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Abstract—In this paper, the problem of audio semantic commu-
nication over wireless networks is investigated. In the considered
model, wireless edge devices transmit large-sized audio data to a
server using semantic communication techniques. The techniques
allow devices to only transmit audio semantic information that
captures the contextual features of audio signals. To extract
the semantic information from audio signals, a wave to vec-
tor (wav2vec) architecture based autoencoder is proposed, which
consists of convolutional neural networks (CNNs). The proposed
autoencoder enables high-accuracy audio transmission with small
amounts of data. To further improve the accuracy of semantic
information extraction, federated learning (FL) is implemented
over multiple devices and a server. Simulation results show that
the proposed algorithm can converge effectively and can reduce
the mean squared error (MSE) of audio transmission by nearly
100 times, compared to a traditional coding scheme.

Index Terms—Audio semantic communication, federated learn-
ing.

I. INTRODUCTION

Future wireless networks require high data rate and massive
connection for emerging applications such as the Internet of
Things (IoT) [1]-[5]. In particular, in human-computer inter-
action scenarios, humans may simultaneously control multiple
IoT devices using speech, thus making audio communication
pervasive in wireless local area network such as smart home.
However, due to bandwidth constrains, the wireless network
in smart home may not be able to support a broad and pro-
longed wireless audio communication. This, in turn, motivates
the development of semantic communication techniques that
allow devices to only transmit semantic information. Semantic
communication aims at minimizing the difference between
the meanings of the transmitted messages and that of the
recovered messages, rather than the recovered symbols. The
advantage of such an approach is that semantic communication
transmits less amounts of data than traditional communication
techniques. However, despite recent interest in semantic com-
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munications [6]-[12], there is still a lack of reliable encoder
and decoder models for audio semantic communication (ASC).

Existing works in [6]-[12] studied the important problems
related to semantic communications. In [6], the authors pointed
out that semantic communication should consider higher-level
information such as content or semantic-related information
rather than relying only on data-oriented metrics such as data
rate or bit error probability. To efficiently transmit information,
the work in [7] investigated a model-based approach for
semantic data compression and showed that classical source
and channel coding theorems have semantic counterparts.
Furthermore, the authors in [8] proposed Bayesian game
theory to design the transmission policies for transceivers
and minimize the end-to-end average semantic metric while
capturing the expected error between the meanings of intended
and recovered messages. Besides, the authors in [9] proposed
a semantic-aware network architecture to reduce the required
communication bandwidth and significantly improve the com-
munication efficiency. In [10], the authors defined a semantic
based network system to reduce the data traffic and the energy
consumption, hence increasing the wireless devices that can be
supported. The work in [11] proposed a deep learning (DL)
based text semantic communication system to reduce wireless
traffic load. Meanwhile, in [12], the authors developed a
new distributed text semantic communication system for IoT
devices and they showed that nearly 20 times compression
ratio can be achieved without any performance degradation.
However, most of these existing works [6]-[12] that focused
on the use of semantic communication for text data processing
did not consider how to extract the meaning out of the audio
data. Here, we note that audio data is completely different
from text data since audio signals have a very high temporal
resolution, at least 16,000 samples per second [13].

The prior art in [13]-[16] studied the problem of au-
dio feature extraction. In [13], the authors adopted the so-
called Mel-frequency cepstral coefficients (MFCC) features
to represent the characteristics of audio signals. However,
MFCC features are extracted only with a frequency domain,
which lacks the contextual relation mining of audio sequence
data. Recently, the works in [14]-[16] used DL based natural
language processing (NLP) models to extract audio semantic
features. In particular, the authors in [14] proposed a wave to
vector (wav2vec) architecture to effectively extract semantic
information. The authors in [15] proposed an end-to-end model
that recognizes various language speeches. In [16], the authors
proposed a speech generator which can generate speech audio
signals with different styles using wave data. However, the
works in [14]-[16] did not account for the impact of the
channel noise on the transmitted data. Meanwhile, the work
in [16] did not proposed any method to generate the audio
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Fig. 1. The architecture of an FL based ASC system over wireless networks.

signals from the transmitted semantic information.

The use of federated learning (FL) in edge networks was
studied in [17]-[27]. In [17], [18], the authors introduced FL
method to generate a global model through collaboratively
learning from multiple edge devices, thus learning a distributed
algorithm without sharing datasets. The work in [19] proposed
an FL framework in wireless networks and jointly considered
wireless resource allocation and user selection while optimiz-
ing FL learning performance. To accelerate the convergence of
FL, the authors in [20] proposed a probabilistic user selection
scheme to enhance the efficiency of model aggregation, thus
improving convergence speed and the FL training loss. Be-
sides, the authors in [21] introduced over-the-air computation
for fast global model aggregation which is realized using
superposition property of a wireless multiple-access channel.
To explore the applications of FL, the works in [22]-[25]
provided comprehensive summaries on FL deployed on IoT
devices. Besides, the work in [26] proposed an energy-efficient
scheme to minimize the FL energy consumption and com-
plete time, where closed-form solutions of wireless resource
allocation are derived. In [27], the authors proposed efficient
incentive mechanisms for FL to improve the learning security
and accuracy, which used blockchain based reputation with
contract theory. However, most of the above works [17]-[27]
studied the prediction models which ignored the impact of FL
on the performance of semantic communication.

The main contribution of this paper is a novel semantic
communication model for audio communication, which is
trained via federated learning (FL). Our key contributions
include:

o We develop a realistic implementation of an ASC system
in which wireless devices transmit large audio command
data to a server. For the considered system, the bandwidth
for audio data transmission is limited and, thus, semantic
information is extracted and transmitted to overcome this
limitation. To further improve the accuracy of semantic
information extraction, the semantic extraction model
must learn from multiple devices. Hence, FL is intro-
duced to train the model with reducing the communi-
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Fig. 2. The architecture of audio semantic communication (ASC).

cation overhead of sharing training data. We formulate
this audio communication problem as a signal recovery
problem whose goal is to minimize the mean squared
error (MSE) between the recovered audio signals and the
source audio signals.

o To solve this problem, we propose a wav2vec based
autoencoder that uses flexible CNNs to extract semantic
information from source audio signals. The autoencoder
consists of an encoder and a decoder. The encoder
perceives and encodes temporal features of audio signals
into semantic information, which is transmitted over an
imperfect wireless channel with noise. Then, the decoder
decodes the received semantic information and recovers
the audio signals while alleviating channel noise. In this
way, the proposed autoencoder transmits less data while
jointly designing the source coding and channel coding
in the autoencoder.

o To improve the accuracy of semantic information ex-
traction, FL is implemented to collaboratively train the
autoencoder over multiple devices and the server. In
each FL training period, each local model is first trained
with the audio data from the local device. Then, the
parameters of the local models are transmitted to the
server. Finally, the server aggregates the collected local
models into a global model and broadcasts the global
model to all the devices participated in the FL. Thus, the
proposed autoencoder can integrate more audio features
from multiple users and, hence, improve the accuracy of
semantic information extraction.

o We perform fundamental analysis on the noise immunity
and convergence of the proposed autoencoder. We theo-
retically show that the number of semantic features, time
domain downsampling rate, and FL training method can
significantly influence performance of the autoencoder.

Simulation results show that the proposed algorithm can ef-
fectively converge and reduce the MSE between the recovered
and the source audio signals by nearly 100 times, compared
to a traditional coding scheme. To our best knowledge, this
is the first work that studies the ASC model and uses FL
to improve model performance, while avoiding the need for
sharing training data.

The rest of this paper is organized as follows. The system
model and problem formulation are discussed in Section II. In
Section III, we provide a detailed description of the proposed
audio semantic encoder and decoder. The simulation results
are presented and analyzed in Section IV. Finally, conclusions
are drawn in Section V.



II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a spectrum resource-limited uplink wireless
network to deploy an ASC system, which consists of U
edge devices, B base stations (BSs), and one server. Each
edge device will transmit large audio packets to the server
via the closest BS, as shown in Fig. 1. Due to the limited
spectrum, audio semantic information must be extracted for
data transmission, thus reducing communication overhead and
improving the spectrum efficiency. In particular, edge devices
must send audio semantic information via wireless channels
to the BSs, and, then, the semantic information is delivered
via optical links to the server for decoding. To extract the
audio semantic information with high efficiency and accuracy,
we assume that the edge devices and the server cooperatively
train an ASC model using FL. The ASC model consists of
an ASC encoder and an ASC decoder, as shown in Fig 2.
In particular, the ASC encoder is deployed on each edge
device to extract audio semantic information while the ASC
decoder is deployed on the server to recover audio signals.
The objective of the ASC model is to recover the audio
signals as accurate as possible. We assume that the connections
between BSs and the server use the optical links and have
sufficient spectrum resource to support accurate transmission.
We mainly consider the transmission impairments from the
wireless channel between the edge devices and BSs. To
enhance noise immunity, the ASC model must be trained using
the received semantic information while taking into account
the wireless channel impairments. Hence, the BSs are set to
reliably send back the received semantic information to each
device, which only occurs during the short-term training stage.
Since the extraction of semantic information determines the
accuracy of ASC, we consider the architecture design of the
ASC model for audio communications.

A. ASC Encoder

The ASC encoder is used to encode the input audio data and
to extract the semantic information from the raw audio data.
We define @ = [a1,as,...,ar| as the raw audio data vector
where each element a; is the audio data in sample ¢ with T’
being the number of samples. Let © = [z1,22,...,2xN] be
the semantic information vector to be transmitted where x,, is
element n in the vector. The ASC encoder extracts « from a
by using a neural network (NN) model parameterized by 6,
thus, the relationship between a and x can be given by:

z =To(a), D

where Tg(+) indicates the function of the ASC encoder.

B. Wireless Channel

When transmitted over a wireless channel, semantic infor-
mation will experience channel fading and noise. We assume
that the audio transmission uses a single wireless link and,
hence, the transmitted signal will be given by:

y=h-z+o, 2

where y is the received semantic information at the decoder
with transmission impairments, / is the channel coefficient,
and o ~ N (0,0%I) is a Gaussian channel noise at the
receiver with variance o2. I is the identity matrix.

C. ASC Decoder

The ASC decoder is used to recover the audio data a
from the received semantic information y and to alleviate
transmission impairments. The functions of the decoder and
the encoder are generally reciprocal. Let a be the decoded
audio data and ¢ be the parameters of the NN model in the
ASC decoder. Then the relationship between a and y can be
given by:

a=Ry,(y), 3)

where R (-) indicates the function of the ASC decoder.

D. ASC Objective

The objective of the ASC system is to recover the audio
signals as accurate as possible. Since ASC system transmits
semantic information, the use of bit error rate (BER) as a
metric is not suitable to assess ASC. Hence, we use the mean
squared error (MSE) to evaluate the quality of ASC at the
semantic level. The ASC system objective function can be
formulated to minimize the MSE between a and a, as follows:

. SR IR
min Ly (0, ¢,a,@) = min f;(at —a)’, @
where 6 and ¢ are the parameters of the ASC encoder
and ASC decoder, respectively. Here, we assume that the
architectures of T'9 and R, are stay fixed and we only update
the weights of NNs when solving problem (4). Hence, it
is necessary to properly design the architecture of the ASC
encoder and the ASC decoder. To this end, we introduce an
autoencoder to extract audio semantic information.

III. AUDIO SEMANTIC ENCODER AND DECODER

To solve problem (4), we first propose a wav2vec architec-
ture based autoencoder to efficiently extract audio information.
Then, to further improve the accuracy of semantic information
extraction, the autoencoder is trained with FL over multiple
devices and the server. Thus, the proposed autoencoder can
learn semantic information extraction from the audio informa-
tion of diverse users.

A. Wav2vec Architecture Based Autoencoder

In the proposed architecture, as shown in Fig. 2, the ASC
system can be interpreted as an autoencoder [28]-[31], This
autoencoder is trained to recover the input signals at the output
end using compressed data features. Since the data must pass
through each layer of the autoencoder, the autoencoder must
find a robust representation of the input data at each layer [30].
In particular, NN models are used to build each layer in the
autoencoder. Since convolutional neural networks (CNNs) are
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Fig. 3. The wav2vec architecture.

particularly good at extracting features and can be parallel de-
ployed over time on multiple devices, we prefer to use CNNs
instead of other NNs such as recurrent neural networks [32]—
[34]. Next, we introduce our CNN-based wav2vec architecture
for semantic information extraction.

To extract the semantic information, we use a wav2vec
model as the audio semantic encoder. A simplification of
our wav2vec architecture is shown in Fig. 3. From Fig. 3,
we see that, the wav2vec architecture uses two cascaded
CNNs, called feature extractor and feature aggregator [14],
to extract audio semantic information. Given the raw audio
vector, the extractor refines rough audio features and the
aggregator combines the rough audio features into a higher-
level latent variable that contains semantic relations among
contextual audio features [14].

According to the wav2vec architecture, we design an audio
semantic decoder, whose network architecture is symmetrical
to the original wav2vec model [14]. Combining together
an audio semantic encoder and the corresponding semantic
decoder, we propose a wav2vec based autoencoder as shown
in Fig. 4. In the autoencoder, the audio semantic encoder and
the decoder extracts the semantic information and recovers
audio signals from the semantic information, respectively.
Each single encoder or decoder implements the function of
joint source coding and channel coding. Considering the trans-
mission impairments, the semantic information is designed
to accurately capture the time domain contextual relations of
the audio signals, so as to resist channel fading and noise
interference.

Fig. 5 shows the NN layers of the proposed autoencoder.
According to Fig. 5, we observe that, given the raw audio
signals a, the audio semantic encoder is used to extract the
semantic vector x. In the proposed audio semantic encoder,
the data first passes through a feature extractor then a feature
aggregator. The feature extractor and the aggregator consist of
Lexe and L,g, convolution blocks, respectively. In particular,
each convolution block consists of a) a convolution layer, b)
a dropout layer, and c) a batch normalization layer, defined as
follows:

o Convolutional layer: In CNNs, a convolutional layer
is used to extract the spatial correlation of the input
data with 1-D convolution between the input data Z =1
and the kernel matrix. Mathematically, given the in-
put ZI71 e RM-XMT e output of the convolu-

tional layer [ is Z' = [zb1,.-  zbm ... M) =
1,---, M where zb™ € RM*1 is the feature map m of
convolutional layer [ with M being the number of output
features. Hence, the input Z O of convolutional layer 1 is
the raw audio data or the output of the last NN module.
The output of feature map z“™ in each convolutional

layer [ is given by:

lel
Z zl*l,k ® ch,m 4 blc,m , (5)
k=1

where f(x) = x is the linear activation function, M~ is

the number of feature maps in the last convolutional layer

[ —1, ® denotes 1-D convolution operation, and Wf;’” €

R*+*1 and b.™ are convolution kernels and bias vector

of feature map m in convolutional layer [, respectively,

with s; being the kernel size. Let the convolution stride
be s., the padding size be p, and the size of feature map

A, satisfies \; = LM;#J + 1.

e Dropout layer: The input Z! of a dropout layer [ is
the output of convolutional layer /. In the training stage,
the dropout layer randomly abandons the effect of each
neuron with a probability called dropout rate, and, in the
inference stage, the dropout layer counts on the effects of
all neurons. The dropout layer is used as a regularization
approach to avoid overfitting problem.

e Batch normalization layer: A batch normalization layer
normalizes the values of activated neurons to avoid
gradient vanishing. We define «; as the value of the
activated neuron ¢ in convolution block ! The normalized
value @ of the neuron is given by a; = :‘/i%, where

B

ug = /\il Zf‘;l i, 0% = )% Zf‘;l (o; — pg)*, and € is a
positive constant.

Since the amplitude of an audio signal is limited, tanh(-)
is introduced as the activation function of the output layer
in the feature extractor [16], where tanh(z) = z:;z:j To
shape the transmitted semantic information with an adequate
amplitude, the last layer of the feature aggregator is set as
batch normalization layer without activation function [31].

In the proposed audio semantic decoder, as shown in Fig 5,
the received semantic information first passes through a fea-
ture decomposer then an audio generator. Different from the
encoder, a deconvolution operation is introduced to build the
feature decomposer and audio generator which consist of Lge
and Lge, deconvolution blocks, respectively. Correspondingly,
each deconvolution block consists of a) one deconvolution
layer, b) one dropout layer, and c) one batch normalization
layer. Mathematically, the processes of the dropout layer and
the batch normalization layer are similar to those in the
convolution blocks, except for the deconvolution layer.

In the deconvolution layer, the feature matrix is first uni-
formly filled with zeros in each column. Given the filled
input matrix Z7 = [ El_l’Mlil] €
RM-1XM'™ihe output of a deconvolution layer [ is A
[21,17._, Zbmo ,zz,M’] c R,\,xM”m - 1 M,
where z is the filled feature map m and :\l_ 1 is the filled

2[—1,1".' él—l,m .

) ) )

R Lt

l,m
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Fig. 5. The architecture of the proposed autoencoder.

feature map size. The output of feature map z"™ in each
convolutional layer [ is given by:
lel
Zl,m _ f Z Elfl,k ® Wld,m + bfi,m ’
k=1

(6)

where M'~! is the number of features of layer / — 1, and
Wil’m and bld"m are deconvolution kernels and bias vector in
deconvolutional layer [, respectively. In deconvolution layer,
the filled feature map size 1 satisfies \; = Se(M—1—1)—
2p 4+ 2s, — 1 and the size of feature map )\; satisfies \; =
No1 —sp+1 = Se(Ni—1 — 1) — 2p + si, where p is the
padding size of layer /. Note that, to appropriately recover the
audio signals, the output layer of the audio generator is set as
tanh(-) function.

To amplify the inference error and avoid gradient van-
ishing, we introduces the normalized root mean squared er-
ror (NRMSE) for the autoencoder. Then the objective of the
autoencoder is given by:

)

. o Y (@)
min Lnrumsk (0, @, a, @) = min =
0.0 0.¢ Zt:l ay

B. FL Training Method

Next, our goal is to minimize the errors between the
recovered audio signals and the source audio signals using
FL training method. In FL, the server and the devices col-
laboratively learn the proposed autoencoder by sharing the
model parameters [19], [35]-[37]. We define w = (0,¢)
as the total parameter of the proposed autoencoder, which
includes both the encoder and decoder. The server generates
a global model w® and each device ¢ locally trains a local
autoencoder model w,; which shares the same architecture
as w#®, as shown in Fig. 1. The global model periodically
aggregates local models from U devices that participate in
FL and broadcasts the aggregated global model back to the

Algorithm 1 Local model training algorithm of the autoencoder

1: Initialize: Randomly initialize parameters 0© and ga(o), initial-
ize training epoch ¢ = 0.

2: Input: Batches of audio data a
3: while model does not converge or ¢ < max epoch do:
4 To(a) — x.
5. Transmit @ over wireless channel and receive y.
6: R,(y)— a.
7. Calculate Lnryvse(O, @, a,a) according to (9).
8:  Update encoder’s and decoder’s parameters
simultaneously with SGD:
ol g _ NV (i) LNRMSE (G(i), ‘P(i))
(i+1) (1) (ORNG) ®)
¥ — @ =1V ) LNruSE (9 N )
9: i<+ i+1

10: end while
11: Output: T9(-) and R,(-) combined as w.

devices. Then the aggregated global model can be given by

we = % Z?:l w;. We use A; to capture the audio dataset of
local model ¢. According to problem (7), the objective of FL

training method is given by:

U
I?uign ZﬁNRMSE (’wi, A, Ai) . )
i=1
During the local model training stage, the server first defines
the architecture of the autoencoder and broadcasts it to all
edge devices to randomly initialize the local models. To keep
the coordination between the encoder and the decoder of the
proposed autoencoder, we jointly set that the encoder and the
decoder update the parameters simultaneously to minimize
the loss function (9). Hence, both the encoder and decoder
update the parameters with stochastic gradient descent (SGD)
once after a batch of data passes through the autoencoder.
The training process of each local model can be shown in
Algorithm 1, where 7 in (8) is the learning rate.



Algorithm 2 FL training algorithm of the global model [22].

1: Initialization: Initialize the model architecture, the local models
and the global model are initialized with random parameters.
Initialize model aggregation step 7 = 0.

2: while model does not converge or 7 < max aggregation step
do:

3:  Each local model updates w!™, wg)...wg)

through training from local dataset according to Algorithm 1.

4:  Transmit local trained models w!™ w{”...w!7

to the server.

5. Update the global model:

Wi = 45 )

6:  Dispatch local models:

I I 0

7. T+ T17+1

8: end while

9: Output: Global model w&.

During the training process of the global model, each edge
device is set to transmit the parameters of the local models
w, to the server every a fixed number of epochs. Thus, the
server periodically collects the transmitted models, aggregates
the parameters of the local models, and then broadcasts the
updated global model to each device. In the next period, the
local models update their parameters through training from
local datasets A;, before transmitting w; to the server, as
shown in Algorithm 1. The FL algorithm for the global model
is summarized in Algorithm 2.

C. Complexity Analysis

The proposed FL algorithm used to solve problem (9)
is summarized in Algorithm 2. The complexity of the
proposed algorithm lies in training the proposed autoen-
coder. The complexity for training the autoencoder is
o (Zle AZsp2MUMI=1) [38], where L = Loy + Logg +
Lge + Lgen, With Leyg, Lagg, Lde; Lgen, and L being the number
of convolution or deconvolution layers in the feature extractor,
the feature aggregator, the feature decomposer the audio
generator, and the proposed autoencoder, respectively. Let L,
be the number of model aggregations until the FL global
model converges. The complexity of the FL training method
is O (LOU ZzL:1 Msp2M'M'=1) [20]. In consequence, the
major complexity of training the autoencoder, which depends
on the number of NN layers, the kernel sizes and the numbers
of features in each layer, is linear. Meanwhile, since the layers
in the autoencoder are finite, the local training is achievable
and, hence the edge devices can support the FL training in
the considered wireless network. Once the training process is
completed, the trained autoencoder can be used for ASC in a
long term period.

IV. SIMULATION AND PERFORMANCE ANALYSIS

To evaluate the proposed autoencoder, we train the model
using a training set from the speech dataset Librispeech [39],
which contains 1000 hours of 16 kHz read English speech.
The learning rate 1 is 10~5. The proposed autoencoder is
trained under additive white Gaussian noise (AWGN) channels
with a fixed channel coefficient & and a 6dB signal-to-noise-
ratio (SNR), and it is tested on 200000 samples of speech

6

TABLE I
SIMULATION PARAMETERS.

Module Setting Parameter Value
feature M 8,8,8

. . _ kernel size sy, 1,2,4
feature extractor Lext =3 Stride s, TT1
dropout rate 0.5

feature M 8,3.8.8

. . . _ kernel size s 2,4,8,16
feature aggregator Lagg = 4 Sirde 5. 1111
dropout rate 0.5

feature M 8,3.8,8

_ kernel size s 2,4,8,16

feature decomposer Lge =14 Sirde 5. 1111
dropout rate 0.5

feature M 8,8.,8,1

Lo _ kernel size s, 1,2,4,1
audio generator Lgen =4 Sirde 5. TT11
dropout rate 0.5

data. The simulation parameters are listed in Table I [40]. We
train the model using FL. method with 1 global model and 2
local models of user 1 and user 2, each local model is trained
using read speech from a single person, and the FL. models are
tested with read speech of another user 3. The global model
aggregates local models every 10 local training epochs.

For comparison purposes, we simulate a baseline scheme
for high-quality audio transmission, which uses 128 kbps pulse
code modulation (PCM) with 8 bits quantization levels [41] for
source coding, low-density parity-check codes (LDPC) [42]
for channel coding, and 64-QAM [43] for modulation. In
this section, for notational convenience, we call the proposed
autoencoder for ASC a “semantic method”, and we call
the baseline scheme a “traditional method”. Note that, the
autoencoder is trained via NRMSE, and tested via MSE. This
is because that NRMSE induces larger gradient for training the
autoencoder and MSE provides more obvious fluctuations for
result comparison. To verify the performance of the proposed
FL algorithm, we compare two baselines: transfer learning
method and local gradient descent FL [22]. In the transfer
learning method, the feature aggregator and the decomposer
in the autoencoder are first initialized with a pre-trained model,
then the autoencoder is trained using local audio data. In the
local gradient descent FL, at the start of each iteration, all
devices first share an aggregated model, then each device
simultaneously computes a fixed number of local gradient
descent updates (1000 steps) in parallel.

Fig. 6 shows examples of the raw audio data, the extracted
semantic information reshaped in block form, the received se-
mantic information, and the recovered audio data in one local
model. From Fig. 6(a)-(c), we see that, the audio semantic
information signals are amplified by the the proposed semantic
encoder before being transmitted through the channel. From
Fig. 6(b), it is also observed that, the extracted 8 different
blocks of semantic features have correlations. From Fig. 6(c)
and Fig. 6(d), we see that the proposed semantic decoder
eliminates the channel noise from the received signals. The
elimination of the noise is due to the fact that the semantic
decoder relieves the noise using multiple semantic features.
Fig. 6 shows that the proposed autoencoder can effectively
guarantee the accuracy of ASC.
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Fig. 6. Visualizations of a raw audio fragment, the corresponding semantic
information that is reshaped in the block form, the received semantic infor-
mation, and the recovered audio signals.
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Fig. 7. Transmission MSE of a local autoencoder model as the number of
features varies, in AWGN channels with a 6dB SNR.

Fig. 7 shows how transmission MSE of a local model using
semantic method changes as the number of features varies.
From Fig. 7, we see that, as the number of features increases,
the MSE of the proposed semantic method decreases first
and, then remains unchanged. This phenomenon is due to the
fact that higher dimension features provide better semantic
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Fig. 8. Transmission MSE of a local model using semantic method, BER
and transmission MSE of traditional method as SNR varies.
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Fig. 9. Transmission MSE of the proposed semantic method with different
time domain downsampling rates. The number of semantic features is 8.

representations thus improving the transmission performance
of the semantic method. From Fig. 7, we can also see that,
when the number of features is larger than 16, the MSE of the
semantic method tends to be leveling off. This result is because
of the existence of redundant semantic features which provide
limited noise immunity for ASC.

In Fig. 8, we show how the transmission MSE of a local
model using the proposed semantic method, BER and MSE of
the traditional method change as the channel SNR varies. In
this simulation, the semantic method reduces communication
overhead by decreasing nearly 1/3 of the transmission data
amount compared to the traditional method. From Fig. 8§,
we observe that, as the channel SNR increases, the error of
communication decreases as expected. From Fig. 8, we can
also see that our semantic method reduces the transmission
MSE by nearly 100 times, compared to the traditional method,
and the MSE of semantic method varies flatter than that of
traditional method. The improvement is due to the fact that the
semantic method has a better transmission accuracy and noise
immunity performance. From Fig. 8, we can also see that, the
MSE of the traditional method remains unchanged when the
SNR is larger than 14 dB. The phenomenon is because, for
a lower BER, the accuracy of the traditional coding scheme
will reach the coding limit and, hence, the MSE will stay at
a quantization error level caused by PCM quantization.

Fig. 9 shows how the transmission MSE changes versus
various channel SNR, where the semantic method uses dif-
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ferent time domain downsampling rates. In this simulation,
lower time domain downsampling rates can reduce transmis-
sion data amount exponentially and are realized by changing
the convolution strides in the feature extractor and feature
decomposer. From Fig. 9, we can see that, a lower time
domain downsampling rate leads to more transmission error,
which is because of the more loss of semantic information.
From Fig. 9, we can also observe that as the SNR increases,
the decreasing speed of the MSE differs among different
downsampling rates. The disparity is due to the fact that, the
semantic information extracted with different downsampling
rates has diverse sensitivities to the SNR. Fig. 9 shows
that reducing the time domain sampling rates decreases the
communication accuracy. In consequence, Fig. 7 and Fig. 9
demonstrate that, in terms of improving the performance of
semantic communication, the complexity of semantic features
trades off the data compression rate.

In Fig. 10, we show how the validation loss changes as
the training epoch increases. From Fig. 10, we observe that,
the validation loss initially decreases with fluctuation first
and then remains unchanged. The fact that the validation
loss remains unchanged demonstrates that the FL algorithm
converges. From Fig. 10, we can see that, when the FL global
model is aggregated, the loss of local models increases for
several epochs first and, then decreases in a long-term view.
The result is due to the difference of the multiple local audio
datasets from different users. At the beginning of training,
the aggregation of multiple local models will critically change

the parameter distribution of the global model. Then, as the
training process continues, the global model parameters fit
multiple local datasets. Hence the fluctuation caused by FL
model aggregation weakens, and the local models of multiple
users converge. From Fig. 10, we can also see that FL. model
aggregation further decreases the lower bound of loss in each
local model. This phenomenon is because that FL training
method aggregates audio semantic features from multiple
users, thus enhancing model performance compared with local
training method.

Fig. 11 shows how the transmission MSE of all algorithms
changes as the channel SNR varies. From Fig. 11, we observe
that the performance of the proposed model differs among the
diverse users due to the various audio characteristics. We can
also see that transfer learning can improve the model perfor-
mance compared to locally training. Besides, local gradient
descent FL outperforms part, but not all of the locally trained
models. The difference of the baselines is because that transfer
learning can further learn audio semantic extraction based on
pre-trained model parameters. Whilst local gradient descent
FL aggregates the global model with low frequency, where
the difference among local models leads to the inefficiency
on improving semantic extraction. From Fig. 11, we can also
see that, the proposed FL algorithm outperforms the locally
trained models. The superiority is because that the FL trained
model aggregates audio characteristics of all users and hence
obtaining more robust performance. We can also observe
from the dotted lines that the proposed FL training method
is superior over transfer learning and local gradient descent
FL. The superiority is due to the fact that the proposed FL
algorithm aggregates the model in a frequent and synchronous
way, which guarantees a more accurate semantic extraction
than that of the baselines.

V. CONCLUSION

In this paper, we have developed an FL trained model
over an ASC architecture in the wireless network. We have
considered avoidance of training data sharing and heavy
communication overhead of the large-sized audio transmission
between edge devices and the server. To solve this problem, we
have proposed a wav2vec based autoencoder to effectively en-
code, transmit, and decode audio semantic information, rather
than traditional bits or symbols, to reduce communication
overhead. Then, the autoencoder is trained with FL to improve
the accuracy of semantic information extraction. Simulation
results have shown that the proposed algorithm can converge
effectively and yields significant reduction on transmission
error compared to existing coding scheme which uses PCM,
LDPC and 64-QAM algorithm.
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