. We use the same method suggested by
[30] to extract CNN features from 10 annotated keypoints for each image through AlexNet [16]. The candidate
for the initial matching is obtained by applying the Hungarian algorithm on the feature similarity matrix, follow-
ing the same procedure as [30]. However, the obtained initial matching is ill-posed for permutation synchroniza-
tion. For example, given the initial matching obtained using the car dataset, there are 8 out of 40 nodes whose
all neighboring edges are severely corrupted. That is, there is no chance to recover correct information of those

nodes. To make those datasets well-posed to PS solvers, we only use the relative permutation X;; between the
nodes ¢ and j whose incident edges are not completely corrupted. IRLS-Cauchy-P&S were comparable and we
thus only report IRLS-Cauchy-S, while referring to it as IRLS. We also report the estimation error for /1y in
Algorithm 2 (we call it IRGCL-init and further test it with artificial data in the supplementary material). We do
not compare with [30] since it requires additional geometric information from the pixel coordinates of keypoints.
We report the relative estimation error 3, ;{| X5 — X 1% /> i1 X5 [|% of different methods in Table 1.
We note that the four data sets which exclude FACE are highly corrupted (in view of their “Input” parameter).

n | Input | Spectral | MLift | MALS | PPM | IRLS | IRGCL-init | IRGCL-S | IRGCL-P
Datasets [22] [8] [34] | [14] | [2] ours ours ours
Car 321041 023 [ 0.17 | 0.14 | 0.11 | 0.16 0.14 0.14 0.091
Duck 30046 | 020 [ 0.26 | 022 | 020 | 0.19 0.19 0.19 0.21
Face 108 0.14 | 0.042 |0.071 | 0.057 [0.049[0.042| 0.039 0.039 0.051
Motorbike || 14 [ 0.55| 046 | 049 | 048 | 0.44 | 046 041 0.42 0.33
Winebottle || 56 | 043 | 0.27 | 024 | 022 | 0.24 | 0.24 0.22 0.22 0.21

Table 1: Matching performance comparison using the Willow datasets.

Our methods IRGCL-S, IRGCL-init and IRGCL-P are still able to achieve reasonable improvement over
Spectral and PPM respectively. Among the least squares methods, Spectral and MatchLift perform the worst
on average, and PPM performs the best. We remark that IRLS with Cauchy weights does not have a significant
advantage over the least squares methods. We note that IRGCL-S and IRGCL-init perform similarly. Further-
more, on average IRGCL-P performs the best, especially for the highly corrupted datasets (excluding FACE).

7 Conclusion

We proposed an iterative method for robustly solving multi-object matching. It overcomes the limitations
of both IRLS and common least squares methods under nonuniform corruption models. We demonstrated
through both experiments and theory the advantage of directly exploiting cycle-consistency information
to guide the convergence of our non-convex optimization algorithm. There are several interesting future
directions. First of all, although our work focuses on permutation synchronization, its ideas can be generalized
to the setting of partial matching, which has more applications in structure from motion. Second, we believe
that one can borrow ideas from the theory of graph connection Laplacian and vector diffusion maps in order
to establish exact recovery guarantees for our method under different corruption models.



8 Broader Impact

Our proposed algorithms and ideas can be integrated in common 3D reconstruction software. Three-
dimensional reconstruction has important applications in autonomous driving, virtual reality and augmented re-
ality. In the past decade, the 3D reconstruction community has been switching from incremental reconstruction
procedures to global optimization schemes [21]. We thus globally estimate correlations to provide consistent
image matches as initial data for common global reconstruction pipelines. In order to address real applied
scenarios of high corruption, it is important to further develop and utilize robust estimation methods within real-
time 3D reconstruction. In addition to developing robust methods, we also provide some theoretical guarantees
for a special setting of nonuniform corruption. Another important reason for detecting abnormal data in an un-
supervised and interpretable way is to alleviate the vulnerability of deep learning based methods to adversarial
attacks. Our work takes a step towards this aim through robust extraction of image or camera correspondence
information without pre-training. This work is of interest to a broad community of machine learners that care
about and use robustness, discrete optimization methods and iteratively reweighted least squares (IRLS). In
fact, we show that the common IRLS method does not work well in our setting and explain how to carefully
modify it. We use core and well-established testing methods and prove various mathematical propositions.
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